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ABSTRACT

In this paper, we consider the problem of maximizing the
throughput of Byzantine agreement, when communication
links have finite capacity. Byzantine agreement is a classi-
cal problem in distributed computing, with initial solutions
presented in the seminal work of Pease, Shostak and Lam-
port. The notion of throughput here is similar to that used
in the networking/communications literature on unicast or
multicast traffic. We identify necessary conditions for an
agreement throughput of R to be achievable. We also pro-
vide tight sufficient conditions by construction for agreement
throughput R in four-node networks.

Categories and Subject Descriptors: C.2.4 [COMPUTER-

COMMUNICATION NETWORKS]: Distributed Systems

General Terms: Algorithms, Reliability, Security, Theory.
Keywords: Byzantine agreement.

1. INTRODUCTION

We consider the problem of characterizing the capacity
of Byzantine agreement, given finite-capacity links between
nodes in the system. Byzantine agreement is a classical
problem in distributed computing, with initial solutions pre-
sented in the seminal work of Pease, Shostak and Lamport
[1]. Many variations on the Byzantine agreement problem
have been introduced in the past, with some of the variations
also called consensus. We will use the following definition
of Byzantine agreement: Consider a network with one node
designated as the sender or source (S), and the other nodes
designated as the peers. The goal of Byzantine agreement
is for all the fault-free nodes to “agree on” the value being
sent by the sender, despite the possibility that some of the
nodes may be faulty. In particular, the following conditions
must be satisfied:

e Agreement: All fault-free peers must agree on an
identical value.
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e Validity: If the sender is fault-free, then the agreed
value must be identical to the sender’s value.

e Termination: Agreement between fault-free peers is
eventually achieved.

Our goal in this work is to design algorithms that can
achieve optimal throughput of agreement. When defining
throughput, the “value” referred in the above definition of
agreement is viewed as an infinite sequence of information
bits. We assume that the information bits have already been
compressed, such that for any subsequence of length n > 0,
the 2" possible sequences are sent by the sender with equal
probability. Thus, no set of information bits sent by the
sender contains useful information about other bits. This
assumption comes from the observation about “typical se-
quences” in Shannon’s work [3].

We also adopt the notion of channel capacity from the
information theory literature [3]: tightest upper bound on
the amount of information that can be reliably transmitted
over a communications channel, independent of how the bits
are encoded (e.g. the bits could be encoded as a specific
waveform, or as silenced interval). In the existing works
on Byzantine agreement, the capacity of links between the
nodes are assumed to be infinite implicitly. To the best of
our knowledge, we are the first one to study the problem
of Byzantine agreement when the links in the network have
finite, and maybe different, capacity.

At each peer, we view the agreed information as being
represented in an array of infinite length. Initially, none of
the bits in this array at a peer have been agreed upon. As
time progresses, the array is filled in with agreed bits. In
principle, the array may not necessarily be filled sequentially.
For instance, a peer may agree on bit number 3 before it is
able to agree on bit number 2. Once a peer agrees on any
bit, that agreed bit cannot be changed.

We assume that an agreement algorithm begins execution
at time 0. The system is assumed to be synchronous. In
a given execution of an agreement algorithm, suppose that
by time ¢ all the fault-free peers have agreed upon bits 0
through b(t) — 1, and at least one fault-free peer has not yet
agreed on bit number b(¢t). Then, the agreement throughput
b(t)

is defined as lim;_, o -

Capacity of agreement in a given network, for a given
sender and a given set of peers, is defined as the supremum
of all achievable agreement throughputs.



2. NECESSARY CONDITIONS FOR AGREE-

MENT THROUGHPUT r

It is known that a network must contain at least 4 nodes
for agreement to be achievable with a single Byzantine fail-
ure. In this work, we only consider the case of 4 nodes when
at most 1 node may suffer Byzantine failure. The character-
ization of agreement capacity for the four-node network is
non-trivial and cannot be generalized to larger networks di-
rectly. The design of capacity achieving algorithms in larger
networks (possibly with multiple failures) is substantially
more complex than the four-node case.

We consider a synchronous network of 4 nodes named S,
A, B and C, with node S acting as the sender, and the others
being the peers. At most one of these four nodes may be
faulty. The network is viewed as a directed graph, formed
by directed links between the nodes in the network, with
the capacity of each link being finite. The capacity of some
links may be 0, which implies that these links do not exist.
Let us call the incoming links at S as the uplinks (links AS,
BS and CS). We identify the following necessary conditions
for achieving agreement throughput of R bits/unit time.

e Necessary condition NC1: If any one peer is re-
moved from the network, the min-cut from the source
S to each remaining peer must be at least R.

e Necessary condition NC2: The max-flow to each
of the peers from the other peers, with the source re-
moved from the network, must be at least R.

e Necessary condition NC3: All incoming links to
the peers must exist (capacity> 0).

e Necessary condition NC4: The capacity of every
out-going link from S must be at least R, when S there
is no uplink.

Our main results are the tightness of these conditions:

e With uplink(s): Agreement capacity of a four-node
network is the supremum over all throughputs R that
satisfy necessary conditions NC1, NC2, and NC3.

e With no uplink: Agreement capacity of a four-node
network is the supremum over all throughputs R that
satisfy necessary conditions NC1, NC2, NC3 and NC4.

3. SKETCH OF CAPACITY ACHIEVING AL-

GORITHMS

We prove our results by providing agreement algorithms
that can achieve throughput arbitrarily close to R, given the
corresponding conditions are satisfied. The algorithm for
the case of complete graph with all 3 uplinks exist is slightly
different from the one for the case with fewer uplinks, and
is easier to describe. For brevity, we will only sketch the
algorithm for the complete graph. Interested readers are
referred to our technical report [2] for more details.

The proposed Byzantine agreement algorithm for the com-
plete graph proceeds in rounds. The units for rate R and
the various link capacities are assumed to be bits/time unit,
for a convenient choice of the time unit. We assume that
by a suitable choice of the time unit, the number R and the
various link capacities can be turned into integers. The algo-
rithm executes in multiple rounds, with the duration of each
round being approximately ¢ time units. Note that in ¢ time
units, a link with capacity z bits/time unit can carry z sym-
bols (or packets) from Galois field GF(2¢). Computation is
assumed to require 0 time.
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In Round 1, the source S transmits as many coded pack-
ets as possible to the peers, such that each coded packet is
a linear combination of R packets of data, and any subset of
R coded packets constitutes independent linear combina-
tions of the R data packets. As we know from the design of
Reed-Solomon codes, if ¢ is chosen large enough, this linear
independence requirement can be satisfied. In round 2, each
peer relays as many distinct packets it receives from S in
round 1 to each of the other two peers. Then, each fault-
free peer check if any node has misbehave by trying to find
a unique solution for each subset of R packets from among
the packets received from the other three nodes in rounds
1 and 2. We can show that if a faulty node misbehaves, it
will be detected by at least one fault-free peer. If a failure
is detected, a broadcast phase is triggered, and every node
including S broadcasts all packets it has sent and received
during rounds 1 and 2 to the remaining 3 nodes, using the
traditional Byzantine agreement algorithm, in particular the
algorithm by Pease, Shostak and Lamport [1]. This is possi-
ble in the complete graph. For incomplete graph with fewer
uplinks, this part is more complicated and is described in
our technical report [2]. Based on the broadcast informa-
tion, the fault-free nodes will be able to identify the faulty
node if it misbehaves for more than a finite number of times.
Once the faulty node is identified, each fault-free peer can
recover the correct data from the packets from the other two
fault-free nodes, or terminates the algorithm if S is faulty.

In achieving throughput R, it will be necessary to have
multiple “generations” of packets in the network, with the
algorithm operating in a pipelined manner (one round per
pipeline stage). Agreement algorithm for one new gener-
ation of data of size Rc bits (or R symbols from GF(2°))
starts per round. By using a suitably large c, the overhead
for disseminating detection results and a finite number of
broadcast phases diminishes to 0 as time goes to infinity.
Hence, the throughput can be made arbitrarily close to R.

4. DISCUSSION

While NC1 and NC2 can be easily generalized to larger
networks with multiple failures, they are not sufficient for
networks with more than 4 nodes. The following condition
must also be satisfied for achieving throughput R:

e Necessary condition NC5: If any node is removed
from the network, the sum capacity of all links in both
direction on any cut must be at least R.

In four-node networks, NC5 is implied by NC1 and NC2 in
four-node, but in larger networks.

In four-node networks, we used a very simple scheme:
Reed-Solomon code at the source, and the peers just for-
ward packets from the source. Unfortunately, this scheme
can not be generalized directly to larger networks with mul-
tiple failures. Owur preliminary results on larger networks
show that a capacity achieving algorithm is substantially
more complex than the one for four-node networks.
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