
Leader Election Algorithms for Mobile Ad Hoc Networks�
Navneet Malpani

Dept. of Computer Science
Texas A&M University
College Station, TX

77843-3112

n0m4119@cs.tamu.edu

Jennifer L. Welch
Dept. of Computer Science

Texas A&M University
College Station, TX

77843-3112

welch@cs.tamu.edu

Nitin Vaidya
Dept. of Computer Science

Texas A&M University
College Station, TX

77843-3112

vaidya@cs.tamu.edu

ABSTRACTWe present two new leader ele
tion algorithms for mobile adho
 networks. The algorithms ensure that eventually ea
h
onne
ted
omponent of the topology graph has exa
tly oneleader. The algorithms are based on a routing algorithm
alled TORA [5℄, whi
h in turn is based on an algorithm byGafni and Bertsekas [3℄. The algorithms require nodes to
ommuni
ate with only their
urrent neighbors, making itwell suited to the ad ho
 environment. The �rst algorithmis for a single topology
hange and is provided with a proofof
orre
tness. The se
ond algorithm tolerates multiple
on-
urrent topology
hanges.
1. INTRODUCTIONAmobile ad ho
 network is a network wherein a pair of nodes
ommuni
ates by sending messages either over a dire
t wire-less link, or over a sequen
e of wireless links in
luding oneor more intermediate nodes. Only pairs of nodes that liewithin one another's transmission radius
an dire
tly
om-muni
ate with ea
h other. Wireless link \failures" o

urwhen previously
ommuni
ating nodes move su
h that theyare no longer within transmission range of ea
h other. Like-wise, wireless link \formation" o

urs when nodes that weretoo far separated to
ommuni
ate move su
h that they arewithin transmission range of ea
h other. Developing dis-tributed algorithms for ad ho
 networks is a very
halleng-ing task sin
e the topology may
hange very frequently andunpredi
tably. In this paper, we present a mobility awareleader ele
tion algorithm.Leader ele
tion is a useful building blo
k in distributed sys-tems, whether wired or wireless, espe
ially when failures
ano

ur. For example, if a node failure
auses the token to belost in a mutual ex
lusion algorithm, then the other nodes
an ele
t a new leader to hold a repla
ement token. Leaderele
tion
an also be used in group
ommuni
ation proto-
ols, to
hoose a new
oordinator when the group member-�Supported in part by NSF grant CCR-9972235.

ship
hanges. The standard de�nition of the leader ele
tionproblem for stati
 networks [1℄ is that1. eventually there is a leader and2. there should never be more than one leader.However,
ompli
ations arise be
ause partitions
an o

urin an ad ho
 network. In su
h a
ase, some appli
ationsrequire that every
omponent of the partition must have aunique leader. Thus we
onsider a modi�ed de�nition ofthe leader ele
tion problem: Any
omponent whose topologyis stati
 suÆ
iently long will eventually have exa
tly oneleader. There
ould be a period when a
omponent has noleader, o

urring when a
omponent is partitioned. How-ever, the algorithm must guarantee that exa
tly one uniquenode will be ele
ted as a leader in the new
omponent thatwas separated from the old leader. Similarly, there
ouldbe a period when there are two or more leaders,
aused bytwo or more
omponents merging. But the algorithm mustguarantee that only one unique leader survives.We present two leader ele
tion algorithms based on TORA[5℄, whi
h is a routing algorithm for mobile ad ho
 networks.TORA in turn is based on a loop-free routing algorithm ofGafni and Bertsekas [3℄. In the algorithms in [3℄, ea
h nodekeeps a value,
alled its height, from a totally ordered set(typi
ally, a tuple of integers), and links are logi
ally
onsid-ered to be dire
ted from higher to lower heights. The heightsare manipulated when topology
hanges o

ur in su
h away that the graph
onverges to a dire
ted a
y
li
 graph(DAG) in whi
h the destination is the only sink (node withno outgoing links). the resulting DAG is
alled destination-oriented. TORA adds a
lever me
hanism to dete
t networkpartitions su
h that nodes that no longer have a path to aparti
ular destination learn this fa
t and
ease sending use-less messages.Our leader ele
tion algorithms modify these ideas in thefollowing ways.1. Instead of having a single destination-oriented DAG,we ensure that ea
h
omponent eventually forms aleader-oriented DAG.2. When a partition from the
urrent leader is dete
ted(using the TORA me
hanism), a new leader is ele
tedand its id is propagated throughout the
omponent.

3. When two
omponents merge, a
ontest takes pla
e be-tween the leaders so that the winner's id is propagatedand wipes out the loser's id.4. When multiple topology
hanges o

ur, additional
om-pli
ations arise. This is due to the fa
t that while anew leader's id is being propagated
hanges
ould o
-
ur in the
omponent and the pro
ess of ele
ting aleader may be repeated.Although the leader ele
tion problem does not spe
i�
allyrequire any sort of DAG stru
ture to be imposed on
ompo-nents, our algorithms do so, as a byprodu
t of being basedon a routing algorithm.We believe that the proof of
orre
tness of our �rst algo-rithm, under the assumption that only one topology
hangeo

urs at a time, aids in understanding not only our algo-rithm, but also TORA [5℄. It should also provide a solidbasis for proving
orre
tness in more
omplex situations.The next se
tion dis
usses related work. In se
tion 3, wedes
ribe our system assumptions and de�ne the problem inmore detail. Brief reviews of the GB algorithms and TORAare presented in se
tions 4.1 and 4.2. We present our leaderele
tion algorithm for a single topology
hange in se
tions4.3 through 4.5. We sket
h a proof of
orre
tness of this algo-rithm under simplifying assumptions in se
tion 4.6. Se
tion5 presents modi�
ations to the �rst algorithm for multiple
on
urrent link failures and formations. Se
tion 6 presentsour
on
lusions.
2. RELATED WORKLeader ele
tion algorithms for mobile ad ho
 networks arepresented in [4℄. Compared to these algorithms, our al-gorithm is simpler and more pra
ti
al. The algorithms in[4℄ are
lassi�ed into Non-Compulsory proto
ols, whi
h donot a�e
t the motion of the nodes, and Compulsory proto-
ols, whi
h determine the motion of some or all the nodes.In both the proto
ol
lasses, it is assumed that the mo-bile nodes move in a bounded three-dimensional spa
e S,where S is quantized by some regular polyhedron. In or-der for these algorithms to work, the mobile nodes shouldknow in advan
e the type and dimensions of the polyhe-dron that is used for the quantization of S; furthermore, thenodes must be able to measure the distan
e that they
overwhen they move. All this adds to the
omplexity of the al-gorithm. Also, the Non-Compulsory proto
ols might neverele
t a unique leader and the Compulsory proto
ols for
e thenodes to perform a random walk. Neither of the proto
ol
lasses addresses the issue of
reation of new
omponentsdue to partitioning and merging of
omponentsIn our algorithm, the spa
e S is not bounded and the nodesneed not keep tra
k of their physi
al lo
ation in S. The al-gorithm also does not impose any form of restri
ted motionon the nodes. As stated before, the algorithm is
apable ofhandling formation of new
omponents as well as mergingof two or more
omponents. The algorithm will eventuallyalways ele
t a unique leader for ea
h
omponent.The multi
ast operation of the Ad-ho
 On-DemandDistan
eVe
tor (AODV) routing proto
ol [6, 7℄ performs leader ele
-

tion to ele
t a new multi
ast group leader when a partitiono

urs. After the multi
ast tree be
omes dis
onne
ted dueto a network partition, there are two group leaders. If the
omponents re
onne
t, the multi
ast operation of the AODVproto
ol ensures that only one of the group leaders eventu-ally be
omes the leader of the re
onne
ted tree. Thus wesee that the problem de�nition for leader ele
tion in [6, 7℄is quite similar to our problem de�nition. However, the ap-proa
h that our algorithms take to solve this problem is verydi�erent.The dynami
 network model, whi
h des
ribes wired net-works whose links are subje
t to frequent failures and re-
overies, bears some important similarities to the mobile adho
 network model. Algorithms have been devised for thedynami
 network model to maintain a rooted spanning tree(e.g., [2℄). These algorithms
an be viewed as maintaining aleader (the root), but unlike our algorithm, whi
h imposes aDAG stru
ture on the topology, they impose a spanning treestru
ture on the topology. These algorithms do not handlepartitions as well.
3. DEFINITIONS
3.1 System Model and AssumptionsThe system
ontains a set of n independent mobile nodes,
ommuni
ating by message passing over a wireless network.The network is modeled as a dynami
ally
hanging, not ne
-essarily
onne
ted, undire
ted graph, with nodes as verti
esand edges between verti
es
orresponding to nodes that
an
ommuni
ate. Assumptions on the mobile nodes and net-work are:1. The nodes have unique node identi�ers.2. Communi
ation links are bidire
tional, reliable andFIFO. Unidire
tional links, if any, are not used andignored.3. A link-level proto
ol ensures that ea
h node is awareof the set of nodes with whi
h it
an
urrently dire
tly
ommuni
ate by providing indi
ations of link forma-tions and failures.4. For the algorithm that we present in se
tion 4, we as-sume that only one
hange (either a link failure or alink formation)
an o

ur at a time. The next
hangeo

urs only after the entire network has re
overed fromthe previous
hange. (The algorithm to handle multi-ple
hanges o

urring
on
urrently is presented in se
-tion 5.)
3.2 Problem StatementEa
h node i in the system must have a lo
al variable lidithat holds the identi�er of the node
urrently
onsidered tobe the leader of i's
omponent.We require that in every exe
ution with a �nite number oftopology
hanges, eventually it holds that:� For every
onne
ted
omponentC of the topology graph,there is a node l in C su
h that lidi = l for all nodes iin C.

An additional requirement, whi
h might be useful in someappli
ations, and is satis�ed by our algorithm, is that ea
hedge has a dire
tion imposed on it by the endpoints su
hthat eventually (after all the topology
hanges)� Ea
h
onne
ted
omponent is a dire
ted a
y
li
 graphwith the leader as the single sink (
alled a leader-oriented or l-oriented DAG).The assumption in the pre
ise problem statement that thereis only a �nite number of
hanges is te
hni
ally
onvenient.However, it is equivalent to the more informal, and morepra
ti
al, assumption that topology
hanges
ease \suÆ-
iently" long.
4. LEADER ELECTION ALGORITHM FOR

A SINGLE TOPOLOGY CHANGEOur algorithm is a modi�
ation of the TORA [5℄ routingalgorithm, whi
h in turn is based on a routing algorithm byGafni and Bertsekas (GB) [3℄. In this se
tion we �rst provideinformal des
riptions of the GB algorithm, then TORA, and�nally our algorithm. Detailed pseudo
ode of our algorithmis presented and some examples of algorithm operation. Fi-nally, a proof of
orre
tness is given.
4.1 Overview of the GB AlgorithmGafni and Bertsekas [3℄ des
ribe two algorithms for
on-stru
ting a destination-oriented DAG in a network subje
tto link failures. Both algorithms work by assigning a uniqueheight to ea
h node, whi
h is drawn from a totally orderedset; ea
h link between two nodes is
onsidered to be dire
tedfrom the node with the higher height to the node with thelower height. The goal is for the dire
tions on the links toform a DAG in whi
h the destination is the only sink. Toa
hieve the goal, whenever a node that is not the sink losesall its outgoing links, either be
ause of a failure or be
auseof a
hange in a neighbor's height, it
al
ulates a new heightfor itself.The two algorithms di�er in the rule for
al
ulating a newheight. Both algorithms are spe
ial
ases of a generi
 algo-rithm des
ribed in [3℄. A
orre
tness proof for the generi
algorithm is given, whi
h is quite abstra
t.We now des
ribe the partial reversal algorithm in [3℄, uponwhi
h both TORA and our algorithm are based. The heightof a node i is a triple (�i; �i; i) of integers; the last
ompo-nent is the node's id in order to assure uniqueness. Triplesare
ompared lexi
ographi
ally. If i loses all its outgoinglinks, it
hooses its new height to be (�0i; �0i; i), where �0i isone larger than than the smallest �
omponent among all itsneighbors' heights. If i has a neighbor whose � height
om-ponent is equal to �0i, then �0i is set to be one less than thesmallest � value among all neighbors of i whose � height
omponent equals �0i. Otherwise the �
omponent of i'sheight is un
hanged.The rule for setting �0i ensures that node i will have at leastone outgoing link, i.e., that (�0i; �0i; i) will be larger than theheight of at least one neighbor, the one with the smallestheight. The rule for setting �0i tries to limit the number of

links in
ident on i that will have their dire
tion reversed, bykeeping i's height smaller than that of any neighbors whose� height
omponent is not smaller than �0i. Redu
ing thenumber of links whose dire
tion
hanges limits the propaga-tion of height
hanges.
4.2 Overview of TORAPark and Corson [5℄ adapted the GB algorithm for routingin mobile ad ho
 networks,
alling the result TORA (forTemporally Ordered Routing Algorithm). Their biggest ad-dition was a me
hanism for dete
ting when a pie
e of thenetwork has been partitioned so that the destination is nolonger rea
hable. The original GB algorithms would
ausean in�nite
y
le of messages in that
ase. No
orre
tnessproof of TORA is given; instead an appeal is made to thegeneri
 proof in [3℄.In TORA, the height of node i is a 5-tuple, (�i; oidi; ri; Æi; i).As before, the last
omponent is the node's id, in order toensure uniqueness.The �rst three
omponents form a referen
e level. A newreferen
e level is started by node i if it loses its last out-going link due to a link failure. �i is set to the time whenthis event o

urs1 and oidi is set to i, the originator of thisreferen
e level. The third
omponent ri modi�es the refer-en
e level. Initially, it is equal to 0, the unre
e
ted referen
elevel. As we explain shortly, sometimes it
an be
hanged to1, indi
ating a re
e
ted referen
e level, whi
h is instrumentalin dete
ting partitions.The Æi
omponents, together with the tie-breaking node ids,indu
e the dire
tions on the links among all the nodes withthe same referen
e level so as to help form a destination-oriented DAG. The originator of a new referen
e level setsits Æ value to 0.When a new referen
e level is
reated, say by node i, it islarger than any pre-existing referen
e level, sin
e it is basedon the
urrent time. The originator noti�es its neighborsof its new height. As we prove below in se
tion 4.6 in the
ontext of our leader ele
tion algorithm, this
hange even-tually propagates among all nodes for whom i was on theironly path to the destination. These are the nodes that musteither form new paths to the destination or dis
over that,due to partitioning, there is none.A node i
an lose all its outgoing links due to a neighbor'sheight
hange under a number of di�erent
ir
umstan
es,whi
h are now explained.� If the neighbors of i do not all have the same referen
elevel, then i sets its referen
e level to the largest amongall its neighbors and sets its Æ to one less than theminimum Æ value among all neighbors with the largestreferen
e level (a partial reversal).� If all of i's neighbors do have the same referen
e leveland it is an unre
e
ted one, then i starts a re
e
tionof this referen
e level by setting its referen
e level to1See [5℄ for a detailed dis
ussion
on
erning me
hanisms formeasuring time and their impa
t on the algorithm.

the re
e
ted version of its neighbors' (with ri = 1) andits Æ to 0.� If all of i's neighbors have the same re
e
ted referen
elevel with i as the originator, then i has dete
ted apartition and takes appropriate a
tion.� If all of i's neighbors have the same re
e
ted referen
elevel with an originator other than i, then i starts anew referen
e level. This situation only happens if alink fails while the system is re
overing from an earlierlink failure.
4.3 Overview of Leader Election AlgorithmWe made the following
hanges to TORA.The height of ea
h node i in our algorithm is a 6-tuple,(lidi; �i; oidi; ri; Æi; i). The �rst
omponent is the id of a nodebelieved to the leader of i's
omponent. The remaining �ve
omponents are the same as in TORA.The referen
e level (�1;�1;�1) is used by the leader of a
omponent to ensure that it is a sink.In TORA, on
e a partition has been dete
ted, the node that�rst dete
ted the partition sends out indi
ations to the othernodes in its
omponent so that they
ease performing height
hanges and sending useless messages. In our algorithm, thenode that dete
ted the partition ele
ts itself as the leader ofthe new
omponent. It then transmits this information toits neighbors, who in turn propagate this information totheir neighbors and so on. Eventually all the nodes in thenew
omponent will be
ome aware of the
hange in leader.When two or more
omponents meet due to the formationof new links, the leader of the
omponent whose id is thesmallest will eventually be
ome the sole leader of the entirenew
omponent.
4.4 The AlgorithmHere we des
ribe the
ode exe
uted by node i. Ea
h step istriggered either by the noti�
ation of the failure or forma-tion of an in
ident link or by the re
eipt of a message froma neighbor. Node i stores its neighbors' ids in lo
al vari-able Ni. When an in
ident link fails, i updates Ni. Whenan in
ident link forms, i updates Ni and sends an Updatemessage over the link with its
urrent height.The only kind of message sent is an Update message, whi
h
ontains the sender's height. Immediately upon re
eipt ofan Update message, i updates a lo
al data stru
ture thatkeeps tra
k of the
urrent height reported for ea
h of itsneighbors. Node i uses this information to determine thedire
tion of its in
ident links. Referen
es in the pseudo
odebelow to variables lidj ; �j ; oidj ; rj ; and Æj for a neighbor jof i a
tually refer to the information that i has stored aboutj's height, in variable heighti[j℄.At the end of ea
h step, if i's height has
hanged, thenit sends an Update message with the new height to all itsneighbors.The pseudo
ode below explains how and when node i's heightis
hanged. Parts B through D are exe
uted only if the leaderid in the re
eived Update message is the same as lidi.

A. When node i has no outgoing links due to a link failure:1. if node i has no in
oming links as well then2. lidi := i3. (�i; oidi; ri) := (�1;�1;�1)4. Æi := 05. else6. (�i; oidi; ri) := (t; i; 0) // t is the
urrent time7. Æi := 0B. When node i has no outgoing links due to a link reversalfollowing re
eption of an Update message and the referen
elevels (�j ; oidj ; rj) are not equal for all j 2 Ni:1. (�i; oidi; ri) := maxf(�j ; oidj ; rj)jj 2 Nig2. Æi := minfÆj jj 2 Ni and (�j ; oidj ; rj) = (�i; oidi; ri)g � 1C. When node i has no outgoing links due to a link reversalfollowing re
eption of an Update message and the referen
elevels (�j ; oidj ; rj) are equal with rj = 0 for all j 2 Ni:1. (�i; oidi; ri) := (�j ; oidj ; 1) for any j 2 Ni2. Æi := 0D. When node i has no outgoing links due to a link reversalfollowing re
eption of an Update message and the referen
elevels (�j ; oidj ; rj) are equal with rj = 1 for all j 2 Ni andoidj = i:1. lidi := i2. (�i; oidi; ri) := (�1;�1;�1)3. Æi := 0E. When node i re
eives an Update message from neighbor-ing node j su
h that lidj 6= lidi:1. if lidi > lidj or (oidi = lidj and ri = 1) then2. lidi := lidj3. (�i; oidi; ri) := (0; 0; 0)4. Æi := Æj + 1In part E, if the new id is smaller than yours, then adopt it.If the new id is larger than yours, then adopt it, but only ifit is the
ase that the originator of a new referen
e level hasdete
ted a partition and ele
ted itself.
4.5 Examples of Algorithm OperationThe example in �gure 1 shows the working of the algorithmunder 2
onditions:1. When a node dete
ts a partition, it de
lares itself asthe leader of the new
omponent and propagates theinformation to the other nodes in the new
omponent.2. When two
omponents meet due to the formation ofa new link, the leader of one of the
omponents whi
hhas the lower identi�
ation number eventually be
omesthe sole leader of the new
omponent.The respe
tive heights are shown adja
ent to ea
h node (re-
all that the last tuple entry is the node's id). Lexi
ograph-i
al ordering (where 0 < 1 < 2::: and A < B < C:::) is used

(c) Nodes B and E detect a link formation

(A,0,0,0,0,B)

(A,0,0,0,0,E)

Update
(A,0,0,0,1,F)

(A,0,0,0,0,B)

(A,0,0,0,−1,D)

(A,0,0,0,−1,D)

(d) Node F propagates the Leader Change

(A,0,0,0,0,E)

(A,0,0,0,1,F)

(f) Node G propagates the Leader Change

(A,0,0,0,2,H)
Update

(A,0,0,0,3,G)

(A,0,0,0,0,B)

(A,0,0,0,−1,D)

Update

Update

(A,0,0,0,0,E)

(A,0,0,0,1,F)

(A,0,0,0,0,B)

(A,0,0,0,−1,D)

Update

(A,0,0,0,2,H)Update

(e) Node H propagates the Leader Change

(a) Node A detects a partition
and elects itself as leader

(b) Nodes B and D update their heights

and node E changes its leader

(A,0,0,0,0,E)

(A,0,0,0,0,B)

(A,0,0,0,−1,D)

(A,−1,−1,−1,0,A)

(F,0,0,0,2,G) (F,0,0,0,1,H)

(A,−1,−1,−1,0,A)

(F,0,0,0,2,G)

(F,0,0,0,1,E)

(F,−1,−1,−1,0,F)

(A,−1,−1,−1,0,A)

(F,0,0,0,2,G) (F,0,0,0,1,H)

(F,−1,−1,−1,0,F)

(F,0,0,0,1,E)

(F,2,A,1,0,B)

(A,−1,−1,−1,0,A) (F,2,A,1,−1,D)

(F,0,0,0,2,G) (F,0,0,0,1,H)

(F,−1,−1,−1,0,F)

(A,−1,−1,−1,0,A)

(F,0,0,0,1,H)

(A,−1,−1,−1,0,A)

(F,0,0,0,2,G)Figure 1: Operation of the Leader Ele
tion Algo-rithm (last element of tuple is node id)to dire
t links. In �gure 1(a), node A dete
ts a partition andde
lares itself as the leader of the new
omponent. Figure1(b) shows the propagation of the message about the newleader to the other nodes in the new
omponent. Figure1(
)-(f) depi
ts the situation when two
omponents meetdue to a new link formation. Node A, whi
h is the leader ofone of the
omponents, eventually be
omes the sole leaderof the entire
omponent, sin
e A < F , F being the leader ofthe other
omponent.
4.6 CorrectnessWe assume that ea
h
onne
ted
omponent is a leader-orientedDAG originally and that only one
hange (either a link fail-ure or a link formation)
an o

ur at a time. The next
hange o

urs only after the entire network has re
overedfrom the previous
hange. We also assume that the systemis syn
hronous, i.e., the exe
ution o

urs in lo
k step rounds.Messages are sent at the beginning of ea
h round and arere
eived by the nodes to whom they were sent before theend of ea
h round.Theorem 1. The algorithm ensures that ea
h
omponenteventually has exa
tly one unique leader.Proof. We
onsider the following three
ases (the re-maining
ases
ause no
hanges):Case 1: A link disappears at time t,
ausing node i to lose itslast outgoing link but not dis
onne
ting the
omponent.

Case 2: A link appears at time t, joining two formerly sepa-rate
omponents.Case 3: A link disappears at time t,
ausing node i to loseits last outgoing link and dis
onne
ting the
omponent.In ea
h
ase we show that eventually ea
h
omponent in theresulting graph is a leader-oriented DAG.Case 1: A link disappears at time t,
ausing node i to loseits last outgoing link but not dis
onne
ting the
omponent.
�
�
�
� Nodes in set V_l��

��

��

��

�� �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

��
����

��

i j
l

G_i G_l

level = 5

level = 4
diff = 0

level = 4
level = 3

diff = 0 diff = 1
diff = 2

level = 2

level = 1

level = 3

level = 0

level = 5

level = 4

Nodes in set V_i

Link Failure

Frontier Node

Frontier Edge

Figure 2: Example for Case 1.Let G be the dire
ted graph representing the resulting topol-ogy (of the
omponent). Let l be the leader of the
ompo-nent. Then the
omponent was an l-oriented DAG beforethe link was lost. Let Vl be the set of nodes that still havea path to l. At time t, the remaining nodes have a path toi; let this set be Vi. Let Gl be the graph indu
ed by Vl andGi be the graph indu
ed by Vi. See Figure 2.Definition 1. The frontier nodes of Vi are nodes thatare adja
ent to nodes in Vl; the edges between Vi and Vl arethe frontier edges.Let k be any node in Vi.Definition 2. level(k) is the length of the longest pathin Gi from k to i.Note that level is de�ned with respe
t to the �xed Gi. Eventhough the dire
tion of edges
hanges as the algorithm exe-
utes, the levels do not
hange.Lemma 1. If k is on a path in Gi from a frontier nodeto i, then k's �nal height is (l; t; i; 0;�level(k); k). Other-wise, k's �nal height is (l; t; i; 1;�di�(k); k), where di�(k) =maxflevel(h)jh 2 Vi and k is rea
hable from h in Gig �level(k).Proof. We will show by indu
tion on the number ofrounds r after t that at the end of round r:(a) If r < level(k), then k's height is the same as it was attime t.(b) If k is on a path from a frontier node to i and r �level(k), then k's height is (l; t; i; 0;�level(k); k).

(
) If k is not on a path from a frontier node to i andlevel(k) � r < level(k) + 2� di�(k), then k's height is(l; t; i; 0;�level(k); k).(d) If k is not on a path from a frontier node to i and r �level(k)+2� di�(k), then k's height is (l; t; i; 1;�di�(k); k).Basis: r = 0. At the end of round t,
learly property (a)holds.Indu
tion: Assume the statement is true at the end of roundr � 1. We will show it is true at the end of round r.(a) Suppose r < level(k).Then k originally has an outgoing link to a node h whoselevel is at least r. At the end of round r�1, by indu
tion,h still has its original height, as does k, so the edgebetween k and h is still dire
ted toward h. During roundr, h might re
eive a message
ausing it to
hange itsheight, but even if this happens, h's Update message isnot re
eived by k until round r + 1. So at the end ofround r, k still has its original height.(b) Suppose k is on a path from a frontier node to i andr � level(k).When r = level(k), all outgoing neighbors of k havelevel < r. By indu
tion, by the beginning of round r,all outgoing neighbors h of k will have reported their newheights (l; t; i; 0;�level(h); h) to k,
ausing k to raise itsheight to (l; t; i; 0;�level(k); k).When r > level(k), the height of k will not
hange sin
ewhen r = level(h), where h is a frontier node, the dire
-tion of the frontier edge will
hange and a path from ito l will be established and no messages will be re
e
tedba
k.(
) Suppose k is not on a path from a frontier node to i andlevel(k) � r < level(k) + 2� di�(k).When r = level(k), k gets the last Update message froma (formerly) outgoing neighbor and thus k loses its lastoutgoing link. Then it raises its height to(l; t; i; 0;�level(k); k). This
auses all the links that usedto
ome into k to go out from k. (If k is a frontier node,that would in
lude reversing the frontier edges, as seenin the previous
ase).When r > level(k) but still less than level(k)+2� di�(k),there is no
hange in the level of k sin
e node k hasat least one outgoing edge and it has not re
eived anyUpdate messages from its outgoing neighbors.A
tually, there is a
ase when level(k) = level(k) + 2�di�(k), when di�(k) = 0. In this
ase, no nodes of Viinitially were in
oming to k. Node k, on re
eiving thelast Update message from a (formerly) outgoing neigh-bor, loses its last outgoing link. It now raises its heightto (l; t; i; 1; 0; k). In essen
e, node k starts the re
e
tion.When di�(k) > 0, sin
e r < level(k) + 2� di�(k), therehas not been enough time for k to re
eive re
e
ted mes-sages from all its neighbors. Thus, the height of k re-mains un
hanged.

(d) Suppose k is not on a path from a frontier node to i andr � level(k) + 2� di�(k).When r = level(k) + 2� di�(k), k gets the last re
e
tedmessage from its neighbors and updates its height to(l; t; i; 1;�di�(k); k). When r > level(k)+2� di�(k), theheight of k remains un
hanged sin
e a path from i to lhas been or will be established as shown in
ase 2.
Thus, Lemma 1 implies that the resulting graph is an l-oriented DAG, sin
e all nodes in Gi now have paths to fron-tier nodes. The frontier edges are now dire
ted from Vi toVl be
ause the � -
omponent in the heights of nodes in Viis larger than for Vl (sin
e the algorithm has a

ess to syn-
hronized or at least logi
al
lo
ks).Case 2: A link appears at time t, joining two formerly sep-arate
omponents C1 and C2 into
omponent C.Let l1 be the leader of C1 and l2 the leader of C2. Assumewithout loss of generality that l1 < l2. Suppose a link ap-pears at time t between k1, a node in C1, and k2, a node inC2.Lemma 2. Eventually l1 be
omes the leader of
omponentC and C is an l1-oriented DAG.Proof. Let r be the number of rounds after t.At r = 0, k1 and k2 send Update messages to ea
h other.Sin
e k1's leader l1 is smaller than k2's leader l2, k2 updatesits height to (l1; 0; 0; 0; Æk1 + 1; k2) and obtains an outgoinglink to k1.Let the value of dist(k) for any node k in partition2 be theshortest path distan
e from that node to node k2 (the pathdistan
e is in terms of number of links between them).When r < dist(k), the height of k remains un
hanged sin
eit has not yet re
eived the Update message regarding the
hange in leadership. When r = dist(k), k (in
luding l2)
hanges its height to (l1; 0; 0; 0; Æk1+ dist(k) + 1; k). Thusk now has a route to k1 and its leader id has also
hangedto indi
ate a
hange in leadership. When r > dist(k), theheight of k remains un
hanged.Thus we see that when r = dist(k), su
h that k is the farthestnode from k2, all the nodes in partition2 have updated theirheights and have a route to k1. The resultant graph (for themerged
omponent) will be an l1-oriented DAG, sin
e k1 isa node in partition1 whi
h is an l1-oriented DAG.Case 3: A link disappears at time t,
ausing node i to loseits last outgoing link and dis
onne
ting the
omponent.The proof for
ase 3 is very similar to
ase 1, ex
ept thatthere will be no path from node i to a frontier node. The

following
ondition will arise whi
h is di�erent from the
on-ditions in
ase 1.Let r1 be equal to maxflevel(k)+2� di�(k)g for all k adja
entto i. At round r1, the heights of all the adja
ent nodes kwill be (l; t; i; 1;�di�(k); k) and node i will dete
t that apartition has o

urred and will ele
t itself as the leader.Lemma 3. At round r1 a DAG with node i as the sinkhas already been formed.Proof. We know from the proof of
ase 1 that, whenr > level(k) + 2� di�(k) for any node k other than i, nodek has
hanged its height to (l; t; i; 1;�di�(k); k) and has nooutgoing link towards node i. This height of k will not
hange when r > level(k) + 2� di�(k) and r < r1. Alsowhen r = r1 � 1, one of the nodes k whi
h is adja
ent toi will
hange its height to (l; t; i; 1;�di�(k); k) and have onoutgoing link to node i. This node k will also be the lastadja
ent node of i to do so.Thus at r1, when node i dete
ts the partition, it
hanges itsheight to (i;�1;�1;�1; 0; i) and sends an Update messageto its neighbors. This message is propagated throughout thenew
omponent. The resulting graph is an i-oriented DAG.The proof for this is the same as the proof for Lemma 2.Thus we see from all the three
ases that our algorithmwill eventually ensure that ea
h
omponent has exa
tly oneunique leader.
5. LEADER ELECTION ALGORITHM FOR

CONCURRENT CHANGESIn this se
tion we des
ribe modi�
ations to our algorithmfrom Se
tion 4 to handle
on
urrent topologi
al
hanges. By
on
urrent topologi
al
hanges, we mean that after a
hange(link failure or link formation) o

urs, another
hange o

ursbefore the network has �nished re
overing from the previous
hange. Case E is repla
ed by the
ode given below and anew
ase (F) is introdu
ed.E. When node i re
eives an Update message from neighbor-ing node j su
h that lidj 6= lidi:1. if lidi > lidj or (oidi = lidj and ri = 1) then2. lidi := lidj3. if lidj = j then4. (�i; oidi; ri) := (0; 0; 0)5. else6. (�i; oidi; ri) := (�j ; oidj ; rj)7. Æi := Æj + 18. else if lidi < lidj and this is not �rst Update re
eivedfrom j sin
e the link formed then// \pre
ompute" j's height; j will be in
oming to i9. if lidi = i then10. heighti[j℄ := (lidi; 0; 0; 0; Æi + 1; i)11. else12. heighti[j℄ = (lidi; �i; oidi; ri; Æi + 1; i)// remind j about i's height14. send Update message
ontaining i's height to j//
he
k whether i should start a new referen
e level

a) Nodes D and I get Update messages from C
and J changes its height as shown

D (C,0,0,0,1,D)

C (C,−1,−1,−1,0,C)

J (F,2,C,1,0,J)

I (C,0,0,0,1,I)

K (K,−1,−1,−1,0,K)

L (K,0,0,0,2,L)

d) Nodes L and K get Update messages from J
 and we get a C−oriented DAG.

c) Nodes L and K get Update messages from J
and J gets Update message about the new leader from C

K (K,−1,−1,−1,0,K)

L (K,0,0,0,2,L)

D (C,0,0,0,1,D)

C (C,−1,−1,−1,0,C)

J (C,0,0,0,2,J)

I (C,0,0,0,1,I)

K (C,0,0,0,3,K)

L (C,0,0,0,3,L)D (C,0,0,0,1,D)

C (C,−1,−1,−1,0,C)

J (C,0,0,0,2,J)

I (C,0,0,0,1,I)

K (F,2,C,1,1,K)

L (F,2,C,1,1,L)

D (F,2,C,1,−1,D)

C (C,−1,−1,−1,0,C)

J (K,0,0,0,1,J)

I (F,2,C,1,−1,I)

a) C elects itself as leader of component A
and there is a link formation between I and J

Figure 3: Example 1 for the se
ond algorithm15. if i has no outgoing links and lidi 6= iand lidk = lidi for all k 2 Ni then16. (�i; oidi; ri) := (t; i; 0) // t is
urrent time17. Æi := 0F. When node i has no outgoing links due to a link reversalfollowing re
eption of an Update message and the referen
elevels (�j ; oidj ; rj) are equal with rj = 1 for all j 2 Ni andoidj 6= i:1. lidi := i2. (�i; oidi; ri) := (t; i; 0) // t is
urrent time3. Æi := 0Lines 3-6 in
ase E are required to handle the
ase whentwo
omponents, say A and B, meet. An example for thisis shown in �gure 3. Assume node i of
omponent A hasnot yet re
eived the Update message about the new leaderof
omponent A, but has a re
e
ted referen
e level. Nodei re
eives an Update message from node j of
omponent B.If lidj > lidi and lidj 6= j, then the referen
e level of jis updated to the referen
e level of i. This enables node ito propagate the Update message about the new leader of
omponent A throughout
omponent B.A s
enario when lines 8-17 in
ase E are required is as fol-lows (see �gure 4). Say a partition has been dete
ted and theleader of the new
omponent starts propagating the infor-mation about its leadership throughout the new
omponent.Assume that node k loses its last outgoing link due to a linkfailure before it re
eives the Update message about the lead-ership
hange. Node k will then de�ne its own referen
e levelat time t and its leader id will be the leader id of the pre-vious
omponent it belonged to. Say node k now re
eivesthe leadership
hange message. Now if the leader id of k issmaller than the id of the new leader, node k will ignore theUpdate message. This will lead to a situation where node

a) Node J detects it is the leader
and Link between F and K fails.

B (H,1,J,1,1,B) B (J,0,0,0,1,B)

b) Nodes B and F receive leader Update meaasge
and Node K defines new reference level.

B (J,0,0,0,1,B) B (J,0,0,0,1,B)

d) Node K receives message from C and
performs the algorithm in lines E:8−17.

J (J,−1,−1,−1,0,J)

F (H,1,J,1,1,F)

K (H,1,J,1,2,K)

C (H,1,J,1,3,C)

J (J,−1,−1,−1,0,J)

F (J,0,0,0,1,F)

K (H,2,K,0,0,K)

C (H,1,J,1,3,C)

J (J,−1,−1,−1,0,J)

F (J,0,0,0,1,F)

K (H,2,K,0,0,K)

C (J,0,0,0,2,C)

J (J,−1,−1,−1,0,J)

F (J,0,0,0,1,F)

K (H,3,K,0,0,K)

C (H,3,K,0,−1,C)

Node C will now propagate the two Update messages.

c) Node C 1st receives message from K
which causes no change in height

and receives message from B which causes height change.

H was previous leader but is no longer in the component

Figure 4: Example 2 for the se
ond algorithmk will be unaware of the new leader in the
omponent, butwill still be part of the
omponent.
6. DISCUSSIONWe have proposed two distributed and highly adaptive leaderele
tion algorithms, based on TORA [5℄, designed for oper-ation in ad ho
 networks. Both leader ele
tion algorithmsguarantee that every
onne
ted
omponent in the networkwill eventually have a unique leader. The �rst algorithmworks when only a single topologi
al
hange o

urs. Aproof of
orre
tness is provided for this algorithm, whi
halso provides insight into the workings of the TORA algo-rithm. The se
ond algorithm handles multiple
on
urrenttopologi
al
hanges.The initialization of our algorithms
an be a
hieved by start-ing ea
h node as the leader of its own
omponent, i.e., ea
hnode i starts with its height to (i;�1;�1;�1; 0; i) and isneighbor list Ni to empty.For our algorithms to be tolerant to node failures, we assumethat when a node re
overs from a node failure, it restartsby de
laring itself as the leader, i.e, setting its height to(i;�1;�1;�1; 0; i).Our future work will
on
entrate on simulating the algo-rithm and evaluating its performan
e. We also plan to pro-vide the proof of
orre
tness for the
ase when multiple
on-
urrent topologi
al
hanges o

ur.Clearly, other algorithms
an be
on
eived for leader ele
-tion in mobile ad ho
 networks. Di�erent algorithms areexpe
ted to di�er in the ease of implementation, message
omplexity, spa
e usage, et
. Comparison of di�erent algo-rithms is a topi
 for further work.

AcknowledgementsWe thank Charles Perkins and Jennifer Walter for helpfuldis
ussions.
7. REFERENCES[1℄ H. Attiya and J. L. Wel
h. Distributed Computing:Fundamentals, Simulations and Advan
ed Topi
s.London, UK: M
Graw-Hill, 1998.[2℄ Chunhsiang Cheng and Srikanta P. R. Kumar. ALoop-Free Spanning-Tree Proto
ol in Dynami
Topology. Pro
. 27th Annual Allerton Conferen
e onCommuni
ation, Control and Computing, Sept. 1989,pp. 594-595.[3℄ E. Gafni and D. Bertsekas. Distributed algorithms forgenerating loop-free routes in networks withfrequently
hanging topology. IEEE Transa
tions onCommuni
ations, C-29(1):11{18, 1981.[4℄ Kostas P. Hatzis, George P. Pentaris, Paul G.Spirakis, Vasilis T. Tampakas and Ri
hard B. Tan.Fundamental Control Algorithms in Mobile Networks.Pro
. 11th Annual ACM Symposium on ParallelAlgorithms and Ar
hite
tures, pages 251-260, 1999.[5℄ Vin
ent D. Park and M. S
ott Corson. A HighlyAdaptive Distributed Routing Algorithm for MobileWireless Networks. Pro
. IEEE INFOCOM, April7-11, 1997.[6℄ Elizabeth M. Royer and Charles E. Perkins. Multi
astOperations of the Ad-ho
 On-Demand Distan
eVe
tor Routing Proto
ol. Pro
. Fifth AnnualACM/IEEE International Conferen
e on MobileComputing and Networking (MOBICOM), pages207-218, August 15-20, 1999.[7℄ Elizabeth M. Royer, Samir R. Das and Charles E.Perkins. Ad Ho
 On-Demand Distan
e Ve
tor(AODV) Routing (Internet-Draft). Mobile Ad Ho
Network (MANET) Working Group, 10 Mar
h, 2000(work in progress).

