
Byzantine Consensus in Directed Graphs∗

Lewis Tseng1,3, and Nitin Vaidya2,3

1 Department of Computer Science,
2 Department of Electrical and Computer Engineering, and

3 Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Email: {ltseng3, nhv}@illinois.edu

Phone: +1 217-244-6024, +1 217-265-5414

February 10, 2013†

Abstract

Consider a synchronous point-to-point network of n nodes connected by directed
links, wherein each node has a binary input. This paper proves a tight necessary and
sufficient condition for achieving Byzantine consensus among these nodes in the pres-
ence of up to f Byzantine faults. We derive two forms of the necessary condition. We
provide a constructive proof of sufficiency by presenting a Byzantine consensus algo-
rithm for directed graphs that satisfy the necessary condition.

Prior work has developed analogous necessary and sufficient conditions for undirected
graphs. It is known that, for undirected graphs, the following two conditions are together
necessary and sufficient [4, 2]: (i) n ≥ 3f+1, and (ii) network connectivity greater than
2f . However, these conditions are not adequate to completely characterize Byzantine
consensus in directed graphs.

∗This research is supported in part by Army Research Office grant W-911-NF-0710287. Any
opinions, findings, and conclusions or recommendations expressed here are those of the authors
and do not necessarily reflect the views of the funding agencies or the U.S. government.

†This is a revised version of Exact Byzantine Consensus in Directed Graphs (Oct. 2012) of the previous report
and version 3 of that report (on arxiv.org/abs/1208.5075).

1 Introduction

In this work, we explore algorithms for achieving Byzantine consensus [3] in a synchronous point-
to-point network of n nodes, in presence of up to f Byzantine faulty nodes. The network is modeled
as a directed graph, i.e., the communication links between neighboring nodes are not necessarily bi-
directional. Our work is motivated by the presence of directed links in wireless networks. However,
we believe that the results here are of independent interest as well.

The Byzantine consensus problem [3] considers n nodes, of which at most f nodes may be faulty.
The faulty nodes may deviate from the algorithm in arbitrary fashion. Each node has an input in
{0, 1}. A Byzantine consensus algorithm is correct if it satisfies the following three properties:

• Agreement: the output (i.e., decision) at all the fault-free nodes must be identical.

• Validity: the output of every fault-free node equals the input of a fault-free node.

• Termination: every fault-free node eventually decides on an output.

In networks with undirected links (i.e., in undirected graphs), it is well-known that the following
two conditions together are both necessary and sufficient for the existence of Byzantine consensus
algorithms [4, 2]: (i) n ≥ 3f + 1, and (ii) node connectivity greater than 2f . The first condition,
that is, n ≥ 3f+1, is necessary for directed graphs as well. Tight necessary and sufficient conditions
for Byzantine consensus in directed graphs have not been developed previously. In this paper, we
develop such conditions. We provide a constructive proof of sufficiency by presenting a Byzantine
consensus algorithm for directed graphs satisfying the necessary condition.

Network Model: The system is assumed to be synchronous. The synchronous communication
network consisting of n nodes is modeled as a simple directed graph G(V, E), where V is the set
of n nodes, and E is the set of directed edges between the nodes in V. We assume that n ≥ 2,
since the consensus problem for n = 1 is trivial. Node i can transmit messages to another node j if
and only if the directed edge (i, j) is in E . Each node can send messages to itself as well; however,
for convenience, we exclude self-loops from set E . That is, (i, i) ̸∈ E for i ∈ V. With a slight
abuse of terminology, we will use the terms edge and link, and similarly the terms node and vertex,
interchangeably.

Communication Model: All the communication links are reliable, FIFO (first-in first-out) and
deliver each transmitted message exactly once. When node i wants to send message M on link
(i, j) to node j, it puts the message M in a send buffer for link (i, j). No further operations are
needed at node i; the mechanisms for implementing reliable, FIFO and exactly-once semantics are
transparent to the nodes. When a message is delivered on link (i, j), it becomes available to node
j in a receive buffer for link (i, j). As stated earlier, the communication network is synchronous,
and thus, each message sent on link (i, j) is delivered to node j within a bounded interval of time.

2 Terminology

We now describe terminologies that are used frequently in our presentation. Upper case italic
letters are used to name subsets of V, and lower case italic letters are used to name nodes in V.

Incoming neighbors:

1

• Node i is said to be an incoming neighbor of node j if (i, j) ∈ E .

• For set B ⊆ V, node i is said to be an incoming neighbor of set B if i ̸∈ B, and there exists
j ∈ B such that (i, j) ∈ E . Set B is said to have k incoming neighbors in set A if set A
contains k distinct incoming neighbors of B.

Directed paths: All paths used in our discussion are directed paths.

• Paths from a node i to another node j:

– For a directed path from node i to node j, node i is said to be the “source node” for the
path.

– An “(i, j)-path” is a directed path from node i to node j. An “(i, j)-path excluding X”
is a directed path from node i to node j that does not contain any node from set X.

– Two paths from node i to node j are said to be “disjoint” if the two paths only have
nodes i and j in common, with all remaining nodes being distinct.

– The phrase “d disjoint (i, j)-paths” refers to d pairwise disjoint paths from node i to
node j. The phrase “d disjoint (i, j)-paths excluding X” refers to d pairwise disjoint
(i, j)-paths that do not contain any node from set X.

• Every node i trivially has a path to itself. That is, for all i ∈ V, an (i, i)-path excluding
V − {i} exists.

• Paths from a set S to node j ̸∈ S:

– A path is said to be an “(S, j)-path” if it is an (i, j)-path for some i ∈ S. An “(S, j)-path
excluding X” is a (S, j)-path that does not contain any node from set X.

– Two (S, j)-paths are said to be “disjoint” if the two paths only have node j in common,
with all remaining nodes being distinct (including the source nodes on the paths).

– The phrase “d disjoint (S, j)-paths” refers to d pairwise disjoint (S, j)-paths. The phrase
“d disjoint (S, j)-paths excluding X” refers to d pairwise disjoint (S, j)-paths that do
not contain any node from set X.

3 Necessary Condition

For a correct Byzantine consensus algorithm to exist in presence of up to f faulty nodes, the network
graph G(V, E) must satisfy the necessary condition developed in this section. In Sections 3.1 and
3.2, we present two equivalent forms of the necessary condition.

3.1 Necessary Condition: First Form

We first define relations → and ̸→ that are used frequently in the paper. These relations are defined
for disjoint sets. Two sets are disjoint if their intersection is empty. For convenience of presentation,
we adopt the convention that sets A and B are disjoint if either one of them is empty. More than
two sets are disjoint if they are pairwise disjoint.

Definition 1 For disjoint sets of nodes A and B, where B is non-empty:

2

• A → B iff set A contains at least f + 1 distinct incoming neighbors of B.

That is, | {i | (i, j) ∈ E , i ∈ A, j ∈ B} | > f .

• A ̸→ B iff A → B is not true.

The theorem below states the first form of our necessary condition.

Theorem 1 Suppose that a correct Byzantine consensus algorithm exists for G(V, E). For any
partition 1 L,C,R, F of V, such that both L and R are non-empty, and |F | ≤ f , either L∪C → R,
or R ∪ C → L.

Proof Sketch: The complete proof is presented in Appendix A using a state-machine approach
[4]. Here we sketch an intuitive proof. The proof is by contradiction.

Suppose that there exists a partition L,C,R, F where L,R are non-empty and |F | ≤ f such
that C ∪ R ̸→ L, and L ∪ C ̸→ R. Assume that the nodes in F are faulty, and the nodes in sets
L,C,R are fault-free. Note that fault-free nodes are not aware of the identity of the faulty nodes.

Consider the case when all the nodes in L have input m, and all the nodes in R∪C have input
M , where m ̸= M . Suppose that the nodes in F (if non-empty) behave to nodes in L as if nodes
in R ∪ C ∪ F have input m, while behaving to nodes in R as if nodes in L ∪ C ∪ F have input M .
This behavior by nodes in F is possible, since the nodes in F are all assumed to be faulty here.

Consider nodes in L. Let NL denote the set of incoming neighbors of L in R ∪ C. Since
R ∪ C ̸→ L, |NL| ≤ f . Therefore, nodes in L cannot distinguish between the following two
scenarios: (i) all the nodes in NL (if non-empty) are faulty, rest of the nodes are fault-free, and
all the fault-free nodes have input m, and (ii) all the nodes in F (if non-empty) are faulty, rest of
the nodes are fault-free, and fault-free nodes have input either m or M . In the first scenario, for
validity, the output at nodes in L must be m. Therefore, in the second scenario as well, the output
at the nodes in L must be m. We can similarly show that the output at the nodes in R must be
M . Thus, if the condition in Theorem 1 is not satisfied, nodes in L and R can be forced to decide
on distinct values, violating the agreement property. �

3.2 Necessary Condition: Second Form

Definition 2 Given disjoint sets A,B, F of V such that |F | ≤ f , set A is said to propagate in V − F
to set B if either (i) B = ∅, or (ii) for each node b ∈ B, there exist at least f+1 disjoint (A, b)-paths
excluding F .

We will denote the fact that set A propagates in V − F to set B by the notation A
V−F B. When

it is not true that A
V−F B, we will denote that fact by A

V−F
̸ B.

We now state the second form of the necessary condition. This form provides insight on how
to “propagate” values from one set of nodes to the other set.

1Sets X1, X2, X3, ..., Xp are said to form a partition of set X provided that (i) ∪1≤i≤pXi = X, and (ii) Xi∩Xj = ∅
if i ̸= j.

3

Theorem 2 Suppose that a correct Byzantine consensus algorithm exists for G(V, E). Then for

any partition A,B, F of V, where A and B are both non-empty, and |F | ≤ f , either A
V−F B or

B
V−F A.

Proof: Appendix B proves Theorem 2 by showing that the condition stated in Theorem 2 is
implied by the condition stated in Theorem 1. �

Corollary 1 Suppose that a correct Byzantine consensus algorithm exists for G(V, E). Then, (i)
n ≥ 3f + 1, and (ii) if f > 0, then each node must have at least 2f + 1 incoming neighbors.

Proof: From the prior work [3, 4], the condition n ≥ 3f + 1 is known to be necessary. As
elaborated in Appendix C, n ≥ 3f + 1 can be shown to be necessary using Theorem 1 as well.

Now, for f > 0, we show that it is necessary for each node to have at least 2f + 1 incoming
neighbors. The proof is by contradiction. Suppose that for some node i ∈ V, the number of
incoming neighbors is at most 2f . Partition V − {i} into two sets L and F such that L is non-
empty and contains at most f incoming neighbors of i, and |F | ≤ f . It should be easy to see that
such L,F can be found, since node i has at most 2f incoming neighbors.

Define C = ∅ and R = {i}. Thus, L,C,R, F for a partition of V. Then, since f > 0 and
|R ∪ C| = 1, it follows that R ∪ C ̸→ L. Also, since L contains at most f incoming neighbors of
node i, C = ∅, and set R contains only node i, L ∪ C ̸→ R. The above two conditions violate the
necessary condition stated in Theorem 1. �

3.3 The Equivalence of Two Forms of the Condition

The proof of Theorem 2 shows that the condition in Theorem 1 implies the condition in Theorem 2.
That fact, and Lemma 1 below, together prove that the two forms of the condition are equivalent.

Lemma 1 The condition stated in Theorem 2 (i.e., the second form of the necessary condition)
implies the condition stated in Theorem 1 (i.e., the first form of the necessary condition).

Proof: We will prove the lemma by showing that, if the condition stated in Theorem 1 is violated,
then the condition stated in Theorem 2 is violated as well.

Suppose that the condition in Theorem 1 is violated. Then there exists a partition L,C,R, F
of V such that L,R are both non-empty, |F | ≤ f , L ∪ C ̸→ R and R ∪ C ̸→ L.

Since L∪C ̸→ R, for any node r ∈ R, there exists a set Fr, |Fr| ≤ f , such that all the (L∪C, r)-
paths excluding F contain at least one node in Fr. Since L ⊆ L ∪C, Menger’s theorem [5] implies

that there are at most f disjoint (L, r)-paths excluding F . Thus, because r ∈ R∪C, L
V−F
̸ R ∪ C.

Similarly, since R ∪C ̸→ L, for any node l ∈ L, there exists a set Fl, |Fl| ≤ f , such that all the
(R ∪ C, l)-paths excluding F contain at least one node in Fl. Menger’s theorem [5] then implies

that there are at most f disjoint (R ∪ C, l)-paths excluding F . Thus, R ∪ C
V−F
̸ L.

Define A = L, and B = R ∪ C. Thus, A,B, F is a partition of V such that |F | ≤ f and A,B

are non-empty. The two conditions derived above imply that A
V−F
̸ B and B

V−F
̸ A, violating the

condition stated in Theorem 2. �

4

4 Sufficiency: Algorithm BC and Correctness Proof

This section proves that the necessary condition stated in Theorems 1 and 2 is also sufficient by
proving the correctness of Algorithm BC below in graphs that satisfy the necessary condition.
Hereafter, assume that graph G(V, E) satisfies the condition stated in Theorems 1 and 2, even if
this is not stated explicitly again (recall that the conditions in Theorems 1 and 2 are equivalent).

When f = 0, all the nodes are fault-free, and as shown in Appendix E, the proof of sufficiency
is trivial. In the rest of our discussion below, we will assume that f > 0.

The proposed Algorithm BC uses Definition 3 below. The INNER loop of Algorithm BC
uses procedures Propagate and Equality. These procedures make use of state variables t and v
maintained by the nodes. We discuss the node state in Section 4.1, and the two procedures in
Sections 4.2 and 4.3.

Definition 3 For F ⊂ V, graph G−F is obtained by removing from G(V, E) all the nodes in F ,
and all the links incident on nodes in F .

Algorithm BC

(OUTER LOOP)
For each F ⊂ V, where 0 ≤ |F | ≤ f :

(INNER LOOP)

For each partition A,B of V − F such that A,B are non-empty, and A
V−F B:

STEP 1 of INNER loop:

• Case 1: if A
V−F B and B

V−F
̸ A:

Choose a non-empty set S ⊆ A such that S
V−F V − F − S, and S is strongly connected

in G−F .

(a) At each node i ∈ S : ti := vi
(b) Equality(S)

(c) Propagate(S,V − F − S)

(d) At each node j ∈ V − F − S : if tj ̸=⊥, then vj := tj

• Case 2: if A
V−F B and B

V−F A:

Choose a non-empty set S ⊆ A∪B such that S
V−F V − F − S, S is strongly connected

in G−F , and A
V−F (S −A).

(e) At each node i ∈ A : ti = vi
(f) Propagate(A,S −A)

(g) Equality(S)

(h) Propagate(S,V − F − S)

(i) At each node j ∈ V − F − (A ∩ S) : if tj ̸=⊥, then vj := tj

STEP 2 of INNER loop:

(j) Each node k ∈ F receives vj from each j ∈ Nk, where Nk is a set consisting of f + 1 of
k’s incoming neighbors in V − F . If all the received values are identical, then vk is set
equal to this identical value; else vk is unchanged.

5

4.1 Node State

Each node i maintains two state variables that are explicitly used in our algorithm: vi and ti. Each
node will have to maintain other state as well (such as the routes to other nodes); however, we do
not introduce additional notation for that.

• Variable vi: Initially, vi at any node i is equal to the binary input at node i. During the
course of the algorithm, vi at node i may be updated several times. Value vi at the end of
the algorithm represents node i’s decision (or output) for Algorithm BC. The output at each
node is either 0 or 1. At any time during the execution of the algorithm, the value vi at node
i is said to be valid, if it equals some fault-free node’s input. Initial value vi at a fault-free
node i is valid because it equals its own input. Lemma 2 proved later in Section 4.5 implies
that vi at a fault-free node i always remains valid throughout the execution of Algorithm BC.

• Variable ti: Variable ti at any node i may take a value in {0, 1,⊥}, where ⊥ is distinguished
from 0 and 1. The Propagate and Equality procedures take ti at participating nodes i as
input, and may also modify ti. Under some circumstances, vi at node i is set equal to ti in
order to update vi, in steps (d) and (i) of Algorithm BC.

4.2 Procedure Propagate(P,D)

Propagate(P,D) assumes that P ⊆ V − F , D ⊆ V − F , P ∩D = ∅ and P
V−F D. Recall that set

F is the set chosen in each OUTER loop as specified by Algorithm BC.

Propagate(P,D)

(1) Since P
V−F D, for each i ∈ D, there exist f + 1 disjoint (P, i)-paths that exclude F . The

source node of each of these paths is in P . On each of these f + 1 disjoint paths, the source
node for that path, say s, sends ts to node i. Intermediate nodes on these paths forward
received messages as necessary.

When a node does not receive an expected message, the message content is assumed to be ⊥.

(2) When any node i ∈ D receives f + 1 values along the f + 1 disjoint paths above:
if the f + 1 values are all equal to 0, then ti := 0; else if the f + 1 values are all equal to 1,
then ti := 1; else ti :=⊥. (Note that := denotes the assignment operator.)

For any node j ̸∈ D, tj is not modified during Propagate(P,D). Also, for any node k ∈ V, vk is
not modified during Propagate(P,D).

4.3 Procedure Equality(D)

Equality(D) assumes that D ⊆ V − F , D ̸= ∅, and for each pair of nodes i, j ∈ D, an (i, j)-path
excluding F exists, i.e., D is strongly connected in G−F (G−F is defined in Definition 3).

6

Equality(D)

(1) Each node i ∈ D sends ti to all other nodes in D along paths excluding F .

(2) Each node j ∈ D thus receives messages from all nodes in D. Node j checks whether values
received from all the nodes in D and its own tj are all equal, and also belong to {0, 1}. If
these conditions are not satisfied, then tj :=⊥; otherwise tj is not modified.

For any node k ̸∈ D, tk is not modified in Equality(D). Also, for any node k ∈ V, vk is not
modified in Equality(D).

4.4 INNER Loop of Algorithm BC for f > 0

Assume that f > 0. For each F chosen in the OUTER loop, the INNER loop of Algorithm BC
examines each partition A,B of V − F such that A,B are both non-empty. From the condition in

Theorem 2, we know that either A
V−F B or B

V−F A. Therefore, with renaming of the sets we

can ensure that A
V−F B. Then, depending on the choice of A,B, F , two cases may occur: (Case

1) A
V−F B and B

V−F
̸ A, and (Case 2) A

V−F B and B
V−F A.

In Case 1 in the INNER loop of Algorithm BC, we need to find a non-empty set S ⊆ A such

that S
V−F V − F − S, and S is strongly connected in G−F . In Case 2, we need to find a non-empty

set S ⊆ A ∪ B such that S
V−F V − F − S, S is strongly connected in G−F , and A

V−F (S −A).
Appendix F shows that (i) the required set S exists in both the cases, and (ii) each node in set F
has enough incoming neighbors in V − F to perform step (j) of Algorithm BC with f > 0.

4.5 Correctness of Algorithm BC for f > 0

In the discussion below, assume that F ∗ is the actual set of faulty nodes in the network (0 ≤ |F ∗| ≤
f). Thus, the set of fault-free nodes is V − F ∗. When discussing a certain INNER loop iteration,
we sometimes add superscripts start and end to vi for node i to indicate whether we are referring
to vi at the start, or at the end, of that INNER loop iteration, respectively.

Lemma 2 For any given INNER loop iteration, for each fault-free node j ∈ V −F ∗, there exists a

fault-free node s ∈ V − F ∗ such that vendj = vstarts .

Proof: To avoid cluttering the notation, for a set of nodes X, we use the phrase

a fault-free node j ∈ X

as being equivalent to

a fault-free node j ∈ X − F ∗

because all the fault-free nodes in any set X must also be in X − F ∗.

Define set Z as the set of values of vi at all fault-free i ∈ V at the start of the INNER loop
iteration under consideration, i.e., Z = {vstarti | i ∈ V − F ∗ }.

We first prove the claim in the lemma for the fault-free nodes in ∈ V − F , and then for the
fault-free nodes in F . Consider the following two cases in the INNER loop iteration.

7

• Case 1: A
V−F B and B

V−F
̸ A:

Observe that, in Case 1, vi remains unchanged for all fault-free i ∈ S. Thus, vendi = vstarti

for i ∈ S, and hence, the claim of the lemma is trivially true for these nodes. We will now
prove the claim for fault-free j ∈ V − F − S.

– step (a): Consider a fault-free node i ∈ S. At the end of step (a), ti is equal to vstarti .
Thus, ti ∈ Z.

– step (b): In step (b), step 2 of Equality(S) either keeps ti unchanged at fault-free node
i ∈ S or modifies it to be ⊥. Thus, now ti ∈ Z ∪ {⊥}.

– step (c): Consider a fault-free node j ∈ V − F − S. During Propagate(S,V − F − S),
j receives f + 1 values along f + 1 disjoint paths originating at nodes in S. Therefore,
at least one of the f + 1 values is received along a path that contains only fault-free
nodes; suppose that the value received by node j along this fault-free path is equal to
α. As observed above in step (b), ti at all fault-free nodes i ∈ S is in Z ∪ {⊥}. Thus,
α ∈ Z∪{⊥}. Therefore, at fault-free node j ∈ V−F−S, step 2 of Propagate(S,V−F−S)
will result in tj ∈ {α,⊥} ⊆ Z ∪ {⊥}.

– step (d): Then it follows that, in step (d), at fault-free j ∈ V − F − S, if vj is updated,

then vendj ∈ Z. On the other hand, if vj is not updated, then vendj = vstartj ∈ Z.

• Case 2: A
V−F B and B

V−F A:

Observe that, in Case 2, vj remains unchanged for all fault-free j ∈ A∩S; thus vendj = vstartj

for these nodes. Now, we prove the claim in the lemma for fault-free j ∈ V − F − (A ∩ S).

– step (e): For any fault-free node i ∈ A, at the end of step (e), ti ∈ Z.

– step (f): Consider a fault-free node m ∈ S−A. During Propagate(A,S−A), m receives
f + 1 values along f + 1 disjoint paths originating at nodes in A. Therefore, at least
one of the f + 1 values is received along a path that contains only fault-free nodes;
suppose that the value received by node m along this fault-free path is equal to γ ∈ Z.
Therefore, at node m ∈ S−A, Propagate(A,S−A) will result in tm being set to a value
in {γ,⊥} ⊆ Z ∪ {⊥}. Now, for m ∈ S ∩A, tm is not modified in step (f), and therefore,
for fault-free m ∈ S ∩A, tm ∈ Z. Thus, we can conclude that, at the end of step (f), for
all fault-free nodes m ∈ S, tm ∈ Z ∪ {⊥}.

– step (g): In step (g), at each m ∈ S, Equality(S) either keeps tm unchanged, or modifies
it to be ⊥. Thus, at the end of step (g), for all fault-free m ∈ S, tm remains in Z ∪{⊥}.

– step (h): Consider a fault-free node j ∈ V − F − S. During Propagate(S,V − F − S), j
receives f + 1 values along f + 1 disjoint paths originating at nodes in S. Therefore, at
least one of the f +1 values is received along a path that contains only fault-free nodes;
suppose that the value received by node j along this fault-free path is equal to β. As
observed above, after step (g), for each fault-free node m ∈ S, tm ∈ Z ∪{⊥}. Therefore,
β ∈ Z ∪{⊥}, and at node j ∈ V −F −S, Propagate(S,V −F −S) will result in tj being
set to a value in {β,⊥} ⊆ Z ∪ {⊥}.

– step (i): From the discussion of steps (g) and (h) above, it follows that, in step (i), if vj

is updated at a fault-free j ∈ V − F − (S ∩ A), then vendj ∈ Z; on the other hand, if vj

is not modified, then vendj = vstartj ∈ Z.

8

Now, consider a fault-free node k ∈ F . Step (j) uses set Nk ⊂ V − F such that |Nk| = f + 1. As

shown above, at the start of step (j), vendj ∈ Z at all fault-free j ∈ V − F . Since |Nk| = f + 1, at
least one of the nodes in Nk is fault-free. Thus, of the f +1 values received by node k, at least one
value must be in Z. It follows that if node k changes vk in step (j), then the new value will also in
Z; on the other hand, if node k does not change vk, then it remains equal to vstartk ∈ Z. �

Lemma 3 Algorithm BC satisfies the validity property for Byzantine consensus.

Proof: By the definition of valid in Section 4.1, the state vi of a fault-free node i is valid if it
equals the input at a fault-free node. For each fault-free i ∈ V, initially, vi is valid. Lemma 2
implies that after each INNER loop iteration, vi remains valid at each fault-free node i. Thus,
when Algorithm BC terminates, vi at each fault-free node i will satisfy the validity property for
Byzantine consensus, as stated in Section 1. �

Lemma 4 Algorithm BC satisfies the termination property for Byzantine consensus.

Proof: Recall that we are assuming a synchronous system, and the graph G(V, E) is finite. Thus,
Algorithm BC performs a finite number of OUTER loop iterations, and a finite number of INNER
loop iterations for each choice of F in the OUTER loop, the number of iterations being a function
of graph G(V, E). Hence, the termination property is satisfied. �

Lemma 5 Algorithm BC satisfies the agreement property for Byzantine consensus.

Proof Sketch: The complete proof is in Appendix G. Recall that F ∗ denotes the actual set of
faulty nodes in the network (0 ≤ |F ∗| ≤ f). Since the OUTER loop considers all possible F ⊂ V
such that |F | ≤ f , eventually, the OUTER loop will be performed with F = F ∗. We will show that
when OUTER loop is performed with F = F ∗, agreement is achieved. After agreement is reached
when F = F ∗, Algorithm BC may perform the OUTER loop with other choices of set F . However,
due to Lemma 2, the agreement among fault-free nodes is still preserved. (Also, due to Lemma 2,
before the OUTER loop with F = F ∗ is performed, vi at each fault-free node remains valid.)

Now, consider the OUTER loop with F = F ∗. We will say that an INNER loop iteration with
F = F ∗ is “deciding” if one of the following conditions is true: (i) in Case 1 of the INNER loop
iteration, after step (b) is performed, all the nodes in set S have an identical value for variable t, or
(ii) in Case 2 of the INNER loop iteration, after step (g) is performed, all the nodes in set S have
an identical value for variable t. As elaborated in Appendix G, when F = F ∗, at least one of the
INNER loop iterations must be a deciding iteration. Let us partition the INNER loop iterations
when F = F ∗ into three phases:

• Phase 1: INNER loop iterations before the first deciding iteration with F = F ∗.

• Phase 2: The first deciding iteration with F = F ∗.

• Phase 3: Remaining INNER loop iterations with F = F ∗.

From the pseudo-code for Propagate and Equality, observe that when F = F ∗, all paths used
in the INNER loop iterations exclude F = F ∗. That is, all these paths contain only fault-free
nodes, since F ∗ is the actual set of faulty nodes. In each INNER loop iteration in Phase 1, we
can show that value vi for each fault-free node i remains unchanged from previous INNER loop

9

iteration. As elaborated in Appendix G, this ensures that a deciding INNER loop iteration is
eventually performed when F = F ∗. In Phase 2, Algorithm BC achieves agreement among fault-
free nodes due to the fact that nodes in set S reliably propagate an identical value to all the other
nodes. Finally, in Phase 3, due to Lemma 2, agreement achieved in the previous phase is preserved.
Therefore, at the end of the OUTER loop with F = F ∗, agreement is achieved. �

Theorem 3 Algorithm BC satisfies the agreement, validity, and termination conditions.

Proof: The theorem follows from Lemmas 3, 4 and 5. �

5 2-Clique Network

In this section, we introduce an example network, named 2-clique network.

Definition 4 A graph G(V, E) consisting of n = 6f + 2 nodes, where f is a positive even integer,
is said to be a 2-clique network if all the following properties are satisfied:

• It includes two disjoint cliques, each consisting of 3f +1 nodes. Suppose that the nodes in the
two cliques are specified by sets K1 and K2, respectively, where K1 = {u1, u2, · · · , u3f+1} ⊂ V,
and K2 = V −K1 = {w1, w2, · · · , w3f+1}. Thus, (ui, uj) ∈ E and (wi, wj) ∈ E, for 1 ≤ i, j ≤
3f + 1 and i ̸= j,

• (ui, wi) ∈ E, for 1 ≤ i ≤ 3f
2 and i = 3f + 1, and

• (wi, ui) ∈ E, for 3f
2 + 1 ≤ i ≤ 3f and i = 3f + 1.

Figure 1 illustrates the 2-clique network for f = 2. As proved in Appendix H, the 2-clique network
satisfies the condition in Theorem 2, and thus, Algorithm BC achieves consensus in this network.
Note that only 3f

2 + 1 links exist from clique K1 to clique K2, and vice-versa. Thus, when f > 0,
reliable communication is not possible from a node in clique K1 to any node in clique K2, and
vice-versa. Yet, Byzantine consensus is possible in the 2-clique network with f > 0.

Figure 1: A 2-clique network for f = 2. Edges inside cliques K1 and K2 are not shown.

6 Conclusion

For nodes with binary inputs, we present a tight necessary and sufficient condition for achieving
Byzantine consensus in synchronous directed networks. We provide a constructive proof of suffi-
ciency by presenting a Byzantine consensus algorithm for graphs satisfying the necessary condition.

10

References

[1] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill Higher Education,
2006.

[2] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus
problems. In Proceedings of the fourth annual ACM symposium on Principles of distributed
computing, PODC ’85, pages 59–70, New York, NY, USA, 1985. ACM.

[3] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans. on
Programming Languages and Systems, 1982.

[4] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[5] D. B. West. Introduction To Graph Theory. Prentice Hall, 2001.

11

Appendices

A Proof of Theorem 1

In Section 3.1, we presented an intuitive proof of Theorem 1. Here we present a formal proof using
the state-machine approach [4].

Proof: The proof is by contradiction. Suppose that a correct Byzantine consensus algorithm, say
ALGO, exists in G(V, E), and there exists a partition F,L,C,R of V such that C ∪ R ̸→ L and
L ∪ C ̸→ R. Thus, L has at most f incoming neighbors in R ∪ C, and R has at most f incoming
neighbors in L ∪ C. Let us define:

NL = set of incoming neighbors of L in R ∪ C

NR = set of incoming neighbors of R in L ∪ C

Then,

|NL| ≤ f (1)

|NR| ≤ f (2)

The behavior of each node i ∈ V when using ALGO can be modeled by a state machine that
characterizes the behavior of each node i ∈ V.

We construct a new network called N , as illustrated in Figure 2. In N , there are three copies
of each node in C, and two copies of each node in L∪R∪F . In particular, C0 represents one copy
of the nodes in C, C1 represents the second copy of the nodes in C, and C2 represents the third
copy of the nodes in C. Similarly, R0 and R2 represent the two copies of the nodes in R, L0 and
L1 represent the two copies of the nodes in L, and F1 and F2 represent the two copies of the nodes
in F . Even though the figure shows just one vertex for C1, it represents all the nodes in C (each
node in C has a counterpart in the nodes represented by C1). Same correspondence holds for other
vertices in Figure 2.

The communication links in N are derived using the communication graph G(V, E). The figure
shows solid edges and dotted edges, and also edges that do not terminate on one end. We describe
all three types of edges below.

• Solid edges: If a node i has a link to node j in G(V, E), i.e., (i, j) ∈ E , then each copy of node
j in N will have a link from one of the copies of node i in N . Exactly which copy of node
i has link to a copy of node j is represented with the edges shown in Figure 2. For instance,
the directed edge from vertex R0 to vertex F1 in Figure 2 indicates that, if for r ∈ R and
k ∈ F , link (r, k) ∈ E , then there is a link in N from the copy of r in R0 to the copy of k in
F1. Similarly, the directed edge from vertex F2 to vertex L0 in Figure 2 indicates that, if for
k ∈ F and l ∈ L, link (k, l) ∈ E , then there is a link from the copy of k in F2 to the copy of l
in L0. Other solid edges in Figure 2 represent other communication links in N similarly.

• Dotted edges: Dotted edges are defined similar to the solid edges, with the difference being
that the dotted edges emulate a broadcast operation. Specifically, in certain cases, if link
(i, j) ∈ E , then one copy of node i in N may have links to two copies of node j in N , with

12

Figure 2: Network N

13

both copies of node j receiving identical messages from the same copy of node i. This should
be viewed as a “broadcast” operation that is being emulated unbeknownst to the nodes in N .
There are four such “broadcast edges” in the figure, shown as dotted edges. The broadcast
edge from L0 to R0 and R2 indicates that if for l ∈ L and r ∈ R, link (l, r) ∈ E , then
messages from the copy of node l in L0 are broadcast to the copies of node r in R0 and R2
both. Similarly, the broadcast edge from R0 to C0 and C1 indicates that if for r ∈ R and
c ∈ C, link (r, c) ∈ E , then messages from the copy of node r in R0 are broadcast to the
copies of node c in C0 and C1 both. There is also a broadcast edge from L0 to C0 and C2,
and another broadcast edge from R0 to L0 and L1.

• “Hanging” edges: Five of the edges in Figure 2 do not terminate at any vertex. One such
edge originates at each of the vertices C1, L1, R2, C2, and C0, and each such edge is labeled
as R, L or F, as explained next. A hanging edge signifies that the corresponding transmissions
are discarded silently without the knowledge of the sender. In particular, the hanging edge
originating at L1 with label R indicates the following: if for l ∈ L and r ∈ R, (r, l) ∈ E ,
then transmissions by the copy of node l in L1 to node r are silently discarded without the
knowledge of the copy of node l in L1. Similarly, the hanging edge originating at C0 with
label F indicates the following: if for c ∈ C and k ∈ F , (c, k) ∈ E , then transmissions by the
copy of node c in C0 to node k are silently discarded without the knowledge of the copy of
node c in C0.

It is possible to avoid using such “hanging” edges by introducing additional vertices in N .
We choose the above approach to make the representation more compact.

Whenever (i, j) ∈ E , in network N , each copy of node i has an incoming edge from one copy of
node j, as discussed above. The broadcast and hanging edges defined above are consistent with our
communication model in Section 1. As noted there, each node, when sending a message, simply puts
the message in the send buffer. Thus, it is possible for us to emulate hanging edges by discarding
messages from the buffer, or broadcast edges by replicating the messages into two send buffers.
(Nodes do not read messages in send buffers.)

Now, let us assign input of m or M , where m ̸= M , to each of the nodes in N . The inputs are
shown next to the vertices in small rectangles Figure 2. For instance, M next to vertex C1 means
that each node represented by C1 has input M (recall that C1 represents one copy of each node in
C). Similarly, m next to vertex L0 means that each node represented by L0 has input m.

Consider three sub-networks of N . In each case, we will identify a set of ≥ n − f nodes in N
as being fault-free. The behavior of the faulty nodes is modeled by the rest of N .

• Sub-network I consists of nodes in R0, C1, L1 and F1. Let the incoming neighbors of
nodes in R0 that are not in R0 or F1 be faulty, with the rest of the nodes being fault-free.
The behavior of the faulty nodes (i.e., incoming neighbors of R0 that are not in R0 or F1) is
modeled by the behavior of the senders for the incoming links at the nodes in R0. Recall from
(2) that |NR| ≤ f . Since ALGO is correct in G(V, E), it must be correct in sub-network I.
Therefore, the nodes in R0 must agree on M , because all the fault-free nodes in sub-network
I have input M .

• Sub-network II consists of nodes in L0, C2, R2 and F2. Let the incoming neighbors of
nodes in L0 that are not in L0 or F2 be faulty, with the rest of the nodes being fault-free.
The behavior of the faulty nodes (i.e., incoming neighbors of L0 that are not in L0 or F2) is
modeled by the behavior of the senders for the incoming links at the nodes in L0. Recall from

14

(1) that |NL| ≤ f . Since ALGO is correct in G(V, E), it must be correct in sub-network II.
Therefore, the nodes in L0 must agree on m, because all the fault-free nodes in sub-network
II have input m.

• Sub-network III consists of nodes in C0, L0 and R0. In this case, the fault-free nodes
are the nodes in C0, L0, and R0, with the behavior of faulty nodes being modeled by the
nodes in F1 and F2. Note that |C0 ∪ L0 ∪ R0| ≥ n − f . Therefore, since ALGO is correct
in G(V, E), it must be correct in sub-network III. Therefore, the nodes in L0 and R0 must
agree on an identical value. However, this requirement contradicts with sub-networks I and
II, where nodes in R0 agree on M , and nodes in L0 agree on m, respectively.

The contradiction identified above proves that the condition in Theorem 1 is necessary. �

B Proof of Theorem 2

We first prove two lemmas below, and then prove Theorem 2 using the two lemmas.

Lemma 6 Assume that the condition in Theorem 1 holds for G(V, E). For any partition A,B, F

of V, where A is non-empty, and |F | ≤ f , if B ̸→ A, then A
V−F B.

Proof: Suppose that A,B, F is a partition of V, where A is non-empty, |F | ≤ f , and B ̸→ A.
If B = ∅, then by Definition 2, the lemma is trivially true. In the rest of this proof, assume that
B ̸= ∅.

Add a new (virtual) node v to graph G, such that, (i) v has no incoming edges, (ii) v has an
outgoing edge to each node in A, and (iii) v has no outgoing edges to any node that is not in A.
Let G+v denote the graph resulting after the addition of v to G(V, E) as described above.

We want to prove that A
V−F B. Equivalently,2 we want to prove that, in graph G+v, for each

b ∈ B, there exist f+1 disjoint (v, b)-paths excluding F . We will prove this claim by contradiction.

Suppose that A
V−F
̸ B, and therefore, there exists a node b ∈ B such that there are at most f

disjoint (v, b) paths excluding F in G+v. By construction, there is no direct edge from v to b. Then
Menger’s theorem [5] implies that there exists a set F1 ⊆ (A ∪ B) − {b} with |F1| ≤ f , such that,
in graph G+v, there is no (v, b)-path excluding F ∪F1. In other words, all (v, b)-paths excluding F
contain at least one node in F1.

Let us define the following sets L,R,C. Some of the sets defined in this proof are illustrated in
Figure 3.

• L = A.

L is non-empty, because A is non-empty.

2 Footnote: Justification: Suppose that A
V−F B. By the definition of A

V−F B, for each b ∈ B, there exist at
least f + 1 disjoint (A, b)-paths excluding F ; these paths only share node b. Since v has outgoing links to all the
nodes in A, this implies that there exist f + 1 disjoint (v, b)-paths excluding F in G+v; these paths only share nodes
v and b. Now, let us prove the converse. Suppose that there exist f + 1 disjoint (v, b)-paths excluding F in G+v.
Node v has outgoing links only to the nodes in A, therefore, from the (f + 1) disjoint (v, b)-paths excluding F , if we
delete node v and its outgoing links, then the shortened paths are disjoint (A, b)-paths excluding F .

15

• R = { i | i ∈ B − F1 and there exists an (i, b)-path excluding F ∪ F1}.
Thus, R ⊆ B − F1 ⊆ B.
Note that b ∈ R. Thus, R is non-empty.

• C = B −R.

Thus, C ⊆ B. Since R ⊆ B, it follows that R ∪ C = B.

Figure 3: Illustration for the proof of Lemma 6

Observe that L,R,C are disjoint sets, because A and B are disjoint, and L ∪ R ∪ C = A ∪ B.
Since set F1 ⊆ A ∪B, L = A, and R ∩ F1 = ∅, we have F1 ⊆ L ∪ C, and F1 ∩B ⊆ C. Thus, set C
can be partitioned into disjoint sets B1 and B2 such that

• B1 = C ∩ F1 = B ∩ F1 ⊆ C ⊆ B, and

• B2 = C −B1 ⊆ C ⊆ B. Note that B2 ∩ F1 = ∅.

We make the following observations:

• For any x ∈ A− F1 = L− F1 and y ∈ R, (x, y) ̸∈ E .
Justification: Recall that virtual node v has a directed edge to x. If edge (x, y) were to exist
then there would be a (v, b)-path via nodes x and y excluding F ∪ F1 (recall from definition
of R that y has a path to b excluding F ∪ F1). This contradicts the definition of set F1.

• For any p ∈ B2, and q ∈ R, (p, q) ̸∈ E .

16

Justification: If edge (p, q) were to exist, then there would be a (p, b)-path via node q excluding
F ∪ F1, since q has a (q, b)-path excluding F ∪ F1. Then node p should have been in R by
the definition of R. This is a contradiction to the assumption that p ∈ B2, since B2 ∩ R ⊆
C ∩R = ∅.

Thus, all the incoming neighbors of set R are contained in F ∪ F1 (note that F1 = (A ∩ F1) ∪B1).
Recall that F1 ⊆ L ∪ C. Since |F1| ≤ f , it follows that

L ∪ C ̸→ R (3)

Recall that B ̸→ A. By definitions of L,R,C above, we have A = L and B = C ∪R. Thus,

C ∪R ̸→ L (4)

(3) and (4) contradict the condition in Theorem 1. Thus, we have proved that A
V−F B. �

Lemma 7 Assume that the condition in Theorem 1 holds for G(V, E). Consider a partition A,B, F

of V, where A,B are both non-empty, and |F | ≤ f . If B
V−F
̸ A then there exist A′ and B′ such

• A′ and B′ are both non-empty,

• A′ and B′ form a partition of A ∪B,

• A′ ⊆ A and B ⊆ B′, and

• B′ ̸→ A′.

Proof: Suppose that B
V−F
̸ A.

Add a new (virtual) node w to graph G, such that, (i) w has no incoming edges, (ii) w has an
outgoing edge to each node in B, and (iii) w has no outgoing edges to any node that is not in B.
Let G+w denote the graph resulting after addition of w to G(V, E) as described above.

Since B
V−F
̸ A, for some node a ∈ A there exist at most f disjoint (B, a)-paths excluding F .

Therefore, there exist at most f disjoint (w, a)-paths excluding F in G+w.
3 Also by construction,

(w, a) ̸∈ E . Then, by Menger’s theorem [5], there must exist F1 ⊆ (A ∪ B) − {a}, |F1| ≤ f , such
that, in graph G+w, all (w, a)-paths excluding F contain at least one node in F1.

Define the following sets (also recall that V − F = A ∪B):

• L = { i | i ∈ V − F − F1 and there exists an (i, a)-path excluding F ∪ F1 }.

• R = { j | j ∈ V − F − F1 and there exists in G+w a (w, j)-path excluding F ∪ F1 }.
Set R contains B − F1 since all nodes in B have edges from w.

• C = V − F − L−R = (A ∪B)− L−R.
Observe that F1 ⊆ C (because nodes of F1 are not in L ∪ R). Also, by definition of C, sets
C and L ∪R are disjoint.

Observe the following:

3See footnote 2.

17

• Sets L and R are disjoint, and set L ⊆ A− F1 ⊆ A. Also, A ∪B = L ∪R ∪ C.

Justification: F1 ∩ L = F1 ∩R = ∅. By definition of F1, all (w, a)-paths excluding F contain
at least one node in F1. If L ∩ R were to be non-empty, we can find a (w, a)-path excluding
F ∪ F1, which is a contradiction.

Note that V−F −F1 = (A∪B)−F1; therefore, L ⊆ (A∪B)−F1. B−F1 ⊆ R, since all nodes
in B − F1 have links from w. Since L and R are disjoint, it follows that (B − F1) ∩ L = ∅,
and therefore, (A− F1) ∩ L = L; that is, L ⊆ A− F1 ⊆ A.

• For any x ∈ C − F1 and y ∈ L, (x, y) ̸∈ E .
Justification: If such a link were to exist, then x should be in L, which is a contradiction
(since C and L are disjoint).

• There are no links from nodes in R to nodes in L.

Justification: If such a link were to exist, it would contradict the definition of F1, since we
can now find a (w, a)-path excluding F ∪ F1.

Thus, all the incoming neighbors of set L must be contained in F ∪ F1. Recall that F1 ⊆ C and
|F1| ≤ f . Thus,

R ∪ C ̸→ L (5)

Now define, A′ = L, B′ = R ∪ C. Observe the following:

• A′ and B′ form a partition of A ∪B.

Justification: L,R,C are disjoint sets, therefore A′ = L and B′ = R ∪ C are disjoint. By the
definition of sets L,R,C it follows that A′ ∪B′ = L ∪ (R ∪ C) = V − F = A ∪B.

• A′ is non-empty and A′ ⊆ A.

Justification: By definition of set L, set L contains node a. Thus, A′ = L is non-empty. We
have already argued that L ⊆ A. Thus, A′ ⊆ A.

• B′ is non-empty and B ⊆ B′.

Justification: Recall that L,R,C are disjoint, and L ∪ R ∪ C = A ∪ B. Thus, by definition
of C, R ∪ C = (A ∪ B) − L. Since L ⊆ A, it follows that B ⊆ R ∪ C = B′. Also, since B is
non-empty, B′ is also non-empty.

• B′ ̸→ A′

Justification: Follows directly from (5), and the definition of A′ and B′.

This concludes the proof. �

We now prove that the condition in Theorem 1 implies the condition in Theorem 2, as claimed
in Section 3.2.

Proof:

Assume that the condition in Theorem 1 is satisfied by graph G(V, E). Consider a partition of

A,B, F of V such that A,B are non-empty and |F | ≤ f . Then, we must show that either A
V−F B

or B
V−F A.

Consider two possibilities:

18

• B
V−F A: In this case, the proof is complete.

• B
V−F
̸ A: Then by Lemma 7 in Appendix B, there exist non-empty sets A′, B′ that form a

partition of A ∪ B such that A′ ⊆ A, B ⊆ B′, and B′ ̸→ A′. Lemma 6 in Appendix B then

implies that A′ V−F B′.

Because A′ V−F B′, for each b ∈ B′, there exist f +1 disjoint (A′, b)-paths excluding F . Since
B ⊆ B′, it then follows that, for each b ∈ B ⊆ B′, there exist f + 1 disjoint (A′, b)-paths
excluding F . Since A′ ⊆ A, and F ∩ A = ∅, each (A′, b)-path excluding F is also a (A, b)-
path excluding F . Thus, for each b ∈ B, there exist f + 1 disjoint (A, b)-paths excluding F .

Therefore, A
V−F B.

�

C Proof of Claim (i) in Corollary 1 in Section 3.2

Proof: Claim (ii) in the corollary is proved in the main body of the paper already. Now, we
present the proof of Claim (i).

Since n ≥ 3f + 1 is a necessary condition for Byzantine consensus in undirected graphs [4], it
follows that n ≥ 3f + 1 is also necessary for directed graphs. As presented below, this necessary
condition can also be derived from Theorem 1.

For f = 0, the corollary is trivially true. Now consider f > 0. The proof is by contradiction.
Suppose that n ≤ 3f . As stated in Section 1, we assume n ≥ 2, since consensus for n = 1 is trivial.
Partition V into three subsets L,R, F such that |F | ≤ f , 0 < |L| ≤ f , and 0 < |R| ≤ f . Such a
partition can be found because 2 ≤ |V| ≤ 3f . Define C = ∅. Since L,R are both non-empty, and
contain at most f nodes each, we have L ∪ C ̸→ R and R ∪ C ̸→ L, violating the condition in
Theorem 1. �

D Source Component

We introduce some definitions and results that are useful in the other appendices.

Definition 5 Graph decomposition: Let H be a subgraph of G(V, E). Partition graph H into
non-empty strongly connected components, H1,H2, · · · ,Hh, where h is a non-zero integer dependent
on graph H, such that nodes i, j ∈ Hk if and only if there exist (i, j)- and (j, i)-paths both excluding
nodes outside Hk.

Construct a graph Hd wherein each strongly connected component Hk above is represented by
vertex ck, and there is an edge from vertex ck to vertex cl if and only if the nodes in Hk have
directed paths in H to the nodes in Hl.

It is known that the decomposition graph Hd is a directed acyclic graph [1].

Definition 6 Source component: Let H be a directed graph, and let Hd be its decomposition as
per Definition 5. Strongly connected component Hk of H is said to be a source component if the
corresponding vertex ck in Hd is not reachable from any other vertex in Hd.

19

Definition 7 Reduced Graph: For a given graph G(V, E), and sets F ⊂ V, F1 ⊂ V − F , such
that |F | ≤ f and |F1| ≤ f , reduced graph GF,F1(VF,F1 , EF,F1) is defined as follows: (i) VF,F1 = V−F ,
and (ii) EF,F1 is obtained by removing from E all the links incident on the nodes in F , and all the
outgoing links from nodes in F1. That is, EF,F1 = E − {(i, j) | i ∈ F or j ∈ F} − {(i, j) | i ∈ F1}.

Corollary 2 Suppose that graph G(V, E) satisfies the condition stated in Theorem 1. For any
F ⊂ V and F1 ⊂ V −F , such that |F | ≤ f and |F1| ≤ f , let S denote the set of nodes in the source

component of GF,F1. Then, S
V−F V − F − S.

Proof: Since GF,F1 contains non-zero number of nodes, its source component S must be non-
empty. If V − F − S is empty, then the corollary follows trivially by Definition 2. Suppose that
V − F − S is non-empty. Since S is a source component in GF,F1 , it has no incoming neighbors in
GF,F1 ; therefore, all of the incoming neighbors of S in V − F in graph G(V, E) must belong to F1.
Since |F1| ≤ f , we have,

(V − S − F) ̸→ S

Lemma 6 in Appendix B then implies that

S
V−F V − F − S

�

Lemma 8 For any F ⊂ V, F1 ⊂ V − F , such that |F | ≤ f , |F1| ≤ f :

• The source component of GF,F1 is strongly connected in G−F . (G−F is defined in Definition
3 in Section 4.)

• The source component of GF,F1 does not contain any nodes in F1.

Proof: By Definition 5, each pair of nodes i, j in the source component of graph GF,F1 has at
least one (i, j)-path and at least one (j, i)-path consisting of nodes only in GF,F1 , i.e., excluding
nodes in F .

Since F1 ⊂ V − F , GF,F1 contains other nodes besides F1. Although nodes of F1 belong to
graph GF,F1 , the nodes in F1 do not have any outgoing links in GF,F1 . Thus, a node in F1 cannot
have paths to any other node in GF,F1 . Then, due to the connetedness requirement of a source
component, it follows that no nodes of F1 can be in the source component. �

E Sufficiency for f = 0

The proof below uses the terminologies and results presented in Appendix D. We now prove that,
when f = 0, the necessary condition in Theorem 2 is sufficient to achieve consensus.

Proof:

When f = 0, suppose that the graph G satisfies the necessary condition in Theorem 2. Consider
the source component S in reduced graph G∅,∅ = G, i.e., in the reduced graph where F = F1 = ∅,
as per Definition 7 in Appendix D. Note that by definition, S is non-empty. Pick a node i in the
source component. By Lemma 8 in Appendix D, S is strongly connected in G, and thus i has a

20

directed path to each of the nodes in S. By Corollary 2 in Appendix D, because F = ∅, S V V − S,
i.e., for each node j ∈ V −S, an (S, j)-path exists. Since S is strongly connected, an (i, j)-path also
exists. Then consensus can be achieved simply by node i routing its input to all the other nodes,
and requiring all the nodes to adopt node i’s input as the output (or decision) for the consensus.
It should be easy to see that termination, validity and agreement properties are all satisfied.

�

F Proof of the Claims in Section 4.4

The proof below uses the terminologies and results presented in Appendix D. We first prove a
simple lemma.

Lemma 9 Given a partition A,B, F of V such that B is non-empty, and |F | ≤ f , if A
V−F B,

then size of A must be at least f + 1.

Proof: By definition, there must be at least f+1 disjoint (A, b)-paths excluding F for each b ∈ B.
Each of these f + 1 disjoint paths will have a distinct source node in A. Therefore, such f + 1
disjoint paths can only exist if A contains at least f + 1 distinct nodes. �

We now prove the two claims in in Section 4.4.

Proof of Claim (i) in Section 4.4:

Consider the two cases in the INNER loop. We now prove that set S as required in Case 1 and
Case 2 of the INNER loop always exists.

• Case 1: A
V−F B and B

V−F
̸ A:

Since B
V−F
̸ A, by Lemma 7 in Appendix B, there exist non-empty sets A′, B′ that form a

partition of A ∪B = V − F such that A′ ⊆ A and

B′ ̸→ A′

Let F1 be the set of incoming neighbors of A′ in B′. Since B′ ̸→ A′, |F1| ≤ f . Then A′ has no
incoming neighbors in GF,F1 . Therefore, the source component of GF,F1 must be contained
within A′. (The definition of source component is in Appendix D.) Let S denote the set of
nodes in this source component. Since S is the source component, by Corollary 2 in Appendix
D,

S
V−F V − S − F.

Since S ⊆ A′ and A′ ⊆ A, S ⊆ A. Then, B ⊆ (A∪B)−S = V −S −F ; therefore, V −S −F

is non-empty. Also, since S
V−F V − S − F , set S must be non-empty (by Lemma 9 above).

By Lemma 8 in Appendix D, S is strongly connected in G−F . (The definition of G−F is in
Section 4.) Thus, set S as required in Case 1 exists.

21

• Case 2: A
V−F B and B

V−F A:

Recall that we consider f > 0 in Section 4.4.

By Corollary 1 in Section 3.2, since |V| = n > 3f , |A ∪ B| = |V − F | > 2f . In this case, we
pick an arbitrary non-empty set F1 ⊂ A ∪ B = V − F such that |F1| = f > 0, and find the
source component of GF,F1 . Let the set of nodes in the source component be denoted as S.
Since S is the source component, by Corollary 2 in Appendix D,

S
V−F V − F − S

Also, since A
V−F B, and (S − A) ⊆ B, we have A

V−F (S −A). Also, since V − S − F

contains F1, and F1 is non-empty, V − S − F is non-empty; also, since S
V−F V − S − F ,

set S must be non-empty (by Lemma 9 above). By Lemma 8 in Appendix D, S is strongly
connected in G−F . Thus, set S as required in Case 2 exists.

�

Proof of Claim (ii) in Section 4.4:

Consider nodes in set F . As shown in Corollary 1 in Section 3.2, when f > 0, each node in V
has at least 2f + 1 incoming neighbors. Since |F | ≤ f , for each k ∈ F there must exist at least
f + 2 incoming neighbors in V − F . Thus, the desired set Nk exists, satisfying the requirement in
step (j) of Algorithm BC.

�

G Proof of Lemma 5

The proof below uses the terminologies and results presented in Appendix D. Now, we present the
proof of Lemma 5.

Proof: Recall that F ∗ denotes the actual set of faulty nodes in the network (0 ≤ |F ∗| ≤ f).

Since the OUTER loop of Algorithm BC considers all possible F ⊆ V such that |F | ≤ f ,
eventually, the OUTER loop will be performed with F = F ∗.

In the INNER loop for F = F ∗, different partitions A,B of V −F = V −F ∗ will be considered.
We will say that such a partition A,B is a “conformant” partition if vi = vj for all i, j ∈ A, and
vi = vj for all i, j ∈ B. A partition A,B that is not conformant is said to be “non-conformant”.
Further, we will say that an INNER loop iteration is a “deciding” iteration if one of the following
condition is true.

C1 : The A,B partition of V − F considered in the iteration is conformant.

In Case 1 with conformant partition, every node in S has the same value t after step (a).
Hence, in the end of step (b), every node in S has the same value t. Now, consider Case 2
with conformant partition. Denote the value of all the nodes in A by α (α ∈ {0, 1}). Then,
in step (e), each node i in A (including S ∩ A) sets ti equal to α. In step (f), all the nodes
in S ∩ B receive identical values α from nodes in A, and hence, they set value t equal to α.
Therefore, every node in S has the same value t at the end of step (g).

22

C2 : The A,B partition of V − F considered in the iteration is non-conformant; however, the
values at the nodes are such that, at the end of step (b) of Case 1, or at the end of step
(g) of Case 2 (depending on which case applies), every node in the corresponding set S has
the same value t. (The definition of source component is in Appendix D.) That is, for all
i, j ∈ S, ti = tj .

In both C1 and C2, all the nodes in the corresponding source component S have the identical value
t in the deciding iteration (in the end of step (b) of Case 1, and in the end of step (g) of Case 2).
The iteration that is not deciding is said to be “non-deciding”.

Claim 1 In the INNER loop for F = F ∗, value vi for each fault-free node i will stay unchanged in
every non-deciding iteration.

Proof: Suppose that F = F ∗, and the INNER loop iteration under consideration is a non-deciding
iteration. Observe that since the paths used in procedures Equality and Propagate exclude F ,
none of the faulty nodes can affect the outcome of any INNER loop iteration when F = F ∗. Thus,
during Equality(S) (step (b) of Case 1, and step (g) of Case 2), each node in S can receive the
value from other nodes in S correctly. Then, every node in S will set value t to be ⊥ in the
end of Equality(S), since by the definition of non-deciding iteration, there is a pair of nodes
j, k ∈ S such that tj ̸= tk. Hence, every node in V − F − S will receive f + 1 copies of ⊥ after
Propagate(S,V − F − S) (step (c) of Case 1, and step (h) of Case 2), and will set value t to ⊥.
Finally, at the end of the INNER loop iteration, the value v at each node stays unchanged based
on the following two observations:

• nodes in S in Case 1, and in A∩S in Case 2, will not change value v as specified by Algorithm
BC, and

• ti =⊥ for each node i ∈ V − F − S in Case 1, and for each node i ∈ V − F − (A ∩ S) in Case
2.

Thus, no node in V − F will change their v value (where F = F ∗).

Note that by assumption, there is no fault-free node in F = F ∗, and hence, we do not need to
consider STEP 2 of the INNER loop. Therefore, Claim 1 is proved. �

Let us divide the INNER loop iterations for F = F ∗ into three phases:

• Phase 1: INNER loop iterations before the first deciding iteration for F = F ∗.

• Phase 2: The first deciding iteration for F = F ∗.

• Phase 3: Remaining INNER loop iterations for F = F ∗.

Claim 2 At least one INNER loop iteration for F = F ∗ is a deciding iteration.

Proof: The input at each process is in {0, 1}. Therefore, by repeated application of Lemma 2 in
Section 4.5, it is always true that vi ∈ {0, 1} for each fault-free node i. Thus, when the OUTER
iteration for F = F ∗ begins, a conformant partition exists (in particular, set A containing all fault-
free nodes with v value 0, and set B containing the remaining fault-free nodes, or vice-versa.) By

23

Claim 1, nodes in V − F will not change values during non-deciding iterations. Then, since the
INNER loop considers all partitions of V − F , the INNER loop will eventually consider either the
above conformant partition, or sometime prior to considering the above conformant partition, it
will consider a non-conformant partition with properties in (C2) above. �

Thus, Phase 2 will be eventually performed when F = F ∗. Now, let us consider each phase
separately:

• Phase 1: Recall that all the nodes in V − F = V − F ∗ are fault-free. By Claim 1, the vi at
each fault-free node i ∈ V − F stays unchanged.

• Phase 2: Now, consider the first deciding iteration of the INNER loop.

Recall from Algorithm BC that a suitable set S is identified in each INNER loop iteration.
We will show that in the deciding iteration, every node in S will have the same t value.
Consider two scenarios:

– The partition is non-conformant: Then by definition of deciding iteration, we can find
an α ∈ {0, 1} such that vi = α for all i ∈ S after step (b) of Case 1, or after step (g) of
Case 2.

– The partition is conformant: Let vi = α for all i ∈ A for α ∈ {0, 1}. Such an α exists
because the partition is conformant.

∗ Case 1: In this case, recall that S ⊆ A. Therefore, after steps (a) and (b) both, tj
at all j ∈ S will be identical, and equal to α.

∗ Case 2: This is similar to Case 1. At the end of step (e), for all nodes i ∈ A, ti = α.
After step (f), for all nodes i ∈ S ∪A, ti = α. Therefore, after step (g), for all nodes
i ∈ S, ti will remain equal to α.

Thus, in both scenarios above, we found a set S and α such that for all i ∈ S, ti = α after
step (b) in Case 1, and after step (g) in Case 2.

Then, consider the remaining steps in the deciding iteration.

– Case 1: During Propagate(S,V − F − S), each node k ∈ V − F − S will receive f + 1
copies of α along f + 1 disjoint paths, and set tk = α in step (c). Therefore, each node
k ∈ V −F − S will update its vk to be α in step (d). (Each node p ∈ S does not modify
its vp, which is already equal to α.)

– Case 2: After step (h), tj = α for all j ∈ (V − F − S) ∪ S. Thus, each node k ∈
V − F − (A ∩ S) will update vk to be α. (Each node p ∈ A ∩ S does not modify its vp,
which is already equal to α.)

Thus, in both cases, at the end of STEP 1 of the INNER loop, for all k ∈ V − F = V − F ∗,
vk = α.

Since all nodes in F ∗ are faulty, agreement has been reached at this point. The goal now is
to show that the agreement property is not violated by actions taken in any future INNER
loop iterations.

• Phase 3: At the start of Phase 3, for each fault-free node k ∈ V−F ∗, we have vk = α ∈ {0, 1}.
Then by Lemma 2, all future INNER loop iterations cannot assign any value other than α to
any node k ∈ V − F ∗.

24

After Phase 3 with F = F ∗, Algorithm BC may perform OUTER loop iterations for other choices
of set F . However, due to Lemma 2, the value vi at each i ∈ V − F ∗ (i.e., all fault-free nodes)
continues being equal to α.

Thus, Algorithm BC satisfies the agreement property, as stated in Section 1. �

H Consensus in 2-Clique Network

We first prove the following lemma for any graph G(V, E) that satisfies the necessary condition.

Lemma 10 Let A,B,C, F be disjoint subsets of V such that |F | ≤ f and A,B,C are non-empty.

Suppose that A
V−F B and A ∪B

V−F C. Then, A
V−F B ∪ C.

Proof: The proof is by contradiction. Suppose that

• A
V−F B,

• A ∪B
V−F C, and

• A
V−F
̸ B ∪ C.

The first condition above implies that |A| ≥ f + 1. By Definition 2 and Menger’s Theorem [5], the
third condition implies that there exists a node v ∈ B∪C and a set of nodes P ⊆ V −F −{v} such
that |P | ≤ f , and all (A, v)-paths excluding F contain at least one node in P . In other words, there

is no (A, v)-path excluding F ∪ P . Observe that, because A
V−F B, v cannot be in B; therefore v

must belong to set C.

Let us define the sets X and Y as follows:

• Node x ∈ X if and only if x ∈ V − F − P and there exists an (A, x)-path excluding F ∪ P .
It is possible that P ∩A ̸= ∅; thus, the (A, x)-path cannot contain any nodes in P ∩A.

• Node y ∈ Y if and only if y ∈ V − F − P and there exists an (y, v)-path excluding F ∪ P .

By the definition of X and Y , it follows that for any x ∈ X, y ∈ Y , there cannot be any

(x, y)-path excluding F ∪ P . Also, since A
V−F B, for each b ∈ B − P , there must exist an (A, b)-

path excluding F ∪ P ; thus, B − P ⊆ X, and B ⊆ X ∪ P . Similarly, A ⊆ X ∪ P , and therefore,
A ∪B ⊆ X ∪ P .

By definition of X, there are no (X ∪P, v)-paths excluding F ∪P . Therefore, because A∪B ⊆

X ∪ P , there are no (A∪B, v)-paths excluding F ∪ P . Therefore, since v ∈ C, A∪B
V−F
̸ C. This

is a contradiction to the second condition above. �

Now, we use Lemma 10 to prove the following Lemma.

Lemma 11 Suppose that G(V, E) is a 2-clique network. Then graph G satisfies the condition in
Theorem 2.

25

Proof:

Consider a partition A,B, F of V, where A and B are both non-empty, and |F | ≤ f . Recall
from Definition 4 that K1,K2 also form a partition of V.

Define A1 = A ∩K1, A2 = A ∩K2, B1 = B ∩K1, B2 = B ∩K2, F1 = F ∩K1 and F2 = F ∩K2.

Define E ′ to be the set of directed links from the nodes in K1 to the nodes in K2, or vice-versa.
Thus, there are 3f

2 + 1 directed links in E ′ from the nodes in K1 to the nodes in K2, and the
same number of links from the nodes in K2 to the nodes in K1. Each pair of links in E ′, with the
exception of the link pair between a3f+1 and b3f+1, is node disjoint. Since |F | ≤ f , it should be
easy to see that, at least one of the two conditions below is true:

(a) There are at least f + 1 directed links from the nodes in K1 − F to the nodes in K2 − F .

(b) There are at least f + 1 directed links from the nodes in K2 − F to nodes the in K1 − F .

Without loss of generality, suppose that condition (a) is true. Therefore, since |K1 − F | ≥ 2f + 1

and the nodes in K2 − F form a clique, it follows that K1 − F
V−F K2 − F . Then, because

K1 − F = A1 ∪B1 and K2 − F = A2 ∪B2, we have

A1 ∪B1
V−F A2 ∪B2. (6)

|K1 − F | ≥ 2f + 1 also implies that either |A1| ≥ f + 1 or |B1| ≥ f + 1. Without loss of
generality, suppose that |A1| ≥ f + 1. Then, since the nodes in A1 ∪ B1 form a clique, it follows

that A1
V−F1−K2 B1 (recall that V − F1 −K2 = A1 ∪B1). Since V − F1 −K2 ⊂ V − F , we have

A1
V−F B1 (7)

(6) and (7), along with Lemma 10 above imply that A1
V−F B1 ∪A2 ∪B2. Therefore, A1

V−F
B1 ∪B2, and A1 ∪A2

V−F B1 ∪B2. Since A = A1 ∪A2 and B = B1 ∪B2, A
V−F B. �

26

