TRANSPARENT PROCESS ROLLBACK RECOVERY: SOME NEW

TECHNIQUES AND A PORTABLE IMPLEMENTATION

A Thesis
by

ERNEST LLOYD ELLENBERGER

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 1995

Major Subject: Computer Science

TRANSPARENT PROCESS ROLLBACK RECOVERY: SOME NEW

TECHNIQUES AND A PORTABLE IMPLEMENTATION

A Thesis
by

ERNEST LLOYD ELLENBERGER

Approved as to style and content by:

Nitin H. Vaidya Jennifer L. Welch
(Chair of Committee) (Member)
Hosame Abu Amara Richard A. Volz
(Member) (Head of Department)

August 1995

1l

ABSTRACT

Transparent Process Rollback Recovery: Some New Techniques and a Portable Implementation.
(August 1995)
Ernest Lloyd Ellenberger, B.S., Case Western Reserve University

Chair of Advisory Committee: Dr. Nitin H. Vaidya

Processes in a distributed system can be made transparently recoverable through the use of
process checkpointing, which periodically introduces a relatively large but temporary overhead, or
message logging, which introduces a smaller overhead for every message sent, and requires process
execution to be deterministic. Research prototypes have shown promising performance results [12, 7],
but an implementation has not been readily available. To address that deficiency, this thesis describes
the design, implementation, and failure-free performance of a new transparent recovery system for
standard Unix workstations, which provides a basis for future experimental work.

The system incorporates both coordinated checkpointing and family-based message logging with
the logging site technique for reducing message logging overhead when some processes share a com-
mon memory address space (recently suggested independently by Vaidya [30] and Alvisi and Marzullo
[2]). Performance measurements show the overhead of the consistent checkpointing and family-based
message logging implementations to be reasonably small for a representative distributed application.

This thesis also presents a new approach for efficient output commit and recovery when some
processes are intermittently nondeterministic. The approach requires the application program to
explicitly mark the beginning and end of each period of nondeterminism. Message logging is used
during deterministic execution, but is disabled and replaced with optimistic checkpointing during
periods of nondeterminism. The commit algorithm avoids communication with deterministic pro-
cesses by using causal dependency information that makes a distinction between nondeterministic

and deterministic state intervals.

v

Finally, the concept of reactive replication for message logging is introduced. During failure-
free operation, reactive replication uses a low-overhead protocol that can tolerate only a single
simultaneous failure, such as family-based message logging. If a failure occurs, the logged data
necessary to recover the failed process is immediately copied to stable storage or to the volatile
storage of another processor; a second failure can be tolerated only after the completion of that copy

operation. This technique assumes that such a copy operation is faster than the recovery protocol.

TABLE OF CONTENTS

ABSTRACT . . . e

TABLE OF CONTENTS e e

LIST OF FIGURES e s s

LIST OF TABLES o

CHAPTER

IT

I11

Introduction
TA Outline

I.LB System Model

Related Work L
ITI.A Rollback Recovery in Distributed Systems
I1.B Checkpointing in Distributed Systems
IT.C Message Logging e

II.D Family-Based Message Logging

Recovery and Efficient Output Commit in the Presence of Nondeterminism
HIL.AIntroduction
III.B Definitions
II.CMotivation e
IT1.D Maintaining Dependencies on Nondeterministic Processes
IT1.E Disabling Message Logging During Nondeterministic Execution

ITI.F Output Commit Based On Nondeterministic Dependencies

Page

1l

viii

1X

v

VI

vi

III.GCoordinated Checkpointing 27
IILLHRecovery e 28
Reactive Replication In Message Logging Protocols 33
IV.AThe Problem 0 33
IV.BTiming Assumptions L e 34
IV.C The Relationship between Failure Detection and Reactive Replication 35
IV.DDefinitions 36
IV.E Tolerating Violation of the Timing Assumptions 37
IV.F Abstract Reactive Replication Protocol 37
IV.G A Simple One-Round Sim-FS Protocol for the Detection Phase 39
IV.H A Reactive Protocol For Family-Based Logging 40
IV.I Summaryo 43
Implementation e 44
V.A Introduction 44
V.B Message Passing Library L 45
V.C Recovery System 58
V.D Summary 74
Performance Evaluation 0L 75
VI.AIntroduction 75
VI.B Coordinated Checkpointing 76
VI.C Family-Based Message Logging 7
VI.DProfiling 78
VIE Analysis e 80

VILF Summary e 82

vil

VII Conclusion e 88
VILAFuture Work 89

APPENDIX

A The Simulated Fail-Stop Protocol (Sim-FS) 91
A A Introduction 91

B Running the System o 94
B.A Operation 94

REFERENCES e e 98

viii

LIST OF FIGURES

FIGURE Page
1 Family-Based Logging for f=1. 10
2 The NDDV dependency vectors at processes ¢, r,and s 15
3 All nondeterministic dependencies in this execution are labeled. 19
4 Maintaining ND-direct dependencies with the NDdepset. 22
) An example failure scenario. 29
6 A sample execution showing reactive replication’s response to a failure of process p. . . 35
7 The layers of abstraction in a process that uses the recovery system. 46
8 Creating a new process with Execo oL oo 54
9 Establishing a connection between two slave processes. 55

10 Generic recovery system interface functions. 59

TABLE

IT

111

v

VI

VII

VIII

IX

LIST OF TABLES

Execution time of the gauss application with no recovery protocols.
The overhead of coordinated checkpointing, with a problem size of 1024 and in-
tercheckpoint interval of 60 seconds.
The overhead of the implementations of family-based message logging.
Number of determinants piggybacked on each application message (each determi-
nant is 20 bytes) L
Profiling results for a nonrecoverable run (no recovery protocols present). Problem
size=128, and there are four processes, all on one processor.
Profiling results for a nonrecoverable run (no recovery protocols present). Problem
size=128, and there are four processes, two per processor.
Profiling results for FBL (no logging sites). Problem size=128, and there are four
processes, all on one processor. L.
Profiling results for FBL (no logging sites). Problem size=128, and there are four
processes, all on one processor. Lo
Profiling results for FBL with logging sites. Problem size=128, and there are four

processes, tWO PEer PrOCESSOT.« . v v v v vt e e e e

1X

CHAPTER I

Introduction

I.LA Outline

As the size of a distributed system and the running time of a distributed computation increase,
so does the probability that a failure will occur during the computation. Techniques for providing
transparent rollback-recovery to processes in distributed systems aim to hide fault-tolerance issues
from applications while imposing acceptably low overhead. The contributions of this thesis are in

the following areas:

e The efficient coexistence of message logging and nondeterministic execution is ad-
dressed in Chapter III. Nondeterministic process execution, such as unsynchronized modifi-
cation of a shared resource by multiple processes, can be made recoverable by checkpointing
but not by message logging. Message logging protocols generally exhibit better output commit
performance than protocols that use checkpointing alone, however. A recovery technique that
uses message logging during deterministic execution and checkpointing during nondetermin-
istic execution of the same process is presented. An orphan-free message logging protocol is
assumed to be in use at all deterministic processes, so that output commit only requires the
nondeterministic processes upon which the state interval being committed is dependent to be
made stable (i.e. checkpointed). An output commit algorithm that uses that observation to
reduce communication and checkpointing overhead is presented, as is a method for recovering

the system state after a failure.

e Reactive replication in message logging is a technique for allowing a message logging
protocol to tolerate multiple overlapping failures with no more failure-free overhead than would

be required to tolerate only a single overlapping failure, with the restriction that every two

The journal model is IEEE Transactions on Computers.

failures must be separated by some minimal interval of time that is sufficient for the non-failed
process to prepare for another failure by replicating data crucial to the recovery of the failed
process. The reactive technique can improve performance only if the replication completes
before recovery completes and before a second failure occurs. Reactive replication and its use

in family-based message logging are described in Chapter IV.

e An implementation suitable for experimenting with new recovery protocols. The implemen-
tation includes a library of routines for Unix that provide a message passing abstraction, as
well as the failure-free portion of protocols for coordinated checkpointing, family-based message
logging, and a modified version of family-based logging that maintains the logs for all processes
on a processor in shared memory. Chapter V describes the design and implementation of the

system.

e Empirical performance measurements of the implementation are given in Chapter VI.

The main focus of the work for this thesis has been on creating an implementation suitable
for use in evaluating recovery methods, as opposed to evaluating any specific recovery method.
The implementation is intended as a platform for empirically evaluating recovery methods and is
structured so that adding new recovery protocols is straightforward. The software itself is freely-

available.

I.LB System Model

The system consists of a set of processes executing on a set of processors. Multiple processes may
reside on a single processor. Processes on the same processor communicate through message passing.
The processes execute at arbitrary speeds relative to each other and do not have synchronized clocks.
The processes fail according to the fail-stop model [24]. FIFO channels are assumed, but the order
of receipt of messages at a single process from two other processes is random (that random order
does not make a process itself nondeterministic, however). Communication is assumed to be reliable.

and stable storage (such as a disk guaranteed to survive failures) is assumed to be available.

CHAPTER II

Related Work

II.LA Rollback Recovery in Distributed Systems

A distributed system consists of a set of processes that communicate only by message passing.
A program that executes in a distributed system is called a distributed application and is said to
perform a distributed computation. As the size of a distributed system and the running time of a
distributed computation increase, so does the probability that a failure caused by some external
event will result in the loss of at least one process’s state during the computation.

In the absence of any provisions for recovery, even a single such failure can place the distributed
computation into a state from which execution cannot proceed correctly, and from which the only
recourse is to restart the computation from the beginning. Techniques for providing t{ransparent
rollback-recovery to processes in distributed systems aim to hide fault-tolerance issues from applica-
tions while imposing acceptably low overhead. Recovery techniques reduce the amount of compu-
tation that will be lost if a failure occurs, at the expense of increased overhead during failure-free
execution. Two different approaches to recovery have been investigated in recent years: backward
recovery, and forward recovery. Backward recovery protocols record information during failure-free
execution that can be used to restore the system to a recent state; if a failure occurs, the failed
process, and possibly some other processes, will be restarted from the most recent saved state. The
recovery protocol will generally be able to restore a state with relatively little delay, compared to the
time that would be required to re-execute all processes from the beginning of execution. Forward re-
covery protocols employ multiple concurrently-executing replicas of each process, and failures cause
negligible delay in execution as long as at least one replica of each process survives every failure.
The short recovery time of the forward approach comes at a substantial cost in computation re-
sources, because each replica must execute the computation. In contrast, the backward approach

imposes only a small computation overhead, but cannot guarantee immediate recovery and is hence

not well-suited to real-time applications. This thesis deals with checkpointing and message logging,
which are both backward-error-recovery techniques.

In distributed systems, the recovered global state must be consistent. A consistent global state
is one that could occur during a failure-free run of the application program [5]. If the receipt of
a message m by some process is recorded in the global state, then the sending of m must also be

recorded in the state for the state to be consistent.

II.B Checkpointing in Distributed Systems

Numerous checkpointing and recovery protocols have been developed for recovering a system to

a consistent state. There are two distinct approaches:

e Coordinated checkpointing [5, 27, 17, 18, 7] requires all processes to synchronize their check-
points so that the state contained in the union of all the checkpoints (a global checkpoint) is
a consistent global state. The recovery protocol can restore the system to a consistent global
state by rolling back each process at most once, since a consistent global state is guaranteed
to exist. Checkpoints older than the most recent can be discarded. The overhead of coor-
dination and the nearly simultaneous occurrence of all checkpoints, which is likely to result
in contention for the network and stable storage, are the primary drawbacks of coordinated

checkpointing.

e Independent checkpointing [3, 12, 14, 22, 29, 32, 33] allows the processes to take checkpoints
independently, whenever they choose. The recovery protocol must attempt to construct a
consistent global state from the checkpoints that are available, so it may be necessary to
roll a process back past multiple checkpoints (the occurrence of such is called the domino
effect [21] because rollbacks may propagate in a chain reaction). Since independent methods
do not guarantee that the most recent checkpoints of all processes form a consistent global
state, they must maintain more than one previous checkpoint for each process to increase the
probability that a consistent global checkpoint will exist. Garbage collection is thus necessary

to limit the number of stored checkpoints. An obvious conclusion is that the failure-free

overhead of independent checkpointing should be less than that of coordinated checkpointing,
but measurements of implementations of both techniques in the Manetho system [10] indicate

that the two techniques perform similarly.

II.C Message Logging

The messages exchanged in a distributed computation entirely define the computation if the
computation is assumed to be deterministic. A computation is deterministic up to a given point in
its execution if its state at that point depends only on its initial state and the sequence of messages
it has received up to that point. It follows that such a computation can be recorded by logging the
messages 1t exchanges to a storage medium that survives failures.

Pessimistic message logging protocols [4, 20] wait (and block the application from proceeding on
the local processor) until the message logging operation finishes successfully. The log must contain
any message that the system is to process, so pessimistic protocols generally use either an atomic
deliver and log or send and log operation.

Optimistic message logging techniques [29] are non-blocking because they log messages asyn-
chronously, without waiting for the logging operation to complete before allowing the local applica-
tion to continue. The benefit of optimism is an expected reduction in failure-free overhead because
of the elimination of waiting for logging operations, at the expense of a more complicated and slower
recovery protocol which may roll back non-failed processes. Optimistic message logging can be done
either by the sender [28, 13, 10], the receiver [29, 14, 26, 16], or both (the latter is generally not
done).

The Sender-based message logging protocol [13, 12] requires that each message be logged in the
volatile storage of its sender, and the sender must wait until an acknowledgment has been received
from the receiver before sending another message. This protocol i1s pessimistic because of this
synchronization. Independent checkpoints are taken periodically, and only one checkpoint need be
retained for each process. A crucial assumption of sender-based message logging is that only a single

process will fail at a time. The protocol can detect the occurrence of multiple simultaneous failures,

but cannot recover from them. In the event of a single failure, only the failed process need be rolled
back. When rollback occurs, the process is restored from its checkpoint, and the messages it had
received after the checkpoint was taken are replayed to it by their senders. Strom, Bacon, and
Yemini suggest an extension of sender-based logging to tolerate n simultaneous faults [28, 12].

The Manetho message logging protocol [9, 7] extends the idea of sender-based message logging
by appending to each message an antecedence graph that represents all the events (including message
receipt and nondeterministic events) that “happened before” the message. The antecedence graph
contains sufficient information recover from an arbitrary number of simultaneous failures.

The Manetho protocol is non-blocking, yet it does not suffer from the drawbacks of traditional
optimistic protocols. Recently, Alvisi et al. have given a definition of a class of message logging
protocols, called family-based protocols, that are neither optimistic nor pessimistic but are are non-
blocking and do not roll back non-failed processes. Family-based message logging (which is also
called optimal logging) [1, 2] logs the contents of each message in the volatile storage of the sender
and logs the processing order in the volatile storage of the next process that receives a message
from the receiver (the receiver’s processing order does not affect any other processes until it has
sent a message that depends on that order). Family-based protocols require some communication
to retrieve logged information from other processes during recovery, so pessimistic protocols are the
best choice for applications that require fast recovery [11]. In general, no single protocol is optimal
for all possible applications.

Family-based protocols can tolerate f overlapping (i.e. concurrent) process failures, where f is
an integer between one and the number of processes in the system (n). Larger values of f require
more information be appended onto application messages, but these protocols do not introduce any
additional non-application messages. The Manetho protocol is a family-based protocol with f =n
[2].

Many existing recovery techniques combine both checkpointing and message logging. During

failure-free operation, the instantaneous state of each process can be saved periodically in a check-

-~

point, and messages can be logged between checkpoints. Since taking a checkpoint requires much
more overhead than logging a message, increasing the time between checkpoints can increase per-
formance. Checkpoints can be used to bound the size of message logs or to allow nondeterministic
computation.

A distributed application may need to communicate with exzternal processes that can neither
be rolled back nor expected to re-send messages. For example, the actions of an automated teller
machine cannot generally be rolled back. Hence any process that does not comply with the re-
quirements of the recovery protocol is considered to be part of the outside world. A message sent
to the outside world is called an output message, and a message received from it is called an nput
message. Before an output message can be transferred to the outside world the recovery system
must ensure that the message’s send event will never be “undone.” The term output commit refers
to any procedure that ensures that the sending of such an output message will never need to be
undone. The outside world cannot be relied upon to re-send a message either, so an input message
must also be treated specially. Pessimistic protocols can commit output messages immediately be-
cause they maintain “up to date” message logs at all times. Family-based protocols must log any
ordering information for a message before it can be committed, thereby requiring a generally small
but rarely zero delay. Finally, optimistic protocols must ensure that no other process on which the
output message depends will ever be rolled back, and the communication necessary to guarantee

that property implies a possibly large output commit latency.

II1.C.1 Performance

In some recent measurements of implementations of message logging protocols in the Manetho
system [10], coordinated checkpointing without message logging was found to perform better in terms
of failure-free overhead than all of the message logging protocols measured. Furthermore, coordi-
nated checkpointing with message logging always performed better than independent checkpointing
with message logging. However, the time to commit output can be reduced by a message logging

protocol. The output commit latency of the Manetho message logging protocol is considerably less

than that of a pure coordinated-checkpointing protocol for the implementations measured [10]. From
these measurements it seems that the complexity of message logging is only outweighed by perfor-
mance benefits if output commit latency is an important aspect of performance. The performance
measurements of the Manetho system should not be taken as the last word on the performance of
these techniques, however. The measurements are of the impact of the Manetho protocol on the
execution times of four different benchmark application programs (these same programs will be used

in this thesis and are described in Chapter VT).

II.D Family-Based Message Logging

Family-based logging (FBL) protocols [1, 2] never block the sender of a message and never
introduce orphan processes during recovery. FBL protocols can be optimal in the sense that they
introduce no additional messages compared to an equivalent protocol that does not log messages
but uses a simple acknowledgment scheme to tolerate transient link failures.

The information necessary to recreate the delivery of a message m is only logged when the delivery
of m at process p can causally affect some other process g, 1.e., only after p has sent a subsequent mes-
sage m’ to q. A message m’s data is logged only in the volatile storage of the sender, and the delivery
order information for the message, which consists of the tuple <m.source, m.ssn, m.dest, m.rsn>
(called m’s determinant, abbreviated as #m), is logged at the receiver’s receiver, i.e., at the next
process ¢ that delivers a message m’ from the receiver p after p delivers m. The determinant #m is
piggybacked on subsequent messages sent by process q.

To tolerate f overlapping failures, the determinant #m must be logged at every process that
delivers a message from ¢ until the total number of different receiver processes that has logged
#m (denoted by |m.log|, where m.log is the set of processes at which #m is logged) becomes
equal to f. Once |m.log| becomes greater than or equal to f, the determinant #m no longer need
be piggybacked on messages, and subsequent receivers need not add it to their logs. The value
of |m.log| is not always known by any single process, however, so FBL protocols must estimate
it based on the limited information that they do have about the other processes at which #m
has been logged. If a process overestimates |m.log| then it will unnecessarily log #m. A process
must never underestimate |m.log|. Alvisi and Marzullo [2] describe three classes of estimation
protocols that differ in the amount of additional information that is piggybacked on messages, and
they show that the accuracy of a process’s estimate of |m.log| can be increased by increasing the
amount of piggybacked information. However, they do not address the possibility of introducing
additional messages (which would violate their definition of “optimal”) into the protocol to increase

the estimate’s accuracy. There is a possibility that the cost of the piggybacked information is greater

10

time
P
my=(dL, 1,{})
5 7
m2 =(d2, 1, {#ml } m3 =32 {#ml) ack(1) m4 =(d4, 3,{})

Fig. 1. Family-Based Logging for f = 1.

than the cost of additional messages for values of f > 2.

An example execution of a family-based logging protocol that can tolerate a single overlap-
ping failure (f = 1) is shown in Figure 1. In the figure, each application message m is a triple
(data, ssn, piggyback), where data is m’s data, ssn is m’s send sequence number, and piggyback is the
set of determinants piggybacked on m. For f = 1, the determinant (i.e. receipt order information)
of a message m; is #m; = <m;.source, m;.ssn,m;.rsn>>.

The determinant #m; is piggybacked on all messages sent by process p; until ps learns that #m;
has been received (and hence logged) by at least one other process. The acknowledgment ack(1) of
msa (p2’s SSN 1) informs py that #m; (the information piggybacked on ms) has been received and
logged by ps. Since f = 1, #m; need not be piggybacked on any subsequent messages p; sends.
The acknowledgments of ms, mg, and m4 have not yet arrived and are not shown in the figure.

Alvisi [2] extends FBL to f > 1 overlapping failures by requiring a process to piggyback a
determinant #m on every message until the process learns that at least f processes (instead of just
one process, as is done in the case of f = 1) have received (and hence logged) #m. In Figure 1,
#mq would be piggybacked on my for f > 2, because ps only receives a single acknowledgment
before sending ms. Furthermore, ps would also piggyback #m; on any messages it sends until it

learns that #m.4 is logged at at least f processes. Alvisi’s FBL protocols for f > 1 use a mechanism

11

that maintains “weak dependency vectors”, which are updated from the determinants piggybacked
on each received message, to determine when it is safe to stop piggybacking a given determinant on
outgoing messages.

The FBL protocol presented by Alvisi [2] uses a data structure called a DetLog (determinant log)
at each process to record the determinants logged at the process, and a SendLog at each process to

record the message data of each message sent by the process.

12

CHAPTER III

Recovery and Efficient Output Commit in the Presence of Nondeterminism

ITII.A Introduction

Nondeterministic process execution, which might arise from unsynchronized modification of a
shared resource or any other random choice, can be made recoverable by checkpointing but not
by message logging. Message logging protocols generally exhibit better output commit performance
than protocols that use checkpointing alone, however [10]. This chapter presents a recovery technique
that uses message logging for deterministic state intervals and checkpointing for nondeterministic
state intervals of the same process and explicitly tracks dependencies on nondeterministic processes.
Because the technique only requires nondeterministic processes to checkpoint as part of an output
commit operation, but not necessarily at any other time, a failure can introduce orphan processes
that must be rolled back. Processes should checkpoint at certain times such that a balance 1s
achieved between rollback distance and checkpointing overhead. Additional checkpoints over those
required as part of output commits is likely to decrease rollback distance, but the choice of when
such checkpoints should be taken is an orthogonal issue that is not dealt with here.

An orphan-free message logging protocol is assumed to be in use at all deterministic processes,
so that output commit only requires the nondeterministic processes upon which the state interval
being committed is dependent to be made stable (i.e. checkpointed). An output commit algorithm
that uses that observation to reduce communication and checkpointing overhead is presented, and

a method for recovering the system state after a failure is described.

III.B Definitions

This chapter uses Johnson’s [15] definitions of nondeterministic execution and stable and com-
mittable state intervals. A state interval is called stable if and only if its process can be restored to

some state in the interval, either from the information available on stable storage or available from

13

other processes. A state interval o of process 7 is called commaittable if and only if it will never be
rolled back, which is true if and only if there exists some recoverable system state in which process
i is in some state interval o > o [12, 15]. Before a message can be sent to the outside world, the
state interval from which it is being sent must be committable.

A process state interval 1s nondeterministic if it cannot necessarily be reproduced by restarting the
process in the state it had at the beginning of the interval [15]. During nondeterministic execution,
a process creates a new state interval before sending a message. A nondeterministic state interval
can only be made stable by a checkpoint. A nondeterministic state interval a« < o becomes stable
immediately after a successful checkpoint of ¢ if both @ and ¢ are in the same process (checkpoints
are discussed in Section III.H).

The application must inform the recovery system of an impending switch to nondeterministic
execution by executing the BeginIND event before becoming nondeterministic. The EndND event
is assumed to be executed by a process some time after a BeginND to mark the end of non-
deterministic execution. The EndND event does not necessarily need to occur, but can bound
potential rollback distance after a checkpoint, since the subsequent deterministic execution can be
made recoverable by message logging.

All state intervals of a process after a BeginIND but before the matching EndND are defined to
be nondeterministic unless they happened before a checkpoint of the process. All state intervals after
an EndND but before a subsequent checkpoint are nondeterministic until a subsequent checkpoint is
taken, assuming that a second BeginIND does not happen before the checkpoint. A nondeterministic
process is one that has executed BeginIND before its current state interval, but has not executed
EndND between its most recent BeginND and its current state interval.

A nondeterministic process is required to take a checkpoint upon the request of the commit
algorithm. Nondeterministic processes need not checkpoint at any other particular time, and check-
points of deterministic are never required. The recovery algorithm uses the most recent available

checkpoints for nondeterministic processes to construct the most recent recoverable state, so frequent

14

checkpointing reduces rollback distance. However, the choice of a particular checkpointing policy
or periodic interval is not addressed by the technique presented here. The optimum interval may
depend on numerous parameters including application characteristics, and is beyond the scope of
this work.

The output commit algorithm is described in Section IIL.F, and the recovery algorithm is de-

scribed in Section ITI.H

III.C Motivation

A given state interval o can be committed by ensuring that all (remote) process state intervals
upon which ¢ causally depends are stable. Johnson’s CoMMIT algorithm [15] communicates with
the minimum number of other processes necessary to commit a given state interval, where the set
of processes that must be stable (and hence must be communicated with) is determined by the
dependencies of the process being committed.

The idea behind the technique presented here is that only the nondeterministic state intervals
upon which o is dependent must be stable for ¢ to be committed if all deterministic processes are
always stable. In particular, a deterministic process is always stable if it participates in an orphan-
free (e.g. pessimistic [4, 20] or optimal [9, 7, 1, 2]) message logging protocol. Reducing the set
of state intervals that must be made stable will, in general, reduce the number of processes that
must be communicated with to commit a state interval, and the reduced communication will yield

improved performance.

III.C.1 The Need for a New Type of Dependency Tracking

To make a state interval o committable, it 1s necessary to know the identities of all remote
process state intervals upon which o is dependent. Ordinary direct dependencies would suffice for
identifying all processes upon which o is dependent. However, to find all such processes by using
ordinary direct dependencies, it is necessary to communicate with each process indicated in the
dependency, and then follow the dependencies of those directly dependent processes, and so on,

until all dependent processes are found. But the point of the output commit approach suggested

15

deterministic execution

E=————== nondeterministic execution

p
g.NDDV=(1, 2, 0, 0) by both

a a Sl20f g, " ND-direct and ND-transitive dependencies

r { aSi2ofr, r.NDDV=(0, 2, 0, 0) by ND-direct dependencies
r.NDDV=(1, 2, 0, 0) by ND-transitive dependencies

Si1 SI2

S T asi2ofs, SNDDV=(0, 2,0, 2) by ND-direct dependencies

s.NDDV=(1, 2, 0, 2) by ND-transitive dependencies

Fig. 2. The NDDV dependency vectors at processes ¢, r, and s

here is to avoid communication with deterministic processes upon which ¢ is dependent, since they
are always stable and never need to checkpoint. Thus a type of dependency tracking that includes
all necessary nondeterministic state intervals but excludes deterministic state intervals is necessary.
Ordinary transitive dependencies are inappropriate for use here as well, because they record all

dependencies.

II1.C.2 ND-Transitive Dependencies

The first type of dependency tracking introduced here is called ND-transitive. With ND-transitive
dependencies, all nondeterministic processes upon which a process p is causally dependent are al-
ways known to p. The example execution in Figure 2 compares the dependency vector NDDV of
dependencies on nondeterministic state intervals produced by the ND-transitive definition to the
NDDYV produced by the ND-direct definition.

A commit algorithm can use ND-transitive dependencies to immediately inform the processes
that have a state intervals upon which the state interval being committed is dependent that those

state intervals must now be made stable.

16

II1.C.3 ND-Direct Dependencies

ND-transitive dependency tracking provides more information than is strictly necessary to com-
mit a given state interval. The ND-direct dependency tracking introduced here provides only the
information necessary to “look up” the full set of state intervals upon which a state interval 1s
causally dependent. ND-direct dependencies impose less overhead in terms of message size but
greater overhead in terms of output commit latency as compared to ND-transitive dependencies.

The information that ND-direct dependencies provide is the identities of all nondeterministic
processes upon which p is causally dependent such that the dependency chain leading back to a
nondeterministic process consists of only deterministic processes. A commit algorithm can use that
information to which tracks transitive dependencies on deterministic processes back to the “most
recent” nondeterministic process that is a causal ancestor of p. Figure 2 compares the dependency
vectors (NDDV) produced by ND-direct and ND-transitive dependencies.

The difference between ND-direct dependencies and ordinary direct dependencies is that in gen-
eral there may be a causal chain of any number of deterministic processes separating a process from
its most recent nondeterministic causal ancestor. Hence direct dependencies alone are not sufficient
to track the most recent causal ancestor, and the ND-direct definition is introduced.

A commit algorithm that uses only direct dependencies was suggested by Johnson [15]. The
basic idea is as follows: A commit algorithm can use ND-direct dependencies to commit a state
interval ¢ by first informing the remote processes that have state intervals upon which ¢ is ND-
directly dependent that they must make those state intervals stable. That activity constitutes the
first round of the commit algorithm.

In addition, those remote processes return the dependencies of those state intervals to the process
executing the commit algorithm, and the commit algorithm then executes a second round to inform
any new processes that have state intervals (upon which o is indirectly dependent) not previously
made stable that those state intervals must now be made stable. After that, additional rounds may

be executed until the initiator finds that all state intervals upon which o is causally dependent have

17

been made stable. !

Ordinary transitive or ND-transitive dependencies provide full dependency
information, and a commit algorithm that uses them only executes a single round. In summary,
the absence of full transitive dependency information can be overcome if sufficient dependency
information exists for the commit algorithm to determine the transitive dependencies by executing
multiple rounds.

Although a commit algorithm that uses ND-direct dependencies must communicate with other
remote processes to determine the identities of all nondeterministic processes upon which o is de-
pendent, those remote processes are limited to be only nondeterministic processes. The motivation
for introducing ND-direct dependencies is that less information is exchanged in maintaining them
than in maintaining ND-transitive dependencies, and that ND-direct dependencies still limit com-
munication during a commit of ¢ to only the nondeterministic processes upon which ¢ is dependent.

The ND-direct dependencies suggested here provide sufficient information for a multi-round
commit algorithm to determine the identities of all nondeterministic state intervals upon which
a process is dependent. A multi-round algorithm is likely to exhibit greater latency than the single-
round algorithm, although ND-transitive dependencies are required by a single-round algorithm.

Both ND-direct and ND-transitive dependencies allow the commit operation to avoid communi-
cation with the deterministic processes upon which the state interval being committed is dependent.
Existing commit algorithms [15] do not distinguish between deterministic and nondeterministic pro-
cesses when deciding which processes to communicate with. Hence the method suggested here will
have lower communication overhead than existing commit algorithms.

The rest of this chapter is organized as follows. Methods for tracking the nondeterministic state
intervals upon which a process depends are described in Section II1.D, and the use of those nonde-
terministic dependencies to improve the performance of Johnson’s Commit algorithm is described
in Section ITI.F. Section III.G assesses the degree to which the overhead of a consistent checkpoint-

ing algorithm, in terms of communication and number of checkpoints, can be reduced when only

1Johnson claims that up to N rounds may be executed, where N is the number of processes in
the system, but on the average the number of rounds will be small [15].

18

nondeterministic processes need be checkpointed.

The technique suggested here allows nondeterministic processes to send messages without check-
pointing, which means that a process that delivers a message from a nondeterministic process is
susceptible to being orphaned by the failure of the sender until the sender takes a subsequent check-
point. Here it is optimistically assumed that a failure which will cause a temporary possible orphan
process to be rolled back is unlikely to occur. When output must be sent to the outside world, a
commit algorithm must be used to ensure that the state interval from which the output message is

sent will never be orphaned.

III.D Maintaining Dependencies on Nondeterministic Processes

The causal dependencies of a process (more precisely, the causal dependencies between state
intervals of different processes) can be maintained by direct dependency tracking, which adds a
single process number to each message, or transitive dependency tracking [29], which adds a vector
of length N to each message. Both methods track dependencies on all processes, with no distinction
between deterministic and nondeterministic processes.

Here 1t 1s assumed that messages may be sent from non-stable nondeterministic state intervals;
a process that delivers such a message is a possible orphan until the sender becomes stable (i.e. is
checkpointed).

Figure 3 shows an example execution in which messages are sent from nondeterministic state
intervals and the consequent nondeterministic dependencies. Dependencies on deterministic state
intervals are not labeled in the figure, and the example does not contain any ND-transitive depen-
dencies.

To allow a process to determine the nondeterministic processes upon which i1t depends, modified
dependency tracking methods can be introduced. Two possible approaches, ND-Direct dependency
tracking and ND-Transitive dependency tracking, are introduced here:

A process state interval is identified by a pair <p, o>, where o is a state interval index of process

19

deterministic execution

' nondeterministic execution

BeginND EndND

Si1
{ ,,,

BeginND

Mo\ m2.NDdep={<q, SI1>}

| Si1 g3 I-SI3 dependsonq.Si1

{ {
r.Sl2 depends on p.SI1

SI2

mg m3.NDdep={<p, SI1>, <q, SI1>}

| Si1 si2
{ !

s.S12 dependson g.SI1 and p.SI1

Fig. 3. All nondeterministic dependencies in this execution are labeled.

20

ND-Direct State interval o is said to be ND-directly dependent on « if o is either directly or tran-
sitively dependent on a nondeterministic state interval a, but none of the intermediate process
state intervals in a chain of transitive dependencies are nondeterministic. This definition con-
ceptually captures “direct dependencies on nondeterministic processes”, where a causal chain
of deterministic dependencies leading back to a nondeterministic state interval is defined as an

direct dependency on a nondeterministic state interval.

ND-direct dependencies can be maintained by a vector at each process and update rules for
the vector that add a set of processes identifiers to each message (in contrast, ordinary direct

dependencies which require that only a single process identifier be added to each message).

ND-Transitive ND-transitive dependencies correspond to ordinary transitive dependencies and

can be maintained by update rules that add a vector of length N to each message.

Specifically, state interval o is said to be ND-transitively dependent on « if ¢ is either directly
or transitively dependent on a nondeterministic state interval «; any or all of the intermediate

process state intervals in a chain of transitive dependencies may be nondeterministic.

A process can simultaneously track both its deterministic and its nondeterministic dependencies
by either maintaining two separate dependency vectors (one for deterministic dependencies, the
other for nondeterministic dependencies) or by maintaining a single unified dependency vector DV
that has a boolean value DV[j]. ND associated with each vector entry, such that DV/[j]. ND is true if

and only if state interval DV[j].ST is nondeterministic.

III.D.1 Data Structure

Each process p maintains a vector NDDV such that NDDV[j] is the maximum nondeterministic
state interval index of process j upon which p is currently dependent, or L if p does not depend
on a nondeterministic state interval of j. In the case of ND-direct dependencies, the word depend
here means “ND-directly dependent,” and in the case of ND-transitive dependencies, depend means

“ND-transitively dependent.”

21

The NDDYV could alternatively be represented with a stateful dependency vector method, where
a state variable is associated with each entry of the vector. Each vector entry also contains a state
interval index, as in ordinary dependency vectors. For example, to represent NDDV with stateful
vectors, the state variable would be a boolean variable such that a true value indicates that the
dependency is nondeterministic and a false value indicates that the dependency is on a deterministic
state interval. For the dependency vector update rules, two vectors received from the same process
can be compared to determine which vector reflects a more recent state by simply comparing the

two vectors’ state interval indexes.

III.D.2 Maintaining ND-Direct Nondeterministic Dependencies

This section describes a method by which each process’s ND-direct dependencies can be deter-
mined and recorded in the NDDV vector. A set NDdep of process state interval identifiers upon
which the sender process is currently ND-dependent is added to each application message for use in
maintaining the NDDV vector at each process.

This set of processes is necessary for maintaining NDDV, and the ND-direct dependencies provide
sufficient information for a process p to determine its ND-transitive dependencies (that can be done
by communication with the processes upon which p is ND-directly dependent, since those processes
know all the processes upon which they are ND-directly dependent, and can inform the original
process of all such dependencies).

In the worst case, all other processes in the system could be members of this set, in which case
the set degenerates to a dependency vector. In the average case, however, the size of the set will be
roughly proportional to the number of non-stable nondeterministic processes from which the sender
process has delivered messages.

Figure 4 shows the NDdep set that must be added to each message to track ND-direct dependen-
cies in a sample execution. In the figure, process p is informed of its ND-direct dependency on u when
it receives a message directly from u. Process r is likewise informed of its ND-direct dependency on

q when it receives a message from q. Processes r and s do not become aware of their dependency on

22

0Oislessthan any vaid state interval index M checkpoint
——= deterministic execution

= nondeterministic execution

LSl SI2
U
BeginN
* m.NDdep={ <u,SI1>} EndND
SHEFR. ,5@ si4 NDBV=[1,4000] SI5 *SI6

p
BeginND
my m1.NDdep={<p, SI3>}
q | SI3 NDDV=[0,0,3,0,0]

Mo\ m2.NDdep={<q, SI2>}

" |SI11 SI2 SI3NDDV=[0,3,2,0,0]
{ I {

NDDV=[0,3,0,1,0]
my\ M3.NDdep={<p, SI3>, <q, SI2>}

Sl Si2

NDDV=[0,3,2,0,0]

Fig. 4. Maintaining ND-direct dependencies with the NDdep set.

u.SI1 in this execution, because dependency chains containing multiple nondeterministic processes
not tracked explicitly. That is an ND-transitive dependency, and it can be determined by a commit
algorithm that uses inter-process communication to follow the chain of ND-direct dependencies.
The procedure ND-TRANSITIVE-SEND-MsG shown in Figure I11.D.1 implements ND-transitive
dependencies by adding a process state interval identifier to each outgoing message for each valid
entry in NDDYV. This procedure must be called before m 1is sent to the destination process.
ND-DirECT-SEND-MSsG, shown in Figure I11.D.2, implements ND-direct dependencies by adding
a process state interval identifier to each message for each valid entry in NDDV only «f the calling
process is deterministic. Hence, when ND-transitive dependencies exist, ND-DIRECT-SEND-MsG

adds less information to messages sent by a nondeterministic process than does ND-Transitive-

23

ND-TRANSITIVE-SEND-MsG (m)
if local process is nondeterministic then

m.NDdep «— <Local Processld, Local ProcessSI>
else

m.NDdep —

for each pid such that NDDV[pid] > L do
m.NDdep «— m.NDdep U <pid, NDDV [pid]>

Figure IT11.D.1: ND-TRANSITIVE-SEND-MsG adds the set m.NDdep to each message sent by the
application.

Send-Msyg.

ND-DIRECT-SEND-Msa(m)
if local process is nondeterministic then
m.NDdep «— <Local ProcessId, Local ProcessST>
else
m.NDdep —
for each pid such that NDDV[pid] > 1 do
m.NDdep «— m.NDdep U <pid, NDDV [pid]>

Figure 111.D.2: ND-DIRECT-SEND-MsG adds the set m. NDdep to each message sent by the appli-
cation.

The ND-RECEIVE-MSsG procedure shown in Figure II1.D.3 updates the calling process’s NDDV
vector to include the set of process state intervals that were added to the message when it was
sent. The same ND-RECEIVE-MsG can be used to maintain either ND-direct or ND-transitive

dependencies; the type of dependency is determined entirely by the sender.

ND-RECEIVE-MsG(m)
for each e € m.NDdep do
NDDV]e.pid] — max(NDDV [e.pid],e.SI)

Figure I11.D.3: ND-RECEIVE-Msa updates NDDYV, the vector that records ND-direct dependencies.

24

III.E Disabling Message Logging During Nondeterministic Execution

A process that is currently nondeterministic need not log the order in which it receives messages,
because nondeterministic execution is never replayed. In family-based logging that means that a
determinant need not be created for a message received by a nondeterministic process. The send
log entry for a message sent to a nondeterministic process can also be purged, but the sender will
generally not know that the receiver is nondeterministic until after the message has been received.

A process that is currently deterministic must log the order information of every message it
receives, even if the message was sent from a nondeterministic process, because the nondeterministic
process can replay the messages 1t sent deterministically. Nondeterministic processes can participate

in the recovery protocol because the recovery system is assumed to always be deterministic.

IILF Output Commit Based On Nondeterministic Dependencies

An output commit algorithm that uses nondeterministic dependencies avoids communication
with deterministic processes, which are made recoverable by the message logging protocol. The
remainder of this section describes the differences between a version of the Commit algorithm that

uses ND-direct dependencies and a version that uses ND-transitive dependencies.

III.LF.1 Commit Algorithm Behavior When Only ND-Direct Dependencies are Main-
tained

Johnson’s CoMMIT algorithm [15] can be used with no modifications to the algorithm itself.
The only change is in way dependencies are tracked (which are used to maintain the DV vector in

Johnson’s algorithm).

III.F.2 Commit Algorithm Behavior When Only ND-Transitive Dependencies are
Maintained

In this case, Johnson’s algorithm would have access to full transitive dependencies. The algorithm
will still function correctly: it starts with more accurate (i.e. full transitive) dependency information,
and does not need to collect that information in multiple rounds [15]. The transitive dependencies

decrease output commit latency, but the number of messages is not decreased compared to direct

25

dependencies

III.F.3 Correctness of the Commit Algorithm

An output commit algorithm is correct if it ensures that the given state interval is committable,
which is true if the conditions given in Theorem 2 are satisfied. The correctness of the entire
Commit algorithm itself need not be shown, since Johnson’s COMMIT algorithm is used with no
changes except for the modification of the definition of dependency vectors.

It suffices to show that a process can be made committable even when only nondeterministic
dependencies are available, and that the nondeterministic dependencies are in fact maintained ac-
cording to their definition. Considering the latter point first, the correctness of the ND-transitive
dependency tracking protocol is established by Theorem 1. A proof of the ND-direct protocol would

be similar and is not given here.

THEOREM 1 For a process i using the ND-transitive dependency tracking protocol given by the pro-
cedures ND-TRANSITIVE-SEND-Msa (Figure II1.D.1) and ND-RECEIVE-MsG (Figure III.D.3), the
value of NDDV[j] at i is the mazimum state inlerval index of process j upon which i is currently
ND-transitively dependent.
ProOOF: The first if statement in the ND-TRANSITIVE-SEND-MSG procedure ensures that for every
message m that a process p sends, the value of m.N Ddep is equal to <p,oc>, where o is the state
interval index from which the message was sent, if and only if o 1s a nondeterministic state interval.
The for statement in the procedure ND-RECEIVE-MSG ensures that for every message m received
by a process q, q updates its dependency vector entry NDDV[p] for every process p € m.N Ddep
to be the maximum of the entry’s current value and state interval index value associated with p in
m.NDdep Hence q’s NDDV/[p] is updated with the most recent nondeterministic state interval index
of process p for every p € m.N Ddep.

The receiving process q can become ND-transitively dependent on a state interval of a remote

process T in t1wo ways:

Case 1: Directly: the sender of m is itself nondeterministic (¢ = r). In this case, the first if state-

26

ment of ND-TRANSITIVE-SEND-MsG added the sender process and state interval <r,o,.> to

m.NDdep.

Case 2: Indirectly, through a chain of deterministic dependencies: In this case, the first process in the
chain thatl received a message from r must have correcily set NDDV[r] (by Case 1). When
that first process sent a message m' to the second process in the chain, the for loop in ND-
TRANSITIVE-SEND-MSG must have included <r,o.> in m’.N Ddep. Similarly, r must have
been included <r,o.> wn the NDdep of every message in the causal chain from r to q, and so

q must recetve <r,o,.> n the last message in the chain.

In both cases, NDDV[r] is set to o, by ND-RECEIVE-MSG. Because that is done for every message
received by every process, the value of NDDV[j] at process i is the mazimum stale interval index of

process j upon which process i is currently ND-transitively dependent.

Now it remains to be shown that a process can be made committable by using the nondetermin-
istic dependencies. Intuitively, that claim is justified because only nondeterministic processes need
be checkpointed by the commit algorithm, and the ND-transitive dependencies have been shown to
correctly record the set of nondeterministic processes upon which each process is dependent. Given
a correct dependency vector, the CoMMIT algorithm will operate correctly. A slightly more rigorous
justification of the claim is provided below for completeness.

Theorem 2 states that the nondeterministic dependency vector NDDV | along with the identities
of all nondeterministic state intervals and the state interval indexes of all checkpoints, is sufficient
information to commit a state interval. ? The identities of nondeterministic state intervals are
assumed to be correctly maintained (a data structure can be maintained monitoring of all BeginND
and EndND events), and recording the state interval indexes of checkpointed intervals is trivial.

Theorem 2 is similar to a theorem introduced by Johnson [15]. The difference between the two

stems from the different environment assumed here. In particular, here a deterministic state interval

2Recall that nondeterministic (but not deterministic) state intervals must be made stable in the
environment assumed in this chapter.

27

is always stable, but a nondeterministic state interval is only stable if it happened before a checkpoint

of 1ts process.

THEOREM 2 A state interval o of some process i is commaittable if and only if

(a) some later state interval o > o of process i is commiitable, or

(b) for all j # i, state interval NDDV/[j] of process j is commitiable, and
(o of i is nondeterministic) = (o happened before a checkpoint of i).
(NDDYV is the vector of nondeterministic dependencies defined in Section III.D.1, and state

interval index 1 is defined to be always commitiable).

ProoOF OUTLINE: (The “if” direction is proved, since only it is relevant here)

(a) Since some later state interval a > o is committable, o will never be rolled back, and hence an

earlier state interval o will not be rolled back. Thus o is committable.

(b) Since no later state interval is commitiable, process i could roll back to o because of a failure.
First o is shown to be stable, then o is shown to be stable. If o is deterministic, then the
implication is trivially true (in this case recovery can proceed by orphan-free message logging).
If o is nondeterministic, then o is committable only if it will never be rolled back (by definition),
and 1t will never be rolled back because a checkpoint of state interval « > o s known to exist.
In either case, process i can be restored to 0. When process i is restored to o, o will be part
of a consistent global state only if every process state interval that o depends on will never be
rolled back. That condition is satisfied because state interval NDDV][j] of process j is known

to be commuittable, for every j # 1.

III.G Coordinated Checkpointing

Only a subset of the processes in the system will ordinarily be nondeterministic, but in general it is
impossible to determine the identities of all nondeterministic processes without communicating with

all processes in the system, both deterministic and nondeterministic. However, since deterministic

28

processes need not take checkpoints, 3 they can immediately discard any “take checkpoint” messages
(e.g. marker messages) they receive. Thus it is possible to take a coordinated checkpoint that consists
only of checkpoints of nondeterministic processes, but communication with all processes is necessary

to find all the nondeterministic processes.

ITII.LH Recovery

If a failure occurs, a recovery algorithm must be executed to restore the system to a consistent
state. All processes are assumed to participate in an orphan-free message logging protocol during
deterministic execution. Checkpoints are not assumed to exist, although the available checkpoints
are used in recovery. A checkpoint of a nondeterministic process creates a new state interval o,
and all state intervals @ < o, of the process are defined to be stable if the checkpoint completes
successfully (a more precise definition of a stable state interval in this environment is given below
in Equation I11.1).

A single failed deterministic process is recoverable by the message logging recovery protocol. A
single failed nondeterministic process must be rolled back to its most recent stable state interval; the
rollback of the failed process may create orphan processes that must also be rolled back.

Figure 5 shows an example execution in which the failure of a nondeterministic process p causes
the two processes that are causally dependent on p’s nonstable nondeterministic execution to become
orphan processes because the messages sent to ¢ and r were sent during nondeterministic execution
after p’s most recent checkpoint. A failed nondeterministic process must roll back to its most recent
deterministic state interval, which is the most recent state interval of the process that is either
checkpointed or that precedes a BeginIND event. In this example, p rolls back to the beginning of
state interval 2, which is stable because it is checkpointed by checkpoint Cl. Both ¢ and r must
be rolled back to state intervals that do not depend on p’s nonstable nondeterministic execution

(the precise definition of a stable state interval in the presence of nondeterminism is given in Section

3Recall that some form of orphan-free (e.g. pessimistic of family-based) message logging is as-
sumed to be in operation, so that the most recent state of any deterministic process is committable
if all the nondeterministic state intervals 1t depends on are committable.

29

Cc1
m failure .
1 B checkpoint
S SI2 L .
} i deterministic execution
————= nondeterministic execution
my
ro| St | SI2

Fig. 5. An example failure scenario.

IIT.H.1). In this example, ¢ and » must roll back to their initial state intervals. If multiple overlapping
failures occur, rollback distance may be greater; some failed processes may be rolled back beyond
their most recent stable state intervals. A rollback method and the characteristics of the restored
system state are described below.

III.H.1 Definitions

The notion of a stable state interval is now defined to include nondeterministic processes: A
deterministic state interval is always stable in the presence of orphan-free message logging, whereas
a nondeterministic state interval is stable if and only if it happened before a checkpoint of its
process. This definition of a stable state interval in the presence of nondeterminism is captured by

the predicate stable(i, o):

stable(i,0) < (not(ND(i,0))) V(60 < MAXCKPTSI(i)) (TI1.1)

where MAXCKPTSI(i)is the index of the most recent checkpointed state interval of process 7 and

ND(i, o) is true if and only if state interval o of process i is nondeterministic:

ND(i,0) < (L < BeginNDSI(i) < o) A (EndNDSI (i) < BeginNDSI(i)) (I11.2)

BeginNDSI(i) and EndNDSI(i) are the state interval indexes of the most recent BeginND and
EndND events in process i, respectively. If there has been no BeginND or no EndND event in

process i, then the respective value of BeginNDSI(i) or EndNDSI(i)is L.

30

III.LH.2 Characterization of the Recoverable System State

The most recent recoverable state is the most recent consistent system state in which no process
depends on a nonstable state interval. Since only nondeterministic execution can create a nonstable
state interval, the most recent recoverable system state can be characterized more specifically as the
most recent consistent system state in which no process depends on a nondeterministic state interval
that did not happen before a checkpoint of its process.

Using the definition of a stable state interval given in Equation III.1 with Johnson’s system

history lattice method [14], it can be shown that:

1. A unique most recent recoverable system state always exists.

2. A recovery algorithm such as Johnson’s batch state recovery algorithm [12] or FINDREC
algorithm [12, 14] will find the most recent recoverable system state. Also note that these
recovery algorithms can be modified to restrict their search to nondeterministic dependencies
in the same way that Johnson’s Commit algorithm is restricted to communicate with only

nondeterministic processes in Section IIL.F.

3. The recoverable system state always eventually advances with time, and hence the recovery

algorithm is domino-effect-free.

III.H.3 An Alternate Recovery Algorithm

This section presents an on-line distributed algorithm for recovery of a process that was nonde-
terministic when it failed. Unlike Johnson’s recovery algorithms, this algorithm has not been shown
to always recover the maximum recoverable state. This algorithm is similar to many well known
algorithms, such as that of Koo and Toueg [17].

The recovery algorithm is as follows:

e When a process p begins to recover, it determines its most recent stable state interval ¢ and
broadcasts the message “p rolling back to ¢” (if, in fact, rollback is necessary, since it may not

be necessary if the process is not dependent on any nondeterministic state intervals).

31

e When a process q receives the message “p rolling back to ¢”, q consults its NDDV to determine
if it has been orphaned by p. Specifically, if o is less than or equal to q’s NDDV[p], then ¢
rolls back to its most recent state interval o such that « is not dependent on NDDV[p], and

then g broadcasts the message “q rolling back to a”.

All of the broadcast operations can be replaced with point-to-point communication by changing
the algorithm, so that instead of the broadcast, the log of sent messages (which is maintained by

FBL) is used to determine the set of processes that are causally dependent on the local process.

III.H.4 Transparently Detecting Nondeterminism

This section suggests an approach that, in the absence of output messages, eliminates need
for BeginND and EndND . During failure-free execution, the delivery order information (i.e.
determinant) and data contents of each message must be saved; then, if a failure occurs, re-execution
will produce a sequence of messages that can be compared to those saved during failure execution.
If the messages generated during re-execution correspond exactly to those previously saved, then
nondeterminism has not affected execution. Otherwise, if there is even a single difference in the
message data or ordering information, then a process must have executed nondeterministically during
the original failure-free run, and hence cannot be re-executed through the state interval from which
the first differing message was sent; a previous checkpoint or deterministic state interval must be
found. The recovery algorithm can continue to roll back processes for which current checkpoints are
not available until there are no differences between the messages generated during re-execution and
those that were saved during failure-free execution. The performance of such a recovery algorithm
may be poor, however. The algorithm may not find the most recent recoverable state, and the
number of rollbacks that occur in the search for a system state in which all state intervals are

deterministic may be excessive.

ITII.H.5 Summary

The method suggested in this chapter allows intermittently nondeterministic processes to use

message logging during deterministic execution and minimizes communication during when com-

32

mitting a nondeterministic process state interval. The choice of when nondeterministic processes
should checkpoint (outside of a commit operation) is left to the application, and the problem of

determining such an optimal checkpointing interval in general is an area for future work.

33

CHAPTER IV

Reactive Replication In Message Logging Protocols

IV.A The Problem

This chapter describes an approach that allows a message logging protocol that to tolerate
multiple overlapping failures with no more failure-free overhead than would be required to tolerate
only a single overlapping failure, with the restriction that every two failures must be separated by
some minimal interval of time that is sufficient for the non-failed process to prepare for another
failure by replicating data crucial to the recovery of the failed process.

During failure-free operation, this reactive approach uses a low-overhead protocol that can tol-
erate only a single simultaneous failure (e.g. family-based logging ! or sender-based logging). If
a failure occurs, the logged data necessary to recover the failed process is immediately copied (i.e.
replicated) to stable storage or to the volatile storage of another processor. Hence the requirement
that no two overlapping failures occur is relaxed to a requirement that a second failure does not oc-
cur until the necessary logged data has been copied. Reactive replication is only beneficial if certain
timing constraints are satisfied during recovery, which means in practice that timeouts have to be
well-chosen and message delay has to be small. Since the need for fast failure detection imposes a
limit on communication delay, this reactive approach is not practical for systems in which message
delay is large.

The primary benefit of reactive replication i1s small failure-free overhead. Its drawbacks are the
bounds its imposes on communication delay, and, if a failure occurs, the overhead of replicating

logged data.

'FBL’s overhead (in terms of the amount of piggybacked information) is lower when f = 1 than
when f > 1.

34

IV.B Timing Assumptions

The reactive replication technique consists of a failure detection phase followed by a replication
phase. When a failure is detected, the replication phase is initiated. 2

In family-based logging, the information necessary to recover the failed process is likely to be
distributed across the volatile memories of several processes at which it is sympathetically logged
(in the terminology of Alvisi [2]) on behalf of the failed process. If any of that information is lost,
recovery will be impossible. Hence, the replication phase creates a copy of that information in such a
way that another failure of a given type (e.g. a single simultaneous process crash, or f simultaneous
crashes) can be tolerated without losing it. Processes that have volatile information logged locally
on behalf of the failed process must not fail before the completion of the replication phase.

The reactive approach can enhance performance only when recovery of a crashed process takes
longer than the sum of the time to detect the crash and the time to replicate the information
necessary to recover the crashed process.

For a given failure-free process ¢ and failed process p in a given execution, the real-time duration
between the failure of p and the notification of 7 that the failure has occurred is tfietect, the real-time

)

. . Z
replicate’ and the sum of those two times is ¢

for which the replication phase executes is ¢ eqct-

t:"eact = tiietect + t:"eplicate (IVl)

From the global perspective, the total real-time required to execute the reaction protocol, Tyeqet,
is the time required to complete its execution at all processors:

(IV.2)

Treact = ml.ax(tf‘eact)
Reactive replication is feasible when the reaction protocol’s execution time is less than both (a)

Trecover, the time to recover the failed process (recovery is carried out concurrently with the reaction

protocol) and (b) Teommitan, the time that would be required to commit the entire system by a

?Multiple concurrent initiators are not considered here.

35

i fals g il for p) | recovery
. (assume g and r are crucial for p ! of p complete
p—X | o
or anather
Receve(p) q ects p ! ‘single failure)
g —@ 1
Ti t |
F Imeou % "p failed" Sympl nfo) Symplinfo (p) "pfailed” \"p failed"
' (ack)
. L

r
r suspects p %no Ia?nger

S ng?n?al lure) 3

el —

'suspect !

| "pfailed” ' Lo danger "pfailed”

Trecover

Fig. 6. A sample execution showing reactive replication’s response to a failure of process p.

conventional technique (such as a coordinated checkpoint). Figure 6 illustrates these quantities for
an example execution. The fail-stop model is in use in that execution, so the Sim-FS protocol is
operating. The detection phase is complete when all non-failed processes have been informed of the
failure, and the replication phase is complete when SymplInfo messages have been received from all
processes that are crucial to the recovery of p. Finally, the Sim-FS protocol continues to execute

upon the completion of the replication protocol.

IV.C The Relationship between Failure Detection and Reactive Replication

Replication occurs when a failure is detected. This section addresses the problem of failure
detection in an asynchronous system. Background on the fail-stop model and a method due to Sabel
and Marzullo [23] for implementing it in asynchronous systems is given in Appendix A.

The semantics of the fail-stop model require that every process in the system eventually learns
of a failure. Thus a protocol that implements simulated fail-stop is likely to send messages in a
pattern that is directly usable by a reactive failure detection protocol. In particular, a “simulated

fail stop” (Sim-FS) protocol suggested by Sabel and Marzullo [23] requires that a process broadcast

36

a message when a suspected failure is detected. The “inform” phase of reactive failure detection can
be implemented with no additional messages compared those required by Sabel and Marzullo’s Sim-
FS protocol by using that “failure suspected” broadcast message to inform every process that any
information logged on behalf of the suspected process should be replicated (i.e. the replication phase
should be initiated for the suspected process). The approach is straightforward: when a process p
receives a “failure of process ¢” suspected, p initiates the reactive replication protocol for q.

The primary drawback of such a reactive technique is the need for a failure to be detected very
soon after it occurs. Fail-stop failure detection can be implemented in an asynchronous environment
[23], but in practice the latency between failure and detection must be small. Since the simulated
fail-stop failure detection protocol is based on communication timeout, the reactive method described
here is only practical in asynchronous distributed systems when sufficiently small timeout values are
used to implement failure detection. Timeout values must be chosen so that failures are detected
quickly, but false failures are not reported too often. The problem of choosing timeout values is not

addressed here.

IV.D Definitions

With respect to a crashed process p, a sympathetic process is a process that has sympathetically
logged information on behalf of p.

SympInfo,(p) denotes the information sympathetically logged in process ¢’s volatile storage on
behalf of process p. A process is either crucial or non-crucial:

A crucial process q is a sympathetic process for which at least one piece of the logged information
SympInfo,(p) is not logged at any other process.

A non-cructal process q is either a nonsympathetic process or a sympathetic process for which
every piece of logged information Symp[nfoq(p) is logged at at least one other process.

In the time interval between the crash and recovery of a process p, the message logging protocol
(as described here) cannot tolerate the failure of any processes that are crucial to p. In terms of these

definitions, reactive replication attempts to make all crucial processes non-crucially sympathetic

37

before one of the crucial processes can fail.
Detection of the failure of a crucial process is straightforward in a fail-stop environment 3 The
recovery protocol will learn of any crash that occurs during recovery, and will be able to determine

whether such a crashed process is crucial to the recovery in progress.

IV.E Tolerating Violation of the Timing Assumptions

A simple way to deal with the failure of a crucial process is to employ a second recovery protocol
that has greater overhead but can tolerate a greater number of simultaneous failures than the message
logging protocol. Clearly, the second protocol should be executed relatively infrequently so that a
good tradeoff between failure-free overhead and rollback distance is obtained [31]. For example,
global consistent checkpoints could be taken periodically (but rarely), and in the event of a failure
that message logging cannot tolerate (i.e. failure of a crucial process), the system would be rolled
back to the most recent global checkpoint. Another possible approach would be to periodically flush

all processes’ volatile message logs to stable storage in a consistent manner.

IV.F Abstract Reactive Replication Protocol

This section summarizes the two phases of reactive replication independently of any particular

message logging protocol.

IV.F.1 Failure Detection Phase

If a failure occurs (i.e. a process crashes), the failure must be detected, and all processes must
learn of the failure In general, a failure cannot be detected in an asynchronous environment. However,
messages can be periodically sent to a process p to determine if it is crashed, and if p does not reply
within a reasonable amount of time, then it can be assumed to have crashed, in which case p can
be removed from the system and replaced by a new process restored to p’s saved state. False crash

detections will cause unnecessary rollbacks.

3Tt is assumed here that the fail-stop model’s property that all processes are informed of a failure
is desirable.

38

IV.F.2 Replication Phase

As described above, SympInfo,(j) denotes the information contained in the volatile storage of
process ¢ that is necessary to recover process j from a failure.
Upon detection of a crash (e.g. upon receipt of a “crash notification” message), each process i

for which SymplInfo;(j) # @ must either
e Immediately log SympInfo,;(j) to stable storage
or
e Immediately log SymplInfo;(j)) to the volatile storage of another non-crashed processor. The
method for selecting another processor is not addressed here.

Each process p such that the original crashed process’s volatile log contained some information
necessary to recover p is subject to an additional limitation: if one of them crashes (after the
original failure has been detected), it must wait until the original crashed process recovers

before 1t can recover.

IV.F.3 The Contents of Sympinfo, for Family-Based Logging
In family-based logging [1, 2], the information necessary to recover a process p is:
1. the data contents of every message that has been sent to p
2. the determinant #m of every message m that p has delivered *

When a failure is detected, the above information must be replicated immediately (either to stable
storage or the volatile storage of another non-failed processor). Hence SympInfo,(j) for family-based

logging consists of: (a) the data contents of all messages that process 7 has sent to process j and (b)

1A different approach would be for each process g to replicate all information in its logs (msg
data and determinants). That would allow a future failure of ¢ to be tolerated; it would have
to be done for every process (except the crashed one). Hence all the logged information in the
system would be replicated. The technique described in the text is supposed to replicate only the
information necessary to tolerate a subsequent failure of a process that has information necessary
for the recovery of the originally-failed process.

39

all determinants e for which e.dest = j. Specified as a set,
SympInfo,(j) = {{m|m.dest = j},{#m'|m’'.rsn < Uimsh}} (Iv.3)

where m is a message (including the message data m.date) and oimsh is the state interval in which
the failure occurred. This specification of SympInfo includes the information sufficient to completely
determine the deterministic process j’s execution up until the crash. This set contains values of two
different types, determinants and messages, so that all the information can be contained in a single
set (when a particular element of the set is referred to, the type (determinant or message) will be

clear from the context) . This information is necessary for the operation of the family-based logging

recovery algorithm [2].

IV.G A Simple One-Round Sim-FS Protocol for the Detection Phase

This section describes a protocol that can be used for both general failure detection and as
the failure detection phase of reactive replication. The following one-round protocol from Sabel
and Marzullo [23] implements a version of asynchronous simulated fail stop (properties sFS2a-d,
as described in Appendix A) that is indistinguishable from fail-stop. It is assumed that a failure
suspection mechanism exists (e.g. timeout), and that no more than ¢ failures are suspected in any
run. Here, the suspection message (called SUSP; ; in Appendix A) and the acknowledgment message

(ACK.SUSP; ;) are both of the form ¢ failed”.

e When process i first suspects the failure of process j, ¢ sends the message “j failed” to all
processes (including itself). Process ¢ waits for messages of the form j failed” from other
processes and takes no other action except for acknowledging “z failed” messages until it

completes the protocol or crashes.

e When process i has received messages of the form “j failed” from more than @ processes

(including itself), ¢ executes failed;(j) (that is, 7 decides that j has failed).

e When process z receives a message of the form “z failed”, z executes erashy (that is, decides

to crash itself).

40

e When process x receives a message of the form “y failed” and = does not suspect the failure

of y, x suspects the failure of y and executes the first step of the protocol.

Since this protocol uses ﬂt;—ll for its quorum set size, it requires that n > ¢2.

IV.H A Reactive Protocol For Family-Based Logging

A reactive protocol suitable for use with FBL is as follows:

e Detection Phase: When process i detects the failure of process j, i broadcasts “j failed” to

all other processes to inform them that they should prepare to tolerate further failures.

e Replication Phase: When a process k receives a “j failed” message, process k reacts to the
failure by immediately replicating any volatile information SympInfo,(j) that it might have to
either stable storage or the volatile storage of another process (the latter process should reside

on a separate non-failed processor).

The value of SymplInfo for family-based logging is described in Section IV.F.3. SymplInfo,(j)
can be determined from process k’s local volatile logs using the DETERMINE-SYMPINFO proce-
dure shown in Figure IV.H.1. Note that DETERMINE-SYMPINFO places values of two different
types (determinants from DetLog and messages from SendLog) in the SympInfo set; there is
no relation between any two values at the time they are added. It remains to be shown that
every message m (including m. data) and corresponding determinant #m that must be in
Symplnfo at a given process have indeed been added by the time the DETERMINE-SYMPINFO

terminates.

The determinant log DetlLog contains every determinant logged at the local process, and the
send log SendLog contains the message data of every message that has been sent by the local

process. These logs are maintained by the family-based logging protocol [2].

DETERMINE-SYMPINFO must be executed at each process k that has sympathetically logged
information on behalf of j. The broadcast-based protocol described here simply executes it

at every process in the system. The set SympInfo(j) can be logged either incrementally, as it

41

DETERMINE-SYMPINFO(j)
SympInfo(j) — nil
>e is is a determinant; e = #m for some message m
for each ¢ € DetLog
if e.dest = j then

SympInfo(j) — SympInfo(j) U {e}

for each m € SendLog
if m.dest = j then

SympInfo(j) — SympInfo(j) U{m}

Figure IV.H.1: The DETERMINE-SYMPINFO procedure.

is being determined (i.e inside the for loop), or all at once, after it has been determined (i.e.

after the for loop).

IV.H.1 Correctness

Reactive replication is carried out correctly (assuming that the timing assumptions are met) if
DETERMINE-SYMPINFO correctly constructs the Symp[nfop(j) for a failed process j set at every
nonfailed process p. The set 1s correctly constructed because the first for loop of DETERMINE-
SyMPINFO adds all determinants #m in the local process p’s determinant log for which m.dest = j
to Symplnfo, and the second loop adds all messages m in the local processes send log for which
m.dest = j. By the definition of DetLog and SendLog, the necessary determinants and messages
for the local process’s SymplInfo set must be available in those logs, and hence the SymplInfo set is

constructed correctly.

IV.H.2 Efficiency Considerations

If multiple processes share a common processor and share a single per-processor log, the number
of “j failed” messages sent by the protocol can be reduced by treating each processor as a “logging
site” 5 and not sending the “j failed” message to processes on the same logging site as the sender.

That is justified by the fact that processes on the same logging site share the same log, and there is

no reason for more than one of them to replicate the logged information. The term “logging site” is

5The logging site concept is described in more detail in Section V.C.3.6

42

due to Alvisi and Marzullo [2].

The broadcast-based protocol suffers from at least two sources of potentially wasteful message
complexity: It may duplicate message traffic that the failure detection protocol has already used to
decide which process failed, and some processes that receive the “j failed” broadcast message may
have no information relevant to j (i.e. SympInfo,(j) = 0, in which case the overhead incurred in
sending and delivering the broadcast message to that process is wasted. If the number of processes
n is large, the overhead of broadcast will be significant. A benefit of the broadcast-based protocol
is its simplicity: each process is only responsible for the relevant information in its own volatile
storage, which means that a process does not need to send any messages related to the location of
the relevant information. Furthermore, this broadcast’s overhead is negligible when it is done as
part of the failure detection protocol’s broadcast.

As part of its implementation of fail-stop semantics, the Sim-FS failure detection protocol does
a broadcast to inform all processes of the identity of a process that is suspected to have failed. That
broadcast corresponds directly to the failure detection phase of reactive replication.

Thus the broadcast-based protocol’s message overhead can be reduced by merging the failure
detection protocol (Sim-FS) with the failure-detection phase of the reaction protocol, so that the
messages used by the detection protocol trigger the reaction directly. Specifically, the Sim-FS pro-
tocol can be used as the sole means of failure detection in the system, and the “crash notification
message” that initiates the replication phase is simply the “j crashed” message sent by Sim-FS.

One version of Sim-FS waits for acknowledgments from every other process before deciding that
a process has crashed, whereas another version waits for acknowledgments from only a subset of
all processes. Since both versions broadcast the “j failed” message, the difference in waiting for
acknowledgments is only important here if the final decision of the detection protocol is used to
initiate the replication phase of reactive replication, as opposed to the initial suspect event. Since the
reactive protocol given here allows the first “j failed” to initiate the replication phase, the difference

between the two acknowledgment policies is not addressed further here. This assumption means

43

that every failure suspection will result in a corresponding replication. The number of replications
due to false detections could be reduced by waiting until the detection protocol terminates before
beginning replication, but then the detection time (Zgetect) would increase from just the time to
deliver a single broadcast to the total time to execute the detection protocol. A good choice for the
timeout value can reduce the number of both false notifications and replications.

An obvious approach to reducing the overhead of the broadcast-based protocol is to replace the
broadcast with point-to-point communication directed by the relevant information. If that could
be done, then the message overhead could be reduced to only that necessary to inform the nodes
with relevant information of the failure. However, the broadcast is necessary for reactive replication,
because the information available at a single arbitrarily-chosen surviving processes is not sufficient to
determine the set of all processes that have sympathetic information. The overhead of one broadcast
at the time of a failure should be small. However, if the timing assumptions are violated, and the
delivery of the broadcast is delayed sufficiently long, another process may fail before the replication

completes, in which case some crucial sympathetic information may be lost.

IV.I Summary

Reactive replication may be beneficial for certain specific application areas where the timing
constraints are known to be met. If special hardware were available to provide nearly instantaneous
failure detection, reactive replication would be quite viable for use in tolerating multiple overlapping

failures with no more overhead than is necessary to tolerate a single overlapping failure.

44

CHAPTER V

Implementation

V.A Introduction

The implementation consists of a library of routines for Unix that provide a message passing
abstraction, which is general enough for practical use yet simple enough that recovery protocol im-
plementation is straightforward, as well a the failure-free portion of the recovery protocols described

in Section V.A.1.

V.A.1 Recovery Protocols

The following protocols have been implemented:

e A coordinated checkpointing protocol similar to the Manetho coordinated checkpointing
protocol [7]. The Manetho protocol has been extended to checkpoint a given set of processes
to allow coordinated checkpoints that include only the processes on a single logging site. Only
the processes on the logging site of the process that initiates a coordinated checkpoint are
included in that coordinated checkpoint. One process at each logging site is designated as
the coordinator of its site, and sends marker messages to only the processes on that site. A
consistent checkpoint of all processes in the system can be taken by executing the coordinated
checkpointing protocol where the set of processes to be checkpointed contains only the set of
site coordinators. Unix process checkpointing is done with the libckpt library [19], which has
been extended with minor modifications that allow multiple checkpoints of different instances

of a single program to be saved and stored simultaneously.

e The family-based message logging protocol 7, suggested by Alvisi and Marzullo [2], which
is able to tolerate multiple overlapping failures. In addition, a version of 7, that uses logging
sites [2] to maintain a single volatile log for each processor in shared memory (to reduce the

amount of piggybacked information) has also been implemented.

45

The actual recovery portions of the protocols have not been implemented; failure-free performance

can be meaningfully measured without them, and they are left as future work.

V.A.2 Overview of the Implementation

The message passing abstraction consists of a set of functions for use in writing distributed
programs. The most important functions are Exec, which creates a new child process given the
name of an executable program file and establishes a connection between the parent (creator) and
child processes, SendMsg, ReceiveMsg, and ForwardMsg for passing messages between connected
processes, and ConnectProcesses, for establishing a connection between two child processes.

These functions call the recovery protocols in an application-transparent way, so that any dis-
tributed program that uses them can automatically be made fault-tolerant without placing any ad-
ditional programming burden on the person writing the application. The cost of the fault-tolerance
is in overhead added to the application’s failure-free performance, in terms of running time and

storage usage.

V.A.2.1 Functional Layers

Three major layers of abstraction are present in a program that uses the recovery system, as
shown in Figure 7. At a low level is Unix itself, upon which the message passing, recovery protocol,
and checkpointing libraries are directly built. The message passing library automatically calls the
recovery protocol functions in the recovery system. Finally, the user application calls the message
passing library, but need not call the recovery protocol or checkpointing library. If the application
wishes to provide application-specific information to the recovery system, such information would
be provided by direct calls from the application to the recovery system. Such application-specific

hints are beyond the scope of this thesis.

V.B Message Passing Library

The message passing library provides an environment suitable for writing distributed applica-

tions. Any program can call the message passing functions subject to the requirements given in this

46

User Writes User Application Program Code
77777777777777 Message Passing Library

Same for every (libmsgpass)

application Recovery System | Checkpointing Library
77777777777777 (part of libmsgpass) (libckpt)

Same for all Unix Standard Unix Library (libc)

programs

Fig. 7. The layers of abstraction in a process that uses the recovery system.

section. The application should have a master-slave structure, where a single master process creates
all the slave processes and then explicitly establishes connections between those slaves that are to
communicate directly with each other. The functions provided by the message passing library are

summarized in Table V.B.1.

V.B.1 Requirements for the Master Process

Any program can be a master process, subject to the following restrictions. The creation of slave
processes and establishment of connections between them must be done during the system initializa-
tton phase. The master must explicitly end this initialization phase before the actual computation
begins. These restrictions on the structure of the program and the time at which processes may be
created and connected could be removed in the future. These restrictions are present to simplify
the implementation of the message passing library and are reasonable for relatively simple programs
such as the benchmarks used here. After the initialization phase, the master may execute freely and

call SendMsg, ReceiveMsg, or ForwardMsg at any time.
V.B.2 Requirements for the Slave Process
Any program can be a slave process if it calls that calls MsgPass_Slavelnit to initialize the

message passing library before calling any of the library’s other functions. In practice, a slave

program should communicate with the master through some common protocol. Since the master

47

creates slaves with Exec by giving the pathname of an executable program file, it is possible to use
a different program for each slave process. In the benchmarks applications used here, each slave
process is an instance of the same slave program, and the master program is different from the slave

program.

V.B.3 External Function Interface

The message passing library’s external interface consists of the functions listed in Figure V.B.1.

Each message is represented as a variable of type Message, as described in Section V.B.4.

V.B.4 Structure of a Message

The Message type, which is an argument to SendMsg and is returned by ReceiveMsg, is simply
a C structure whose first field (i.e. member) is of type MessageHeader. The MessageHeader type is

a structure with the following fields:

srcAddr, dstAddr — the source and destination Processld’s of the message, respectively. These

fields are filled in automatically by the message passing library.

forwardedFrom - if the message was not forwarded, this field has the value NOT_FORWARDED;
otherwise, this field contains the Processld of the process from which the message was for-

warded. The application can ignore this field.

msgType — an integer value that identifies the message’s type. The application must explicitly
set a value for this field. The application is free to use any value, but note that a message
with a type value less than or equal to Max_SystemMsgType is treated as a system message,
which means that the message is not delivered to the application. That is, ReceiveMsg will
never return a system message. Also, some type values have already been allocated for specific

purposes; see the file messages.h.

dataLen — an integer that gives the number of bytes of the message structure following the header
field that are to be sent with the message. The application must explicitly set this field. (the

value zero can be used for a message that has no data. The upper bound on datalen is given

MsgPass_MasterInit() must be called by the master process before the master calls any other
message passing library functions.

MsgPass_MasterInitComplete() should be called by the master process after it has finished
creating and connecting slave processes.

MsgPass_SlaveInit() must be called by a slave process before the slave calls any other message
passing library functions.

ProcessId MsgPass_GetLocalProcessId() returns the local process’s Processld.

int MsgPass_GetNumProcessesInSystem() returns the total number of processes to which the
local process is currently connected, including the master.

SendMsg(Processld dest, Message *msg) sends the given message to the process identified by
dest.

ForwardMsg(ProcessId dest, ProcessId originalSrc, Message *msg) sends the given mes-
sage to the process identified by dest; the message will appear to process dest to have been
sent from process originalSrc instead of from the local (forwarding) process.

Message *ReceiveMsg(ProcessId source, int type) blocks the local process until a message
of the given type is received from the process identified by source, and then returns that
message; if such a message was received before the function was called, then the first such
previously-received message is returned immediately. If ReceiveMsg is called with source =
ANYPROCESS, then the first message of the given type available from any process is returned.
Similarly, if type = ANYTYPE, then the first message from the given process is returned. If
both ANYPROCESS and ANYTYPE are specified, the first message available is returned.

int Exec(char *argv[], char *hostname) creates a new child process running the program given
by argu[0] on the processor given by hostname and establishes a connection between the child
process and the process that called Exec (the parent). Exec assigns a systemwide-unique
Processld to the child process and returns that value. After Exec returns, the parent can
address the child using the returned Processld, and the child can address the parent using the
special ProcessId value 0. The argv argument is an array of strings that begins at argv/0] and
ends at the first element of the argv array that is not equal to NULL. The first n non-NULL
array elements become the new process’s own argv command line arguments, and the new
process’s arge is set to n (the number of elements in the process’s argv). If hostname ==
“? then the processor allocator is used to select a host as described in Section V.B.7. In the
current implementation, Exec should only be called by a master process, and an application
should have only one master process.

ConnectProcesses(ProcessId pl, ProcessId p2) establishes a connection between processes
pl and p2. The calling process must already be connected to pf and p2. In the current
implementation, this function should only be called by the master process, and only during
the master’s initialization phase.

Figure V.B.1: Message passing library interface functions

49

by the constant MAX_MSG_PAYLOAD_SIZE, which is currently set to 16384 bytes (see the

file config.h).

SSN, RSN - the send sequence number and receive sequence number, respectively, of the message.

These are filled in automatically by the message passing library.

CCN - this field is only present if the coordinated checkpointing recovery protocol has been com-

piled into the message passing library. See Section V.C.4 for a description of the CCN value.

piggybackLen, piggybackPtr — These fields are only present if the piggybacking code is compiled

into the message passing library. Piggybacking is described in Section V.C.3.5.

A sample message structure is shown in Figure V.B.2. The application can define its own
messages, but every message structure should begin with a MessageHeader field. There can be any
number of additional fields. The implementation of SendMsg and ReceiveMsg cast every message to
a fixed-size structure that has an array of bytes immediately following the header field. The size of
that array, which is given by MAX_MSG_PAYLOAD_SIZE in config.h, determines the maximum

message data size.

typedef struct ProcessCreatedMsg {
MessageHeader hdr;
int newProcessId;
int newProcessCtrlPort;
unsigned long newProcessHost;
} ProcessCreatedMsg;

Figure V.B.2: An example message structure definition.

V.B.5 An Example Application Program

This section shows an example application that uses the message passing library. In this appli-
cation a master process starts a number of slave processes and sends a single message to each slave.
Each slave receives a single message from the master, sends a message to each remote slave, and

finally receives a message from each remote slave. Figure V.B.3 shows the master program, which

50

would be started as an ordinary Unix program (e.g. from a shell prompt), and Figure V.B.4 shows

the slave program, which is started by the master.

#include <msgpass.h>
main(int argc, char *argv[])

{

int i, j, NumSlaves;
Message msg; /* Message is a generic message type defined in msgpass.h */
MsgPass_MasterInit(&argc, &argv);
NumSlaves = 4;
/* the full pathname should be used by the application */
argv[0] = ‘‘/user/erniee/mp.solaris/gauss/slave’’;
argv[1] = NULL;
/* start processes 1, 2, 3, and 4 */
for (i=0; i < NumSlaves; i++)

Exec(argv, “‘’’);
/* establish a connection between every pair of slave processes */
for (i=1; i <= NumSlaves; i++)

for (j=i+1; j <= NumSlaves; j++)

ConnectProcesses(i, j);

MsgPass_MasterInitComplete();
msg.hdr.msgType = 10001; /* user-defined types should be >= 10000 */
msg.hdr.datalen = 0;
for (i=i; i= < NumSlaves; i++)

SendMsg(i, msg);

}

Figure V.B.3: An example master program

V.B.6 Internal Operation

This section presents high-level details of the message passing library’s internal operation.

V.B.6.1 Basic Data Types

The following data types are used by the message passing library:

ProcessId — values of this type identify processes (an integer)

Processorld — values of this type identify processors (an integer)

#include <msgpass.h>
#define SAMPLE_TYPE 10001
typedef struct SampleMessage {
MessageHeader hdr;
int number;
} SampleMessage;

main(int argc, char *argv[])
{

int i, NumSlaves; ProcessId LocalPid; SampleMessage *msgptr, msg;

MsgPass_SlaveInit(&argc, &argv);
NumSlaves = GetNumProcessesInSystem() - 1;
LocalPid = GetLocalProcessId();

/* receive a message from the master */

msgptr = (SampleMessage *) ReceiveMsg(0, SAMPLE_TYPE);

/* ReceiveMsg returns a pointer to heap storage that the caller must free */
free(msgptr);

/* initialize the msg variable */
msg.hdr.type = SAMPLE_TYPE;
msg.number = 1;

msg.hdr.datalen = sizeof(msg.number);

/* send a message to each remote slave */
for (i=1; i <= NumSlaves; i++)
if (i != LocalPid) {
msg.number = LocalPid * ij;
SendMsg(i, msg);
}
/* receive NumSlaves-1 messages (assume one from each remote slave) */
for (i=1; i < NumSlaves; i++) {
/* receive order is random here because a specific
* source address is not requested in the call to Receivellsg.
Alternatively, the call ReceiveMsg(i, SAMPLE_TYPE)
* could be used to make receive order deterministic.
*/
msgptr = (SampleMessage *) ReceiveMsg(ANYPROCESS, SAMPLE_TYPE);
printf(‘‘received msg from pid %d with number=Y%d\n’’,
msgptr->hdr.srcAddr, msgptr->number);
free(msgptr);

*

Figure V.B.4: An example slave program

52

V.B.6.2 Basic Data Structures

The message passing library maintains the following information at each process to support

process creation, connection establishment, and sending and receiving messages:

LocalProcessIdis the process identifier (a numeric value, of type ProcessID) of the local process.
Each process has a unique ProcessID by which all other processes identify it. ProcessID’s
are used as the source and destination addresses for message passing; SendMsg’s destination

address argument and ReceiveMsg’s source address argument are ProcessID’s.

LocalProcessorld is the processor identifier (a numeric value, of type ProcessorID) of the pro-

cessor on which the local process is running.

LocalHostName is a string that contains the host name of the processor on which the local
process is running. This name is an Internet host name (such as almond.cs.tamu.edu in the

current implementation.

LocallPAddr is the Internet Protocol address of the processor on which the local process is
running. Any one of the three variables LocalProcessorld, LocalHostName, or LocallPAddr is
sufficient to identify the local processor; the three different representations are present because

each is used at some place in the implementation.

The ConnectionTable contains an entry for each connection to a remote process. The Con-
nectionTable is currently implemented as an array indexed by Processld values, so Connec-
tionTable[j] contains the connection information for the local process’s connection to process j.
The value of ConnectionTable[LocalProcessId] is undefined. Specifically, The ConnectionTable

is an array of structures of type ConnectionTableEntry, each of which contains three elements:

— sockfd — the socket to use in communicating with process j

— serverPort — the port on which process j accepts new connections (in the local host’s byte

order)

53

— HostAddr — a structure of type sockaddr_in that contains the IP address of the processor

on which process j resides. This structure also contains j’s port (in network byte order).

The above variables are set during the system initialization phase.

V.B.6.3 Process Creation Protocol

The Exec function passes the following information to each new process via command-line argu-

ments:

e the new process’s Processld

the TP address and server port number of the master process

the Processorld of the new process’s processor

the number of processes that already exist on the new process’s processor

The slave’s server port is the sum of the master’s server port and the new process’s Processld.
The Exec function waits for a “ChildRunning” message from the new process before returning. The

entire Exec protocol is summarized in Figure 8.

V.B.6.4 Inter-Slave Connection Establishment Protocol

The inter-slave connection establishment protocol executed by the ConnectProcesses function is
summarized in Figure 9. Referring to the figure, the final two messages guarantee that the receiving
process assigns the correct remote process address to the connection, since the “accept from” and
“connect to” messages may be received in a different order than intended by the master at different
processes. If the “accept from” message shown here were to be received by pl after p2 attempted to
connect, the connection would still be established because ConnectSocketToServer will block until
AcceptSocketFromClient is called.

An alternative to the ConnectProcesses function would be a ConnectToProcess function that
takes a single argument j, where j identifies a remote process to which a connection will be es-

tablished. This alternative approach would allow a process to establish a connection on its own

54

Master Slave
Executing
Exec("ProgramName", processor|d) ‘
) |) 1 Blocking
rsh runs the given program on the given processor !
rsh to processorld y

AcceptSocketFromClient()
I

|)
anew process running "ProgramName" is created

mai n(;
M quass_Sl avelnitialize()
%wel nitialize()

ConnectSocketToServer()

socket connect

Time

socket connect complete

ReceiveM sg(type=ChildRunning)

SendM sg(type=ChildRunning)
ChildRunning msg

Process| nitM essages()
|

ReceiveM sg()

Exec complete }

master continues !

Slave receivess and handles initialization
msgs (from master) until InitComplete
message is received

InitComplete msg

Master begins
application computation Slave begins application computation

Fig. 8. Creating a new process with Exec

95

Slavepl Master Slave p2
processing init messages ConnectProcesses(pl, p2) processing init messages
ReceiveMsg() ‘ RecelveMsg()

SendM sg("accept from p2" to pl)

Executing

AcceptSocketFromClient() SendM sg("connect to p1's server port P' to p2)
|

(remaining master execution
not shown here)

ConnectSocketToServer(pl, port=P)

socket connect

Time

connection established socket connect complete

ReceiveMsg() connection established

SendM sg("connected to Local Processld")

srcAddr=p2 ReceiveMsy()

the source address (srcAddr) of the message |
is used as the process Id of the remote |
connection, and the connection table !
entry for that processis updated |
| |

SendM sg(" connected to Local Processld")

srcAddr=pl

the srcAddr of the message

is used as the process Id of the remote
connection, and the connection table
entry for that processis updated

Fig. 9. Establishing a connection between two slave processes.

56

initiative, without the need for a third process, and would allow connection establishment at any
time during execution. This approach would be straightforward to implement, but has not been
pursued here because it is not required by the benchmark applications. The ConnectToProcess
function would send a connection request message, designated as a system message, so that the
message passing library itself would process the request message (the processing would involve a
connection establishment protocol). The request message would not interfere with the application’s

operation because the message passing library does not deliver system messages.

V.B.7 The Processor Allocator

The message passing library is equipped with a rudimentary processor allocation mechanism that
keeps track of the available processors in the system and the number of processes allocated to each
processor.

The names of the available processors are all given in a host file that is read when the allocator
is initialized. The processor on which the allocator is initialized (i.e. the master’s processor) is also
part of the pool of available processes, even if its name does not appear in the host file. There is no
distinction between the master and slave processes for the purposes of allocation. Since a processor
corresponds to a workstation, each processor name is actually a workstation’s Internet host name.

The allocator provides the function GetNextAvailProcessor, which allocates processors according
to a simple policy of selecting the processor to which the least number of processes have previously
been allocated. Ties are broken consistently according to the order in which the processors appear

in the host file.

V.B.7.1 Processor Allocator Data Structures

The processor allocator uses the following data structures (the terms processor and host are used

interchangeably here):

NumFunctioningHosts : the number of hosts (i.e. processors) currently available to the allocator

(an integer).

57

FunctioningHosts : the names of the currently-available hosts (an array of strings)

NumProcessesAllocated : the number of processors currently allocated to each host, initially all

zero (an array of integers)

V.B.7.2 Processor Allocator Operation

The processor allocator must be initialized with a call to InitializeProcessorAllocator, which
returns the processor ID assigned to the calling process’s processor. InitializeProcessorAllocator
initializes FunctioningHosts to contain the hosts given in the file named hostfile. A name that is
listed in the file multiple times will only be included in FunctioningHosts once. The processor on
which the master is started 1s not treated specially; if it appears in the host file, 1t will be treated
the same as any other processor.

After initialization, each successive call to the function GetNextAvailProcessor will return the
name and Processorld of the processor to which the least number of processes have been allocated.
Thus, when GetNextAvailProcessor is called repeatedly, it will simply cycles through the hostfile.

If a specific processor is desired, the function AllocateToSpecificProcessor can be called to inform
the allocator that the caller is going to use a given processor. AllocateToSpecificProcessor incre-
ments the NumProcessesAllocated value that corresponds to the given processor name, and returns
the Processorld that corresponds to that name. The simple algorithm currently used by GetNex-
tAvailProcessor will not necessarily continue according to the ”"next least loaded” policy, since it
does not search the NumProcessesAllocated array for the minimum value. AllocateToSpecificPro-
cessor 1s not presently used by the message passing library, so such improvements to the allocator
were not pursued.

The processor allocator functions assume that they are called by a single master process, and

hence do not perform any inter-process coordination.

V.C Recovery System

The term recovery system refers to the collection of recovery protocols that are integrated with
the message passing library. The application need not be aware of the recovery system, though, for
simplicity, the recovery system code is presently stored in the same library as the message passing

code.

V.C.1 Interface to the Message Passing Library

The recovery protocol library is separated from the message passing library by the set of interface
functions shown in Figure V.C.1. These functions are part of the recovery library and are called
automatically by the message passing library for each message sent, received, or forwarded, as

appropriate.

Recov_Initialize() is called by the message passing library to initialize each process

Recov_HandleReceive(Message *msg) is called by the message passing library for each message
received

Recov_HandleSend(Message *msg) is called by the message passing library for each message
sent

Recov_HandleForward(Message *msg) is called by the message passing library for each mes-
sage forwarded; presently, Recov_HandleForward just calls Recov_HandleSend.

Figure V.C.1: Recovery system interface functions

Each recovery system interface function calls a corresponding function that implements the ap-
propriate action for a specific recovery protocol. So, for example, Recov_HandleSend(msg) calls
FBL_HandleSend(msg), where the latter function implements the section of the family-based
logging protocol that must be executed for each message sent. This level of indirection isolates the
recovery system from the message passing library by allowing the specific recovery protocols to be
changed without any changes to the message passing library functions. The diagram in Figure 10
illustrates these three levels of abstraction.

Adding a new recovery protocol to the system is simply a matter of writing the Initialize, Han-

dleReceive, and HandleSend functions for the new protocol, and modifying Recov_Initialize, Re-

59

Message Passing
Library

Recovery System
Interface Functions

Consistent Checkpointing Family-Based L ogging Another
Recovery Protocol Recovery Protocol Recovery Protocol

Fig. 10. Generic recovery system interface functions.

cov_HandleSend, and Recov_HandleReceive, respectively, to call the new functions.

Multiple recovery protocols can operate simultaneously if each interface function calls multiple
recovery protocol functions. Recovery protocols can be easily added to or removed from the recovery
system by adding or removing a function call in each of the interface functions. Presently the choice
of recovery protocols is made at compile time by conditional-compilation (#ifdef) directives in
these functions, so it is necessary to recompile to add or remove a recovery protocol. Alternatively,
the recovery protocol could be determined at run time for each process, but that possibility is left
as future work. Finally, since the specific recovery protocol can be changed without changing the
high-level interface, a change to the recovery system code should rarely require any change to the
message passing library.

V.C.2 Internal Operation
This section describes the details of the consistent checkpointing and family-based logging imple-

mentations. Both protocols communicate with the message passing library via the interface functions

(Initialize, HandleSend, and HandleReceive) described in Section V.C.1.

60

V.C.2.1 Basic Data Types

The following data types are used by the recovery system code:

e StateIntIndex — values of this type (integers) identify state intervals, send sequence numbers,

and receive sequence numbers

e LoggingSiteld — this type is equivalent to the Processorld type

e IntSet — a set of integer values (used for keeping track of sets of ProcessId’s, Processorld’s, or
LoggingSiteld’s)

V.C.3 Family-Based Message Logging Implementation

This section describes the portion of the recovery system that implements the family-based
message logging protocol 7, suggested by Alvisi and Marzullo [2]. They give a precise pseudocode
version of 7., so the main implementation issues are the choices of data structures to represent their
abstract set data structures (e.g. set of determinants, set of messages, information piggybacked on
a message, and set of ProcessId’s).

Since both the determinant log and send log must be of finite size, a long-running application
will fill them up. The best way to avoid log overflow is to periodically garbage collect the logs to
bound their length. Another approach is to flush the logs to stable storage, when they become full.
Prevention of log overflow is beyond the scope of this thesis !

A problem with the implementation of logging sites described here is that they store logs in
shared memory that has a system-imposed maximum size (e.g. one megabyte) that can only be
increased by the system administrator. Consequently, the implementation limits the size of the log

of sent messages to 860 kilobytes and size of the log of determinants to 100 kilobytes. 2

L Alvisi’s dissertation (currently in progress) addresses FBL garbage collection techniques.

2The maximum log sizes sizes are determined by constants SENDLOG _SIZE_BYTES and DET-
LOG_SIZE_BYTES in the file family-msglog.c.

61

V.C.3.1 Representing Sets of Integers

The InsSet type is implemented as a fixed-length array of bits. An IntSet contains the element
with value ¢ if the ¢th bit of the bit vector is set. If the range of element values is known to be
between zero and the number of bits in a machine word, then the bit vector can be represented as
a single machine word for quick access. Otherwise, the bit vector consists of multiple bytes and the
byte that contains a given bit must be calculated.

V.C.3.2 Determinant Log

The determinant log is an array of DetLogEntries, where a DetLogEntry is a determinant plus

a set, containing the Processld’s of the processes at which this determinant is known to be logged.

typedef struct DetLogEntry {
ProcessId source, dest;
SequenceNum ssn, rsn;
IntSet logged_at;

} DetLogEntry;

The determinant log is a fixed-length block of memory referred to as DetLog (its size is set by
the value of the constant DETLOG_SIZE_BYTES, which is currently 100 kilobytes).

If logging sites are not in use, DetLog is simply declared as an array

/* DETLOG_MAXENTRIES = DETLOG_SIZE_BYTES/sizeof(DetLogEntry) */

DetLogEntry DetLog[DETLOG_MAXENTRIES];

If logging sites are in use, DetLog is a pointer that is set in FBL_Initialize to point to a region of

shared memory:
DetLogEntry *DetLog; /* initialized in FBL_Initialize */

DetLogEntries are added to the DetLog with the help of the DetLog CurrentOffset, which is an
integer that can be stored either in the local process’s memory (no logging sites) or in shared

memory (when logging sites are in use).

62

int *DetLog_CurrentOffset = NULL;

Specifically, DetLog_CurrentOffset points to an integer value which is the number of determinants
currently stored in the DetLog. Each time a determinant is added, the value is incremented. The
function AddToDetLog adds a determinant to the log by copying the given determinant (newEntry)
to the log. If logging sites are in use, each process is assigned a region of shared memory to
which only that process writes and from which all other processes on the processor read without
synchronization. A region is implemented as a Unix shared memory segment identified by a small
integer. This partitioning of the shared log ensures mutual exclusion for modification operations.
AddToDetLog updates the region that is assigned to the local process. The count of log entries is
stored in shared memory along with the log, and is incremented only after each new log entry has

been made. The AddToDetLog function’s C language implementation is shown in Figure V.C.2.

AddToDetLog(DetLogEntry *newEntry)
{
currentDetLogEntryp = DetLog + *DetLog_CurrentOffset;
if (currentDetLogEntryp >= DetLogEndPtr) {
Error("AddToDetLog: DetLog is full\n");
/* free up some space (not implemented) */

}
memcpy (currentDetLogEntryp, newEntry, sizeof(DetLogEntry));

(*DetLog_CurrentOffset)++; /* added one DetLogEntry */

Figure V.C.2: The FBL. AddToDetLog function adds a determinant to DetLog

Finally, the PrintDetLog function is shown in Figure V.C.3 as an example of a function that
retrieves determinants from DetLog. If the log is shared among multiple processes, then the regions of
all processes on the local processor must be traversed. Each process has an array DetLog_Shmlds that
contains the shared memory segment identifiers of all regions on the local processor (DetLog_ShmIds

is initialized in FBL_Initialize).

PrintDetLog()

{
DetLogEntry *detLog, *detLogEntryp;
ProcessId p;
int *detLog_CurrentOffset, detLogBytes;

printf("--- DetLog contains:\n");

#ifdef LOGSITE_ENABLED
for (p=0; p < MAX_PROCESSES; p++) {
if (DetLog_ShmPtrs[p] != NULL) {
Debug((Level3, "Portion of shared log owned by process %d:\n", p));

detLog_CurrentOffset = (int *) DetLog_ShmPtrs[p];
detLog = (DetLogEntry *) (DetLog_ShmPtrs[p] + DETLOG_HEADER_SIZE);

currentDetLogEntryp = detLog + *detLog_CurrentOffset;
#else

detLog = DetLog;
#endif

for (detLogEntryp = detlog; detLogEntryp < currentDetLogEntryp;
detLogEntryp++) {

PrintDetLogEntry(dbglevel, detLogEntryp);
Debug((dbglevel, "\n"));
}

#ifdef LOGSITE_ENABLED

}

}

#endif
}

Figure V.C.3: PrintDetLog shows how the DetLog can be traversed.

63

64

V.C.3.3 Message Log

The SendLog resembles the DetLog, but the SendLog entries are variable length to accommodate
variable length message data. A send log entry is of the form e = (daia, ssn, dv, dest), and is
implemented with the SendLogEntry structure shown in Figure V.C.4. The SendLog itself is declared

in the same way as the DetLog.

typedef struct SendLogEntry {
int datalen; /* length in bytes of the data element */
/* total size of a SendLogEntry is sizeof(SendLogEntry)+datalen */
char *data;
SequencelNum ssn;
StateIntIndex dv[MAX_LOGGING_SITES];
ProcessId dest;
} SendLogEntry;

Figure V.C.4: SendLogEntries make up the SendLog, the log of sent messages.

Since SendLog entries may differ in length, accessing arbitrary elements involves starting at the
beginning of the SendLog and stepping through each entry, which requires advancing a pointer by
the number of bytes occupied by the entry. To allow new elements to be added quickly, the number of
bytes currently used in the SendLog is stored in a variable (called SendLog_CurrentOffset, which can
be either in local or shared memory, analogous to DetLog_CurrentOffset), so the memory location
at which the next entry should be added can be quickly calculated. Alternatively, a pointer to
the next available memory location in SendLog could be maintained, but that approach would not
interact well with the shared memory SendLog, which might appear in different memory locations
at different processes. The function AddToSendLog is similar to AddToDetLog.

V.C.3.4 Interface with the Message Passing Library

The functions FBL_HandleSend, FBL_HandleReceive, and FBL_HandleAck closely follow the
pseudocode given by Alvisi and Marzullo for handling a message send, receive, and acknowledgment,
respectively. To keep the amount of piggybacked information small, family-based logging requires
information about message acknowledgments. Unfortunately, that is not available from the TCP

protocol used here. Some approaches that the recovery system could use to determine when a

65

message has been acknowledged are:

1. An explicit acknowledgment message can be sent by the recovery system (using SendMsg) in
response to each application message. This i1s the approach currently used in the implementa-
tion. The FBL_HandleAck function is currently called directly by the message passing library
for each such acknowledgment message received. Alternatively, the explicit acknowledgments

could be sent less frequently. That possibility is left as a source of future work.

2. A weaker form of implicit acknowledgment, such as a “maximum received sequence number”
that the sender piggybacks on every application message to indicate the messages that it has
received from the destination process. This approach is feasible for FIFO channels if each pair
of processes exchanges messages at similar rates in both directions. If some processes exchange
messages rarely, the technique could benefit from an extension that transitively passes the

maximum RSN’s.

3. The message passing library could be changed to use a user-level transport protocol based on
UDP instead of the current TCP transport protocol. Then the user-level transport protocol

could directly call FBL_HandleAck.

V.C.3.5 Piggybacking

Piggybacking refers to the addition of information by a recovery protocol to application messages.
The piggybacked information is invisible to the application. The only information that family-based
logging piggybacks is a set of determinants to be logged at the receiver process. The implementation

of piggybacking uses the PiggybackData structure to refer to the information to be piggybacked:

typedef struct PiggybackData {
ListOfDeterminants dets;
/* additional elements can be added here for use by other protocols */

} PiggybackData;

66

The message passing library sends and receives the piggybacked data as part of the messages,
but the details of format of the piggybacked data are handled entirely by the recovery system
through the use of “data marshaling” functions. When the message passing library is ready to
write piggybacked data (in SendMsg), it calls the WritePiggybackData function for each application
(i.e. non-system) message. The ReadPiggybackData function “unmarshals” the piggybacked data
and must read data in the format written by WritePiggybackData. The message passing library
calls ReadPiggybackData for each application message. The SizeofPiggybackData function must
return the number of bytes occupied by a given PiggybackData variable. When a message is sent,
the number of bytes of data piggybacked on the message is set in a field of the message header to
be the value returned by SizeofPiggybackData for the PiggybackData variable associated with the
message. Extending the recovery system to piggyback additional data is simply a matter of adding
the new data’s type to the PiggybackData structure and adding the code necessary to marshal and

unmarshals the data to WritePiggybackData, ReadPiggybackData, and SizeofPiggybackData.

V.C.3.6 Logging Sites

The logging site implementation takes advantage of an idea suggested independently by Alvisi
and Marzullo [2] and Vaidya [30] to reduce message logging overhead when multiple processes share
the same processor. Vaidya’s suggestion assumes that at most one overlapping failure will occur,

and can be adapted for family-based logging as follows:

e Determinants need not be piggybacked onto messages sent between processes on the same
processor; instead, determinants are stored in a log in shared memory accessible to all processes

on the same processor.

e When a message is sent between processes on different processors, all determinants in the
shared log are piggybacked onto the message and the shared log is cleared when the message
is acknowledged. After that acknowledgment, those determinants have been logged and can

be retrieved to replay the sender’s execution if the sender fails.

67

e A coordinated checkpoint is periodically executed at each processor; only the processes that

reside on the same processor are included in the coordinated checkpoint.

V.C.3.7 Implementation of Logging Sites

Alvisi and Marzullo [2] suggest a similar approach that can be used with any family-based logging
protocol, although they do not consider checkpointing. They use the term logging site to refer to a
memory address space shared by multiple processes, and suggest that a logging site can correspond
to a processor shared by multiple processes. Whereas in ordinary FBL the set m.log 1s the set of
processes at which the message m is logged (see Section I1.D), in FBL with logging sites, m.log is
the set of logging sites at which #m is logged.

Modifying an FBL protocol to use logging sites involves replacing most references to Processid’s
with references to LoggingSitelds, and changing the HandleSend function so that the determinant
#m is not piggybacked on a message sent to a process ¢ when ¢ is known (by the sender) to be on
a logging site at which #m is already logged [2].

Specifically, Alvisi and Marzullo introduce the function L(p) to denote the logging site associated
with process p (this function is constant since processes are assumed to not move between logging
sites) and the function P(!) to denote the set of processes associated with logging site [. Finally, the
function PY(S) denotes all processes associated with the logging sites in the set S:

PY(S) = Uses P(D)

Now the FBL HandleSend function can be modified so that a determinant #m will not be
piggybacked on a message m’ sent to a process ¢ when q € PY(m.log). Furthermore, throughout the
FBL protocol (for example, when manipulating the logged_at set that is maintained for each entry
in the DetLog), references to a process p are replaced with L(p).

Assuming that some logging sites are associated with multiple processes, the performance trade-

offs are as follows:

1. Reduction in communication overhead, since the number of piggybacked determinants is re-

duced. Computation overhead may be slightly increased, however, because the PY and L

68

functions must be evaluated often. An efficient implementation should be able to reduce the

overhead of evaluating those functions so that they so not significantly impact performance.

2. Reduction in the total amount of memory used on a processor, since all processes on the
processor share a single log. Without logging sites, each process would have its own private
log. If there are n processes on a given processor, and each process uses a log size of k bytes,
then nk bytes will be required without logging sites, while only %k bytes will be required with
logging sites. The drawback of the shared logging site i1s that the partitioning scheme, which is
necessary to ensure mutually-exclusive log updates, imposes some computation and memory

overhead.

Thus, if shared memory accesses are as fast as ordinary memory accesses, logging sites should
be beneficial when communication and memory are relatively expensive compared to computation.
According to the performance results given in Section VI.C, logging sites do reduce the number of
determinants piggybacked on each message, but can actually decrease performance in some cases.
There is most likely still room for performance improvement in the implementation, which has not

been extensively optimized for performance.

V.C.3.8 Implementation in the Recovery System

The logging site implementation keeps track of logging sites in a table called LogSite_L_array.
The logging site table is initialized by calls to LogSite_AssociateProcess(l, p) to associate process
p with logging site [. For simplicity, the master is assumed to be the only process that calls
LogSite_AssociateProcess, and all such are assumed to occur during system initialization. That
limitation could be removed by extending LogSite_AssociateProcess to broadcast the new associ-
ation to all existing slaves. This problem is a case of the more general problem of maintaining
globally-shared data in a distributed environment. The problem is not significant for simple applica-
tion programs and is not addressed further here. Figure V.C.5 shows the LogSite_AssociateProcess
function. MasterInitialize calls LogSite_AssociateProcess to associate the master process with the

processor on which the master is running (which is always defined to be Processorld 0), and Exec

69

calls LogSite_AssociateProcess each time a new process is created.

LogSite_AssociateProcess(LoggingSiteId 1, ProcessId p)

{
/* set LogSite_L_array[p] to 1 for fast lookup of L(p) later */
LogSite_L_array[p] = 1;

}

Figure V.C.5: LogSite_AssociateProcess

LogSite_AssociateProcess is only executed at the master. When the master creates a new
process, it sends its logging site information to the new process in a LogSitelnit message, which
contains a LoggingSiteTable. When a process receives a LogSitelnit message, it copies the Log-
gingSiteTable from the message to its own local LoggingSiteTable variable. It is assumed that no
further LogSite_AssociateProcess calls will occur. That assumption could be lifted, however, by
modifying LogSite_AssociateProcess to broadcast every new association to all existing processes.
The explicit initialization phase currently used prevents any inconsistencies that might arise from
such dynamic state updates.

The function L(p), which returns the logging site associated with a given process p, is imple-
mented by a lookup into the array LogSite_L_array, in which L(p) = LogSite_L_array[p] = | for a
given valid ProcessId p and LoggingSiteld /. With LogSite_L_array, P(l) and PY(S) can be specified

as follows:

P(l) = {p|LogSite_L_array[p] = I}, (V.1)

PY(S) = {p|LogSite_L_array[p] € S}. (V.2)

PY(S) can be determined by the algorithm shown in Figure V.C.6, which is presently im-
plemented by the code shown in Figure V.C.7. This implementation is reasonably efficient if

MAX_CARDINALITY is small.

70

found — false
for each | € S do
if LogSite_L_array[p] = [then
found — true
stop the loop

Figure V.C.6: Determining P!Y(.5)

isMember = FALSE;
for (1=0; 1 < MAX_CARDINALITY; 1++)
if (GETBIT(S, 1) && LogSite_L_array[p] == 1) {
isMember = TRUE;
break;

}

Figure V.C.7: Tmplementation of PY(S)

V.C.4 Coordinated Checkpointing Implementation

The coordinated checkpointing protocol used in the implementation is based on that of Manetho
[7], with modifications to allow coordinated checkpointing to include only the processes on the
same processor. Different processors can choose to checkpoint independently of each other, so
checkpointing need not involve inter-processor communication. The system will still be recoverable
if message logging is done for inter-processor messages.

A coordinator process 1s a distinguished process that is responsible for initiating the consistent
checkpointing protocol.

At each process p there is a set called ProcessesToCkpt that contains the Processld’s of all the
processes to which the local processor must send marker messages. When the master process creates
a new process ¢, q is added to the master’s ProcessesToCkpt set only if g is the first process created
on ¢’s processor. Hence, at each processor, the first process created on that processor P is designated
the processor’s processor coordinator of P.

For each subsequent process p created on processor P, the master sends a message “Coordi-
nateProcess p” to the processor coordinator. When the processor coordinator receives “Coordi-

nateProcess p”, it adds p to its ProcessesToCkpt set.

71

The master process is the only process at which a periodic “alarm timer” automatically initiates
a coordinated checkpoint. A coordinated checkpoint is initiated by calling the function TakeConsis-
tentCheckpoint (which is done automatically at the master according to the checkpointing period).
TakeConsistentCheckpoint increments the local process’s CC'N (consistent checkpoint number) vari-
able, and then calls Checkpoint, which checkpoints the local process and all processes for which the
local process is the coordinator. Figure V.C.8 shows the code for TakeConsistentCheckpoint and
Checkpoint.

With this approach, the checkpointing policy used by processor coordinators can be modified
easily to allow them to autonomously determine when to initiate a coordinated checkpoint of the

processes on their processor (in that case the master would no longer send marker messages).

TakeConsistentCheckpoint ()

{
CCN++;
Checkpoint();
}
Checkpoint ()
{
checkpoint_here(); /* libckpt function that checkpoints local process */
/* if we are the coordinator for any processes, checkpoint them
* by sending marker messages to them
*/
if (numCkptProcesses > 0) /* # of processors in ProcessesToCkpt */
ConsistentCheckpoint (ProcessesToCkpt);
}

Figure V.C.8: TakeConsistentCheckpoint and Checkpoint

The function ConsistentCheckpoint sends a marker message to each process in the Processes-
ToCkpt set, as shown in Figure V.C.9.

Finally, the function ConsCkpt_HandleSend is called by Recov_HandleSend for each message
sent, and ConsCkpt_HandleReceive is called by Recov_HandleReceive for each message received.
ConsCkpt_HandleSend and ConsCkpt_HandleReceive are given in Figure V.C.10.

The marker message specified in the protocol is implemented by sending one byte of out-of-band

ConsistentCheckpoint (ProcessSet ProcessesToCkpt)
{

int 1i;

MarkerMsg marker;

ProcessId dstPid;

marker.hdr.datalen = sizeof (MarkerMsg) - sizeof(MessageHeader);
marker.hdr.msgType = Msg_Marker;
marker.hdr.CCN = CCN;

for each p in ProcessesToCkpt {
/* send out-of-band data to asynchronously notify receiver
* that a marker message is arriving
*/
send_oob_to_fd(ConnectionTable[p].sockfd, 00B_MARKER);

/* send the marker message */
SendMsg(p, (Message *) &marker);

Figure V.C.9: ConsistentCheckpoint

ConsCkpt_HandleSend(Message *msg)
{
if (OnSameProcessor(msg->hdr.dstAddr, LocalProcessId))
msg->hdr.CCN = CCN;
else
msg->hdr.CCN = 0; /* CCN=0: never cause a ckpt on a remote processor */

}

ConsCkpt_HandleReceive(Message *msg)

{
if (msg->hdr.CCN > CCN) {
/* msg’s CCN > local CCN: initiate a tentative checkpoint */

CCN = msg->hdr.CCN;

Checkpoint();
} else if (msg->hdr.CCN < CCN) {
/* msg is a cross-checkpoint message; log it */
X
b

Figure V.C.10: ConsCkpt_HandleSend and ConsCkpt_HandleReceive

72

73

data (with the value OOB_.MARKER) immediately followed by an ordinary message passing message
of type MarkerMsg. Out-of-band data is a feature of TCP; when out-of-band data is received, the
receiving process is immediately asynchronously interrupted and informed of the data’s arrival. This
asynchronous interrupt ensures that processes that have not called receive will process the marker
message. The arrival of a marker message causes a SIGURG Unix signal, which causes the operating
system to call the SIGURG signal handler function, which is defined by the message passing library
to call the appropriate message handling function based on the value of the out of band data. The
only value currently recognized is OOB_MARKER, which causes HandleMarkerMessage to be called.
HandleMarkerMsg is shown in Figure V.C.11.

If an application message arrives before a marker message with the same CCN value, then the
protocol specifies that the application message will cause the receiver to checkpoint. The corre-
sponding marker message should have no effect, so the implementation discards a marker message

that has a CCN less than or equal to the receiver’s CCN.

HandleMarkerMsg(MarkerMsg *markerMsg)
{
if (markerMsg->hdr.CCN > CCN) {
CCN = markerMsg->hdr.CCN;
Checkpoint();
} else
printf("HandleMarkerMsg: discarding marker msg\n");

Figure V.C.11: HandleMarkerMsg

The message passing library (SendMsg, specifically) automatically sets the CCN value in the
MarkerMsg’s header CCN to be the sender’s CCN (application message CCN’s are set in the same
way). The MarkerMsg type contains a redundant CCN field that is explicitly set by ConsistentCheck-
point (as shown in Figure V.C.9; this CCN field of MarkerMsg is present for clarity only and could
be removed.

Cross-checkpoint (“lost”) messages can be detected by comparing the CCN tagged on each

message to the receiver process’s CCN and logged at the receiver (i.e. treated as input messages, as

74

in Manetho [7]).

V.D Summary

The successful incorporation of multiple different recovery protocols (coordinated checkpointing
and family-based message logging) into the recovery system has shown that the system is indeed
extensible.

An application programmer can select any combination of recovery protocols by setting config-
uration options when the application is compiled. Protocols that are not desired are not compiled
into the application. The application is not required to call any recovery system functions, so the
recovery system is transparent to the application programmer. Instructions for running applications
and configuring the system are given in Appendix B.

As described in the next chapter, an actual application program that originally ran under
Manetho [7] on the V distributed operating system [6] has been successfully ported, with no signifi-

cant changes, to use the message passing library and recovery system.

75

CHAPTER VI

Performance Evaluation

VI.A Introduction

The performance of the recovery system implementation is evaluated here by comparing the
execution times of benchmark application programs executing with the recovery system to the exe-
cution times of the same programs executing without the recovery system. All measurements are of
failure-free execution.

The benchmark application used here, called gauss [10, 7], has been converted from Manetho
to use the message passing library. This application has a master-slave structure, in which a single
master process initializes the slaves and reports the total running time upon their completion.
gauss performs Gaussian elimination with partial pivoting. The problem is divided evenly between
all processes. At each iteration, the process that has the pivot element sends the pivot column
to all other processes. This application is compute-bound, i.e., computation is the performance
bottleneck, as opposed to communication. This chapter calls the size of the matrices the “problem
size” For example, a problem size of 128 means that 128 equations are being solved, and that each
of the matrices used by the program (of which there are three) contains 128x128 elements (a matrix
element is of type double, and the size of a double is eight bytes). When the problem size is 128,
each slave sends approximately 200 messages during an execution.

The primary performance metric is the failure-free overhead of the recovery protocol, in terms
of application execution time, number of messages, and message size.

All benchmarks were run on Sun SPARCstation-5s running Solaris 2.4. Each workstation has 32
megabytes of memory, and the network i1s a 10 megabit per second Ethernet. The term processor
used here corresponds to a single workstation, and each workstation has a single CPU. The program
code was compiled with the Sun acc compiler using the “O” optimization option. The master

process was run on a separate processor in all cases, so even the “one processor” cases actually used

76

Failure-Free Application Execution Time (seconds)
Configuration | Problem Size | Execution Time
4onl 128 8.4
4on2 128 11.9
4on2 1024 170.1
4on4 1024 92.67
8on8 1024 134.12
TABLE 1

Execution time of the gauss application with no recovery protocols.

two processors (one for the slaves, and another for the master).

The following system configurations were tested:

4on1 Four slaves, all executing on a single processor

4on2 Four slaves executing on two processors. Hence there are two slaves per processor.

4on4 Four slaves, each executing on a separate processor.

8on8 Eight slaves, each executing on a separate processor.

Table I gives the failure-free execution time of the gauss application for each of these configurations.
For a problem size of 1024, the 4on2 configuration requires 84 percent more time to run than the
4on4 configuration. That is likely because of the large memory size of the 1024 problem size (2.3
megabytes). Hence the execution time increases as the number of processes per processor increases.
Furthermore, the execution time increases as the number of processors are added, as shown by the
increase in execution time from 4on4 to 8on8. With gauss, as the number of processors increases, the
increased communication overhead outweighs the decreased computation overhead at each processor,

so speedup is negative.

VI.B Coordinated Checkpointing

The performance of the coordinated checkpointing implementation is summarized in Table II.

The Disk Type column indicates the type of disk to which the checkpoints were written. For the

77

Percent Increase in Failure-Free Application Execution Time
Disk Type | Configuration | Ckpt Size (MB) | Percent Increase
local 4on4 2.3 22.92

8on8 1.24 10.27
NFS 4on4 2.3 63.4
8on8 1.24 265.5
TABLE 11

The overhead of coordinated checkpointing, with a problem size of 1024 and intercheckpoint
interval of 60 seconds.

local disk, the checkpoints were written to /var/tmp, whereas for NFS the checkpoints were written
(all simultaneously) to a single shared network file system disk (on a SPARCstation-5 server). The
number of checkpoints, which is approximately three for these tests, is the running time divided
by the inter-checkpoint interval. None of the 1ibckpt library’s special options, such as forked or

incremental checkpointing, were used in these tests.

VI.C Family-Based Message Logging

Table IIT summarizes the increase in failure-free execution time caused by family-based message
logging (FBL) and family-based message logging with logging sites (FBL4+LOGSITE). In both cases
FBL is configured to tolerate at most one simultaneous failure. Logging sites maintain one (shared)
log on each processor, instead of the per-process logs maintained by ordinary family-based logging.
No checkpointing was done in these message logging tests. The percent increase shown for the 4on1
logging site case (6.9) was found by measuring an older implementation that used fewer shared mem-
ory segments but performed a file locking operation for each log access. The 4oni case could not
be tested with the current implementation because of an arbitrarily-imposed limit on the maximum
number of shared memory segments per process. The test could be done for the current implemen-
tation, with the help of root access privileges, which are necessary to increase the maximum number
of allowed segments.

The average number of determinants piggybacked by FBL on each application message is shown

Percent Increase in Failure-Free Application Execution Time

Configuration | Problem Size | FBL (f=1) | FBL+LOGSITE (f=1)

4onl 128 11.9 <6.9
4on2 128 11.8 71.5
TABLE III

The overhead of the implementations of family-based message logging.

Average number of determinants piggybacked per message

Configuration | Problem Size | FBL (f=1) | FBL (f=1) + LOGSITE

4onl 128 18.47 0
4on2 128 17.9 3.3
TABLE IV

Number of determinants piggybacked on each application message (each determinant is 20 bytes)

in Table IV. When all four processes are on the same processor, the logging site implementation

never piggybacks any determinants. '

VLD Profiling

Profiling is a method that collects statistics at run-time for the purpose of identifying functions
that dominate execution time. This section gives the results of profiling the failure-free execution of
one of the gauss application’s slave process with no recovery protocols, with family-based logging,
and with family-based logging augmented with logging sites. The profiling results are shown as
tables produced by the Unix gprof utility. Each table entry is the name of a function, and the
functions are sorted in decreasing order by percentage of total execution time. Time for which the
process was blocked or put to sleep by the operating system is not included in the times produced
by gprof. Thus profiling identifies the functions that are most computationally-intensive and that
use the most CPU time, but total execution time may also include additional time during which the

process was waiting for an event or resource.

!The single processor case cannot actually tolerate a failure and is included here to represent a
case where many processes share one processor in a multi-processor system.

79

The table columns have the following meanings:

self seconds — the total number of seconds spent in this function, not including time spent in any

other function

calls — the number of times this function was called

percent time — the percentage of the total running time of the process used by this function

cumulative seconds — a running sum of the number of seconds used by this function and all those

listed above it

self ms/call — the number of milliseconds for which a call of this function executed, on the average

total ms/call — the number of milliseconds for which a call of this function executed, including the

time for which its descendants executed, on the average

For the case of nonrecoverable execution, Table V gives the profiling results for four slaves sharing
a single processor and Table VI shows the results for four slaves with two processors (two slaves
per processor). Table V shows that the write and read system calls dominate execution time. The
sigprocmask function, which is also a source of significant overhead is used to disable and enable
signal interrupts. The Compute function is part of the underlying computation executed by the
slave process, and the mcount function is part of the profiling system. Notice that writing (sending)
is slower than reading (receiving). There is no obvious explanation for that difference, although a
protocol could be tuned to take advantage of the difference if it is a common phenomenon.

The results of profiling family-based logging are presented in Table VII, which is for a run with
four slaves sharing a single processor, and Table VIII, which is for a run with four slaves on two
processors. Logging sites should in principle be able to improve upon the performance shown in
these two tables, since in both cases multiple processes share a single processor.

According to Table VII, the most expensive FBL protocol functions are Update_Logged_Dets and

Log_New_Dets, but neither of those functions is overly expensive compared to the total execution

80

time. The implementation cannot exclude determinants that are known to be stable from consider-
ation for piggybacking. That is, the latter two functions must scan all determinants in the DetLog
to find those that must be piggybacked. Performance could be improved by a data representation
capable of excluding a determinant from the scan after the first time it is found to be stable, if such
a representation could be implemented with low overhead.

Finally, the results of profiling family-based logging with logging sites are presented in Table IX,
which is for a run with four slaves on two processors. The 4on1 case could not be tested because of
an arbitrarily-imposed limit on the maximum number of shared memory segments per processor as
described in Section VI.C. However, measurements of a previous implementation that used fewer
shared memory segments but performed locking show that performance increases noticeably as the
number of piggybacked determinants per message approaches zero.

Referring to Table IX| logging sites reduce the time spent in Update_Logged_Dets by more than
an order of magnitude. Log_New_Dets 1s also sped up. Hence determinant processing overhead in
general is reduced by the use of the logging site concept. The most obvious area for improvement
is IntSet_Cardinality, which currently runs in time O(MAX _SET_CARDINALITY) but could be
changed to run in time O(1) by storing the cardinality explicitly with each set. The total execution
time of IntSet_Cardinality is sufficiently small that the change was not considered important enough
to 1implement.

Overall performance has not been improved by the logging site implementation, although the
read and write system calls execute for less time with logging sites (because less data is piggybacked

on each message).

VI.E Analysis

Checkpointing has a small impact on performance when checkpoints are written to local disks,
but a much greater impact when checkpoints are written over the network simultaneously to a shared
disk. In the case of 8x8, writing the checkpoints to the shared disk slowed the application down by

a factor of 2.66. That same test shows that the overhead of eight processes writing checkpoints of

81

1.24 megabytes each is much greater than the overhead of four processes writing checkpoints of 2.3
megabytes each. This unexpected result is likely attributable to decreased throughput of the NFS
server caused by the greater number of simultaneous clients. Data block sizes transferred over the
network may get smaller and the number of interruptions of the server probably gets larger as more
clients are added. A detailed analysis of the NFS server itself would provide an explanation for this
result, but such an undertaking is beyond the scope of this thesis.

Checkpointing overhead can be reduced by decreasing the checkpointing rate, which is artificially
high here because of the short application run time. Forked and incremental checkpointing, which
are provided by 1ibckpt [19], would also improve performance,

The overhead of the family-based message logging implementation is around twelve percent
for the application tested, which is higher than average overhead of one to four percent of the
Manetho protocol [7, 10]. This implementation has not been tuned for performance, and can likely
be improved. The functions that deal with sets of integers (especially IntSet_Cardinality) can be
improved. Furthermore, the DetLog data structure could be replaced with a representation that
excludes determinants that are known to be stable from consideration in scans of the determinant
log.

In the 4on1 configuration, logging sites reduced the amount of piggybacked information to zero
and hence improved the performance of family-based logging. In the 4on2 configuration, although
logging sites reduced the amount of piggybacked information, they increased execution time by
nearly seventy percent. The overhead is in the computations performed to implement the logging
site protocol, as described in Section V.C.3.7. Further efforts should be made to improve the
implementation’s performance before discounting the logging site technique, however. There is a
good chance that their computational overhead can be reduced to the point where they never slow

down the application.

82

VILF Summary

The logging site implementation can in some cases improve the performance of family-based
logging.

The logging site protocol eliminates computational overhead in processing determinants, but the
overall performance gain is not large for the problem sizes tested. Larger problem sizes and values
of f should be tried to measure the full potential of the logging site concept. Specifically, a larger
value of f will cause many more determinants to be piggybacked per message, and the logging site
concept should be able to dramatically reduce the piggybacking overhead. An environment in which
communication is expensive, such as a wide-area network, could certainly benefit from the reduction
in piggybacked data that logging sites provide. A very communication-intensive application would
also be likely to benefit from logging sites.

Although the implementation does allow both message logging and checkpointing to be used at
the same time, the performance overhead of the combination was not measured because it is likely
to be the sum of the overheads of the two protocols. Hence that measurement is left as future work.
The tests run here are short, but their results are nonetheless informative. Longer-running tests
should also be tried, but they are left for future work. Longer-running tests can easily be run for
checkpointing by increasing the problem size. For message logging, however, a garbage collection
method will have to be implemented to deal with the problem of log overflow. The implementation
also allows arbitrary values of family-based logging’s f value (the maximum number of tolerable
overlapping failures), but the tests here are all for f = 1. The performance implications of larger

values of f should be investigated.

h

O OO O OO OO KR F WWWWWOL KOO O WOWO PO

O O OO0 OO0 O OO0 O0OO0OO0OO0 OO O NNNDNDNOLG-NO

.0

cumulative
seconds

W WwwWwwwwwowowowowowowwowowowowowowowowowowNnNe

.79

sel
seco

[remaining functions

O O OO0 OO O OO0 O0OO0OO0OO0 OO0 O0OO0OO0O OO0 O OO = =

£
nds

.00

contribute little

calls

199
128
786
2112
1417
262
133
18

2173
2108
1629
1627
1627
1627
1627
1087

794

self

16.67

O OO O O O O O

.00
.00
.00
.00
.00
.00
.00
.00
.00

O O OO O O O O O

TABLE V

total
ms/call ms/call

O O O O O O OO

O O WO O OO =

.00
.00
.00
.10
.00
.00
.00
.02
0.
to execution time]

01

_write [8]

_read [12]
_sigprocmask [14]
_poll [19]

_open [22]

_close [26]

_ioctl [27]

_stat [29]
Receivelsg [6]
Compute [35]

realloc [48]

__fabs [62]
_free_unlocked [52]
SendMsg [11]

strlen [60]
_sigfillset [63]
_mcount (443)
_moncontrol [69]
_mutex_lock_stub [191]
_mutex_unlock_stub [192]
_sigemptyset [193]
BlockSig [23]
UnblockSig [85]
_sigaddset [194]
_waitid [195]

malloc <cycle 2> [50]
free [58]

83

Profiling results for a nonrecoverable run (no recovery protocols present). Problem size=128, and
there are four processes, all on one processor

h

O O OO OO0 O OO0 O0OO0OO0OO0 OO0 OONWOLODOOLO®
O OO O OO O WWWWWWWWNN~NWWNDOL oo O

.0

cumulative
seconds

W W WwwwwwowowowowowowowwownNDhNDNDDNDNDDNDDNDNEe

.07

self self total

seconds calls ms/call ms/call
1.60 804 1.99 1.99
0.40 15 26.67 26.67
0.20 3270 0.06 0.06
0.20 798 0.25 0.25
0.20 389 0.51 0.51
0.16 199 0.80 7.74
0.10
0.07 128 0.55 0.55
0.02 782 0.03 2.14
0.02 781 0.03 0.40
0.02 331 0.06 0.06
0.01 1635 0.01 0.01
0.01 1088 0.01 0.02
0.01 786 0.01 0.01
0.01 425 0.02 0.04
0.01 58 0.17 0.28
0.01 2 5.00 5.02
0.01 2 5.00 31.97
0.01
0.00 2175 0.00 0.00
0.00 2112 0.00 0.00
0.00 2110 0.00 0.00
0.00 1637 0.00 0.00
0.00 1635 0.00 0.07
0.00 1635 0.00 0.00
0.00 1635 0.00 0.00
0.00 1418 0.00 0.00

[remaining functions

contribute little

TABLE VI

_write [7]
_open [11]
_sigprocmask [18]
_read [19]
_poll [20]
Receivelsg [8]
_getmsg [29]
Compute [30]
writen [6]
readn [12]
memcpy [39]
_sigaddset [49]

malloc <cycle 1> [41]

realloc [48]

search_pending_queue [44]

fread [43]
_endutxent [47]
_ttyname_r [31]
_mcount (441)

_mutex_lock_stub [184]

__fabs [185]

_mutex_unlock_stub [186]

_sigemptyset [187]
BlockSig [28]
UnblockSig [76]
_waitid [188]

_free_unlocked [54]

to execution time]

84

Profiling results for a nonrecoverable run (no recovery protocols present). Problem size=128, and
there are four processes, two per processor.

h

25.

O O OO0 OO0 O0OO0OO0OO0O0OO0OO0OO0CO KK L KEFNWOGO O
NNDNNDNDNDNDNDNNDNDOOONOOPR O ~NNNNOR L BPOO

.2

cumulative
seconds

[L T 2 B 2 TG 2 6 @ 6 2 TG 2 T @ & O O @ & O @ 2 6 2 & 2 N TS B S S VL IR VI (O)

.81

self self total

seconds calls ms/call ms/call
2.04 1203 1.70 1.70
1.50 1182 1.27 1.27
0.43 4666 0.09 0.09
0.30 388 0.77 0.77
0.30 11 27 .27 27 .27
0.29 195 1.49 1.53
0.19 195 0.97 1.07
0.16 199 0.80 19.15
0.10 16 6.25 6.25
0.10
0.08 128 0.63 0.63
0.06 79228 0.00 0.00
0.05 193 0.26 0.32
0.04 189 0.21 0.77
0.03 36776 0.00 0.00
0.03 1165 0.03 1.49
0.01 18156 0.00 0.00
0.01 4872 0.00 0.00
0.01 4101 0.00 0.00
0.01 3890 0.00 0.00
0.01 3371 0.00 0.00
0.01 2651 0.00 0.01
0.01 2333 0.00 0.00
0.01 2333 0.00 0.00
0.01 2217 0.00 0.01
0.01 1168 0.01 1.90
0.01 389 0.03 0.03

[remaining functions

contribute little

_write [8]

_read [11]
_sigprocmask [18]
_poll [21]

_ioctl [23]
Update_Logged_Dets [24]
Log_New_Dets [27]
Receivelsg [6]

_close [37]

_mcount (481)

Compute [42]
IntSet_Cardinality [47]
FBL_HandleSend [46]
FBL_HandleAck [32]
_thr_main_stub [56]
readn [10]

_fflush_u [69]
IntSet_Add [70]
IntSet_SetEmpty [71]
GetIndexOfArrMax [72]
_free_unlocked [65]
malloc <cycle 2> [54]
UnblockSig [77]
_sigaddset [78]
realloc [61]

writen [7]
Update_Eval_Help [75]

to execution time]

TABLE VII

85

Profiling results for FBL (no logging sites). Problem size=128, and there are four processes, all on
one processor.

h

O O OO OO O OO0 OO0 FF KFEFNMNNNWWWOGOO O
NNDNMNNDNMNDMNNMNNMNNDNSEPRPPONPEPEOONERE, O OONOOGOO

.2

cumulative
seconds

(S I T T IS S, TGS S, N TN T Y Y U Y Nt Nt "t Y Y SO SO SV SV I VI I

.10

self self total

seconds calls ms/call ms/call
1.91 1203 1.59 1.59
1.00 1184 0.84 0.84
0.41 4670 0.09 0.09
0.32 195 1.62 1.63
0.26 195 1.31 1.42
0.20 389 0.51 0.51
0.20 11 18.18 18.18
0.16
0.11 199 0.55 15.77
0.10 16 6.25 6.25
0.10 15 6.67 6.67
0.07 80700 0.00 0.00
0.06 128 0.47 0.47
0.05 193 0.26 0.34
0.02 18339 0.00 0.00
0.02 2335 0.01 0.01
0.02 1526 0.01 0.01
0.01 18346 0.00 0.00
0.01 4055 0.00 0.00
0.01 4021 0.00 0.00
0.01 2652 0.00 0.01
0.01 2195 0.00 0.00
0.01 1945 0.01 0.01
0.01 1168 0.01 1.78
0.01 389 0.03 0.54
0.01 195 0.05 0.05
0.01 190 0.05 0.58

[remaining functions

contribute little

name
_write [8]
_read [12]

_sigprocmask [17]
Update_Logged_Dets [19]
Log_New_Dets [20]

_poll [24]

_ioctl [25]

_mcount (479)
Receivelsg [6]

_close [36]

_open [37]
IntSet_Cardinality [40]
Compute [45]
FBL_HandleSend [41]
fflush [55]

UnblockSig [60]

memcpy [59]

_fflush_u [70]
_mutex_unlock_stub [75]
IntSet_SetEmpty [71]
malloc <cycle 2> [58]
realloc [68]

GetNthLargestElement [72]

writen [7]

_select [22]
Update_D [74]
FBL_HandleAck [33]

to execution time]

TABLE VIII

86

Profiling results for FBL (no logging sites). Problem size=128, and there are four processes, all on
one processor.

h

NNDNMNNMNNMNNMNNMNNDNNDNNDOOONO PP NINDRR0ONOO

O O OO OO O OO0 O0OO0OO0OO0O0OO0OO R KFHFNWPROO O

.2

cumulative
seconds

[T ST O O N Y O Y SO Y ST O N N N Y N Y N VIR S R SR S I U R

.43

self

seconds

[remaining functions

O O OO0 OO0 O0OO0ODO0OO0OO0OO0OO0OO0 OO0 O0OO0OO0O OO0 O OO O -

.01
contribute little

calls

128
200
60217
193
2028
189
1162
195
195
36417
17968
2985
2202
1093
968
389
389
262
261
190
128

self total
ms/call ms/call

.09
.60
.00
.31
.02
.16
.02
.10
.10
.00
.00
.00
.00
.01
.01
.03
.03
.04
.04
.05
.08

O O OO0 OO0 O OO0 O0OO0OO0OO0 OO OO O O =

TABLE IX

12

WO PR OOODODODOOOOO K OO OO0

.09
.45
.00
.37
.02
.58
.59
.18
.11
.00
.00
.01
.02
.01
.01
.82
.80
.09
.06
.23
6.
to execution time]

83

_write [8]

_read [13]

_sigprocmask [15]

_open [16]

_poll [20]

_mcount (492)

Compute [28]
NewReceivelMsg [6]
IntSet_Cardinality [35]
FBL_HandleSend [33]
realloc [40]
FBL_HandleAck [31]
writen [7]

Log_New_Dets [42]
Update_Logged_Dets [46]
_thr_main_stub [63]
_fflush_u [60]
_free_unlocked [44]
malloc <cycle 1> [39]
memcpy [61]
IntSet_SetEmpty [62]
Select [18]

_select [19]

SendMsg [9]
AllocateNewMsg [53]
WritePiggybackData [14]
ForwardMsg [12]

87

Profiling results for FBL with logging sites. Problem size=128, and there are four processes, two

per processor.

88

CHAPTER VII

Conclusion

The primary goals of this thesis work were to create a new implementation suitable for evaluating
recovery protocols in a distributed environment, and to investigate and develop new techniques for
efficient, transparent recovery.

A message passing library and the failure-free portion of a recovery system for standard Unix
workstations has been implemented, and the successful incorporation of multiple different recovery
protocols (coordinated checkpointing and family-based message logging) into the recovery system
has shown that the system is indeed extensible. The ease with which an application originally
written for a distributed operating system was converted to use the message passing library shows
that the implementation is reasonably complete and usable by application programmers.

The recovery system implementation also includes the first known implementation of the logging
site technique [2, 30] for maintaining message logs in shared memory.

Performance measurements of the implementation confirm previous claims that the overhead of
checkpointing can be low [8]. As has been observed by others, checkpointing performs well when
checkpoints are written to local disks, but can perform abysmally when several large checkpoints
are written to a shared disk simultaneously [31].

The overhead of the family-based message logging implementation is slightly greater than ex-
pected, but still reasonable. The logging site technique improves performance slightly when many
processors share a processor, but actually increases failure-free run time slightly when few processors
share a processor. The implementation’s performance can most likely be improved to bring those
results closer to expectations, and may improve as the problem size and value of f (the maximum
number of overlapping failures) increase.

A technique has been presented for allowing a process to alternately use message logging during

89

deterministic execution and checkpointing during nondeterministic execution, and reduces depen-
dency tracking overhead to that necessary to record dependencies on nondeterministic processes to
improve output commit performance. The concept of stateful dependency tracking, in which each
vector entry consists of both a state interval index and a state value, was defined as a generalization
of the nondeterministic dependency tracking.

The idea of reactive replication in message logging was also presented. This technique allows a
message logging protocol to tolerate multiple overlapping failures with no more failure-free overhead
than would be required to tolerate only a single overlapping failure, with the restriction that every
two failures must be separated by some minimal interval of time that is sufficient for the non-
failed process to prepare for another failure by replicating data crucial to the recovery of the failed
process. If the timing assumptions are met, the reactive technique eliminates the need to increase
the amount of information piggybacked by family-based logging when increasing the number of
simultaneous failures that can be tolerated.

Although performance was not measured experimentally for the either the nondeterministic or
reactive method, both methods decrease communication overhead and hence are likely to increase

failure-free performance.

VII.LA Future Work

The implementation should be extended to include the recovery portion of message logging and
coordinated checkpointing. Furthermore, the nondeterministic and reactive methods remain to be
implemented. The recovery system implementation should be tested with longer-running tests.

The problem of detecting failures in practice on a network of workstations should be addressed.
Since TCP timeout values are relatively large (greater than one minute), failure detection will likely
have to do its own polling of remote processors. It may be possible make use of the existing NFS
(Network File System) timeout mechanism, which uses frequent polling and has a relatively short
timeout value. The choice of timeout value could be made based on trial and error, or an analytical

model could be constructed to determine an optimal value.

90

A final area for future work is the choice of when to checkpoint to minimize both failure-free
overhead and rollback distance when the beginning and end of each period of nondeterminism are
known exactly, as they are with the BeginND and EndIND events. Some additional application-
provided information, such as an estimate of the frequency and duration of future intervals of

nondeterminism, would be useful in choosing the best time at which to checkpoint.

91

APPENDIX A

The Simulated Fail-Stop Protocol (Sim-FS)

A.A Introduction

This appendix summarizes the work of Sabel and Marzullo [23] relevant to simulating the fail-
stop model in asynchronous systems. The Sim-FS protocol can be used with the reactive replication
technique, as described in Section IV.G. This appendix is present to provide some background
information on the Sim-FS protocol.

The fail-stop model [25] requires that two conditions be satisfied in any run of the system:
FS1 The failure of a process is eventually detected by all processes that do not crash
FS2 No false failures are detected

Sabel and Marzullo show that in an asynchronous system with crash failures, it is impossible to
implement both FS1 and FS2. However, they describe a model, called simulated fail-stop (sFS)
that is “indistinguishable” from fail-stop and can be implemented in an asynchronous system. The
sF'S model consists of the FS1 condition and four new conditions that are weaker than, and replace,

FS2. The four new conditions are:

sFS2a If process ¢ detects that process j has crashed, then eventually 7 will crash even if #’s detection

was erroneous

sFS2b The failed-before relation must always be acyclic

sFS2c A process never detects its own failure

sFS2d Once 7 detects the failure of j, then any subsequent messages sent by ¢ to any process k will

not be received until £ has also detected the failure of j.

92

A.A.1 Lower Bounds for Protocols Implementing sFS

Sabel and Marzullo give the following lower bounds on message complexity and replication for
failure detection protocols that implement sF'S.

In a one-round protocol, a process 7 exchanges one round of messages with other processes before
deciding that a process j has failed. Thus a single process cannot unilaterally detect the failure
of another process. If a unilateral decision were allowed, then a limit would be imposed on the
processes that another process could detect as faulty.

When a process suspects that another process may have failed (e.g. because of a communication
timeout), the suspecting process initiates a failure detection protocol. A round consists of two
phases: in the first phase, a message is sent by process i to all other processes, followed by a second
phase in which processes send an acknowledgment message to 7. The first message is called SUSP; ;
and the acknowledgment message is ACK.SUSP; ;. When the failure-detection protocol completes,
the initiator 7 will either become crashed itself or decide that j has failed.

A one-round protocol for sF'S must ensure that cycles do not occur in the failed-before relation,
which means that in any run there must be at least one process that participates in all failure
detections. Furthermore, a process a that suspects the failure of process b cannot communicate with
b directly, because b may have crashed. Instead, the failure detection protocol must enlist the help
of other processes. Process @ must receive information from enough other processes to be sure that
process b has not decided that a has failed, and @ must also distribute information to enough other
processes to be sure that if a decides that b has failed, then b will not subsequently decide that a
has failed. The information that a must distribute is “a suspects the failure of b.” Since a must
know that this information has been received by other processes, it must receive messages from other
processes acknowledging that the failure of b is suspected.

The quorum set Q;; of failed;(j) is defined as the set of processes from which 7 has received
acknowledgment messages relating to its suspicion of j’s crash. The set Q43 must be large enough

to ensure that after b hears from Qsq, b will not execute failedy(a). That requirement is satisfied

93

when the intersection of the sets Q43 and @, is not empty. Sabel and Marzullo call that property
the Witness Property (W) because the quorum sets for any two failure detections must share a
common witness process (that means there must be a process w that is in the quorum set of all
failure detections).

Let ¢ denote the maximum number of crashes in any run, including those that arise from erroneous
suspicions. Note that Sabel and Marzullo define ¢ to apply to an entire run. However, in a system
with processes that recover, ¢ should be the maximum number of simultaneously-crashed but not
recovered processes (i.e. overlapping crashes). The Witness Property constrains ¢ as described
below.

A one-round protocol can ensure that W holds by requiring a process to wait for a response from
every other process, except those that are suspected to have failed, before detecting a failure. A
process that never fails and is never suspected of failing will be a witness to every failure detection
that i1s executed. Although this protocol only requires that ¢ < n, it also requires the initiating
process to wait an amount of time proportional to the number of processes in the system (n).

In a second possible implementation, a process is required to wait for a fixed, predetermined
number of responses before detecting a failure. The size of the quorum for which a process must
wait is thus reduced at the expense of a stronger restriction on the number of failures that can occur.
Specifically, when the quorum set is of fixed and equal size for each failure detection, the size of each
quorum set must be strictly greater than ﬂtt;ll Furthermore, if that minimum quorum size is used

in a one-round protocol, then n > ¢? must hold [23].

94

APPENDIX B

Running the System

This appendix contains some information about using the implementation in practice.

B.A Operation

A program that uses the message passing library must initialize itself as a master and start
slaves by calling Exec. Although the same program could be used as a master and slave (with an
internal if statement to distinguish the two cases), it seems simpler to separate the master and slave
into two different programs. Hence, the application is started by running the master program after
everything has been compiled. The names of the remote workstations to use must be specified in
the file hostfile, one per line.

If the preprocessor symbol EXEC_IN_XTERM was defined when exec.c was compiled, then a
separate xterm window will be created for each slave process. In this case the remote workstations
must have permission to open the local workstation’s display, which can be set with xhost +. If the
master is being run on a different workstation than the local display, then the environment variable
MPDISPLAY should be set to the local display name (there does not seem to be any reason not to

simply use DISPLAY instead of MPDISPLAY; exec.c would have to be modified to do that):
setenv MPDISPLAY vanilla:O

tells the message passing library to open the windows on vanilla.

To enable debugging, the line
DBG=-g -DRUN_DEBUGGER

should be present in the Makedefs file in the root of the source tree. When RUN_DEBUGGER is
defined, each child (slave) process will be started under the debugger specified in msgpass/config.h

(DBX or GDB). When each slave window opens, it is necessary to type the run command printed

95

by the master (or simply copy the command using the X paste buffer). To debug the only master,
RUN_DEBUGGER need not be defined, and the master can be started by dbx master and then
run argl arg2 ... argh.

If the application is run twice within a short period of time, the socket may not be bindable.
The present solution for that problem is an environment variable that allows the port number to be

changed manually:

setenv SERVPORT XXXX

After typing that at a shell prompt, the application can be run. The value XXXX should be greater
than the previous value plus the number of processes in the previous run. An alternative approach
is to modify the code that does the bind in msgtcp.c to keep trying larger port numbers until the
bind succeeds.

Profiling can be done by adding the line

PROFILE=-pg

to the Makedefs file, defining PROFILE in exec.c, and recompiling. When the application is run, each
slave must run in a separate directory, because the profiling data will be dumped to the current
directory when a slave exits. The solution used here is to create a subdirectory named with the
Processld of each slave that will be created. These subdirectories must be created manually, and the
PROFILE symbol in exec.c causes the slaves to be started in them. In each directory there must be
a symbolic link to the slave binary in the parent directory. The slaves will need to be told where to
find there data files, which can be done by specifying names like . ./a128 when starting the master,

or by making a symbolic link to each necessary file in each subdirectory.

cd gauss
for i in1 23 4
mkdir $i

cd $i

96

1n -s ../slave .
cd ..

done

Now, after the application finishes, there will be a file called gmon. out in each slave subdirectory.

To translate gmon.out to a readable file:

cd 1

gprof slave > profile.N.S.config

where N, S, and config would identify the specific run (i.e. problem size N, S slaves, and recovery
protocol configuration). The profiling information will not include times for which the process was
blocked by the operating system and not using the CPU.

To enable specific recovery protocols, edit the Makedefs file:

RECOV=-DORDINARY_CONSCKPT -DORDINARY_FBL -DLOGSITE_ENABLED

enables all the protocols that presently have been implemented. A protocol can be removed by
removing the appropriate -D option. The 1ibckpt library is linked in if the substring CKPT appears
in RECOV.

The Debug macro used in the code is defined in debug.h to call the function DebugPrint (defined
inutil.c when PRODUCE_DEBUG_OUTPUT is defined, and to do nothing otherwise. The first ar-
gument to Debug is a numeric verbosity level; the convention adopted here is that a smaller verbosity
level should produce less output. The current verbosity level is controlled by VERBOSITY_LEVEL
in config.h. Debug statements with a verbosity level argument greater than the current verbosity
level will produce no output. The output appears in the log file associated with DebugFP.

Finally, a summary of RCS commands appears below. RCS revisions are stored as files in the
RCS subdirectory of the current directory, which is a symbolic link to a corresponding RCS directory

in the actual source tree. The current directory should be part of a “build” (i.e. “work” tree).

97

co file — check out the most recent version of the file without acquiring a lock (the checked out file

will not be writable)

co -1 file — checkout the most recent version of the file and acquire a lock (makes the file writable)

co -rX.Y file — check out version X.Y without acquiring a lock

ci file — check a file in and unlock it (the file will be deleted from the current directory)

ci -u file — check a file in and unlock it (the file will remain in the current directory, but will not

be writable)

rcs -i file — initialize a newly-created file for use with RCS

rcs -u file — unlock the file (does not change the file’s access permissions)

rcs -1 file — lock the file (does not change the file’s access permissions)

rcs -0X.Y file — delete (i.e. “obsolete”) revision X.Y

rcsdiff file — show differences between the file in the current directory and its most recent checked

In version

rlog file — show the file’s RCS log

[1]

98

REFERENCES

Lorenzo Alvisi, Bruce Hoppe, and Keith Marzullo. Nonblocking and orphan-free message log-
ging protocols. In Digest of Papers: The 23rd International Symposium on Fault-Tolerant

Computing, pages 145154, June 1993.

Lorenzo Alvisi and Keith Marzullo. Optimal message logging protocols. Technical Report
TR94-1457, Cornell University Department of Computer Science, September 1994. Some sec-
tions are to appear in ICDCS-15 with the title Message Logging: Pessimistic, Optimistic, Causal
and Optimal, and others have been submitted to FTCS-25 with the title Trade-Offs in Imple-

menting Optimal Message Logging Protocols.

B. Bhargava and S. R. Lian. Independent checkpointing and concurrent rollback recovery for
distributed systems — an optimistic approach. In Proceedings of the 7th Symposium on Reliable

Distributed Systems, pages 3-12, October 1988.

A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault tolerance under UNIX.

ACM Transactions on Computer Systems, 7(1):1-24, February 1989.

K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed

systems. ACM Transactions on Computer Systems, 3(1):63-75, February 1985.

D.R. Cheriton. The V distributed system. Communications of the ACM, 31(3):314-333, March

1988.

Elmootazbellah N. Elnozahy. Manetho: Fault Tolerance in Distributed Systems Using Rollback-

Recovery and Process Replication. PhD thesis, Rice University, Houston, Texas, October 1993.

Elmootazbellah N. Elnozahy, David B. Johnson, and Willy Zwaenepoel. The performance of
consistent checkpointing. In Proceedings of the 11th Symposium on Reliable Distributed Systems,

pages 39-47, October 1992.

[9]

[11]

[13]

[18]

99

Elmootazbellah N. Elnozahy and Willy Zwaenepoel. Manetho: Transparent rollback-recovery
with low overhead, limited rollback, and fast output commit. IEEE Transactions on Computers,

41(5), May 1992.

Elmootazbellah N. Elnozahy and Willy Zwaenepoel. On the use and implementation of message
logging. In Digest of Papers: The 24th International Symposium on Fault-Tolerant Computing,

June 1994.

Yennun Huang and Yi-Min Wang. Why optimistic message logging has not been used in

telecommunications systems. Submitted to FTCS-25.

D. B. Johnson. Distributed System Fault Tolerance Using Message Logging and Checkpointing.

PhD thesis, Rice University, December 1989.

D. B. Johnson and W. Zwaenopoel. Sender-based message logging. In Digest of Papers: The

17th International Symposium on Fault-Tolerant Computing, June 1987.

D. B. Johnson and W. Zwaenopoel. Recovery in distributed systems using optimistic message

logging and checkpointing. Journal of Algorithms, 11(3):462-491, September 1990.

David B. Johnson. Efficient transparent optimistic rollback recovery for distributed applica-
tion programs. In Proceedings of the 12th Symposium on Reliable Distribied Systems, October
1993. Also available as Computer Science Technical Report CMU-CS-93-127, Carnegie Mellon

University.

T. Juang and S. Venkatesan. Crash recovery with little overhead. In Proceedings of the 11th

International Conference on Distributed Computing Systems, pages 454-461, May 1991.

R. Koo and S. Toueg. Checkpointing and roll-back recovery for distributed systems. [EFEE

Transactions on Software Engineering, SE-13(1):23-31, January 1987.

Kai Li, Jeffrey F. Naughton, and James S. Plank. Checkpointing multicomputer applications.

In Proceedings of the 10th Symposium on Reliable Distributed Systems, pages 2-11, September

[19]

[21]

[25]

100

1991.

James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent checkpointing

under Unix. In Proceedings of the Winter Useniz Conference, 1995.

M. L. Powell and D. L. Presotto. Publishing: A reliable broadcast communication mechansim.
In Proceedings of the 9th ACM Symposium on Operating System Principles, pages 100-109,

1983.

B. Randell. System structure for software fault tolerance. IEFEFE Transactions on Software

Engineering, SE-1(2):220-232, June 1975.

D. L. Russell. State restoration in systems of communicating processes. IEEFE Transactions on

Software Engineering, SE-6(2):183-194, March 1980.

Laura S. Sabel and Keith Marzullo. Simulating fail-stop in asynchronous distributed systems.
Technical Report TR94-1413, Cornell University Department of Computer Science, June 1994.
Versions appear in Proceedings of the 13th Annual Symposium on Principles of Distributed
Computing, August 1994, and Proceedings of the 13th Symposium on Reliable Distributed

Systems, October 1994.

R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach to designing fault-
tolerant computing systems. ACM Transactions on Computer Systems, 1(3):222-234, August

1983.

Fred B. Schneider. Byzantine generals in action: Implementing fail-stop processors. ACM

Transactions on Computer Systems, 2(2):145-154, May 1984.

A. P.Sistlaand J. L. Welch. Efficient distributed recovery using message logging. In Proceedings
of the 8th Annual ACM Symposium on Principles of Distributed Computing, pages 223-238,

August 1989.

[27]

[29]

[31]

[32]

101

Madalene Spezialetti and Phil Kearns. Efficient distributed snapshots. In Proceedings of the

6th International Conference on Distributed Computing Systems, pages 382-388, May 1986.

R. E. Strom, D. F. Bacon, and S. A. Yemini. Volatile logging in n-fault-tolerant distributed
systems. In Digest of Papers: The 18th International Symposium on Fault-Tolerant Computing,

pages 44-49, June 1988.

R. E. Strom and S. A. Yemini. Optimistic recovery in distributed systems. ACM Transactions

on Computer Systems, 3(3):204-226, August 1985.

Nitin H. Vaidya. Some thoughts on distributed recovery (preliminary version). Technical Report

94-044, Texas A&M University Department of Computer Science, June 1994.

Nitin H. Vaidya. A case for two-level distributed recovery schemes. In Proceedings of SIG-
METRICS/Performance, 1995. Also available by anonymous ftp to ftp.cs.tamu.edu, directory

pub/vaidya.

Y.-M. Wang and W. K. Fuchs. Optimistic message logging for independent checkpointing
in message-passing systems. In Proceedings of the 11th Symposium on Reliable Distributed

Systems, pages 147-154, October 1992.

Jian Xu and Robert H. B. Netzer. Adaptive independent checkpointing for reducing rollback
propagation. In Proceedings of the 5th IEEE Symposium on Parallel and Distributed Processing,
December 1993. Also available as Technical Report CS-93-25, Brown University Department

of Computer Science.

