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ABSTRACT
We consider the problem of reliable broadcast in an infinite
grid (or finite toroidal) radio network under Byzantine and
crash-stop failures. We present bounds on the maximum
number of failures that may occur in any given neighbor-
hood without rendering reliable broadcast impossible. We
improve on previously proved bounds for the number of tol-
erable Byzantine faults [6]. Our results indicate that it is
possible to achieve reliable broadcast if slightly less than
one-fourth fraction of nodes in any neighborhood are faulty,
and impossible otherwise. We also show that reliable broad-
cast is achievable with crash-stop failures if slightly less than
half the nodes in any given neighborhood may be faulty. In
particular, we establish exact thresholds under a specific dis-
tance metric.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4 [Performance of Systems]: Fault Tolerance

General Terms
Algorithms, Reliability

Keywords
Byzantine failure, Crash-stop failure, Broadcast, Fault Tol-
erance, Radio Network

1. INTRODUCTION
Reliable broadcast in the presence of Byzantine and crash-

stop failures is a well-studied problem with numerous prac-
tical implications. With the proliferation of wireless net-
works, there has been interest in the achievability of reliable
broadcast in radio networks, which are characterized by a
shared wireless medium where every node can talk to all
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nodes within its transmission radius r (these are deemed
as neighbors) and a sent message is heard by all the neigh-
bors. We consider the problem of reliable broadcast in an
infinite radio network, with nodes situated on a unit square
grid, under Byzantine and crash-stop failures. Two distance
metrics, L∞ and L2 (further discussed in Section 2), are con-
sidered. The considered fault model (first introduced in [6])
allows an adversary to place faults so long as the number
of faults in any single neighborhood (to be formally defined
later) do not exceed some value t. The results also hold for
a finite toroidal network, as boundary anomalies are elim-
inated. We present bounds on the maximum number of
failures t that may occur in any given neighborhood with-
out rendering reliable broadcast impossible. For the case
of Byzantine failures, we improve on bounds presented in
[6]. We present a protocol (utilizing a notion of indirect re-
ports) that allows reliable broadcast to be achieved in the
L∞ metric whenever t < 1

2
r(2r + 1). This exactly matches

the impossibility bound proved in [6], and thus establishes
an exact threshold for Byzantine agreement under this net-
work model. We also prove that reliable broadcast is achiev-
able under the crash-stop model iff the number of faulty
nodes t in any neighborhood is governed by t < r(2r + 1)
(in the L∞ metric). We present arguments suggesting that
in L2, i.e., Euclidean metric, when r is sufficiently large,
similar thresholds must hold. We argue that for sufficiently
large r, Byzantine agreement is possible in Euclidean metric
if slightly less than one-fourth (more precisely, a 0.23 frac-
tion) of the nodes in any given neighborhood may be faulty,
while it is possible to tolerate crash-stop failures that are
somewhat less than half (more precisely, a 0.46 fraction) of
the neighborhood population. Finally, we consider the issue
of tolerable faults with a simple protocol that does not use
indirect reports (i.e. the protocol of [6]). We present an
asymptotically tighter bound (than in [6]) for achievability
with Byzantine failures by proving that reliable broadcast
in L∞ metric is achievable for t ≤ 2

3
r2 using this simple

protocol.

2. NETWORK MODEL
We consider the network model described in [6]. Nodes

are located on an infinite grid (each grid unit is a 1 × 1
square). Nodes can be uniquely identified by their grid lo-
cation (x, y). All nodes have a transmission radius r. A
message broadcast by a node (x, y) is heard by all nodes
within distance r from it (where distance is defined in terms
of the particular metric under consideration, and r is as-
sumed to be an integer). The set of these nodes is termed



the neighborhood of (x, y). Thus there is an assumption
that the channel is perfectly reliable, and a local broadcast
is correctly received by all neighbors. Note that this ide-
alized shared radio channel intrinsically preserves ordering
of messages sent by a node, i.e., if a node transmits mes-
sages m1 and m2 respectively in order, they will be received
in that same order by all neighbors. We call this idealized
behavior the reliable local broadcast assumption. While this
assumption does not hold per se in real wireless networks,
it may be possible to implement a local broadcast primitive
that can provide probabilistic guarantees (given that trans-
missions are successfully received with a certain probability).

In this paper, we consider two distance metrics: L∞ and
L2. The L∞ metric is essentially the metric induced by
the L∞ norm [8]. The distance between points (x1, y1)
and (x2, y2) is given by max{|x1 − x2|, |y1 − y2|} in the
this metric. Thus nbd(a, b) comprises a square of side 2r

with its centroid at (a, b). The L2 metric is induced by the
L2 norm [8], and is the Euclidean distance metric. The
L2 distance between points (x1, y1) and (x2, y2) is given

by
p

(x1 − x2)2 + (y1 − y2)2, and nbd(a, b) comprises nodes
within a circle of radius r centered at (a, b). The L∞ metric
enables more tractable analysis, and allows us to establish
exact fault tolerance thresholds. It also provides valuable
intuition, on which we base an approximate argument for
the L2 metric (which is the metric of practical significance).

The adversary is allowed to place faults as long as no single
neighborhood contains more than t faults. When we refer
to the neighborhood of a node v, it includes v itself. Thus
a correct node may have upto t faulty neighbors, while a
faulty node may have upto (t − 1) neighbors that are also
faulty.

As in [6], we assume that a node may not spoof another
node’s identity, and that no collisions are possible, i.e., there
exists a pre-determined TDMA schedule that all nodes fol-
low. Such schedules are easily determined for the grid net-
work under consideration (e.g., the schedule mentioned in
[6]) so long as time-optimality is not a concern. We shall
further discuss the impact of relaxing these assumptions in
Section 10. However, note that accidental collisions (not de-
liberately caused by the adversary) may be handled to some
extent by a probabilistic primitive (as they can be treated
akin to transmission errors). A designated source (that is
assumed located at the origin of the grid coordinate system,
without loss of generality) broadcasts a message with a bi-
nary value. The aim is to propagate the correct value to all
nodes in the network. We seek to determine the maximum
number of faulty nodes t that may be present in any single
neighborhood without rendering reliable broadcast impossi-
ble.

3. RELATED WORK
Reliable broadcast has been extensively studied for net-

works with point-to-point communication under various con-
nectivity conditions [1]. The classic result of Pease, Shostak
and Lamport [11], [9] states that in case of full connectiv-
ity, Byzantine agreement with f faulty nodes is possible if
and only if n ≥ 3f + 1. Under more general communication
graphs, the requirements for Byzantine agreement are that
n ≥ 3f + 1, and the network be at least (2f + 1)-connected

[5]. Byzantine agreement in k-cast channels has been con-
sidered in [4]. However this does not capture the spatially
dependent connectivity that characterizes radio networks.
Reliable broadcast in radio networks has also been stud-
ied in [7] and [6]. Crash-stop failures are considered in [7]
for finite networks comprising nodes located in a regular
grid pattern. The focus is on obtaining algorithms for ef-
ficient broadcast to the part of the network that is reach-
able from the source, and not on quantifying the number of
faults that render some nodes unreachable. In [6], the infi-
nite grid network and neighborhood fault model described
in Section 2 were considered. It was shown that under a
Byzantine failure model, reliable broadcast is not achievable
for t ≥ d 1

2
r(2r + 1)e (in both L∞ and L2 metrics). Besides

a protocol was described that was able to achieve reliable
broadcast under the following conditions:

• If t < 1

2
(r(r +

p

r
2

+ 1)), then reliable broadcast is
achievable in the L∞ metric.

• If t < 1

4
(r(r +

p

r
2

+ 1))− 2, then reliable broadcast is
achievable in the L2 metric.

This protocol stipulates that nodes wait till they hear the
same value from t+1 neighbors before they commit to it, and
re-broadcast it exactly once for the benefit of other neigh-
bors. Under this protocol, no non-faulty node will ever ac-
cept the wrong value. However, there is a possibility of
some nodes never being able to decide, and the achievabil-
ity bounds do not match the impossibility bound, leaving a
region of uncertainty.

In very recent work [12], further study of the locally bounded
fault model has been undertaken. The focus is on arbitrary
graphs instead of using a specific network model. While the
discussion mentions both radio and message-passing net-
works, there is an assumption that duplicity (sending dif-
ferent messages to different neighbors) is impossible, which
seems to stem from the radio network model. Upper and
lower bounds for achievability of reliable broadcast are pre-
sented, based on graph-theoretic parameters, for arbitrary
graphs. However, no exact thresholds are established. The
paper considers two algorithms for broadcast. One is the
simple algorithm of [6] that is referred to as the Certified
Propagation Algorithm (CPA). Another algorithm, termed
as the Relaxed Propagation Algorithm (RPA), is informally
described and involves a notion of indirect reports similar
to the protocol we describe in Section 6. It is shown that
RPA is a more powerful algorithm, as there exist graphs for
which RPA succeeds but CPA does not. It is also shown
that there exist certain graphs in which algorithms that
work with knowledge of topology succeed in achieving re-
liable broadcast, while those that lack this knowledge fail to
do so. The work described in this paper differs substan-
tially, in that we focus on a specific network model and
obtain an exact threshold for Byzantine as well as crash-
stop fault-tolerance. We also present a specific algorithm
for Byzantine agreement in the considered model, which lo-
calizes the circulation of indirect reports, and thus reduces
communication overhead.

4. NOTATION AND TERMINOLOGY
We briefly describe here notation and terminology that

shall be used in this paper. Nodes are identified by their



grid location i.e. (x, y) denotes the node at (x, y). The
neighborhood of (x, y) comprises all nodes within distance
r of (x, y) and is denoted as nbd(x, y). For succint de-
scription, we define a term pnbd(x, y) where pnbd(x, y) =
nbd(x − 1, y) ∪ nbd(x + 1, y) ∪ nbd(x, y − 1) ∪ nbd(x, y + 1).
Intuitively pnbd(x, y) denotes the perturbed neighborhood of
(x, y), obtained by perturbing the center of the neighbor-
hood to one of the nodes immediately adjacent to (x, y) on
the grid. Besides, throughout this paper, a non-faulty node
shall be variously alluded to as an honest or correct node,
while a node exhibiting Byzantine failure shall occasionally
be referred to as a malicious node. The source of the broad-
cast is deemed to be situated at (0, 0), without affecting
generality of the results.

5. BYZANTINE AGREEMENT IN A RADIO
NETWORK

Radio networks present a special case for the Byzantine
agreement problem due to the broadcast nature of the chan-
nel. In the absence of address-spoofing and deliberate colli-
sions (discussed further in Section 10), this significantly sim-
plifies the problem, and relaxes the requirements for agree-
ment. Under our assumptions (also in [6]), if a node trans-
mits a value, all its neighbors hear the transmission, and
are certain of the identity of the sender. The transmitting
node is thus incapable of duplicity, beause if it were to at-
tempt sending contradicting messages, they would be heard
by all its neighbors, and its duplicity would be detected.
Thus any protocol could stipulate that if the neighbors of a
node hear it transmitting multiple contradictory versions of
a message, they should accept only the first message, and
ignore the rest.

In a fully connected network, it is thus possible to tolerate
an arbitrary number of Byzantine faults. In a more general
network, the absence of duplicity implies a relaxation of the
requirements proved in [5] in that it is no longer required
that n ≥ 3f + 1 for tolerating f faults. If only f Byzantine
faults were allowed in the whole network, the necessary and
sufficient condition for reliable broadcast would be exactly
the same as the connectivity condition of [5] viz. that the
graph be (2f + 1)-connected. Since we consider a model
in which an adversary may place upto t faults in any sin-
gle neighborhood, a general sufficient condition that may
be stated for an arbitrary network graph G = (V, E) is as
follows: for each pair of nodes (v1, v2) s.t. v1, v2 ∈ V , either
(v1, v2) ∈ E, else ∃S ⊆ V such that the adversary may place
at most f faults in S without violating the constraint, and
v1 be connected to v2 via 2f + 1 node-disjoint paths that
lie entirely within S. Note that this requires knowledge of
network topology. The protocol we present in this paper is
based on a localized variant of this sufficient condition.

6. FAULT THRESHOLD FOR BYZANTINE
FAILURES IN L∞ METRIC

As discussed in Section 3, it was proved in [6] that reli-
able broadcast is impossible with Byzantine failures, in L∞

as well as L2 metrics, if t ≥ d 1

2
r(2r + 1)e. We prove the

following:

THEOREM 1. Under a Byzantine failure model, if t <
1

2
r(2r+1), reliable broadcast is achievable in the L∞ metric.

This is an exact match to the impossibility bound for L∞,
and establishes the exact threshold for achieving reliable
broadcast in the square grid network under consideration.
Since an L∞ neighborhood comprises (2r + 1)2 nodes, this
threshold implies that slightly less than one-fourth of the
nodes in a neighborhood may be faulty. We present a pro-
tocol that achieves this objective 1. Without loss of general-
ity, we assume the message to comprise a binary value (say
0 or 1). A node that is not the source is said to commit to a
value when it becomes certain that it is indeed the value orig-
inated by the source. The protocol requires maintenance of
state by each node pertaining to direct/indirect reports for
nodes within its four-hop neighborhood. This state may be
reduced further by stipulating exact messages that a node
should look out for, and this shall become clear from our
constructive proof for the viability of reliable broadcast with
t < 1

2
r(2r + 1). The protocol operates as follows:

• Initially, the source does a local broadcast of the mes-
sage.

• Each neighbor i of the source immediately commits to
the the first value v it heard from the source, and then
locally broadcasts it once in a COMMITTED(i, v)
message.

• Hereafter, the following protocol is followed by each
node j (including those involved in the previous two
steps):

On receipt of a COMMITTED(i, v) message from
neighbor i, record the message, and locally broadcast
a HEARD(j, i, v) message.

On receipt of a HEARD(k, i, v) message from a neigh-
bor k, record the message, and locally broadcast a
HEARD(j, k, i, v) message.

On receipt of a HEARD(l, k, i, v) message, record the
message, and locally broadcast a HEARD(j, l, k, i, v)
message.

On receipt of a HEARD(g, l, k, i, v) message, record
the message, but do not re-propagate.

On committing to a value v, do a one-time local broad-
cast of COMMITTED(j, v).

A node j commits to a value v if it reliably deter-
mines that at least t + 1 nodes lying in some single
neighborhood have committed to v. j is said to have
reliably determined the value committed to by node i

if one of the following conditions holds:

– i is its neighbor, and so j heard COMMITTED(i, v)
directly. In this case, there is no cause for doubt
as to the value committed to by node i, since no
other node is capable of spoofing i’s address, and
collisions are ruled out.

1We have since obtained results that allow the same fault
threshold to be tolerated using a simpler protocol, with a
corresponding simpler proof. Section 6.2 provides a brief
discussion.



���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������A B

CD

E F

H

G
Q

V

W

R

T

x=a−r−1 x=a+r+1

y=b−r−1

y=b

y=b+r+1

x=a

S

U

x=a−r+1

y=b−r+1

(a, b)

P x=a+r−1

M

Figure 1: Nodes in nbd(a, b) whose committed val-
ues P can reliably determine
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Figure 2: Nodes in nbd(a, b) that are immediate
neighbors of P

– j heard indirect reports of i having committed to
a particular value v through t + 1 node-disjoint
paths that all lie within some single neighbor-

hood. The indirect reports are obtained through
the HEARD messages that propagate via upto
three intermediate nodes (i.e. upto four hops
from the node that sent the COMMITTED mes-
sage), and the path information is obtained from
these messages (as each forwarding node affixes
its identifier to the message).

THEOREM 2. (Correctness) No node shall commit to a

wrong value by following the above protocol.

Proof. The proof is by contradiction. Consider the first
node, say j, that makes a wrong decision to commit to a
value v. This implies it reliably determined that t+1 already
committed nodes lying in some single neighborhood N1 had
committed to v. Since reliable determination of a node i

having committed to a value v involves hearing i directly or
hearing indirect reports (that i committed to v) via at least
t + 1 node-disjoint paths lying in some single neighborhood
N2, and since the number of faults in N2 may be at most t,
it implies that all these paths cannot have relayed the wrong
value, and so v must indeed be the value committed to by
i. Thus no node can make a wrong determination of what
value each of the t+1 nodes in N1 committed to; they must
all indeed have committed to v. Since j is the first node
to make a wrong decision, the t + 1 nodes could not have
made a wrong decision. Also, all of these nodes cannot be
faulty, as no more than t nodes in any neighborhood may
exhibit Byzantine failure. Thus v must indeed be the correct
value.

THEOREM 3. (Completeness) Each node is eventually

able to commit to the correct value.

Proof. We prove that each node will be able to meet the
conditions stipulated by the protocol for committing to the
correct value. The proof also clarifies the operation of the
protocol, and in fact would allow one to stipulate exactly
which messages each node should act upon (given that the

topology of the network is completely known), thereby re-
ducing the state maintained at each node. The essence of
the proof lies in showing that each node j (except the direct
neighbors of (0, 0)) is connected to at least 2t+1 nodes that
lie in some single neighborhood N1, such that the connectiv-
ity to each such node is through 2t + 1 node-disjoint paths
that all lie in some neighborhood N2, and the nodes in N1

are able to commit to the correct value before node j has
done so.

The proof proceeds by induction.

Base Case:

All honest nodes in nbd(0, 0) are able to commit to the cor-
rect value. This follows trivially since they hear the origin
directly, and we assume that address-spoofing is impossible.

Inductive Hypothesis:

If all honest neighbors of a node located at (a, b) i.e. all
honest nodes in nbd(a, b) are able to commit to the correct
value, then all honest nodes in pnbd(a, b) are able to commit
to the correct value.

Proof of Inductive Hypothesis:

We show that each node in pnbd(a, b) − nbd(a, b) is able to
reliably determine the value committed to by 2t+1 nodes in
nbd(a, b). Since no more than t of these can be faulty, this
guarantees that the node will become aware of t + 1 nodes
in nbd(a, b) having committed to a (the correct) value, and
will also commit to it. In order to show this, we prove that
each node is connected to at least 2t + 1 nodes in nbd(a, b)
either directly, or through 2t+1 node disjoint paths that all
lie entirely within some single neighborhood. Thus at least
t+1 of these paths are guaranteed to be fault-free and shall
allow communication of the correct value.

We show this for a corner node in pnbd(a, b) − nbd(a, b) i.e.
the node marked P (which is located at (a − r, b + r + 1))
in Fig. 1. This represents the worst case. For all other
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Figure 4: A node N in Region U

Region x-extent y-extent
A (a + p − r) ≤ x ≤ a (b + 1) ≤ y ≤ (b + q + r)
B1 (a + 1) ≤ x ≤ (a + p − 1) (b + 1) ≤ y ≤ (b + q + r)
B2 (a + 1 − r) ≤ x ≤ (a + p − 1 − r) (b + 1) ≤ y ≤ (b + q + r)
C1 (a + p + 1) ≤ x ≤ (a + r) (b + q + 1) ≤ y ≤ (b + r + 1)
C2 (a + p + 1 − r) ≤ x ≤ a (b + q + 1 + r) ≤ y ≤ (b + 1 + 2r)
D1 (a + p) ≤ x ≤ (a + p + r − q) (b + r + q − p + 1) ≤ y ≤ (b + r + q)
D2 (a + 1) ≤ x ≤ (a + p) (b + 1 + r + q) ≤ y ≤ (b + 1 + 2r)
D3 (a + 1 − r) ≤ x ≤ (a + p − r) (b + 1 + r + q) ≤ y ≤ (b + 1 + 2r)
J (a − 2r) ≤ x ≤ a (b + 1) ≤ y ≤ (b − p + r)
K1 (a − 2r) ≤ x ≤ a (b − p + 1) ≤ y ≤ b

K2 (a − 2r) ≤ x ≤ a (b − p + r + 1) ≤ y ≤ (b + r)

Table 1: Spatial Extents of Various Regions

nodes in pnbd(a, b)− nbd(a, b), the condition can be seen to
be achieved via a similar argument. We briefly discuss this
in Section 6.1.

We show that node P is able to reliably determine the values
committed to by the nodes in the shaded region M in Fig. 1.
Region M comprises {(a−r+p, b−r+q)|2r ≥ q > p ≥ 0} and
hence has r(2r+1) nodes. The first observation is that P can
directly hear the nodes in the shaded sub-region R in Fig.
2, comprising {(x, y)|(a − r) ≤ x ≤ a; (b + 1) ≤ y ≤ (b + r)}
(this constitutes r(r + 1) nodes), and so is certain of the
value they committed to. The remaining sub-regions are
depicted in Fig. 3 as U (comprising 1

2
r(r − 1) nodes), S1

(comprising r nodes ), and S2 ( comprising 1

2
r(r−1) nodes).

We now explicitly prove existence of suitable node-disjoint
paths for nodes that lie in the upper triangular region U

in Fig. 3. Any node N in this region may be considered
located at (a + p, b + q) (Fig. 4), such that r ≥ q > p ≥ 1 in
this region. We show the existence of r(2r+1) node-disjoint
paths between N and P , that all lie within the same single
neighborhood (centered at (a, b + r + 1), and indicated by
the square with dark outline in Fig. 5). For greater clarity,
the spatial extents of various demarcated regions used in the
following argument are tabulated in Table 1.

Consider Fig. 5. The region marked A comprises {(x, y)|(a+

p − r) ≤ x ≤ a; (b + 1) ≤ y ≤ (b + q + r)}, and nodes in
this region are neighbors of both N and P. Thus, there are
(r − p + 1)(r + q) paths of the form N → A → P that com-
prise one intermediate node each.

The region B1 comprises {(x, y)|(a + 1) ≤ x ≤ (a + p −
1); (b + 1) ≤ y ≤ (b + q + r)}, and falls in nbd(N) (recall
that N is located at (a+ p, b+ q)). The region B2 comprises
{(x, y)|(a+1−r) ≤ x ≤ (a+p−1−r); (b+1) ≤ y ≤ (b+q+r)},
and falls in nbd(P ). As may be seen, B2 is obtained by a
translation of B1 to the left by r units. Thus there is a
one-to-one correpondence between a point (x, y) in B1 and
a point (x − r, y) in B2, such that the points in each pair
are neighbors. This yields (p − 1)(r + q) paths of the form
N → B1 → B2 → P .

Region C1 comprises {(x, y)|(a+p+1) ≤ x ≤ (a+r); (b+q+
1) ≤ y ≤ (b + r + 1)} and thus falls within nbd(N). Region
C2 comprises {(x, y)|(a+p+1−r) ≤ x ≤ a; (b+q+1+r) ≤
y ≤ (b + 1 + 2r)} and falls within nbd(P ). It may be seen
that there is a one-to-one correspondence between any point
(x, y) in C1 and point (x − r, y + r) in C2, with the paired
points being neighbors. Hence there exist (r − p)(r − q + 1)
paths of the form N → C1 → C2 → P that comprise two
intermediate nodes each.

Region D1 comprises {(x, y)|(a+p) ≤ x ≤ (a+p+r−q), (b+
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Figure 5: Construction depicting node-disjoint paths between N
and P
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Figure 6: Connectivity between P and
nodes in S1

r+q−p+1) ≤ y ≤ (b+r+q)}, and falls in nbd(N). Region
D2 comprises {(x, y)|(a + 1) ≤ x ≤ (a + p); (b + 1 + r + q) ≤
y ≤ (b+1+2r)} . Region D3 comprises {(x, y)|(a+1−r) ≤
x ≤ (a + p − r); (b + 1 + r + q) ≤ y ≤ (b + 1 + 2r)}, and
falls in nbd(P ). We note that regions D1, D2 and D3 have
exactly the same number of nodes each. Besides, the regions
D1 and D2 are mutually located in a manner that each node
in D2 is a neighbor of each node in D1 (maximum distance
between any two nodes ≤ r). Hence, any one-to-one pairing
of nodes in D1 with nodes in D2 is valid. Further, a node
located at (x, y) in D2 has a one-to-one correpondence with
a node (x − r, y) in D3. Hence, there are p(r − q + 1) paths
of the form N → D1 → D2 → D3 → P that comprise three
intermediate nodes each (Fig. 5). Thus the r(2r + 1) node-
disjoint paths are obtained.

We now consider nodes in regions S1 and S2 depicted in
Fig. 3. Then: S1 = {(a − r, b − p)|0 ≤ p ≤ (r − 1)}. It
can be shown that P has r(2r + 1) disjoint paths to each
node in S1, as depicted in Fig. 6. Any node N in S1

is located at (a − r, b − p). Consider region J comprising
{(x, y)|(a − 2r) ≤ x ≤ a; (b + 1) ≤ y ≤ (b − p + r)}. All
nodes in J are common neighbors of N and P , and provide
(r − p)(2r + 1) paths of the form N → J → P . Region K1

comprises {(x, y)|(a− 2r) ≤ x ≤ a; (b− p+1) ≤ y ≤ b}, and
falls enirely within nbd(N). Region K2 is {(x, y)|(a − 2r) ≤
x ≤ a; (b−p+r+1) ≤ y ≤ (b+r)}, and falls in nbd(P ). For

each node (x, y) falling in K1, there is a one-to-one corre-
spondence with a node (x, y + r) in K2, and thus we obtain
p(2r + 1) paths of the form N → K1 → K2 → P . This
yields a total of r(2r + 1) paths (all lying entirely within
nbd(a − r, b + 1)), as depicted in Fig. 6.

Region S2 comprises {(a−q, b−p)|(r−1) ≥ q > p ≥ 0}. For
the nodes in S2, observe that each node (a−q+1, b−p+1) in
S2 possesses the same relative position w.r.t. P as the node
(a + p, b+ q) in region U of Fig. 3 (note the axial symmetry
about axis OO′), and due to the symmetric structure of the
network, shall enjoy exactly the same connectivity proper-
ties to P as the node (a + p, b + q) in region U . Since we
have already shown existence of sufficient connectivity for
those nodes, the same holds for nodes in S2.

The inductive hypothesis, along with the base case, suffices
to show that every honest node will eventually commit to
the correct message, since starting at (0, 0), one can cover
the entire infinite grid by moving up, down, left and right.
Thus the neighborhood of every grid point can be shown to
have decided i.e. every honest node will have decided on the
correct value.

Note that the connectivity condition proved above suffices
to prove that upto 2t < r(2r +1) crash-stop failures are tol-
erable in L∞ metric. We elaborate further in Section 7.
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Figure 7: Non-worst Case Location of P

6.1 Non-worst Case Location of P

We briefly discuss how the connectivity argument holds
for all P ∈ pnbd(a, b) − nbd(a, b). We consider non-worst
case locations of P ∈ {(a − r + l, b + r + 1)|1 ≤ l ≤ r}.
For all other locations, the argument holds by symmetry.
The situation is depicted in Fig. 7. One may consider P

to be translated to the right by l units from its worst case
location at (a−r, b+r+1). Then, region R that lies in direct
range of P (recall from Fig. 2) now comprises r(r + l + 1)
nodes. If we also translate regions U , S1, and S2 by l units
each to the right, they preserve their relative positions and
hence connectivity to P . However, now 1

2
l(l−1) nodes from

U fall out of nbd(a, b), but this is more than compensated
by the increase of rl nodes in region R. Thus, if we count
the number of nodes in nbd(a, b) ∩ U , nbd(a, b) ∩ S1, and
nbd(a, b) ∩ S2, it can be shown that they are ≥ r(r − l) in
number. Together with the r(r + l + 1) nodes in region R,
they provide at least r(2r+1) nodes to which P is connected
either directly or via 2t + 1 node-disjoint paths all lying
within some single neighborhood.

6.2 A Simpler Protocol
We have formulated a new protocol [3] in which only the

immediate neighbors of a node that sent a COMMITTED

message, send out a HEARD message reporting it. Thus,
information about the value committed to by a node prop-
agates only upto its two hop neighborhood. This suffices
to achieve reliable broadcast. The correctness of this pro-
tocol proceeds from the observation that a much simpler
connectivity condition is sufficient to ensure reliable broad-
cast. Given that all honest nodes in nbd(a, b) have been able
to correctly determine the broadcast value, any node P in
pnbd(a, b) − nbd(a, b) should be connected to 2t + 1 nodes
N in nbd(a, b) via a single path each, such that collectively
these 2t + 1 paths are node-disjoint and they all (the end-
points N , as well as any intermediate nodes) lie in some
single neighborhood. Details are presented in [3].

x=a+r−1x=a

(0, 0)

Figure 8: Network Partition due to Crash Stop Fail-
ures

7. CRASH-STOP FAILURES
When only crash-stop failures are admissible, no special

protocol is required. Each node that receives a value, com-
mits to it, re-broadcasts it once for the benefit of others, and
then may terminate local execution of the protocol. Thus
the sole criterion for achievability is reachability. In this
failure mode, we establish an exact threshold for tolerable
faults in L∞ metric.

THEOREM 4. Under a crash-stop failure model, if t ≥
r(2r + 1) , it is impossible to achieve reliable broadcast in

L∞ metric.

Proof. We present a construction with t = r(2r + 1)
that renders reliable broadcast impossible. Consider the
network in Fig. 8. The nodes in the designated region
{(x, y)|a ≤ x < a + r} are all faulty while all other nodes
are correct. As may be seen, the maximum number of faulty
nodes in any given neighborhood is ≤ r(2r+1). However this
configuration partitions all nodes in the half-plane x ≥ a+r

from the source and they are unable to receive the broad-
cast.

THEOREM 5. Under a crash-stop failure model, if t <

r(2r + 1), it is possible to achieve reliable broadcast in L∞

metric.

Proof. A proof proceeds from the proof of Theorem 1.
Since, we showed that each node is connected to each of
r(2r+1) already committed nodes lying in some single neigh-
borhood, via r(2r+1) node-disjoint paths that all lie within
some single neighborhood, it follows that upto t < r(2r +1)
crash-stop faults may be tolerated, as each node would still
be connected to at least one non-faulty committed node,
via at least one fault-free path. We also describe simpler
proof(s) in [2] and [3]. Note that in L∞, this threshold
corresponds to slightly less than half the nodes in a neigh-
borhood.

8. BROADCAST IN EUCLIDEAN METRIC
We briefly consider the issue of reliable broadcast in the

L2, i.e., Euclidean metric. We refrain from establishing ex-
act thresholds as it is difficult to precisely determine lattice
points falling in areas bounded by circular arcs. However,
we present arguments to suggest that reliable broadcast in
L2 is achievable if the fraction of nodes in any neighborhood
that exhibit Byzantine faults is slightly less than one-fourth.
We work with the value t < 0.23πr2.
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Figure 9: Illustrating an Approximate Argument for
Euclidean Metric

The basis for the argument is that given a closed simple re-
gion of area A, and perimeter p, bounded by upto k straight
line segments and circular arcs of radius r, where k is a
small constant, the number of lattice point lying within it,
Nl, is given by Nl = A ± O(p), and the constant hidden
in the O(p) term is small. The justification for this claim
is based on Pick’s Theorem [13], and is presented in the
Appendix. For our argument, we consider sub-regions of a
circle bounded by circular arcs of radius r, and straight line
segments (each of length ≤ 2r), with k ≤ 4. These regions
have a perimeter p = O(r), and area A = O(r2). Hence,
the number of nodes that lie in a subregion having area A
is approximately A ± O(r). Thus, for sufficiently large r,
the quadratic area term dominates, and the area is a good
approximation for the number of lattice points lying within
these regions. The argument proceeds by induction, as in
Section 6.

Base Case:

All honest nodes in nbd(0, 0) are able to commit to the cor-
rect value. This follows trivially since they hear the origin
directly.

Inductive Hypothesis:

If all honest neighbors of a node located at (a, b) are able
to commit to the correct value, then all honest nodes in
pnbd(a, b) are able to commit to the correct value.

Justification of Inductive Hypothesis:

We show that each node in pnbd(a, b) − nbd(a, b) is able to
reliably determine the value committed to by 2t+1 nodes in
nbd(a, b). Since no more than t of these can be faulty, this
guarantees that the node will become aware of t + 1 nodes
in nbd(a, b) having committed to a (the correct) value, and
will also commit to it. As in Section 6, we proceed by show-
ing that each node in pnd(a, b) − nbd(a, b) is connected to
at least 2t + 1 nodes in nbd(a, b) either directly, or through
2t + 1 node disjoint paths that all lie entirely within some
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Figure 10: Approximate Construction depicting
Node-Disjoint Paths (PQ from Fig. 9 rotated to
horizontal axis)

single neighborhood. Thus at least t + 1 of these paths are
guaranteed to be fault-free and shall allow communication
of the correct value.

Consider the node at (a, b), as in Fig. 9. Let d be the
distance between the node at (a, b) (we call it N) and any
node in (pnbd(a, b) − nbd(a, b)) (we call it node Q). Then
d ≤ r + 1 (from the triangle inequality). Consider the half-
neighborhood of (a, b) demarcated by the axis perpendicu-
lar to NQ (not counting the points lying on the axis). The
number of lattice points lying in it may be approximated by
0.5πr2 − O(r). Then, as the number of faults t < 0.23πr2,
it implies that there are at least 2t + 1 nodes in this half-
neighborhood. We attempt to quantify the number of node-
disjoint paths between any node P in this half-neighborhood,
and the node Q. Observe that in the worst case, the distance
D between P and Q is ≈ r

√
2. We consider the worst case

situation. Fig. 10 depicts PQ rotated to the horizontal axis
for purpose of clarity. The corresponding rotated coordi-
nates shall be referred to as x′, y′. We denote location of P
in this rotated system by (Px, Py). Use of these coordinates
enables simpler description of the spatial extents of various
regions relative to the locations of P and Q. Note that the
integer coordinates in this system are not coincident with
the lattice points in the actual grid. This does not affect
the argument, as we use these coordinates solely to define
placement of the regions, and then rely on the area-based
argument to count the number of actual grid points falling
in each.

We attempt to construct node-disjoint paths between P and
Q that all lie within the neighborhood centered at the mid-
point of PQ (we call it M). If M is not an actual lattice



point, the neighborhood center is perturbed to the near-
est lattice point. This can only affect the argument by
O(perimeter) = O(r). Similarly, when we state one-to-one
correpondences between points in the following argument,
any deviation from the calculated numbers (due to the dis-
crete nature of the grid) can only be by O(r).

The set of nodes marked A in Fig. 10 are common neigh-
bors of P and Q (i.e., fall in nbd(P )∩nbd(Q)), and lie within
nbd(M). They constitute two-hop PQ paths (P → A → Q).
A set of three-hop paths P → B1 → B2 → Q is also formed.
Region B1 comprises {(x′, y′)|(x′, y′) ∈ (nbd(P )−nbd(Q))∩
nbd(M), Px < x′ < Px + r

√
2− r, Py − r√

2
≤ y′ ≤ Py + r√

2
}.

B2 is the translate of B1 by r units along the direction of PQ,
and B2 ∈ (nbd(Q) − nbd(P )) ∩ nbd(M) (since PQ ≈ r

√
2).

This yields a one-to-one correspondence between points in
B1 and points in B2.

Region C11 ∪ C21 = {(x′, y′)|(x′, y′) ∈ (nbd(P ) − nbd(Q)) ∩
nbd(M), Px < x′ < Px + r

2
√

2
, (y′ < Py − r√

2
) ∨ (y′ >

Py + r√
2
)}. Region D11∪D21 = {(x′, y′)|(x′, y′) ∈ (nbd(P )−

nbd(Q)) ∩ nbd(M), Px + r

2
√

2
≤ x′, (y′ < Py − r√

2
) ∨ (y′ >

Py + r√
2
)}. Region E11∪E21 = {(x′, y′)|(x′, y′) ∈ (nbd(P )−

nbd(Q)) ∩ nbd(M), Px + r
√

2 − r ≤ x′, Py − r√
2

≤ y′ ≤
Py + r√

2
}. The translated image(s) of C11, C21, D11, D21 by

1√
2
r units in the x′ direction, fall within (nbd(Q)−nbd(P ))∩

nbd(M). Thus, there is a set of three-hop paths P →
C11(C21) → C12(C22) → Q and P → D11(D21) → D12(D22) →
Q, since each point (x′, y′) in Ci1 (Di1) has a corresponding
point (its image under translation along the direction of PQ)
in Ci2 (Di2). Finally, there exist paths P → E11(E21) →
E12(E22) → Q such that each point in E11 (E21) has a one-
to-one correpondence with its mirror image with respect to
axis OO’, lying in E12(E22). The number of such paths is
approximately equal to the sum of the areas A, B1, C11,
C21 D11, D21, E11 and E21 which turns out to be approxi-
mately 1.47r2 = 0.47πr2 > (2(0.23πr2) + 1) for sufficiently
large r. Thus approximately 0.23πr2 Byzantine faults may
be tolerated. Note that all considered paths comprise upto
three hops. Thus the protocol of Section 6 suffices for L2.

We also argue that reliable broadcast is not possible if t ≥
0.3πr2. The argument is based on a construction identical
to that presented in [6] for L∞, which is depicted in Fig.
11. As proved in [6], this arrangement of faults renders reli-
able broadcast impossible. Note that the maximum number
of faults lying in any single neighborhood is given by the
number of faulty nodes in the circled region (Fig. 11). The
relevant area is approximately 0.6πr2, and we expect ap-
proximately 0.6πr2 ± O(r) nodes to lie in it. Half of these,
i.e., around 0.3πr2 ± O(r) are to be faulty. This yields the
argument that if t ≥ 0.3πr2 (approximately), reliable broad-
cast would be unachievable. Thus the critical threshold for
L2 metric would lie between a 0.23 and a 0.3 fraction i.e.
close to a one-fourth fraction of faults.

The above argument also leads to the conclusion that upto
2t = 0.46πr2 crash-stop failures may be tolerated, while
around 0.6πr2 failures would render reliable broadcast im-
possible. Thus, for crash-stop failures, the threshold seems
to be in the range of half the neighborhood population.

x=a x=a+r−1

(0, 0) (0, 0)

x=a+r−1x=a

r odd r even

X X

Figure 11: Impossibility Construction for Byzantine
Failures in Euclidean metric

9. A SIMPLE BYZANTINE PROTOCOL:
IMPROVED BOUNDS

We have obtained improved bounds for tolerable faults
when an extremely simple Byzantine protocol (described in
[6]) is used. In this protocol, initially the source transmits
the value, and its immediate neighbors are able to commit to
that value instantly. They re-broadcast the value commit-
ted to and terminate protocol operation. Any other node
that has heard the same value reported by at least t + 1
neighbors, commits to it, re-broadcasts it, and then termi-
nates. Thus the protocol proceeds till either all nodes have
terminated, or no further progress is possible. We present
an asymptotically tighter bound for the number of tolerable
Byzantine faults in the L∞ metric (using this protocol) than
that presented in [6].

THEOREM 6. Under a Byzantine failure model, if t ≤
2

3
r2, it is possible to achieve reliable broadcast in the L∞

metric, with the described simple protocol.

Proof. The proof is omitted due to paucity of space. It
is described in [2].

10. A STRONGER ADVERSARY
The presence of a broadcast channel introduces numer-

ous possibilities for stronger adversarial behavior. A mali-
cious node can potentially spoof another node’s address and
send spurious messages under guise. There is also the pos-
sibility of disruption of communication via deliberate col-
lisions. The results presented in this paper assume that
neither problem exists. When the adversary has control
over low-level networking functions, reliable broadcast is ex-
tremely difficult to achieve. If address spoofing is allowed,
any malicious node may attempt to impersonate any honest
node. Similarly, reliable broadcast is rendered impossible if
the adversary can cause an unbounded number of collisions,
since a faulty node can cause collision with any transmission
made by a non-faulty node in its vicinity. When the num-
ber of collisions is bounded, it may be possible to come up
with protocols that achieve reliable broadcast. As discussed



briefly in [6], the situation may not simply be remediable via
retransmissions, if the adversary leverages collisions to send
contradicting messages to different parts of the network. A
protocol that involves consultation between the neighbors of
a node as to the value(s) they heard it transmit, as well as
any detected collisions, can potentially resolve the problem,
and requires further investigation.

11. CONCLUSIONS
We have presented results regarding the number of Byzan-

tine and crash-stop failures that may be tolerated in an ide-
alized radio network without rendering reliable broadcast
impossible. We have considered an adversarial model where
the adversary is free to choose faulty nodes, so long as the
placement satisfies the constraint that no neighborhood has
more than t faults. However, in the presence of channel
errors etc., the reliable local broadcast assumption, that un-
derlies these results, is not trivial to realize. Thus, imple-
mentation of a reliable broadcast service based on the radio
network model would require efficient implementation of a
reliable local broadcast primitive that operates under real-
istic network conditions. Proposed mechanisms for reliable
broadcast in multi-hop mobile networks (e.g., that described
in [10]) have typically not focused on Byzantine node fail-
ures. Besides, these mechanisms do not leverage the broad-
cast nature of the shared wireless channel, relying instead
on construction of clustering or backbone structures for re-
liable dissemination via unicast messages. There is need for
further work on efficient Byzantine fault-tolerant protocols
for multi-hop wireless networks, in order to bridge the gap
between theory and practice.
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APPENDIX
We claimed in Section 8 that given a simple closed region S

of area A bounded by upto k line segments or circular arcs,
where k is a small constant, the number of lattice points in
S is A ± O(p). We justify this by bounding S, within and
without, by lattice polygons, and applying Pick’s Theorem
[13]. For any such region S, consider the lattice polygon
comprising grid squares that lie completely within S (Fig.
12). In certain cases, instead of a single lattice polygon,
we obtain a number of simple polygons that may share a
common vertex, or are disconnected (if S has narrow con-
strictions or necks (Fig. 13)). In rare instances, no such
polygon may be obtained, if S is extremely narrow, and has
no grid square lying completely within it (A = O(p) for such
regions). We call the polygon(s) thus obtained Pin (in case
of multiple polygons, Pin refers to their union). Note that
S − Pin comprises the grid squares that are partially in S,
i.e., those traversed by the boundary of S. Since the bound-
ary of S comprises upto k line segments and arcs of radius
r, the number of grid squares traversed by the boundary
≤ 2p + ck, where c is a constant. The area of Pin must thus
be at least A−(2p+ck). Let n1 denote the number of lattice
points falling in Pin. Similarly, consider the lattice polygon
Pout obtained by taking the union of all grid squares that
lie fully or partially in S. Pout is simple, fully contains S,
and its area can be no more than A + (2p + ck) (it can at
most have an additional area comprising the grid squares
traversed by the boundary of S). Let the number of lattice
points falling in Pout be n2. Then n1 ≤ Nl ≤ n2. By invok-
ing Pick’s Theorem 2, it can be shown that n1 ≥ A − O(p),
and n2 ≤ A + O(p). Thus Nl = A ± O(p).

Figure 12: Bound-
ing a Simple
Closed Region via
Lattice Polygons

Figure 13: Region
with Neck: Mul-
tiple Simple Poly-
gons in Interior

2Pick’s Theorem: Let A be the area of a simple closed lat-
tice polygon. Let B denote the number of lattice points on
the polygon boundary, and I the number of points in the
polygon interior. Then: A = I + 1

2
B − 1.


