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ABSTRACT

The Byzantine fault model is a worst-case assumption for faulty nodes in

distributed systems because it assumes faulty nodes to behave arbitrarily.

Previously, Lamport et al. proposed a replicated state way to solve the

Byzantine broadcast problem. But the original protocol is very expensive due

to large communication overhead. This thesis does a comparison study be-

tween practical Byzantine fault tolerance (PBFT) and network coding based

algorithm (NCBA) which can solve Byzantine broadcast problem with lower

cost. I implemented a generalized testing framework as well as the Digest

protocol and the NCBA protocol. By the experiments I conducted, NCBA

has comparable performance compared to Digest in fault-free cases.
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CHAPTER 1

INTRODUCTION

This thesis explores the cost of Byzantine fault tolerance (BFT) protocols.

Byzantine fault tolerance assumes arbitrary behavior of the server and thus

is a stronger fault model than the crash failure tolerance model. Lamport et

al. [1] proposed the replicated state machine approach to address the Byzan-

tine broadcast problem. Unfortunately, the original state machine approach

has a high communication overhead and thus it is not practical to implement

the original algorithm in real world distributed systems.

Later, all kinds of practical BFT protocols were designed to make Byzan-

tine fault tolerance practical, such as practical Byzantine fault tolerance

(PBFT) [2, 3], Q/U protocol [4], hybrid-quorum [5], Zyzzva [6], Aardvark

[7], network coding based algorithm (NCBA) [8] and ZZ [9].

In my thesis, I did a performance comparison between the PBFT protocol

[2, 3] and the NCBA protocol [8]. My results show that NCBA and PBFT

are comparable in fault-free cases.

The problem I target on is Byzantine broadcast problem. A single source

wants to broadcast a value to n-1 peers and meet the following requirements:

• Agreement

Correct peers will agree on a value.

• Validity

If the source is correct, correct peers will agree on the value the source

broadcasts.

• Liveness

The system is continuously making progress and will terminate.
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Also, I assume a synchronous communication network for the experiment.

In Chapter 2, I describe previous work on Byzantine fault tolerance proto-

cols. In Chapter 3, I present a system design to test existing Byzantine fault

tolerance protocols. In Chapter 4, I analyze the results of the performances

data. I state my conclusion in Chapter 5 and future work in Chapter 6.

2



CHAPTER 2

LITERATURE REVIEW

2.1 Byzantine Broadcast Problem

Lamport et al. proposed the Byzantine general problem [1] that n generals

propose their 1-bit proposals, “attack” or “retreat”, and all correct generals

need to agree on a single decision, “attack” or “retreat”, by voting. However,

a Byzantine-faulty general can vote different values to other generals which

makes correct generals collect inconsistent votes. For example, a faulty gen-

eral can vote “attack” to one general and vote “retreat” to another general.

In order to ensure that correct generals collect identical votes from all the

generals, a sub-routine called the Byzantine broadcast is needed to make

sure correct generals receive identical vote from a source even if the source

is Byzantine-faulty. The problem setting is the following: one source needs

to broadcast an L-bit value to n-1 other peers. If the source is fault-free, all

correct peers will know the L-bit value which the correct general broadcasts.

If the source is Byzantine-faulty, then all the correct peers need to agree on

some value.

Lamport et al. then proved that it is impossible to solve Byzantine broad-

cast problem for a system that greater than or equal to one third of its nodes

are compromised. For example, for a system of 1 source and 2 peers, a cor-

rect peer will not be able to differentiate whether the source is faulty or the

other peer is faulty. Then they also proposed a recursive algorithm to solve

this problem when the number of fault-free nodes is more than two thirds of

the number of nodes in the system. However, the recursive algorithm needs

O(2n) bits communication cost for agreeing on a single bit.
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2.2 Practical Byzantine Fault Tolerance (PBFT)

The major improvement in PBFT [2, 3] in respect to the classical algorithm

[1] is that PBFT compares the hash value of the original L-bit value from

each peer rather than using the original L-bit value itself. In this way PBFT

separates the Byzantine detection from actually agreeing upon the value it-

self and lower the communication cost to O(n) bits to agree on single bit

value in fault-free cases. Another benefit of using PBFT is that PBFT can

work with an asynchronous network, where Lamport et al.’s classical solution

only works for a synchronous network. However, because PBFT depends on

the collision resistant hash functions, PBFT is not an always-correct proto-

col due to hash collisions. More specifically, PBFT’s correctness depends on

the probability of hash collisions and whether the hackers can find a hash

collision. Better hash functions lead to higher computational cost in PBFT

and thus slow PBFT down to some extent. Implementation details will be

discussed in Chapter 3.

2.3 Network Coding Based Algorithm (NCBA)

Liang et al. [8] proposed NCBA protocol which uses network coding to

protect the L-bit value’s content. The source protects the value by Reed-

Solomon coding and creates different coded segments of the original L-bit

value. The source then sends different segments of the original L-bit value

to different peers. The peers then exchange what they get from the source

and determine whether the original L-bit value can be recovered or not. This

will introduce slightly more communication cost than PBFT but avoids using

hash functions. I will discuss my implementation and Benjamin’s implemen-

tation [8] in Chapter 3.
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CHAPTER 3

TESTING FRAMEWORK

3.1 Overview

Figure 3.1 is the software architecture of the testing framework. The test-

ing framework separates the communication layer, group membership from

the actual Byzantine broadcast protocols running on the framework. The

first motivation is that extending the functionality of the testing system is

easier so that future users can focus on writing clean protocol codes on the

framework without worrying about the detailed work about communication

and multi-threading. The second motivation is that measurements on all the

protocols are fair to each protocol because each experiment runs similar sets

of codes except for the protocol parts. Because of the above two reasons, the

framework has two parts. BFTNode is installed on each machine, regard-

less of source or peers, to ensure packets send and receive, send retry, task

scheduling, task management. BFTProtocol is an abstract class that follows

the usual multi-phase BFT broadcast algorithms, where each node starts at

some original state, some communications by packets delivering take place,

and then each correct peer sends a commit packet to the source. When the

source collects enough commits from the peers, the source knows that the

protocol ends. Any Byzantine broadcast protocols need to extend this ab-

stract class for the system to run it.

3.2 Terminology

• value

The original L-bit value is the value that all the correct peers need to
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Figure 3.1: System Architecture

agree on after the protocol termination.

• packet

The communication in the system is through sending and receiving

packets.

• value id

The value id is the id for the L-bit value. It can be understood as the

id of each Byzantine broadcast.

• member id

The member id is distinct for each node in the system.

• task

A task is a class to handle all incoming packets for a single value id.
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3.3 BFTNode

3.3.1 Membership

BFTNode holds a mapping between ids to other machines’ IP address and

port numbers. So the communication is transparent to the protocols. All the

protocols know about the other machines only by their member id number.

The source will have the id of 0 and other machines will have ids starting

from 1. Each machine will have a distinct id. This mapping is retrieved from

a text file called “GroupList” in the file system, which is replicated in all

machines.

3.3.2 Scheduling and Synchronization

Every value the source wants the peers to Byzantine agree on has a dis-

tinct value id number. Here I assume that each L-bit value is independent of

each other and there is no causal relationship between different values, which

means value with value id = 2 can be agreed successfully before value with

value id = 1 is successfully agreed. This gives the system the ability to agree

in parallel on values that are not related to each other which will boost the

performance of the Byzantine fault tolerance protocol. A detailed discussion

of performance boosting is in Chapter 4.

Whenever a peer receives a new packet with a value id it has not seen be-

fore from the source or other peers, the peer generates a receiveTask locally

to handle all the following packets for agreeing on the L-bit value correspond-

ing to the unique value id. To ensure a task only process one packet at a

time, incoming packets for a single value id need to be serialized. A lock is

created for each task to serialize incoming packets for each unique value id.

Whenever the node receives a packet from other machines and the node has

the task to handle the packet, the node will generate a new thread to try to

grab the lock for that task. If the lock is successfully obtained, the node will

forward the packet to the task to handle it. If the lock cannot be acquired,

the thread will wait until the lock is freed.
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Figure 3.2: Handle incoming packets

In this way, a single task always handle one packet at a time and packets

with different value id numbers can still execute simultaneously.

3.3.3 Communication

Figure 3.2 demonstrate how a BFTNode handles incoming packets. The

framework uses Java’s TCP implementation to communicate. Each node

has a BFTListener which is a simple thread waiting for incoming packets.

BFTNode sends a packet by the target machine’s member id. A packet

should always have a value id number indicating which value this packet be-

longs to. Also a packet has a field indicating the choice of BFTProtocol it

wants to use and the member ids for the sender and the receiver. When a

BFTNode receives a packet, BFTNode forwards the packet to the task that

can handle this value id.

3.3.4 Measurement

Each protocol running on the testing framework needs to specify the ter-

mination of the protocol and thus the task will be removed from the node.
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When the source starts to Byzantine broadcast a value, he needs to create a

new value id number and a sendTask to handle incoming commit packets and

change of states for that value id. The sendTask will notify the BFTNode

whether they have completed after finishing processing each packet forwarded

to the sendTask. If all the sendTasks complete, the timespan for completing

all the tasks will be computed and a new set of experiments take place af-

terwards. Usually, in a measurement we needs a lot of similar experiments

to demonstrate protocol’s performance.

3.4 BFTProtocol

3.4.1 Overview

I implement the fault-free cases for Lamport et al.’s classical algorithm [1],

the PBFT protocol [2, 3] and the NCBA protocol [8]. I build an abstract

class to generalize those multi-phase Byzantine agreement protocols. Each

protocol needs to extend BFTsendTask class and BFTreceiveTask class to

add the BFT functionality. In this section, I will discuss the implementa-

tions of those protocols.

I assume the size of each value to be agreed on is L bits. The total number

of nodes is n and the maximum number of Byzantine faults is f.

3.4.2 Classical Algorithm

I implement Lamport et al.’s classical algorithm to do the Byzantine broad-

cast for n=4, f=1 in a synchronous network. It has three phases. In the first

phase, the source broadcasts the L-bit value to all the peers. In the second

phase when peers receive the value sent by the source, the peers do an all-

to-all communication to exchange what they receive from the source. In the

third phase, when they receive all the values from other peers, they agree

on the value by choosing the value appear the most frequently and send the

commit packet to the source. When the source receive f+1 commits from the
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peers, the protocol ends.

In the Lamport et al.’s algorithm, the first state broadcast needs 3L. The

value forwarding needs 3×2L = 6L. So in all, the communication complexity

is 3L + 6L = 9L.

3.4.3 Digest

Digest is a simple version of the PBFT protocol [2, 3] which I implemented

according to Liang et al.’s paper [8] for n=4, f=1. I use SHA-1 as the hash

function to generate the hash for the value. The protocol has 4 phases. In

the first phase, the source broadcasts the value to all peers. In the second

phase, when a peer receives the value sent by the source, the peer forwards a

prepare packet to other peers. The prepare packet has a random byte array

generated by this peer, and a hash value for the original L-bit value and the

random byte array combined. In this way, the peer only sends the random

byte array and the hash value but not the whole L-bit value to another peer.

In the third phase, when a peer receives a forwarded prepare packet from

another peer, it needs to verify the hash value is indeed the hash value of the

original L-bit value and the random byte array he received from the source.

In the commit phase, the peers Byzantine broadcast 1-bit flag indicating

whether they detect a Byzantine fault in the system using the Lamport et

al.’s classical Byzantine broadcast algorithm. If no node complains, the peer

sends the commit packet to the source. When the source receive f+1 commits

from the peers, the protocol ends.

In the Digest protocol, the first stage broadcast needs 3L. That is the

dominant communication complexity if we consider the hash value’s length

is far smaller than L bits.
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3.4.4 NCBA

The NCBA protocol [8] is very similar to the Digest protocol discussed above

except for the packet sent by the source and the way peers compare each

other’s forwarded packets. I implement the NCBA protocol for n=4, f=1.

Because f = 1, the Reed-Solomon code to ensure detecting Byzantine faults

can be simplied to a parity check [8]. Again, the NCBA protocol has 4

phases. In the first phase, the source encodes the original L-bit value to 4

segments, where 3 of the 4 segments are enough to decode the original L-bit

value. Here I just separate the original value into 3 segments where each

segment has L/3 bits and then compute the parity of the 3 segments to gen-

erate the 4th segments which is also L/3 bits long. It is obvious that any

3 segments in the 4 segments are enough to generate the whole L-bit value

by computing the parity. Then the source sends 1 segment of the original

value and the parity segment to each of the 3 peers in the system. In the

second phase, peers exchange the segments they uniquely received from the

source. In the third phase, after the peers receive all the segments from other

peers, the peers will be able to tell whether the value is indeed correct by

checking if the parity of the L-bit value still holds. The peers then Byzantine

broadcast 1-bit flag indicating whether they detect a Byzantine fault in the

system using the Lamport et al.’s classical Byzantine broadcast algorithm.

If no node complains, the peer sends the commit packet to the source. When

the source receive f+1 commits from the peers, the protocol ends.

In the NCBA protocol, the first stage broadcast needs 3 × 2/3L = 2L

because every peer needs two thirds of the value. In the second stage, where

all-to-all communication happens, it needs 3× 2× 1/3L = 2L because every

peer only forwards one third of the value to other two peers. So the overall

communication complexity is 2L + 2L = 4L.

3.5 Comparison with Previous Implementations

The major difference between the implementation in [8] and my work is that

my testing framework supports multiple Byzantine broadcasts in parallel.

The motivation behind this modification is that, for example, usually in a
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distributed file system, files are not causally related to each other and there

is no need to wait for the previous broadcast to terminate before starting

the next broadcast. In my design, each value id is the identifier for the value

and packets with different value ids can proceed in parallel without blocking

each other.
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CHAPTER 4

EVALUATION RESULTS

4.1 Environment

All the codes are first compiled into Java virtual machine binary code which

is highly optimized. All the nodes start their Java virtual machines to run

the framework and there is no disk I/O involved in the system. All the re-

sults are averages of 100 test runs.

In the experiment I conduct, I use 1 source and 3 peers. The source needs

to Byzantine broadcast to all the peers so that each correct source and peer

will have the exact the same value. The source is a Sumsung laptop running

Windows 8 on a 1.7 GHz Intel Core i5 and 8 GiB of RAM. The 3 peers

are Dell Inspiron 1545 laptops running Ubuntu 9.04 Jaunty, Gnome 2.26.1,

and Linux Kernel 2.6.28-11-generic on 2.9 GiB of RAM and a 2.0 GHz Intel

Core 2 Duo Processor T6400. The four machines are connected by a Netgear

GS108 gigabit switch.

4.2 Data

Peers agree on a single L-bit value sequentially, where L = 300 Bytes, 3 KB,

30 KB and 300 KB. The time span for agreeing on each value is measured is

in milliseconds.

L 300 Bytes 3 KB 30KB 300KB

Classic 11.09 12.17 19.69 157.69

Digest 17.81 19.63 21.22 106.39

NCBA 17.03 16.72 19.53 85.32
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Peers agree on two L-bit values in parallel, where L = 300 Bytes, 3 KB,

30 KB and 300 KB. The time span for agreeing on two values is measured is

in milliseconds.

L 300 Bytes 3 KB 30KB 300KB

Classic 14.07 15.47 32.34 317.23

Digest 28.36 25.86 31.87 182.52

NCBA 25.96 25.01 28.51 153.86

Savings by agreeing on 2 values in parallel can be computed by

1 − the latency of agreeing on two L-bit values in parallel

2 × the latency of agreeing on a single L-bit value
. (4.1)

For example, for L = 30 KB and using NCBA, the savings of Byzantine agree-

ing on two values in parallel compared to agreeing on one value sequentially

is

1 − 28.51

2 × 19.53
= 27%. (4.2)

L 300 Bytes 3 KB 30KB 300KB

Classic 36.6% 36.5% 17.9% -0.59%

Digest 20.4% 34.2% 24.9% 14.2%

NCBA 23.8% 25.3% 27.0% 9.8%

4.3 Analysis

I measured the delay from when the source issues the Byzantine broadcast

to the time when the source receives enough commits packets from the peers.

The delay roughly depends on three different aspects of the protocol:

• The number of phases and average RTT (round trip time)

• Communication complexity

• Computation complexity

When the value size is small (less than or equal to 3KB), the dominant

factor in the delay is the number of phases of the algorithm. The classical
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algorithm outperforms both Digest and NCBA because it is only a 3-phase

protocol when f = 1 whereas both Digest and NCBA are 4-phase protocols in

fault-free cases. Agreeing on multiple values in parallel is very useful (around

30% more efficient) because most of the delay is caused by propagation delay

or in other words RTT. And parallelism boosts the performance of Byzantine

broadcast by using the idle time span when the machine is waiting for the

incoming packets to execute the Byzantine protocol for values of other value

ids.

When the value size is relatively large (greater than or equal to 300KB),

the dominant factors are communication complexity and computation com-

plexity. The classic algorithm’s performance is thus far behind both the

Digest protocol and the NCBA protocol. In my experience, NCBA is faster

than Digest. This is due to Reed-Solomon code can be quickly computed

for f =1 but one-way hash functions such as SHA-1 is still computational

intensive. Agreeing on multiple values in parallel is thus not very useful as

the value size grows larger because most of the delay is due to heavy compu-

tation or network complexities. If the machine’s CPU is heavily utilized or

the network bandwidth is heavily utilized, agreeing in parallel does not help

compared to agreeing on values sequentially.
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CHAPTER 5

CONCLUSION

As can be seen from the results, NCBA’s performance is comparable to Di-

gest and sometimes even a little better than Digest. By not using the colli-

sion resistant hash function, NCBA saves a lot of computation cost on the

servers but introduces a slightly larger communication cost. Also, NCBA is

an always-correct protocol and does not use any cryptographic assumptions

on the Byzantine-faulty nodes, whereas PBFT relies on collision resistant

hash function to work correctly.

16



CHAPTER 6

FUTURE WORK

We can see two trends of distributed system researches in this area. Crash

fault tolerance (CFT) systems are already been built with great performance,

such as BigTable [10], Cassandra [11], Dynamo [12]. The other trend is that

Byzantine fault tolerance (BFT) protocols becomes quick [3, 5, 8], fault-

scalable [4, 6], costless [9, 13] and robust [7].

It is interesting to ask whether it is possible to build Byzantine fault tol-

erance as an add-on feature on current CFT systems and at the same time

minimize the additional cost for systems to switch from CFT to BFT. Up-

right [14] is designed to replicate a service to make it support Byzantine fault

tolerance.

In replicated systems, to ensure linearizability [15], often the system needs

each replica to process all the incoming requests in the same order. This

may require the system to use Byzantine fault tolerance protocol on the crit-

ical path to make sure all the correct replicas process incoming requests in

exactly the same order. Unfortunately, this will incur an extra overhead be-

cause BFT protocol’s overhead is larger than CFT’s.

To lower the overhead of replicated systems in Byzantine fault model,

we may want to let replicas temporarily process incoming requests with in-

consistent ordering, and try to fix the ordering later. This can be done in

read/write data objects [16, 17] by keeping enough versions of the data. We

have some preliminary thoughts on how to solve this problem in general cases.
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