
Comparison of Duplex and Triplex Memory ReliabilityNitin H. Vaidya1Abstract A large number of choices exist when designing a reliable memory sys-tem. The choices range from simple replication to complex error control codes (ECC). Anintermediate solution is to use combination of replication and simple ECC. Such a systemconsists of multiple memory modules, data stored in each module being encoded using anECC. This paper compares reliability of memory systems formed using simple triplication(without ECC) with memory systems formed by duplicating memory modules that use ECC.It is shown that reliability achieved by duplication of memory modules using codes capableof only error detection or only single error correction (SEC), is always worse than simpletriplication. However, it is also shown that duplication of memory modules, with codes ca-pable of single error correction and double error detection (SEC-DED), can achieve betterreliability than simple triplication when bit error probability is small.Index Terms: Reliability, replication, coding, modular redundancy.1. IntroductionA large number of choices exist when designing a reliable memory system. The choicesrange from simple replication to complex error control codes (ECC) [3]. Simple replication(without ECC) can achieve a better performance as compared to systems using ECC, becauseECC necessitate decoding. An intermediate solution is to use combination of replication andsimple ECC. Such a system consists of multiplememorymodules, data stored in each modulebeing encoded using an ECC. A similar approach has been used in commercial systems [1].Reliability of memory systems formed by simple triplication (without ECC) is com-pared here with that of memory systems formed by duplicating memory modules that useECC. These two systems, referred to as triplex and duplex systems, respectively, are illus-trated in Figure 1. The triplex system in Figure 1(a) is formed by simple triplication ofmemory modules that do not use any error control coding. The memory system outputis obtained by bit-wise voting on the output of the three modules in the triplex system.The duplex system in Figure 1(b) consists of two identical memory modules. Each memorymodule uses an (n; k) error control code. Encoded outputs of the two modules are available1Department of Computer Science, Texas A&M University, College Station, TX 77843-3112.



to a voter that can decode the outputs of the two memory modules. The exact function ofthe voter in duplex systems will be de�ned more precisely in Section 3.
voter

bit-wise

k

nn

k

kk
k

voter

module 2
memory

module 1
memory

module 3
memory memory

module 2module 1
memory

(includes decoders)

(a) triplex system (b) duplex systemFigure 1: Triplex and duplex memory systemsThe objective here is to determine the minimum capability required in the ECC suchthat the duplex system can achieve a higher reliability than the triplex system. To ourknowledge, such an analysis has not been carried out before. The work presented here ismotivated by our previous research on modular redundant system reliability and safety [7].Capability of an ECC is characterized by the number of errors it can correct anddetect. A t1-error correcting-d1 error detecting code is said to be less capable than a t2-errorcorrecting-d2 error detecting code if (i) t1 < t2 or (ii) t1 = t2 and d1 < d2. Reliability of thetriplex system is compared here with duplex systems that use error control codes (ECC) ofthree di�erent capabilities:� Error detection only.� Single error correction (and no error detection, i.e., more than one error isassumed to result in erroneous decoding).� Single error correction and double error detection (SEC-DED).In the following sections, an expression for the reliability of the triplex system ispresented, followed by evaluation of reliability of the three duplex systems and comparisonwith the triplex system. Although the analysis is somewhat lengthy, it leads to the interestingconclusion that the duplex system must incorporate at least a SEC-DED code before it canachieve higher reliability than the triplex system.2



2. Reliability of the Triplex SystemFor reliability analysis, we use the independent symmetric error model [4]. It is assumed thateach bit in memory may become erroneous independently with probability p. In practice,bit error probability p is expected to be quite small. Each data word contains k bits. Letthe number of words in the memory be W , i.e., let each memory module contain W words.Reliability of the voters is not included in our analysis; we will discuss the e�ect ofvoter reliability in Section 4. Note that reliability is evaluated here using error probability,not failure probability. The two probabilities are di�erent, as a failure does not necessarilyresult in an error.2 Also, our analysis does not take into account compensating failures3 [5].De�nition Reliability RS of a memory system S is de�ned as the probability that all wordsin the memory system can be accessed correctly.A data word contains k bits, therefore, the probability that a given word in the triplexsystem can be accessed correctly is [3]R�triplex = h(1� p)3 + 3p(1 � p)2ik = (1� p)2k(1 + 2p)k (1)Therefore, reliability of the triplex system is given by Rtriplex = (R�triplex)W .3. Reliability of Duplex SystemsThis section evaluates reliability of three di�erent types of duplex systems and comparesthem with the triplex system.3.1 Duplex system using error detecting codesIn this section we show that the reliability achieved by a duplex system, using an ECC forerror detection only, is always less than the triplex system. Let the reliability of the duplexsystem under consideration in this section be denoted by Rduplex1. Each memory module inthe duplex system uses an (n; k) error detecting code. Let Pu denote the probability that an2For example, a stuck-at-0 failure will not cause an error if the memory location contained 0.3Compensating failures occur in the triplex system, for example, when a bit in one module is stuck-at-0and the corresponding bit in another module is stuck-at-1. The system will produce correct output in thissituation, even though two modules are faulty. 3



undetected error occurs in a codeword of this code. The function of the voter in this systemis as follows: When a word is to be read from the memory, the corresponding codewordsfrom the two memory modules are provided as input to the voter. The voter decodes thetwo codewords to detect errors. If errors are detected in both codewords, then the voterdoes not produce any data. If exactly one codeword is detected to contain an error, then theother decoded codeword is produced as output. If neither codeword is detected to contain anerror, then any one decoded codeword is produced as the output. This voter will maximizethe reliability under the constraint that each codeword is to be used only for error detection.With such a voter, the reliability is given by Rduplex1 = (R�duplex1)W , whereR�duplex1 = (1� p)2n + 2 (1 � Pu � (1 � p)n) (1� p)n + 12 2(1 � p)nPu (2)= (2� Pu)(1� p)n � (1� p)2n (3)In Equation 2, (1 � p)2n is the probability that both codewords are error-free. The term2 (1� Pu � (1� p)n) (1 � p)n is the probability that one of the codewords contains a de-tectable error and the other codeword is error-free. The term 12 2(1 � p)nPu corresponds tothe probability that one of the codewords contains an undetectable error, the other codewordis error-free and the voter chooses the error-free codeword. Note that in this situation, thevoter will choose the error-free codeword with probability 12 .The theorem below states that triplex memory reliability is larger than that of aduplex system using ECC for error detection only.Theorem 1 When 0 < p < 1=2, Rduplex1 is smaller than Rtriplex independent of the errordetecting code used in the duplex system.To be able to prove the theorem, we �rst prove the following lemma.Lemma 1 (1� p)2k�n(1 + 2p)k + (1� p)n > 2 provided 0 < p < 1=2, n � 2 and k + 1 � n.Proof: Assume that 0 < p < 1=2, n � 2 and k + 1 � n. Let function g(k; n; p) =(1� p)2k�n(1 + 2p)k + (1 � p)n. Then,@g@k = (1 � p)2k(1 + 2p)k(1 � p)n ln[(1� p)2(1 + 2p)]:4



As 0 < p < 1=2, 0 < (1 � p)2(1 + 2p) < 1, and it follows that @g@k < 0. Thus, g is amonotonically decreasing function of k. Therefore, we will choose the largest possible valueof k, i.e., k = n�1, and show that g is larger than 2 for this value of k. When k = n�1, wehave g(n�1; n; p) = (1�p)n�2(1+2p)n�1+(1�p)n = [(1�p)(1+2p)]n�2(1+2p)+(1�p)n .Let function f(n; p) = g(n� 1; n; p). Thus, our goal now is to prove that f(n; p) > 2. Now,@f@n = (1� p)n�2(1 + 2p)n�1 ln[(1� p)(1 + 2p)] + (1� p)n ln(1 � p):To �nd the extrema of f , we set @f@n = 0. This implies that, at the extrema (i.e. minima ormaxima), (1 + 2p)n�1 = �(1� p)2 ln(1� p)ln[(1� p)(1 + 2p)] :This equation can hold for only one real value of n. Thus, there exists only one extrema off with respect to n. Looking at f(n; p) it is clear that by increasing n, f(n; p) can be madearbitrarily large.4 Therefore, the above extrema must be a minimum. Let the minimumoccur at n = n�. Two cases can occur: (a) n� > 2 and (b) n� � 2. We consider the twocases separately.Case (a) n� > 2 : In this case, we have(1 + 2p)n��1 = �(1� p)2 ln(1 � p)ln[(1� p)(1 + 2p)] (4)and f(n; p) � f(n�; p). Our goal now is to prove that f(n�; p) > 2. From Equation 4, weget (1 � p)n� = �(1� p)n��2(1 + 2p)n��1 ln[(1� p)(1 + 2p)]ln(1� p) :Substituting this expression into f(n�; p), we getf(n�; p) = (1 � p)n��2(1 + 2p)n��1 � (1 � p)n��2(1 + 2p)n��1 ln[(1� p)(1 + 2p)]ln(1� p)= (1 � p)n��2(1 + 2p)n��1 ln(1 + 2p)� ln(1 � p) = [(1� p)(1 + 2p)]n��2(1 + 2p) ln(1 + 2p)� ln(1� p)> (1 + 2p) ln(1 + 2p)� ln(1 � p) ; because n� > 2 and (1 � p)(1 + 2p) > 1 for 0 < p < 1=24Observe that, for 0 < p < 1=2, (1� p)(1 + 2p) = 1 + p(1� 2p) > 1.5



De�ne function h(p) = (1+2p) ln(1+2p)+2 ln(1�p). h(p) > 0 implies that (1+2p) ln(1+2p)� ln(1�p) >2 which in turn (by the above inequality) implies that f(n�; p) > 2. Therefore, our goal nowis to prove that h(p) > 0.Note that h(0) = 0 and h(1=2) = 0. Also function h is di�erentiable in [0; 1=2].Therefore, by Rolle's theorem [2], at least one extrema (maxima or minima) exists betweenp = 0 and p = 1=2. Now, dhdp = 2 + 2 ln(1 + 2p) � 2=(1 � p) and d2hdp2 = 41+2p � 2(1�p)2 . Notethat for p = 0, dhdp = 0 and d2hdp2 > 0. Thus, h has a minimum at p = 0 and at least onemaximum in [0,1/2] (by Rolle's theorem). Let the maximum closest to 0 occur at pmax.As p = pmax is a maximum, d2hdp2 must be negative at pmax. d2hdp2 is a decreasing functionof p, therefore, it will remain negative for p > pmax. This implies that in the interval(pmax; 1=2), no minimum exists. This in turn implies that between 0 and 1/2, there existsonly one maximum and no minimum. As h(0) = h(1=2) = 0, it implies that h(p) > 0 for0 < p < 1=2. This implies that f(n�; p) > 2. Now, 2 < f(n�; p) � f(n; p) � g(k; n; p).Therefore, g(k; n; p) = (1 � p)2k�n(1 + 2p)k + (1� p)n > 2.Case (b) n� � 2 : Observe that the range of interest for parameter n is n � 2. If n� is nolarger than 2, then in the range of interest, function f(n; p) will be minimized at n = 2, i.e.f(n; p) � f(2; p). Therefore, our goal in this case is to prove that f(2; p) > 2. Now,f(2; p) = (1 + 2p) + (1 � p)2 = 2 + p2> 2 because 0 < p < 1=2.This implies that f(n; p) > 2. As f(n; p) � g(k; n; p), we have g(k; n; p) = (1 � p)2k�n(1 +2p)k + (1 � p)n > 2. 2Proof of Theorem 1If n = k, then it is clear that all errors in a codeword will be undetected. In otherwords, Pu in Equation 3 is 1�(1�p)n. It can easily seen that, in this case, Rtriplex > Rduplex1.Now we assume that n � k + 1. As k � 1, this implies that n � 2. To summarize, we haven � 2, k + 1 � n and 0 < p < 1=2. Under these conditions, the result proved in Lemma 1is applicable. Therefore, we have(1� p)2k�n(1 + 2p)k + (1 � p)n > 26



=) (1 � p)2k(1 + 2p)k + (1� p)2n > 2(1 � p)n=) (1 � p)2k(1 + 2p)k + (1� p)2n > (2 � Pu)(1� p)n; because Pu � 0=) (1 � p)2k(1 + 2p)k > (2 � Pu)(1� p)n � (1� p)2n=) R�triplex > R�duplex1 by Equations 1 and 3=) Rtriplex > Rduplex13.2 Duplex systems using single error correcting (SEC) codesIn this section, we assume that the error control code used in the duplex system can correcta single error and not detect any other errors. In other words, it is assumed that more thanone error will result in incorrect decoding of this code. In the next section, we will considera single error correcting and double error detecting code.For the duplex system considered here, the voter function is as follows: The voterdecodes the two codewords and corrects any error that may be detected. Then, it outputs anyone of the decoded codewords. This voter will maximize the reliability under the constraintthat each codeword can be used only to correct a single error and that more than one errorin a codeword causes erroneous decoding.Let the reliability of the duplex system being considered in this section be denoted byRduplex2. A given word can be accessed correctly when the two codewords contain at mostone error each. In the case where one of the codewords has at most one error and the othercodeword contains more than one error, there is a 50% chance that the correct informationwill be obtained (recollect that multiple errors in a codeword are not detected). When bothcodewords contain more than one error, correct information cannot be obtained. Therefore,Rduplex2 = (R�duplex2)W whereR�duplex2 = ((1 � p)n + np(1 � p)n�1)2+ 12 2((1 � p)n + np(1 � p)n�1) (1� (1� p)n � np(1 � p)n�1)= (1 � p)n + np(1 � p)n�1The above expression is identical to the reliability that would be obtained if just one memorymodule with a single error correcting code were used (instead of two). This implies that7



when the error control code is only capable of correcting a single error, it does not help touse two memory modules.Theorem 2 When 0 < p < 1=3, Rduplex2 is smaller than Rtriplex independent of the singleerror correcting code used in the duplex system, provided k > 1. When k = 1, Rduplex2 canequal Rtriplex.Proof: The number of checkbits in the (n; k) code is r = n� k. When k = 1, the triplexsystem essentially implements a single error correcting code using a total of 3 bits. ThereforeRduplex2 with k = 1 and r = 2 is identical to Rtriplex with k = 1.It is not possible to design a single error correcting code with just one checkbit.Therefore, r � 2. Also, it is not possible to design a single error correcting code for k > 1with r = 2. For k � 4, r may be equal to 3. For k > 4, r must be at least 4 for any singleerror correcting code. We consider the case of r � 4 �rst followed by r = 3.Case 1: r � 4, 0 < p < 1=3 : To prove the theorem, we �rst derive three inequalities.(1 � p)k(1 + 2p)k = [1 + p(1 � 2p)]k = kXi=0  ki![p(1� 2p)]i=) (1 � p)k(1 + 2p)k � 1 + kp(1 � 2p) as k > 0 (5)1 = (p+ (1 � p))r = rXi=0  ri!pi(1� p)r�i=) 1 > (1� p)r + rp(1 � p)r�1 as r � 4 (6)When 0 < p < 1=3, 1 � 2p > (1 � p)3. Also, (1 � p)3 > (1 � p)i for i � 4. Therefore, forr � 4, (1� 2p) > (1� p)r�1: By multiplying both sides of the inequality by k p, we getk p(1 � 2p) > k p(1 � p)r�1 (7)By replacing the two terms on right hand side of inequality 5 by right hand sides of inequal-ities 6 and 7, respectively, we get(1 � p)k(1 + 2p)k > (1� p)r + rp(1 � p)r�1 + kp(1 � p)r�18



=) (1� p)k(1 + 2p)k > (1� p)r + np(1 � p)r�1 as n = k + rMultiplying both sides by (1� p)k and replacing n = k + r, we get(1� p)2k(1 + 2p)k > (1� p)n + np(1 � p)n�1 =) R�triplex > R�duplex2=) Rtriplex > Rduplex2Case 2: r = 3, 0 < p < 1=3 : As discussed earlier, r = 3 implies that k can at most be 4.We consider each value of k separately. Note thatR�duplex2R�triplex = (1� p)n + np(1 � p)n�1(1� p)2k(1 + 2p)k = (1� p)r + np(1 � p)r�1(1� p)k(1 + 2p)k(i) r = 3, k = 4 : In this case, n = 7 andR�duplex2R�triplex = (1 � p)3 + 7p(1 � p)2(1 � p)4(1 + 2p)4 = 1 + 6p(1 � p)2(1 + 2p)4= 1 + 6p1 + 6p + 9p2 � 8p3 � 24p4 + 16p6 = 1 + 6p1 + 6p + p2(9� 8p � 24p2) + 16p6< 1; because 9 � 8p� 24p2 > 0 when 0 < p < 1=3.Therefore, R�duplex2 < R�triplex.(ii) r = 3, k = 3 : In this case, n = 6. By following similar steps as above, we getR�duplex2R�triplex = 1 + 5p(1 � p)(1 + 2p)3 = 1 + 5p1 + 5p + 2p2(3� 2p � 4p2)< 1; because 3� 2p � 4p2 > 0 when 0 < p < 1=3.Therefore, R�duplex2 < R�triplex.Similar to above, for k = 1 and 2 also, it can be shown that R�duplex2 < R�triplex [6].This implies that Rduplex2 < Rtriplex. 2Although the result stated above is proved for 0 < p < 1=3, we conjecture that itholds true when 0 < p < 1=2. In practice, p is expected to be much smaller that 1=3,therefore, the above result is adequate for real applications.9



3.3 Duplex systems using SEC-DED codesThis section shows that a duplex system using a single error correcting and double errordetecting (SEC-DED) code can achieve reliability better than a triplex system. This isdemonstrated with the help of an example. Assume that the voter for the duplex systemusing SEC-DED code functions as follows: It decodes the codeword from one of the memorymodules and if zero or one error is detected in this codeword, the decoded codeword is pro-duced as the output. If two errors are detected in this codeword, then the second codewordis decoded. In this case, the second decoded codeword is produced as output if it is detectedto contain at most one error.Let the reliability of the duplex system being considered here be denoted by Rduplex3.Then, Rduplex3 = (R�duplex3)W where,R�duplex3 = (1 � p)n + np(1 � p)n�1 +  n2!p2(1 � p)n�2 �(1� p)n + np(1 � p)n�1�Unlike the results presented in Theorems 1 and 2, in this case, the duplex system can achievea better reliability than the triplex system. We illustrate this with an example. Assumethat the ECC used in the duplex system is a (n; k) SEC-DED code obtained by (possibly)shortening the distance-4 extended Hamming code [4]. For the SEC-DED code, n = 39when k = 32. For k = 32, Figure 2 plots the unreliability (i.e., 1�reliability) for duplex andtriplex systems as a function of p. Similar plots are obtained for other values of k.From the unreliability plots, it can be seen that for su�ciently small values of p,(1 � R�duplex3) is smaller than (1 � R�triplex), implying that reliability Rduplex3 = (R�duplex3)Wis larger than Rtriplex = (R�triplex)W when p is small. Speci�cally, for k = 32, when p issmaller than 0:009, R�duplex3 is larger than R�triplex. There are two aspects to this issue: (a)In practice, given realistic failure rates, the value of p is likely to be small enough to meetthis bound. (b) Secondly, the duplex system with SEC-DED code uses much fewer bits thanthe triplex system (i.e., 3k > 2n or n < 3k=2). It should be possible to construct a singleerror correcting-triple error detecting code with n less than 3k=2. The duplex system usingthis code would achieve reliability higher than the triplex system for larger values of p. InFigure 2, observe that, for p = 0:001, (1 � R�duplex3) is an order of magnitude smaller than(1 � R�triplex). Thus, when p is small, the duplex system can achieve signi�cantly betterreliability than the triplex system. 10
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Figure 2: Comparison of R�duplex3 and R�triplex for k = 32 and n = 39The objective here was to demonstrate that a duplex system with a SEC-DED codecan achieve reliability higher than the triplex system. We have shown this to be true providedthe error probability p is small enough.4. DiscussionThis paper compares reliability of triplex memory systems formed using simple triplication(without ECC) with duplex memory systems formed by duplicating memory modules thatuse ECC. Reliability of a duplex system is shown to be worse than the triplex system ifthe ECC used in the duplex system is capable of only error detection or only single errorcorrection. It is also shown that if the ECC is capable of single error correction as well asdouble error detection, for small bit error probability p, the duplex system achieves higherreliability than the triplex system. From these results the following conclusion can be drawn:11



A necessary condition, for the duplex system to be able to achieve higher reli-ability than the triplex system, is that the error control code must at least becapable of single error correction and double error detection (SEC-DED).The duplex system (depending on the complexity of the voter circuits and the size of thememory) is also expected to be more e�cient in terms of chip area requirement.Voter reliability was not taken into account in our analysis. In reality, the voter forthe duplex system (including decoders) can be expected to be less reliable than that for thetriplex system due to greater hardware complexity. Therefore, in practice, a SEC-DED codemay not be su�cient for the duplex system to achieve a higher reliability than the triplexsystem (even when bit error probability is small); a code with greater capability may berequired. Further work is necessary to evaluate the impact of voter reliability.AcknowledgementsWe thank Prasad Padmanabhan for his help in proving the correctness of Lemma 1. Thanksare also due to the referees for their helpful comments.References[1] P. A. Bernstein, \Sequoia: A fault-tolerant tightly coupled multiprocessor for transactionprocessing," Computer, pp. 37{45, February 1988.[2] W. E. Boyce and R. C. DiPrima, Calculus. John Wiley & Sons, Inc., 1988.[3] B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems. Addison-Wesley,1989.[4] T. R. N. Rao and E. Fujiwara, Error-Control Coding for Computer Systems. Prentice-Hall, 1989.[5] D. P. Siewiorek, \Reliability modeling of compensating module failures in majority votedredundancy," IEEE Trans. Computers, vol. C-24, pp. 525{533, May 1975.[6] N. H. Vaidya, \Duplex and triplex memory: Which is more reliable?," Tech. Rep. 94-025,Computer Science Department, Texas A&M University, College Station, February 1994.[7] N. H. Vaidya and D. K. Pradhan, \Fault-tolerant design strategies for high reliabilityand safety," IEEE Trans. Computers, vol. 42, pp. 1195{1206, October 1993.12


