
Experimental Performance Comparison of
Byzantine Fault-Tolerant Protocols for Data Centers

Guanfeng Liang, Benjamin Sommer and Nitin Vaidya
Department of Electrical and Computer Engineering, and

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Email: {gliang2,sommer3,nhv}@illinois.edu

Abstract—In this paper, we implement and evaluate three dif-
ferent Byzantine Fault-Tolerant (BFT) state machine replication
protocols for data centers: (1) BASIC: The classic solution from
Pease, Shostak, and Lamport [1]; (2) Digest: A simplified version
of the seminal practical BFT protocol PBFT by Castro and Liskov
[2]; and (3) NCBA: a network coding based BFT protocol that
we propose in this paper. Unlike existing practical BFT protocols
such as PBFT, which utilize collision-resistant hash functions
to reduce traffic load for BFT, NCBA uses a computationally
efficient error-detection network coding scheme. Since NCBA
does not rely on any hash function, it is always correct rather
than correct only with high probability as PBFT. Moreover, even
though NCBA introduces 50% more communication cost than
PBFT does, it is compensated by reducing the computational
cost of hashing. Through extensive experiments, we verified that
NCBA performs at least as well as Digest, without relying on
any cryptographic assumption on the hardness of breaking the
hash function. To the best of our knowledge, this is the first
implementation of BFT with network coding.

I. INTRODUCTION

In the last couple years, we observe a tremendous growth
in the popularity of data oriented online services, such as
cloud computing, data centers and online storage. More and
more enterprises run their critical business applications on
data centers. Individual users also have become increasingly
dependent on the Internet to store their personal data such
as photos, musics, videos, etc. As the reliance of industry,
government, and individuals on data centers and other similar
online information services increases, the threat posed by mali-
cious attacks and software errors has also become increasingly
prominent. For example, software errors have brought down
the Amazon S3 storage system for several hours [3], and have
caused well-known email services such as Gmail [4] to wipe
out customer’s emails. Consequently, being able to provide
reliable and consistent access to the data and services that they
host has become the most basic and most important Quality-
of-Service requirement that these online services must fulfill.

Byzantine Fault-Tolerant (BFT) provides a powerful state
machine replication approach for providing highly reliable and
consistent services in spite of the presence of failures. In BFT
state machine replication, n ≥ 3f + 1 replicas collectively
behave as one fault-free server, even if up to f replicas
are faulty and deviate from the protocol, i.e., misbehave, in
arbitrary (Byzantine) fashions [1]. The key of BFT is to make

sure that all replicas agree upon the same sets as well as
the order of requests, and execute them in the agreed upon
order. This guarantees that all fault-free replicas always have
consistent states and produce the same output. Then the correct
output can be obtained by taking the majority of the individual
outputs, since at least 2n/3 of the replicas are fault-free.

Unfortunately, BFT has been barely adopted in practice
for the three decades following its introduction in 1980 [1],
mainly because of the perception that error-free BFT requires
prohibitive communication overhead (Ω(n2) bits of commu-
nication in order to agree on 1 bit) among the replicas.

In the last decade, there are numerous efforts devoted to
making BFT systems practical [2], [5], [6], [7], [8]. The
overhead of BFT has been significantly reduced. A common
theme of these BFT protocols/systems is that, in order to
check the consistency of a request (or a piece of data) re-
ceived by different replicas, the replicas exchange hash values
(sometimes called “digests”) computed from the request using
some collision-resistant hash function and check the hash
values against the original request, instead of exchanging the
entire request. Since the digest is much smaller than the
original request in size, communication cost is significantly
reduced (roughly by an order of n). Despite the impressive
performance improvement achieved by these systems, the
use of a collision-resistant hash function may, in fact, be
problematic, for the following two reasons:

(1) First of all, the correctness of the aforementioned
protocols relies on the collision-resistant property of the hash
function used. With the rapid improvement in modern crypt-
analysis and computational power of computers, defeating the
hash functions may become computationally feasible in the
future, and a malicious adversary will be able to find collisions
of the hash function and then break the system. For example,
Castro and Liskov’s seminal Practical Byzantine Fault Toler-
ance (PBFT) [2] protocol and the follow-up Zyzzyva [5] by
Kotla et al. both use MD5, which can now be broken in a few
seconds by a regular laptop [9].

(2) The second reason is related to the first one. In a later
implementation of PBFT in 2002 [6], MD5 was replaced by
SHA-1 in order to improve the reliability of the protocol.
However, SHA-1 was then broken in 2008 [10]. It is likely
that these protocols need to use more and more secure hash

2

functions (e.g. SHA-256 and SHA-512), trying to stay ahead
of the development in technology and cryptanalysis. However,
the more secure a hash function is, the more expensive it is
and the longer it takes to compute. So the improvement we
gain from reducing communication overhead with hashing can
become overwhelmed by the increasing computational/time
cost we pay for using a stronger hash function.

The discussion above motivates our work in this paper:
Is it possible to design a practical BFT system with the fol-

lowing two properties: (1) Reliable: Always correct (in other
words error-free) and does not rely on hash functions; and (2)
Efficient: Performance is comparable to the aforementioned
systems that use hash functions.

We give a positive answer to this question in this paper:
• We introduce the NCBA protocol, a network coding based

BFT protocol that does not use any hash function, and
can be proved to be error-free, i.e., reliable.

• Experimental results on our testbed show that the NCBA
protocol is at least as efficient as the protocols that use
hash functions.

This paper is structured as follows. We begin by giving
formal problem formulation and describing our system and
failure models. Related work is discussed in Section III. Then
we briefly discussed Digest, a PBFT-like protocol, in Section
IV. Our NCBA protocol is introduced in Section V. In Sections
VI and VII we discuss the details of our implementation
the protocols, as well as experimentation for performance
evaluation. At last, we summarize this paper in Section VIII

II. PROBLEM FORMULATION AND SYSTEM MODELS

A. Byzantine Agreement (Broadcast)

Consider a state machine replication system with n
servers/replicas. One server is designated as the source, de-
noted as S. The other servers are designated as the peers,
denoted as P1, · · · , Pn−1. The goal is for all the fault-free
servers to “agree on” the messages (or requests) being sent
by the source, despite the possibility that some of the nodes
may be faulty. In particular, the following conditions must be
satisfied:

• Agreement: All fault-free servers must agree on an
identical message. (Once a server agrees on a certain
message, it cannot change its decision.)

• Validity: If the source is fault-free, then the agreed
message must be identical to the source’s message.

• Termination: Agreement between fault-free servers is
eventually achieved.

B. Models

We assume a synchronous distributed system in which nodes
are connected by a network. By synchronous, we mean that
there are a priori known upper bounds on these quantities:

• Each server has a bounded time between its execution
steps;

• Each message transmitted is received in a bounded time;

• Node’s local clocks may drift either from each other or
from global physical time only by a bounded rate.

Reasonable upper bounds on these quantities are usually easy
to obtain in state-of-the-art systems. Nevertheless, the idea
of the proposed protocols can be applied to asynchronous
settings, and similar comparative performance results are ex-
pected in asynchronous versions of these protocols.

To capture the behavior of faulty servers, we assume a
Byzantine adversary model. That is, the adversary has com-
plete knowledge on the BFT protocol being used, as well as
all information flowing in the system. The adversary can take
over up to any f < n/3 servers, including the source, over
the whole lifetime of the system. These replicas are said to
be faulty or compromised. The faulty servers can engage in
any kind of deviations from the protocol, including collusion,
crash failures, as well as sending corrupted messages.

C. Batching of Requests

Batching is a commonly used optimization technique in
most existing BFT systems such as PBFT and Zyzzyva. We
also assume that there are a large number of requests that the
source is trying to broadcast. The requests are grouped into
batches, each of size L bits1. The source assigns sequence
numbers to the batches and broadcast them in increasing order
of the sequence number.

III. RELATED WORK

Prior work on Byzantine Fault-Tolerance: Byzantine Agree-
ment [1] and Byzantine Fault-Tolerant state machine replica-
tion have been studied in both theoretical and practical setting
[11], [12], [13], [2], [6], [5]. In theory, it has been proved that
at least n = 3f + 1 replicas are necessary to tolerate any f
Byzantine failures [11] and at least Ω(n2) bits are necessary to
be communicated, in order to achieve agreement on 1 bit [14].
Algorithms that achieve both lower bounds simultaneously
have been designed [12], [13].

However, in practice, the Ω(n2) communication cost to
agree on just one single bit in a BFT system is considered
prohibitively expensive to be implemented. Efforts have been
devoted to make BFT practical. Castro and Liskov’s Practi-
cal Byzantine Fault-Tolerant (PBFT) state-machine replication
protocol [2] showed for the first time that BFT can be
made practical. PBFT adopts the client-server model. One
designated server called the “primary” (or source in our
terminology). The clients send their requests to the primary.
Then the primary authenticates and orders the requests. The
ordered requests are then broadcast to the other replicas (peers
in our terminology) from the primary. In order to make sure
that no two fault-free replicas accept different requests, hash
values computed from the requests are exchanged among the
replicas. Due to the use of hashing, the communication cost is
significantly reduced (to roughly O(n)). Follow ups of PBFT,
such as Zyzzyva [5] and Aardvark [15], all take the similar

1Sizes of batches may be different in practice. The uniform size assumption
here is just to simplify the discussion.

3

hashing approach. However, due to the use of hashing, these
protocols are not error-free. The probability of error depends
on the probability of collision of the hash function they use,
and also depends on the adversary’s ability to break it.

Beerliova-Trubiniova and Hirt have presented an error-free
Byzantine broadcast protocol without hashing in [16]. Their
protocol also uses the idea of coding to reduce communication
complexity, as NCBA does. The NCBA protocol evaluated
in this paper improves on the protocol in [16]: while both
protocols have a similar structure, the communication cost of
[16] is approximately 2 to 2.7 times as high as the NCBA
protocol we consider, depending on the actual values of n and
f . The main difference between the two protocols is in the
manner in which a code is used for error detection.

Prior work on error-free communication using network
coding: While the early work on fault tolerance typically relied
on replication [17] or source coding [18] as mechanisms for
tolerating packet tampering, network coding has been recently
used with significant success as a mechanism for tolerating
attacks or failures. In traditional routing algorithms, a node
serving as a router simply forwards packets on their way
to a destination. With network coding, a node may “mix”
(or code) packets from different neighbors [19], and forward
the coded packets. This approach has been demonstrated to
improve throughput, being of particular benefit in multicast
scenarios [19], [20], [21]. The problem of multicast is related
to agreement. There has been much research on multicast with
network coding in presence of a Byzantine attacker (e.g., [22],
[23], [24], [25]).

The significant difference between Byzantine broadcast and
multicasting is that the multicast problem formulation assumes
that the source of the data is always fault-free. In addition,
most of the existing work on fault-tolerant network coding
assume a link-failure model, while Byzantine agreement con-
siders the nodes to be faulty. In fact, the unicast/multicast
problem with node-failure is an open problem in general, and
only a few small networks have been solved [26], [27].

IV. DIGEST: A PBFT-LIKE PROTOCOL

In this section we briefly describe a simple PBFT-like pro-
tocol: Digest. Digest provides the readers a general idea how
protocols such as those in [2], [6], [15], [28] utilize collision-
resistant hash functions to achieve Byzantine broadcast. It will
also serve as a baseline for the performance evaluation of the
NCBA protocol.

A. Normal-Case Operation

Here we describe the operation of Digest for one batch,
when no failure occurs. We discuss the operation when failures
occur in Section IV-B. Figure 1 illustrates the failure-free
operations:

The source S first gather requests from the clients, and
assign order to the requests. Then S tries to broadcast a batch
of requests m, starting by multicasting a pre-prepare message
〈PRE− PREPARE,m〉 to all of the peers.

Fig. 1. Normal Case Operation of Digest. Blue arrows represent broadcasting
using Broadcast_Binary.

After a peer Pi receives pre-prepare message
〈PRE− PREPARE,mi〉 from the source S, it sends one
prepare message 〈PREPARE, ki,j , di,j〉 to each peer Pj , where
ki,j is a randomly generated key and di,j = H(mi, ki,j)
is m’s digest with random key ki,j computed from the
pre-determined collision-resistant hash function H(∗, ∗).

A peer Pi waits until it receives all n− 2 prepare messages
from the other peers. Then it checks if dj,i = H(mi, kj,i) for
all Pj . If yes, then Pi sets Detectedi to FALSE. Otherwise,
it sets Detectedi to TRUE. Then Pi broadcasts a one-bit
message 〈Detectedi〉 to the rest of the network (including the
source S), using a error-free Byzantine broadcast algorithm
such as [13], [12], referred as Broadcast_Binary. Since
Broadcast_Binary is error-free, all fault-free servers re-
ceive identical Detectedi from each peer Pi.

When all n − 1 instances of Broadcast_Binary ter-
minate, every server (including the source S) checks if all
Detectedj’s are FALSE. If yes, it agrees on its local copy
of m (mi if the server is a peer Pi), executes the requests
according to the order in m, sends the output to the client,
and moves on to the next batch. Otherwise, extra operations
are performed, as discussed next.

B. Failure-Case Operation

It should not be hard to see that whenever at least one of the
Detectedi is TRUE, the faulty server(s) must have misbehaved
in one or some combination of the following ways: (1) a faulty
source sends different m to different peers; (2) a faulty peer
Pi sends incorrect prepare message to one or more peers;
or (3) a faulty peer Pi broadcasts Detectedi =TRUE even
though it should be FALSE. Different protocols handle failures
differently. Here we present one technique known as “Fault
Diagnosis” [29], [30] or “Dispute Control” [31].

In fault diagnosis, when failure is detected, every
server broadcasts all messages it has sent and received,
using Broadcast_Binary. The peers first agree on
the batch of requests broadcast by the source using
Broadcast_Binary. Then, by comparing the information
broadcast by each pair of servers, the fault-free servers will
be able to jointly identify at least one pair of servers whose
“claims” conflict, and at least one of the two conflicting servers
must be faulty. Once a fault-free server X finds itself conflicts
with another server Y , X knows that Y is faulty, and will
consequently ignore any message received from Y in the
future. In the subsequent batches, multicast of the pre-prepare
messages from the source S is done only using links between

4

pairs of servers that have never conflicted with each other.
It has been shown that at least one new pair of conflicting

servers will be identified every time this diagnosis process is
performed, and a server must be faulty if it conflicts with at
least f +1 other servers. It follows that the diagnosis process
will be performed at most f(f + 1) times throughout the
lifetime of the system. By then, all faulty servers will be
correctly identified. Once a server is found faulty, all fault-
free servers will ignore any message received from it and the
identified faulty server is then effectively removed from the
system. As a result, when the number of batches is much
larger than f(f +1), which is typical in practical settings, the
overhead for diagnosis is negligible. In practice, if the source
is found faulty, a new source will be elected among the servers
that are not found faulty.

Dispute control shares similar idea of fault diagnosis, and
has the same ability to identify at least one pair of conflicting
servers every time it is performed as fault diagnosis does.
In dispute control, instead of having all servers to broadcast
their sent and received messages, they are required to send
this information to one designated server, for example the
source S. After collecting the information from the other
servers, S tries to find a pair of servers that conflict. Then
S broadcast the ID of this pair and the content they conflict in
with Broadcast_Binary. Then each of this pair of servers
broadcasts with Broadcast_Binary one bit indicating
whether it agrees with S’s finding or not. Then a “real” conflict
is guaranteed to be found among S and the pair of servers it
identified. Since dispute control requires fewer execution of
Broadcast_Binary, its communication cost is about one
order of n lower than fault diagnosis.

C. Correctness and Traffic Load Analysis

The correctness of Digest follows from the correctness of
PBFT [2]. We focus on the traffic load that Digest imposes dur-
ing the normal-case, since this is the scenario that determines
the performance of the system [2]. Let κ be the size of the
key-digest pair (ki,j , di,j) and B be the communication cost
of each execution of Broadcast_Binary. The per-batch
traffic imposed by Digest is

(n− 1)L+ (n− 1)(n− 2)κ+ (n− 1)B bits. (1)

There exist error-free Byzantine broadcast algorithms [12],
[13] whose communication cost is Θ(n2), so we assume B =
Θ(n2), which is much smaller than L in practice. Also, κ
is chosen much smaller than L (usually O(logL)), otherwise
there is no benefit for hashing. So the per-batch traffic load of
Digest is dominated by the (n− 1)L term.

V. NCBA: A NETWORK CODING BYZANTINE
BROADCAST PROTOCOL

In this section, we present NCBA, a network coding based
error-free Byzantine broadcast protocol that does not rely on
the use of any hash function and has comparable efficiency
as protocols that use hashing as in Digest. NCBA in fact has
a similar structure as Digest, except that, instead of counting

on the hash function to detect failure/misbehavior as Digest
does, NCBA uses a carefully designed linear network code for
failure detection.

A. Network Code for Failure Detection

The network code we use is based on Reed-Solomon codes
(potentially, other codes may be used instead). In particular, we
represent a batch m of L bits as a vector of n−f symbols from
Galois Field GF (2c), where c = L/(n−f). A (2(n−1), n−f)
Reed-Solomon code C is used to encode n− f data symbols
from GF (2c) into a codeword consisting of n symbols from
GF (2c). Each symbol from GF (2c) can be represented using
c bits. Thus, a data vector of n−f symbols contains (n−f)c
bits, and the corresponding codeword contains 2(n− 1)c bits.

Each symbol of the codeword is computed as a linear
combination of the n−f data symbols, such that every subset
of n−f coded symbols represents a set of linearly independent
combinations of the n−f data symbols. This property implies
that any subset of n−f symbols from the 2(n−1) symbols of
a given codeword can be used to determine the corresponding
data vector. Similarly, knowledge of any subset of n − f
symbols from a codeword suffices to determine the remaining
symbols of the codeword. These properties can be achieved for
sufficiently large c such that 2(n− 1) ≤ 2c − 1. This implies
L = Ω(n logn), which is usually true in practice.

In our protocol, we also assume the availability of a null
(⊥) symbol that is distinguished from all other symbols. The
encoding and decoding functions of the (2(n − 1), n − f)
Reed-Solomon code C are denoted as C(m) and C−1(Z),
where Z is a 2(n − 1)-dimension vector of symbols from
{⊥} ∪ GF (2c) with at least n − f non-null (=⊥) symbols.
The decoding function returns an output m = C−1(Z) if
there exists a codeword Z ′ = C(m) such that all the non-
null symbols of Z are equal to the corresponding ones of Z ′;
otherwise C−1(Z) = FAILURE.

B. The NCBA Protocol

Now we discuss the detail of operations of NCBA for each
batch of requests. For convenience of discussion, we will say
two servers “trust” each other if no conflict has been found
between them in previous batches. Since two fault-free servers
will never conflict with each other [31], [29], [30], they always
trust each other. We also assume that every server trusts every
other server at the beginning of the first batch.

The pseudo-code of NCBA is presented in Algorithm 1.
NCBA has a similar structure as Digest:
Lines 1 to 3: These steps correspond to the source S

multicasting the pre-prepare message to the peers in Digest.
The difference lies in that, in NCBA, the source S encodes the
batch of requests m into n coded symbols with C and only
sends a small set of the coded symbols to each of the trusted
peers, rather than sending the whole batch m to every peer as
it does in Digest. In particular, two symbols (si, si+(n−1)) are
sent to every peer Pi that S trusts.
Lines 4 to 7: These steps correspond to the peers

exchanging prepare messages in Digest. Each peer Pi trusted

5

(a) Source S does not trust P3. Transmissions
by S, P1 and P2 are shown. P3 receives 2 <
n− f = 3 coded symbols by the end of step
4.

(b) Peer P3 request s4 from P4 so that it has
3 = n−f coded symbols. Then P3 uses them
to reconstruct s3 in step 6.

(c) Peer P3 sends s3 to all its trusted peers.
By the end of step 7, all peers share packets
s1, s2, s3.

Fig. 2. Examples of some peer does not trust the source with n = 4 and f = 1. Two servers connected by an edge trust each other. The direction of an
arrow indicates the direction of a transmission along that edge. Next to each arrow, the coded symbol(s) transmitted on that edge is listed. The boxes near to
the peers indicate the coded symbols that are available to the peers by the end of steps 4, 6 and 7, respectively.

Algorithm 1 NCBA Protocol
In the following steps, ri is a 2(n − 1)-dimension vector,
which is initialized as all ⊥. For every peer Pi: ri[k]← rj [k]
whenever Pi receives rj [k] from its trusted peer Pj .
Source S:

1) Encode the batch m into (s1, · · · , s2(n−1)) = C(m).
2) For each trusted peer Pi: Send (si, si+(n−1)) to Pi.

Each peer Pi trusted by S:
3) (ri[i], ri[i+(n− 1)])← (si, si+(n−1)) received from S

in step 2.
4) Send ri[i] to all trusted peers.

Each peer Pi not trusted by S:
5) If k < n − f peers are trusted by both Pi and S, Pi

receives < n− f symbols in step 4:
Request rj [j + (n − 1)] from each Pj trusted by both
Pi and S, until ri has n− f non-null symbols.

6) Now ri has n− f non-null symbols:
Decode Z = C−1(ri) and set ri[i] to be the i-th symbol
of Z . If the decoding fails, set ri[i] to some default.

7) Send ri[i] to all trusted peers.
Every peer Pi:

8) If C−1(ri) = FAILURE then Detectedi ← TRUE;
Otherwise Detectedi ← FALSE.

9) Broadcast Detectedi using Broadcast_Binary.
10) Receive Detectedj from each processor Pj (broadcast

in step 9):
If Detectedj = FALSE for all Pj , agree on C−1(ri);
Otherwise, perform fault diagnosis (Similar to Digest.).

11) Proceed to the next batch.

by the source S simply relays si to all of its trusted peers after
its received from S (Figure 2(a)).

For a peer Pi not trusted by S, it first gathers enough (≥
n−f) coded symbols from the peers trusted by both itself and
S (Figure 2(b)). Notice that both of S and Pi must trust at least
n− f − 1 other peers, otherwise at least one of them conflicts
with at least f+1 other servers, and should have already been
identified as faulty and removed from the system. Through
simple counting, there must be at least n− 2f peers that are

trusted by both S and Pj . Given that n ≥ 3f +1, these peers
together receive at least 2(n−2f) ≥ n−f+1 coded symbols
from S. So it is guaranteed that Pi will receive enough coded
symbols in line 5, which are then used to generate the i-th
symbol of the codeword that Pi should have received from S
if they trust each other. Then Pi sends the i-th symbol to all
its trusted peers (Figure 2(c)).
Lines 8 and 9: Every fault-free peer Pi checks

whether the set of symbols received from its trusted server be-
long to part of a valid codeword of C by trying to apply the de-
coding function C−1(ri). If the decoding fails, i.e., C−1(ri) =
FAILURE, we say that Pi detects the failure/misbehavior. Then
Pi broadcasts Detectedi using Broadcast_Binary. This
is the counterpart of checking mi against the received hash
value and key pairs in Digest.
Line 10: If no peer claims that it detects the failure,

then each peer Pi agrees on C−1(ri) as the current batch of
requests. Otherwise, fault diagnosis is performed in the same
way as in Digest.

C. Correctness and Traffic Load of NCBA

The correctness of NCBA is guaranteed by Theorem 1. The
proof can be found in Appendix A.

Theorem 1: If none of the peers claims failure detected, the
peers agree on an identical output m′. In the case the source
S is fault-free, m′ = m.

To compute the normal-case traffic load of NCBA, we count
the number of coded symbols communicated from lines 2
to 7. It is easy to verify that each peer receives at most
n symbols per batch. Since there are n− 1 peers, it ends up
with no more than n(n−1) symbols communicated per batch.
Taking the size of each symbol as c = L/(n− f), the cost of
NCBA in normal-cases is obtained by simple calculation:

n(n− 1)

n− f
L+ (n− 1)B bits. (2)

Here (n − 1)B is the cost of broadcasting Detectedi from
(n − 1) peers. Since B is much smaller than L in practice,
the per-batch traffic imposed by NCBA is roughly n(n−1)

n−f L <
1.5(n− 1)L, since f < n/3. Recall that the cost of Digest is
approximately (n − 1)L. So in terms of traffic load, NCBA

6

is about 50% more expensive than Digest. But the decoding
function C−1() is much less expensive in computational
complexity for small f , compared to the hash function used in
Digest. The efficiency of the protocols are determined by the
combination of communication and computational costs. As
we will see later, according to experimental results, NCBA
is at least as efficient as Digest, without the need for a
secure hash function and avoids its disadvantages (as discussed
earlier).

VI. IMPLEMENTATION

In this section, we discuss some of our implementation
choices and some optimization we adopted for NCBA.

A. MultiThreading

We implement both Digest and NCBA in a multithreading
fashion. On every server, there is one listener thread for each of
the other servers, which simply accepts incoming connection
requests from the server that it listens to. TCP is used for
communication between every pair of servers. Also since
Digest and NCBA share the same structure, it also makes it
easier to share the same code between the two protocols.

A worker thread is launched whenever a listener thread
receives a TCP connection request. The worker thread estab-
lishes a TCP session with the requesting server. When the
TCP session completes, the worker thread checks whether the
received information follows the specification of the protocol,
and if enough messages have been received from different
servers. If yes, it proceeds to the consistency checking part
(checking the digests against the local batch in Digest, and
decoding C−1(ri) in NCBA) and the rest of the protocol.

Of course, the protocols can be implemented in the sequen-
tial manner as well. However, this will require careful coordi-
nation among the servers about when and who should transmit
to whom. Otherwise the system will end up deadlocked when
two servers try to send messages to each other. This can be
very complicated in large systems. With multithreading, this
complication is avoided.

Multithreading also makes it very easy to incorporate differ-
ent optimizations. For example, with “speculative execution”
technique in Zyzzyva [5], a server executes the request spec-
ulatively when it receives a minimum number of matching
prepare messages, even if it cannot confirm that all other
servers have accepted the same request. So by the time it
confirms an agreement of the request, the output has already
been computed and is waiting to be sent to the client. This
technique can be incorporated into our implementation by
having the worker thread launch a “speculate” thread for
performing the request speculatively.

B. Synchrony

Although we assume a synchronous system model in the
previous discussion, bad things can happen in real life. Syn-
chrony might be violated temporarily in practice. For example,
packets might be lost in the network and never reach the desti-
nation, probably due to queue overflow at the router/gateway.

Since we use TCP as the underlying communication protocol,
packet losses in the middle of a TCP session have been taken
care of by the retransmission mechanism of TCP. So the only
problem packet losses can cause is when one server attempts to
create a connection with another server. Our implementation
incorporates this concern by allowing each server to try to
connect to another server for no more than MAX_ATTEMPTS
times. If a server fails to create a connection with another
server after MAX_ATTEMPTS attempts, it considers that server
as being faulty. The value of MAX_ATTEMPTS can be chosen
according to the capability of the hardwares of the communi-
cation infrastructure used and other specification of the system.
In our experiments, MAX_ATTEMPTS is set to 2.

C. Optimization for single failure

In replication systems where each individual replica is
reasonably reliable, the probability that more than one servers
fail at the same time is very small. Most of the time, at most
one server may fail. In this case, f = 1 and NCBA can be
optimized to further reduce the computational cost as follows:

Instead of using a (2(n − 1), n − 1) Reed-Solomon code,
we use an (n, n − 1) Reed-Solomon code, which is in fact
a parity code: s1, · · · , sn−1 are just raw data symbols, and
the parity symbol sn = ⊕n−1

i=1 si, where ⊕ denotes bitwise
exclusive or (XOR). Then we simply substitute all si+(n−1) in
Algorithm 1 with sn. For failure detection, a peer just needs to
check if the received symbols pass the parity check. If all peers
claim with Broadcast_Binary that their symbols passed
the parity check, then the output is simply s1, · · · , sn−1. The
computation for this modified NCBA protocol is very efficient:
each server just needs to perform L bitwise XOR’s per batch.

VII. EXPERIMENTAL EVALUATION

We dedicate this section to investigations of how Digest
and NCBA perform in real systems. We implemented Digest
and NCBA in Linux. We conduct our experiments in systems
of both four and five servers: four (or five) Dell Inspiron
1545 laptops connected by a Netgear GS108 gigabit switch.
Each Inspiron 1545 was running Ubuntu 9.04 Jaunty, Gnome
2.26.1, and Linux Kernel 2.6.28-11-generic on 2.9 GiB of
RAM and a 2.0 GHz Intel Core 2 Duo Processor T6400. One
Inspiron machine was designated to be the source server and
the remaining three (or four) machines made up the group of
peers. In order to ensure consistency between test runs, the role
performed by each machine remained constant throughout the
experiment. In Digest, we use both SHA-256 and SHA-512
as the collision-resistant hash function. We use the realization
of SHA-256 and SHA-512 from the OpenSSL toolkit [32].
The results with five servers are very similar to the ones with
four servers. So we only present results for four servers in this
paper.

For comparison, we also implemented the classic protocol
by Pease, Shostak and Lamport [1], denoted here as BASIC.
BASIC is also used to realize Broadcast_Binary in
Digest and NCBA. When there is at most one faulty server
(f = 1), BASIC is very simple: the source sends the batch

7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

Ti
m

e
E

la
ps

ed
 (s

)

Number of batches

L = 3 KB, n = 4

BASIC
Digest SHA-256
Digest SHA-512

NCBA

(a) Batch Size: 3 KB

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250

Ti
m

e
E

la
ps

ed
 (s

)

Number of batches

L = 30 KB, n = 4

BASIC
Digest SHA-256
Digest SHA-512

NCBA

(b) Batch Size: 30 KB

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
E

la
ps

ed
 (s

)

Number of batches

L = 300 KB, n = 4

BASIC
Digest SHA-256
Digest SHA-512

NCBA

(c) Batch Size: 300 KB

Fig. 3. Time it takes to finish Byzantine broadcast when each batch has fixed size.

m to every peer and the peer forwards that to every other
peer. The output at each peer is computed as the majority of
the received messages. If there is no clear majority, then all
peers know that source must be faulty and will agree on some
default message. It is easy to see that the communication cost
of BASIC is (n − 1)2L = 9L for n = 4 and f = 1, which
is one order of n higher than Digest and NCBA, which are
(n− 1)L = 3L and n(n− 1)L/(n− 1) = 4L, respectively.

To minimize any external error introduced by thread
scheduling and background services, each data point in the
following discussion/figures represents an average of 100
identical trials. To further reduce any skew, the trials between
the three different protocols were interleaved so that any
unforeseeable incident would affect the algorithms as evenly
as possible. In each trial, the actual content of each batch was
randomly generated. This random generation occurred at run
time and differed for each algorithm. We see no reason for
the content of each batch to have any bearing on the results
of our experiment. For each set of 100 trials, the batch size
L and the number of batches g is fixed. All protocols were
timed from the moment the source begins executing at the
first batch until the moment that broadcast of all g batches
terminates at the source server. Timing only the source is an
accurate measure since for every protocol the source can not
terminate until it has reliably received all n− 1 Decidedi bits
as FALSE from Broadcast_Binary. So when the source
terminates, it is guaranteed that all peers have agreed upon the
correct information.

A. Fixed Batch Size

We first test the normal-case performance of BASIC, Digest
and NCBA when the batch size L is fixed and vary the number
of batches g. In Figure 3 we plot the time taken to finish a
certain number of batches g, with the batch size L chosen
from 3 KB, 30 KB and 300 KB.

We first observe that in all three settings, NCBA is at
least as fast as Digest, both with SHA-256 and SHA-512.
This confirms our earlier argument in this paper that although
NCBA introduces almost 50% more traffic than Digest does,
its overall efficiency is still comparable to Digest. Since NCBA
does not need to compute any collision-resistant hash function,
its computational cost is much lower than Digest. If we look
closer, NCBA is about 7% faster than both Digest protocols

when L = 3 KB, and it is roughly as fast as Digest when
L = 30 KB and 300 KB. We believe this is due to the fact that
both SHA-256 and SHA-512 reach their full speed (highest
number of bits processed per second) only when the input
size is large enough. So when L is small (3 KB), the per-bit
computational cost of Digest is higher than it is when L is
larger (30 KB and 300 KB). The per-bit computational cost
of NCBA remains roughly constant when L varies between 3
KB and 300 KB.

We also observe that although, as we have expected, BASIC
is much slower than Digest and NCBA when L is large: Digest
and NCBA are approximately 3 times and 4.7 times faster
than BASIC when L = 30 KB and 300 KB, respectively.
However BASIC is in fact more efficient than both Digest
and NCBA when the batch size is small (3 KB). The reason
for this is that when L is small, the communication cost
for the n − 1 executions of Broadcast_Binary is not
negligible but comparable to the other communication cost
in Digest and NCBA. Although Broadcast_Binary does
not pose too much traffic (each execution only broadcasts 1
bit (Detectedi)), it introduces a large number of message
transmissions which results in a long cumulated delay and
hence, affects the performance.

B. Effects of Different Batch Sizes

To further understand how the batch size L affects the
performance of the protocols, we perform the second set of
tests for normal-case, in which the total amount of requests,
i.e., gL is fixed, and L varies. Figure 4 shows the time taken
to finish total workload of 15 KB, 150 KB and 1500 KB, with
different batch sizes.

For each setting, the time required using BASIC remains
constant when the batch size changes. This is because the
per-bit communication and computational costs of BASIC are
determined just by the size of the system and are independent
of the batch size. On the other hand, performance of Digest
and NCBA changes when we use different batch sizes. When
L is small, Digest and NCBA need more time to complete
broadcasting in comparison to when L is large. This is
because when the total workload is fixed, the smaller L is,
the more batches there are. As a result, more instances of
Broadcast_Binary are executed when L is small, since
the number of executions of Broadcast_Binary per batch

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

Ti
m

e
E

la
ps

ed
 (s

)

Batch size L (Kbytes)

Total Size 15 KB, n = 4

BASIC
Digest SHA-256
Digest SHA-512

NCBA

(a) Total Size: 15 KB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

Ti
m

e
E

la
ps

ed
 (s

)

Batch size L (Kbytes)

Total Size 150 KB, n = 4

BASIC
Digest SHA-256
Digest SHA-512

NCBA

(b) Total Size: 150 KB

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200 1400 1600

Ti
m

e
E

la
ps

ed
 (s

)

Batch size L (Kbytes)

Total Size 1500 KB, n = 4

BASIC
Digest SHA-256
Digest SHA-512

NCBA

(c) Total Size: 1500 KB

Fig. 4. Time it takes to finish batches with fixed total size

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 50 100 150 200 250

Fa
ul

t E
ffe

ct
 R

at
io

Number of batches

One "crazy" faulty peer, L = 30 KB, n = 4

BASIC
Digest SHA-256
Digest SHA-512

NCBA

Fig. 5. One “crazy” faulty peer keeps sending arbitrary corrupted messages
to all other servers, starting from the first batch.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 50 100 150 200 250

Fa
ul

t E
ffe

ct
 R

at
io

Number of batches

One "milder" faulty peer, L = 30 KB, n = 4

BASIC
Digest SHA-256
Digest SHA-512

NCBA

Fig. 6. One “milder” faulty peer keeps sending arbitrary corrupted messages
to only one other server, starting from the first batch.

is fixed (n−1 per batch). So for total workload of 15 KB and
150 KB, Digest and NCBA are actually slower than BASIC
for small L. When L increases, the time it takes to finish the
workload in Digest and NCBA quickly converges to a constant
that is smaller than the time BASIC takes, in all three settings.
This also complements our previous test results for fixed L in
Figure 3.

C. Performance with Failure

We also conduct tests for the failure cases. To quantify the
effect of the presence of one faulty server on the performance
of the protocols, we define “fault effect ratio” R as:

R =
T ime with failure

T ime without failure
. (3)

It reflects how much slower/faster a protocol becomes when
one of the servers goes “bad” (or fails).

We first test the scenario when a faulty peer goes “crazy”:
the faulty peer sends arbitrary corrupted messages to all other
servers, starting from the first batch. It is easy to see that
BASIC’s performance does not depend on the presence of
failures, so its R is always 1. On the other hand, as we
can see from Figure 5, when the total number of batches
is small, R is as large as 5.3 for NCBA and about 3.5 for
Digest. This means when a faulty server starts to misbehave
and number of batches is small, NCBA and Digest are slowed
down for 5.3 and 3.5 times, respectively. The reduction in
efficiency is due to the fault diagnosis process, in which every
server is required to broadcast everything it has received or
sent using Broadcast_Binary. As the number of batches
increases, R decreases. When the number of batches reaches
250, R becomes smaller than 1 (roughly 0.75 - 0.8), which
implies that when a faulty server misbehaves, the system in
fact becomes faster in the long run. It may seem counter
intuitive that a faulty server could improve the performance.
The explanation for this phenomenon is that since the faulty
peer sends corrupted messages to all other servers, conflicts
are found between the faulty peer and all other servers during
the fault diagnosis process. Then the faulty peer is immediately
identified by the others. So after the first batch, all fault-free
servers will not communicate with the faulty peer, and do not
need to check the consistency of the faulty peer’s messages. So
both communication and computation costs are reduced after
the first batch, and hence the protocols become more efficient.
The cost of diagnosis in the first batch became negligible
once amortized over a large number of batches. Since the
computational cost of the hash function in Digest is much
higher than the decoding function of NCBA, Digest saves more
than NCBA from identifying the faulty server. As a result, the
fault effect ratio of Digest is always slightly smaller than that
of NCBA.

We also test a “milder” faulty peer, which only sends
corrupted messages to one fault-free peer. In this scenario,
only one conflict is found and the faulty server is not exactly
identified. In Figure 6, similar trend as in Figure 5 is observed.
R converges to 1 when the number of batches is large, which
means that the performance is the same as in normal-case,

9

because the faulty server is not isolated.
Both tests show that with the fault diagnosis process in

Digest and NCBA, the misbehavior of faulty servers will only
degrade the performance of the system temporarily, and the
long term performance will not be degraded (or even will be
improved), even if the faulty servers persistently misbehave.

VIII. CONCLUSION

In this paper, we present NCBA: a network coding based
Byzantine broadcast protocol for BFT state machine replica-
tion in data centers. Compared with most existing practical
BFT protocols that utilize collision-resistant hash functions,
NCBA has the following advantages:

1) The correctness of NCBA is guaranteed in all cases,
and it does not rely on any cryptographic assumption
of unbreakable hash functions. So the system is always
reliable even if the adversary is powerful enough to
break the hash functions with acceptable cost.

2) Since NCBA only uses a simple linear coding scheme,
the computational burden it imposes onto the system
is small. On the other hand, the computational cost of
the hashing-based protocols can be much higher, and it
is expected to increase as stronger hash functions are
needed to protect the system against the adversary that
is increasingly capable as technology improves.

We show that, through experimentation that NCBA is at
least as efficient as as existing hashing-based protocol.

ACKNOWLEDGMENT

This research is supported in part by Army Research Office
grant W-911-NF-0710287 and National Science Foundation
award 1059540. Any opinions, findings, and conclusions or
recommendations expressed here are those of the authors and
do not necessarily reflect the views of the funding agencies or
the U.S. government.

REFERENCES

[1] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” JOURNAL OF THE ACM, 1980.

[2] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI,
Berkeley, CA, USA, 1999, pp. 173–186.

[3] Amazon, “Amazon s3 availability event,” July 2008. [Online]. Available:
http://status.aws.amazon.com/s3-20080720.html

[4] Gmail, “Gmail disaster: Reports of mass email deletions,” December
2006. [Online]. Available: http://techcrunch.com/2006/12/28/gmail-
disaster-reports-of-mass-email-deletions

[5] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Trans. Comput. Syst.,
vol. 27, pp. 7:1–7:39, January 2010.

[6] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, pp. 398–461,
November 2002.

[7] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.
Wylie, “Fault-scalable byzantine fault-tolerant services,” SIGOPS Oper.
Syst. Rev., 2005.

[8] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq
replication: A hibrid quorum protocol for byzantine fault-tolerance,” in
OSDI, 2006.

[9] T. Xie and D. Feng, “How to find weak input differences for md5
collision attacks,” Cryptology ePrint archive, May 2009.

[10] S. Manuel, “Classification and generation of distrubance vectors for
collision attacks against sha-1,” in Designs, Codes and Cryptography,
2011.

[11] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. on Programming Languages and Systems, 1982.

[12] B. A. Coan and J. L. Welch, “Modular construction of a byzantine
agreement protocol with optimal message bit complexity,” Inf. Comput.,
vol. 97, no. 1, pp. 61–85, 1992.

[13] P. Berman, J. A. Garay, and K. J. Perry, “Bit optimal distributed
consensus,” Computer science: research and applications, 1992.

[14] D. Dolev and R. Reischuk, “Bounds on information exchange for
byzantine agreement,” J. ACM, vol. 32, no. 1, pp. 191–204, 1985.

[15] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
byzantine fault tolerant systems tolerate byzantine faults,” in Proceed-
ings of the 6th USENIX symposium on Netowrked Systems Design and
Implementation, 2009.

[16] Z. Beerliova-Trubiniova and M. Hirt, “Perfectly-secure mpc with linear
communication complexity,” in TCC, 2008.

[17] E. C. Cooper, “Replicated distributed programs,” in SOSP’85, 1985.
[18] M. O. Rabin, “Efficient dispersal of information for security, load

balancing, and fault tolerance,” J. ACM, 1989.
[19] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” Information

Theory, IEEE Transactions on, vol. 49, no. 2, pp. 371–381, Feb. 2003.
[20] R. Koetter and M. Medard, “An algebraic approach to network coding,”

in ISIT’01, 2001.
[21] C. Fragouli, D. Lun, M. Medard, and P. Pakzad, “On feedback for

network coding,” in CISS’07, 2007.
[22] N. Cai and R. W. Yeung, “Network error correction, part ii: Lower

bounds,” Communications in Information and Systems, 2006.
[23] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,

“Byzantine modification detection in multicast networks using random-
ized network coding,” 2004.

[24] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
“Resilient network coding in the presence of byzantine adversaries,” in
INFOCOM’07, 2007.

[25] S. Kim, T. Ho, M. Effros, and S. Avestimehr, “New results on network
error correction: capacities and upper bounds,” in ITA’10, 2010.

[26] O. Kosut and L. Tong, “Nonlinear network coding is necessary to combat
general byzantine attacks,” in Allerton, October 2009.

[27] G. Liang, R. Agarwal, and N. Vaidya, “Secure capacity of wireless
broadcast networks,” Technical Report, CSL, UIUC, September 2009.

[28] M. Fitzi and M. Hirt, “Optimally efficient multi-valued byzantine
agreement,” in PODC ’06, 2006.

[29] G. Liang and N. Vaidya, “Capacity of byzantine agreement with finite
link capacity,” in INFOCOM 2011, 2011.

[30] ——, “Error-free multi-valued consensus with byzantine failures,” in
ACM PODC, 2011.

[31] Z. Beerliova-Trubiniova and M. Hirt, “Efficient multi-party computation
with dispute control,” in TCC, 2006.

[32] “Openssl project.” [Online]. Available: http://www.openssl.org/

APPENDIX A
PROOF OF THEOREM 1

Proof: First consider the case when S is faulty. In
this case, every fault-free peer Pi sends ri[i] to all peers
that it trusts. Also, as we have discussed in Sections IV-B
and V-B, fault-free servers always trust each other. These
two facts together imply that among coded symbols received
by the fault-free peers, at least n − f of them are shared
identically. According to the property of the (2(n− 1), n− f)
Reed-Solomon code C, either all fault-free peers succeed in
decoding the received symbols to some identical output m′,
or at least one of them cannot decode and detects the failure.

In the case, S is fault-free. So each fault-free peer Pi

receives at least n − f coded symbols either directly from
S or through other fault-free peers. So these symbols must
be the same as the corresponding ones in C(m), and hence
C−1(ri) = m if it succeeds.

