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Abstract A large number of choices exist when designing a reliable memory sys-
tem. The choices range from simple replication to complex error control codes (ECC). An
intermediate solution is to use combination of replication and simple EFCC. Such a system
consists of multiple memory modules, data stored in each module being encoded using an
ECC. This paper compares reliability of memory systems formed using simple triplication
(without ECC) with memory systems formed by duplicating memory modules that use ECC.
It is shown that reliability achieved by duplication of memory modules using codes capable
of only error detection or only single error correction (SEC), is always worse than simple
triplication. However, it is also shown that duplication of memory modules, with codes ca-
pable of single error correction and double error detection (SEC-DED), can achieve better

reliability than simple triplication when bit error probability is small.

Index Terms: Reliability, replication, coding, modular redundancy.

1. Introduction

A large number of choices exist when designing a reliable memory system. The choices
range from simple replication to complex error control codes (ECC) [3]. Simple replication
(without ECC) can achieve a better performance as compared to systems using ECC, because
ECC necessitate decoding. An intermediate solution is to use combination of replication and
simple ECC. Such a system consists of multiple memory modules, data stored in each module

being encoded using an ECC. A similar approach has been used in commercial systems [1].

Reliability of memory systems formed by simple triplication (without ECC) is com-
pared here with that of memory systems formed by duplicating memory modules that use
ECC. These two systems, referred to as triplex and duplex systems, respectively, are illus-
trated in Figure 1. The triplex system in Figure 1(a) is formed by simple triplication of
memory modules that do not use any error control coding. The memory system output
is obtained by bit-wise voting on the output of the three modules in the triplex system.
The duplex system in Figure 1(b) consists of two identical memory modules. Each memory

module uses an (n, k) error control code. Encoded outputs of the two modules are available
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to a voter that can decode the outputs of the two memory modules. The exact function of

the voter in duplex systems will be defined more precisely in Section 3.

memory memory memory memory memory
module 1 module 2 module 3 module 1 module 2
kK K n n

bit-wise
voter voter
o (includes decoders)
I i ’

(a) triplex system (b) duplex system

Figure 1: Triplex and duplex memory systems

The objective here is to determine the minimum capability required in the ECC such
that the duplex system can achieve a higher reliability than the triplex system. To our
knowledge, such an analysis has not been carried out before. The work presented here is

motivated by our previous research on modular redundant system reliability and safety [7].

Capability of an ECC is characterized by the number of errors it can correct and
detect. A tq-error correcting-dy error detecting code is said to be less capable than a ts-error
correcting-dsy error detecting code if (i) t; <ty or (ii) {1 = 12 and d; < ds. Reliability of the
triplex system is compared here with duplex systems that use error control codes (ECC) of
three different capabilities:

e Error detection only.
e Single error correction (and no error detection, i.e., more than one error is
assumed to result in erroneous decoding).

e Single error correction and double error detection (SEC-DED).

In the following sections, an expression for the reliability of the triplex system is
presented, followed by evaluation of reliability of the three duplex systems and comparison
with the triplex system. Although the analysis is somewhat lengthy, it leads to the interesting
conclusion that the duplex system must incorporate at least a SEC-DED code before it can

achieve higher reliability than the triplex system.



2. Reliability of the Triplex System

For reliability analysis, we use the independent symmetric error model [4]. It is assumed that
each bit in memory may become erroneous independently with probability p. In practice,
bit error probability p is expected to be quite small. Each data word contains k bits. Let

the number of words in the memory be W, i.e., let each memory module contain W words.

Reliability of the voters is not included in our analysis; we will discuss the effect of
voter reliability in Section 4. Note that reliability is evaluated here using error probability,
not failure probability. The two probabilities are different, as a failure does not necessarily

result in an error.? Also, our analysis does not take into account compensating failures® [5].

Definition Reliability Rs of @ memory system S is defined as the probability that all words

in the memory system can be accessed correctly.

A data word contains k bits, therefore, the probability that a given word in the triplex

system can be accessed correctly is [3]

e = [(1= 0" +3p(1 = p)?] = (1= p) (1 + 2p)" (1)

Therefore, reliability of the triplex system is given by Ryipier = (R} )W

triplex

3. Reliability of Duplex Systems

This section evaluates reliability of three different types of duplex systems and compares

them with the triplex system.

3.1 Duplex system using error detecting codes

In this section we show that the reliability achieved by a duplex system, using an ECC for
error detection only, is always less than the triplex system. Let the reliability of the duplex

system under consideration in this section be denoted by Rjypies1.- Each memory module in

the duplex system uses an (n, k) error detecting code. Let P, denote the probability that an

?For example, a stuck-at-0 failure will not cause an error if the memory location contained 0.

3Compensating failures occur in the triplex system, for example, when a bit in one module is stuck-at-0
and the corresponding bit in another module is stuck-at-1. The system will produce correct output in this
situation, even though two modules are faulty.



undetected error occurs in a codeword of this code. The function of the voter in this system
is as follows: When a word is to be read from the memory, the corresponding codewords
from the two memory modules are provided as input to the voter. The voter decodes the
two codewords to detect errors. If errors are detected in both codewords, then the voter
does not produce any data. If exactly one codeword is detected to contain an error, then the
other decoded codeword is produced as output. If neither codeword is detected to contain an
error, then any one decoded codeword is produced as the output. This voter will maximize

the reliability under the constraint that each codeword is to be used only for error detection.

With such a voter, the reliability is given by Riuples1 = (Rjypiep1)” » Where
i n n n 1 n
dpter = (1=P)" +2(1= P =(1=p)") (1 =p)" + 52(1 = p)" P, (2)
= 2-P)1-p"—(1-p) (3)

In Equation 2, (1 — p)?" is the probability that both codewords are error-free. The term
2(1 =P, — (1 —=p)")(1 — p)* is the probability that one of the codewords contains a de-
tectable error and the other codeword is error-free. The term %2(1 — p)* P, corresponds to

the probability that one of the codewords contains an undetectable error, the other codeword

is error-free and the voter chooses the error-free codeword. Note that in this situation, the

voter will choose the error-free codeword with probability %

The theorem below states that triplex memory reliability is larger than that of a

duplex system using ECC for error detection only.

Theorem 1 When 0 < p < 1/2, Ryuptes1 s smaller than Ryipier independent of the error
detecting code used in the duplex system.

To be able to prove the theorem, we first prove the following lemma.

Lemma 1 (1 —p)?="(1 4+ 2p)* 4+ (1 —p)" > 2 provided 0 < p < 1/2, n > 2 and k+ 1 < n.
Proof: Assume that 0 < p < 1/2, n > 2 and k 4+ 1 < n. Let function g(k,n,p) =
(L=p)* (1 +2p)* + (1 —p)". Then,

dg (1 —p)*(1 +2p)*




As 0 < p < 1/2,0 < (1 —p)*(1 +2p) < 1, and it follows that % < 0. Thus, ¢g is a

monotonically decreasing function of k. Therefore, we will choose the largest possible value

of k,i.e., k =n—1, and show that ¢ is larger than 2 for this value of k. When £k =n —1, we

have g(n —1,n,p) = (1—p)"7*(1+2p)" "' +(1—p)" = [(1=p)(1+2p)]"*(1+2p) + (1 —p)".

Let function f(n,p) = g(n —1,n,p). Thus, our goal now is to prove that f(n,p) > 2. Now,
af

5, = (1=p)" (14 2p)" (1 = p)(1 4+ 2p)] + (1 = p)" In(1 = p).

To find the extrema of f, we set % = 0. This implies that, at the extrema (i.e. minima or

maxima),

In(1 —p)
In[(1 = p)(1 4 2p)]°

This equation can hold for only one real value of n. Thus, there exists only one extrema of

(142p)" " = —(1 —p)?

f with respect to n. Looking at f(n,p) it is clear that by increasing n, f(n,p) can be made

4

arbitrarily large.®* Therefore, the above extrema must be a minimum. Let the minimum

occur at n = n*. Two cases can occur: (a) n* > 2 and (b) n* < 2. We consider the two

cases separately.

Case (a) n* > 2 : In this case, we have

In(1 —p)
In[(1 = p)(1 + 2p)]

and f(n,p) > f(n*,p). Our goal now is to prove that f(n*,p) > 2. From Equation 4, we

(1+2p)" ' =—(1—p)? (4)

get

In[(1 = p)(1 +2p)]

(1—p)" ==(1=p)" (1 +2p)" " )

Substituting this expression into f(n*,p), we get

pe_g In[(1 = p)(1 + 2p)]

fn*p) = (1—p)" 2(1+2p)" " = (1 —p)" *(1 + 2p)

In(1 —p)
= (L—p)" (1 +2p)" " % = [(1—p)(1+2p)" 21 +2p)%
> (1+ 2}?)%, because n* > 2 and (1 —p)(1 +2p) > 1for 0 < p < 1/2

4Observe that, for 0 < p < 1/2, (1 —p)(1+2p) = 1+ p(1 — 2p) > 1.
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Define function h(p) = (1+42p) In(14+2p)+2In(1—p). A(p) > 0 implies that (1—|—2p)4—linlnl("i};) >

2 which in turn (by the above inequality) implies that f(n*, p) > 2. Therefore, our goal now
is to prove that h(p) > 0.

Note that 2(0) = 0 and A(1/2) = 0. Also function h is differentiable in [0,1/2].

Therefore, by Rolle’s theorem [2], at least one extrema (maxima or minima) exists between

p=0and p=1/2. Now, % =2+ 2In(1 4+ 2p) —2/(1 —p) and ZZTQ = ﬁ— (1_2p)2. Note

that for p = 0, % = 0 and % > 0. Thus, A has a minimum at p = 0 and at least one

maximum in [0,1/2] (by Rolle’s theorem). Let the maximum closest to 0 occur at ppqs..

&£h
dp?

d*h

As p = ppae 1S a maximum, o must be negative at p,q;- is a decreasing function

of p, therefore, it will remain negative for p > pp.:. This implies that in the interval
(Pmaz, 1/2), no minimum exists. This in turn implies that between 0 and 1/2, there exists
only one maximum and no minimum. As h(0) = h(1/2) = 0, it implies that h(p) > 0 for
0 < p < 1/2. This implies that f(n*,p) > 2. Now, 2 < f(n*,p) < f(n,p) < g(k,n,p).
Therefore, g(k,n,p) = (1 — p)?*="(1 +2p)* + (1 — p)" > 2.

Case (b) n* <2 : Observe that the range of interest for parameter n is n > 2. If n* is no
larger than 2, then in the range of interest, function f(n,p) will be minimized at n = 2, i.e.

f(n,p) > f(2,p). Therefore, our goal in this case is to prove that f(2,p) > 2. Now,

f2p) = (I42p)+(1—p) = 24p’
> 2 because 0 < p < 1/2.

This implies that f(n,p) > 2. As f(n,p) < g(k,n,p), we have g(k,n,p) = (1 — p)?**="(1 +
2p)% + (1 —p)" > 2. 0
Proof of Theorem 1

If n = k, then it is clear that all errors in a codeword will be undetected. In other
words, P, in Equation 3 is 1 —(1—p)". It can easily seen that, in this case, Ry ipter > Rauplest-
Now we assume that n > k4 1. As k£ > 1, this implies that n > 2. To summarize, we have
n>2k+1<nand0<p<1/2. Under these conditions, the result proved in Lemma 1

is applicable. Therefore, we have

(I—p* "1 +2p)"+(1—p)" > 2



= (1—p)*"(1+2p)" + (1 —p)*™
= (1—p)* (1 +2p)" +(1—p)*
= (1 —p)(1 4 2p)*

*
triplex

2(1 = p)"
(2—P,)(1—=p)", Dbecause P, >0
2—P)(1=p)"—(1—p*

— R by Equations 1 and 3

*
duplexl

vV V. V. VvV V

- Rtripleac Rduplexl

3.2 Duplex systems using single error correcting (SEC) codes

In this section, we assume that the error control code used in the duplex system can correct
a single error and not detect any other errors. In other words, it is assumed that more than
one error will result in incorrect decoding of this code. In the next section, we will consider

a single error correcting and double error detecting code.

For the duplex system considered here, the voter function is as follows: The voter
decodes the two codewords and corrects any error that may be detected. Then, it outputs any
one of the decoded codewords. This voter will maximize the reliability under the constraint
that each codeword can be used only to correct a single error and that more than one error

in a codeword causes erroneous decoding.

Let the reliability of the duplex system being considered in this section be denoted by
Riupiesz- A given word can be accessed correctly when the two codewords contain at most

one error each. In the case where one of the codewords has at most one error and the other

codeword contains more than one error, there is a 50% chance that the correct information
will be obtained (recollect that multiple errors in a codeword are not detected). When both
codewords contain more than one error, correct information cannot be obtained. Therefore,

_ w
RduplexZ — ( gupler) where

ZupleacQ = ((1 _p)n + np(l - p)n_1)2

520 =) mpl(l =) (1= (1= )" — (L = p)" )

= (1—p)" +np(l—p""!

The above expression is identical to the reliability that would be obtained if just one memory

module with a single error correcting code were used (instead of two). This implies that



when the error control code is only capable of correcting a single error, it does not help to

use two memory modules.

Theorem 2 When 0 < p < 1/3, Raupier2 is smaller than Ryipier independent of the single
error correcting code used in the duplex system, provided k > 1. When k =1, Ryypicsz can

equal Rtripleac .

Proof: The number of checkbits in the (n, k) code is r = n — k. When k = 1, the triplex
system essentially implements a single error correcting code using a total of 3 bits. Therefore

Riupiesz with k=1 and r = 2 is identical to Ryipie, with £ = 1.

It is not possible to design a single error correcting code with just one checkbit.
Therefore, r > 2. Also, it is not possible to design a single error correcting code for & > 1
with r = 2. For k£ < 4, r may be equal to 3. For & > 4, r must be at least 4 for any single

error correcting code. We consider the case of r > 4 first followed by r = 3.

Case 1: r >4, 0<p< 1/3: To prove the theorem, we first derive three inequalities.

-phm = =2 = Y ()i - 20

=0

— (1 —p)*1+2p)" > 14kp(l=2p) ask>0 (5)

r

1 :(p+ﬂ—myziﬂ(gﬁu—py4

=1 > (1—=p) +rpl —p)T_l asr >4 (6)

When 0 < p < 1/3, 1 —2p > (1 —p)3. Also, (1 —p)®> > (1 — p)' for + > 4. Therefore, for
r >4, (1 —2p) > (1 —p)~t. By multiplying both sides of the inequality by kp, we get

kp(1—2p) > kp(l—p) (7)

By replacing the two terms on right hand side of inequality 5 by right hand sides of inequal-

ities 6 and 7, respectively, we get

(1=p)* (1 +2p)" > (1—p) +rp(l —p)"~" + kp(1 — p)~"
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— (1=p1+2p) >0 =p) +np(l —p)™' asn=rk+r

Multiplying both sides by (1 — p)* and replacing n = k + r, we get

(1 - p)Zk(l + 2p)k > (1 - p)n + np(l - p)n_l = R:;Tipleac > RZupler

- Rtripleac > Rdupler

Case 2: r=3,0<p<1/3: Asdiscussed earlier, » = 3 implies that & can at most be 4.
We consider each value of k separately. Note that

gupleacQ o (1 - p)n + np(l - p)n—l (1 B p)T + np(l - p)T_l

?Tiplex B (1 - p)2k(1 —I' 2p)k N (1 — p)k(l —|— Qp)k

(i) r=3, k=4 : In this case,n =7 and

gupleacQ _ (1 - p)B + 7]3(1 — p)2 _ 1+ 6p
R:;Tipleac (1 - p)4(1 + 2}7)4 (1 - p)2(1 + 2p)4
1+6p 1+6p

1+6p+9p2 —8p3 — 24p* +16p5 14 6p + p2(9 — 8p — 24p?) + 16p°
< 1, because 9 — 8p — 24p* > 0 when 0 < p < 1/3.

Therefore, R}, .0 < R

triplex”

(i) r =3, k=3 : In this case, n = 6. By following similar steps as above, we get

gupleacQ o 1 + 5p 1 + 5p

vitew (L= p)(1+2p)*  145p+2p*(3—2p—4p?)

< 1, because 3 —2p —4p* > 0 when 0 < p < 1/3.

Therefore, R}, .0 < R

triplex”
Similar to above, for k = 1 and 2 also, it can be shown that R}, ;..o < Rf.i. [6].
This implies that Raupiesz < Riripies- =

Although the result stated above is proved for 0 < p < 1/3, we conjecture that it
holds true when 0 < p < 1/2. In practice, p is expected to be much smaller that 1/3,

therefore, the above result is adequate for real applications.
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3.3 Duplex systems using SEC-DED codes

This section shows that a duplex system using a single error correcting and double error
detecting (SEC-DED) code can achieve reliability better than a triplex system. This is
demonstrated with the help of an example. Assume that the voter for the duplex system
using SEC-DED code functions as follows: It decodes the codeword from one of the memory
modules and if zero or one error is detected in this codeword, the decoded codeword is pro-
duced as the output. If two errors are detected in this codeword, then the second codeword
is decoded. In this case, the second decoded codeword is produced as output if it is detected
to contain at most one error.

Let the reliability of the duplex system being considered here be denoted by Rjypicss-

_ * 19%
Then, Riuptezs = ( duplm?)) where,

Z) P*(1=p)" 2 (1= p)" +np(1 = p)"™")

:luplex?) = (1 _p)n + np(l _p)n_l + (

Unlike the results presented in Theorems 1 and 2, in this case, the duplex system can achieve
a better reliability than the triplex system. We illustrate this with an example. Assume
that the ECC used in the duplex system is a (n, k) SEC-DED code obtained by (possibly)
shortening the distance-4 extended Hamming code [4]. For the SEC-DED code, n = 39
when k = 32. For k = 32, Figure 2 plots the unreliability (i.e., 1 —reliability) for duplex and

triplex systems as a function of p. Similar plots are obtained for other values of k.

From the unreliability plots, it can be seen that for sufficiently small values of p,

(1 = R} piers) is smaller than (1 — R implying that reliability Raupters = (Riypiees)

Fripies)
triplex /o

*
triplex

is larger than Riipier = ( YW when p is small. Specifically, for & = 32, when p is

smaller than 0.009, R}, .5 is larger than R;,.. .. There are two aspects to this issue: (a)
In practice, given realistic failure rates, the value of p is likely to be small enough to meet
this bound. (b) Secondly, the duplex system with SEC-DED code uses much fewer bits than
the triplex system (i.e., 3k > 2n or n < 3k/2). It should be possible to construct a single
error correcting-triple error detecting code with n less than 3k/2. The duplex system using

this code would achieve reliability higher than the triplex system for larger values of p. In

Figure 2, observe that, for p = 0.001, (1 — R}, ,.,3) is an order of magnitude smaller than
(1 - R; ). Thus, when p is small, the duplex system can achieve significantly better

triplex

reliability than the triplex system.
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Figure 2: Comparison of R}, ., and Rj ., . for k =32 and n = 39
The objective here was to demonstrate that a duplex system with a SEC-DED code
can achieve reliability higher than the triplex system. We have shown this to be true provided
the error probability p is small enough.

4. Discussion

This paper compares reliability of triplex memory systems formed using simple triplication
(without ECC) with duplez memory systems formed by duplicating memory modules that
use ECC. Reliability of a duplex system is shown to be worse than the triplex system if
the ECC used in the duplex system is capable of only error detection or only single error
correction. It is also shown that if the ECC is capable of single error correction as well as
double error detection, for small bit error probability p, the duplex system achieves higher

reliability than the triplex system. From these results the following conclusion can be drawn:
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A necessary condition, for the duplex system to be able to achieve higher reli-
ability than the triplex system, is that the error control code must at least be

capable of single error correction and double error detection (SEC-DED).

The duplex system (depending on the complexity of the voter circuits and the size of the

memory) is also expected to be more efficient in terms of chip area requirement.

Voter reliability was not taken into account in our analysis. In reality, the voter for
the duplex system (including decoders) can be expected to be less reliable than that for the
triplex system due to greater hardware complexity. Therefore, in practice, a SEC-DED code
may not be sufficient for the duplex system to achieve a higher reliability than the triplex
system (even when bit error probability is small); a code with greater capability may be
required. Further work is necessary to evaluate the impact of voter reliability.
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