
ar
X

iv
:1

10
9.

63
92

v1
  [

cs
.S

Y
]  

29
 S

ep
 2

01
1

COORDINATED SCIENCES LABORATORY TECHNICAL REPORT UILU-ENG-11-2208 (CRHC-11-06) 1

Distributed Algorithms for Consensus and Coordination in
the Presence of Packet-Dropping Communication Links

Part II: Coefficients of Ergodicity Analysis Approach

Nitin H. Vaidya, Fellow, IEEE
Christoforos N. Hadjicostis,Senior Member, IEEE
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Abstract

In this two-part paper, we consider multicomponent systemsin which each component can iteratively
exchange information with other components in its neighborhood in order to compute, in a distributed fashion,
the average of the components’ initial values or some other quantity of interest (i.e., some function of these
initial values). In particular, we study an iterative algorithm for computing the average of the initial values of
the nodes. In this algorithm, each component maintains two sets of variables that are updated via two identical
linear iterations. The average of the initial values of the nodes can be asymptotically computed by each node
as the ratio of two of the variables it maintains. In the first part of this paper, we show how the update rules
for the two sets of variables can be enhanced so that the algorithm becomes tolerant to communication links
that may drop packets, independently among them and independently between different transmission times. In
this second part, by rewriting the collective dynamics of both iterations, we show that the resulting system is
mathematically equivalent to a finite inhomogenous Markov chain whose transition matrix takes one of finitely
many values at each step. Then, by using e a coefficients of ergodicity approach, a method commonly used for
convergence analysis of Markov chains, we prove convergence of the robustified consensus scheme. The analysis
suggests that similar convergence should hold under more general conditions as well.

Note to readers: Section I discusses the relation between Part II (this report) and the companion Part I of the report,

and discusses some related work. The readers may skip Section I without a loss of continuity.
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I. INTRODUCTION

The focus of this paper is to analyze the convergence of the robustified double-iteration1 algorithm

for average consensus introduced in Part I, utilizing a different framework that allows us to move

away from the probabilistic model describing the availability of communication links of Part I. More

specifically, instead of focusing on the dynamics of the firstand second moments of the two iterations

to establish convergence as done in Part I, we consider a framework that builds upon the theory of

finite inhomogenous Markov chains. In this regard, by augmenting the communication graph, we will

show that the collective dynamics of each of the two iterations can be rewritten in such a way that the

resulting system is mathematically equivalent to a finite inhomogenous Markov chain whose transition

matrix takes values from a finite set of possible matrices. Once the problem is recasted in this fashion,

tools, such as coefficients of ergodicity, commonly used in the analysis of inhomogenous Markov chains

(see, e.g., [1]) are used to prove the convergence of the algorithm.

Recalling from Part I, when the communication network is perfectly reliable (i.e., in the absence

of packet drops), the collective dynamics of the linear iterations can be described by a discrete-time

transition system with no inputs in which the transition matrix is column stochastic and primitive.

Then, each node runs two identical copies of a linear iteration, with each iteration initialized differently

depending on the problem to be solved. This double-iteration algorithm is a particular instance of

the algorithm in [2] (which is a generalization of the algorithm proposed in [3]), where the matrices

describing each linear iteration are allowed to vary as timeevolves, whereas in our setup (for the

ideal case when there are no communication link failures) the transition matrix is fixed over time. In

general, the algorithm described above is not robust against packet-dropping communication links. It

might be possible to robustify it by introducing message delivery acknowledgment mechanisms and

retransmission mechanisms, but this has certain overhead and drawbacks as discussed in Section II-C.

Also, in a pure broadcast system, which is the communicationmodel we assume in this work, it is easy

to see that the double-iteration algorithm above will not work properly. The mechanism we proposed in

Part I to robustify the double iteration algorithm was for each nodei to keep track of three quantities

of interest: i) its own internal state (as captured by the state variables maintained in the original double

iteration scheme of [2], [4]; ii) an auxiliary variable thataccounts for the total mass broadcasted so far

by nodei to (all of) its neighbors; and iii) another auxiliary variable that accounts for the total received

mass from each nodej that sends information to nodei. The details of the algorithm are provided

in Section III, but the key in analyzing convergence of the algorithm is to show that the collective

system dynamics can be rewritten by introducing additionalnodes—virtual buffers—that account for

the difference between these two auxiliary variables. The resulting enhanced system is equivalent to an

inhomogenous Markov chain whose transition matrix takes values from a finite set.

As discussed in Part I, even if relying on the ratio of two linear iterations, our work is different from

the work in [2] in terms of both the communication model and also the nature of the protocol itself.

1In this second part we will also refer to this algorithm as “ratio consensus” algorithm and will use both denominations interchangeably.
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In this regard, a key premise in [2] is that stochasticity of the transition matrix must be maintained

over time, which requires sending nodes to know the number ofnodes that are listening, suggesting

that i) either the communication links are perfectly reliable, or ii) there is some acknowledgment and

retransmission mechanism that ensures messages are delivered to the listening nodes at every round

of information exchange. In our work, we remove both assumptions, and assume a pure broadcast

model without acknowledgements and retransmissions. It isvery easy to see that in the presence of

lossy communication links, the algorithm in [2] does not solve the average consensus problems as

stochasticity of the transition matrix is not preserved over time. Thus, as mentioned above, the key in

the approach we follow to analyze convergence is to augment the communication graph by introducing

additional nodes, and to establish the correctness of the algorithms and establish that the collective

dynamics of the resulting system is equivalent to a finite inhomogenous Markov chain with transition

matrix that values values from a finite set. Once the system isrewritten in this fashion, the robust

algorithm for ratio consensus reduces to a similar setting to the one in [2], except for the fact that some

of the the resulting transition matrices might not have positive diagonals, which is required for the proof

in [2]. Thus, in this regard, our approach may be also viewed as a generalization of the main result in

[2].

The idea of augmenting the communication graph has been usedin consensus problems to study the

impact of bounded (fixed and random) communication delays [5], [6], [7]. In our work, the augmented

communication graph that results from rewriting the collective system dynamics has some similarities

to the augmented communication graph in [7], where the link from nodei to nodej is replaced by

several paths from nodei to nodej, in order to mimic the effect of communication delays. In particular,

in [7], for a maximum delay ofB steps,B paths are added in parallel with the single-edge path that

captures the non-delayed message transmission. The added path corresponding to delayb (1 ≤ b ≤ B)

hasb nodes, for a total ofB(B + 1)/2 additional nodes capturing the effect of message transmission

delays from nodei to nodej. At every time step, a message from nodei to nodej is randomly routed

through one of these paths; the authors assume for simplicity that each of the paths is activated with

probability1/B. For large communication graphs, one of the drawbacks of this model is the explosion

in the number of nodes to be added to the communication graph to model the effect of delays. In our

work, for analysis purposes, we also use the idea of augmenting the communication graph, but in our

case, a single parallel path is sufficient to capture the effect of packet-dropping communication links.

As briefly discussed later, it is easy to see that our modelingformalism can also be used to capture

random delays, with the advantage over the formalism in [7] that in our model, it is only necessary to

add a single parallel path withB nodes (instead of theB(B +1)/2 nodes added above) per link in the

original communication path, which reduces the number of states added. Additionally, our modeling

framework can handle any delay distribution, as long as the equivalent augmented network satisfies

properties (M1)-(M5) discussed in Section IV-A.

In order to make Part II self-contained, we review several ideas already introduced in Part I, including
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the double-iteration algorithm formulation over perfectly reliable networks and its robustified version.

In Part II, we will embrace the common convention utilized inMarkov chains of pre-multiplying the

transition matrix of the Markov chain by the corresponding probability vector.

The remainder of this paper is organized as follows. SectionII introduces the communication model,

briefly describes the non-robust version of the double-iteration algorithm, and discusses some issues that

arise when implementing the double-iteration algorithm innetworks with unreliable links. Section III

describes the strategy to robustify the double-iteration algorithm against communication link failures.

Section IV reformulates each of the two iterations in the robust algorithm as an inhomogeneous Markov

chain. We employ coefficients of ergodicity analysis to characterize the algorithm behavior in Section V.

Convergence of the robustified double-iteration algorithmis established in Section VI. Concluding

remarks and discussions on future work are presented in Section VII.

II. PRELIMINARIES

This section describes the communication model we adopt throughout the work, introduces nota-

tion, reviews the double-iteration algorithm that can be used to solve consensus problems when the

communication network is perfectly reliable, and discusses issues that arise when implementing the

double-iteration algorithm in networks with packet-dropping links.

A. Network Communication Model

The system under consideration consists of a network ofm nodes,V = {1, 2, . . . , m}, each of which

has some initial valuevi, i = 1, 2, . . . , m, (e.g., a temperature reading). The nodes need to reach

consensus to the average of these initial values in an iterative fashion. In other words, the goal is for

each node to obtain the value
∑m

j=1
vj

m
in a distributed fashion. We assume a synchronous2 system in

which time is divided intotime stepsof fixed duration. The nodes in the network are connected by a

certain directed network. More specifically, a directed link (j, i) is said to “exist” if transmissions from

nodej can be received by nodei infinitely often over an infinite interval. LetE denote the set of all

directed links that exist in the network. For notational convenience, we take that(i, i) ∈ E , ∀i, so that a

self-loop exists at each node. Then, graphG = (V, E) represents the network connectivity. Let us define

Ii = {j | (j, i) ∈ E} andOi = {j | (i, j) ∈ E}. Thus,Ii consists of all nodes from whom nodei has

incoming links, andOi consists of all nodes to whom nodei has outgoing links. For a setS, we will

denote the cardinality of setS by |S|. The outdegree of nodei, denoted asDi, is the size of setOi,

thus,Di = |Oi|. Due to the assumption that all nodes have self-loops,i ∈ Ii and i ∈ Oi, ∀i ∈ V. We

assume that graphG = (V, E) is strongly connected. Thus, inG = (V, E), there exists a directed path

from any nodei to any nodej, ∀i, j ∈ V (although it is possible that the links on such a path between

a pair of nodes may not all be simultaneously reliable in a given time slot).

2We later discuss how the techniques we develop for reaching consensus using the double iteration algorithm in the presence of
packet-dropping links naturally lead to an asynchronous computation setup.
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The iterative consensus algorithms considered in this paper assume that, at each step of the iteration,

each node transmits some information to all the nodes to whomit has a reliable directed link during

that iteration (or “time step”). The iterative consensus algorithm summarized in Section II-B assumes

the special case wherein all the links arealways reliable(that is, all links are reliable in every time

step). In Section III, and beyond, we consider a network withpotentially unreliable links. Our work on

iterative consensus over unreliable links is motivated by the presence of such links in wireless networks.

Suppose that the nodes in our network communicate over wireless links, with the node locations being

fixed. In such a wireless network, each node should generallybe able to communicate with the other

nodes in its vicinity. However, such transmissions may not always be reliable, due to channel fading

and interference from other sources. To make our subsequentdiscussion precise, we will assume that

a link (i, j) exists (i.e.,(i, j) ∈ E) only if each transmission fromi is successfully received by node

j with probability qij (0 < qij ≤ 1). We assume that successes of transmissions on different links are

independent of each other; also, successes of different transmissions on any given link are independent

of each other. As we will see, these independence assumptions can be partially relaxed but we adopt

them at this point for simplicity.

We assume that all transmissions from any nodei are broadcasts,3 in the sense that, every nodej,

such that(i, j) ∈ E , may receivei’s transmission with probabilityqij independently between nodes

and transmission steps. As seen later, this broadcast property can potentially be exploited to make

communication more efficient, particularly when a given node i wants to send identical information to

all the nodes inOi. When nodei broadcasts a message to its neighbors, the reliabilities ofreceptions

at different nodes inOi are mutually independent. Each nodei is assumed to be aware of the value

of Di (i.e., the number of nodes inOi), and the identity of each node in setIi. This information can

be learned usingneighbor discoverymechanisms used in wireless ad hoc or mesh networks. Note that

nodei does not necessarily know whether transmissions to nodes inOi are successful.

B. Ratio Consensus Algorithm in Perfectly Reliable Communication Networks

In this section, we summarize a consensus algorithm for a special case of the above system, wherein

all the links in the network arealways reliable(that is, reliable in every time step). The “ratio consensus”

algorithm presented here performs two iterative computations in parallel, with the solution of the

consensus algorithm being asymptotically obtained as theratio of the outcome of the two parallel

iterations. We will refer to this approach asratio consensus. In prior literature, similar approaches have

also been calledweighted consensus[2], [3].

Each nodei maintains at iterationk state variablesyk[i] andzk[i]. At each time stepk, each nodei

3As elaborated later, the results in this paper can also be applied in networks wherein the transmissions are unicast (notbroadcast).
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updates its state variable as follows:

yk[i] =
∑

j∈Ii

yk−1[j] /Dj , k ≥ 1, (1)

zk[i] =
∑

j∈Ii

zk−1[j] /Dj , k ≥ 1, (2)

wherey0[j] = vj, ∀j = 1, . . . , m, andz0[j] = 1, ∀j = 1, . . . , m.

To facilitate implementation of the above iterations, at time stepk, each nodei broadcasts a message

containing valuesyk−1[i]/Di and zk−1[i]/Di to each node inOi, and awaits reception of a similar

message from each node inIi. When nodei has received, from each nodej ∈ Ii, a value (namely,

yk−1[j]/Dj andzk−1[i]/Dj) at stepk, nodei performs the above update of its state variables (by simply

summing the corresponding values). Hereafter, we will use the phrase “messagev” to mean “message

containing valuev”.

The above two iterations are represented in a matrix notation in (3) and (4), whereyk andzk are row

vectors of sizem, andM is anm ×m primitive matrix4, such thatM [i, j] = 1/Di if j ∈ Oi and 0

otherwise. Compactly, we show

yk = yk−1 M, k ≥ 1 , (3)

zk = zk−1 M, k ≥ 1. (4)

It is assumed thatz0[j] = 1 and y0[j] = vj are the initial values at each nodej ∈ V. Each nodei

calculates, at each time stepk, the ratio

vk[i] =
yk[i]

zk[i]
.

For the transition matrixM , (a) M [i, j] ≥ 0, and (b) for all i,
∑

jM [i, j] = 1. Any matrix that

satisfies these two conditions is said to be arow stochasticmatrix. It has been shown in [4] thatvk[i]

asymptotically converges to the average of the elements ofy0, provided thatM is primitive and row

stochastic. That is, ifM is a primitive row stochastic matrix, then

lim
k→∞

vk[i] =

∑

j y0[j]

m
, ∀i ∈ V, (5)

wherem is the number of elements in vectory0.

C. Implementation Aspects of Ratio Consensus Algorithm in the Presence of Unreliable Links

Let us consider how we might implement iterations (3) and (4)in a wireless network. Since the

treatment for theyk andzk iterations is similar, let us focus on theyk iteration for now. Implementing

(3) requires that, at iterationk (to computeyk), nodei should transmit messageyk−1[i]M [i, j] to each

4A finite square matrixA is said to beprimitive if for some positive integerp, Ap > 0, that is,Ap[i, j] > 0, ∀i, j.
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nodej ∈ Oi. Conveniently, for allj ∈ Oi, the valuesM [i, j] are identical, and equal to1/Di. Thus,

nodei needs to send messageyk−1[i]/Di to each node inOi. Let us define

µk[i] ≡ yk−1[i] /Di , k ≥ 1.

In a wireless network, the two approaches described next maybe used by nodei to transmit message

µk[i] to all the nodes inOi.

Approach 1: In this approach, each nodei ensures that its messageµk[i] is delivered reliably to

all the nodes inOi. One way to achieve this goal is as follows. Nodei can broadcast the message

µk[i] on the wireless channel, and then wait for acknowlegdements(ack) from all the nodes inOi. If

such acks are not received from all nodes inOi within some timeout interval, theni can retransmit

the message. This procedure will be repeated until acks are received from all the intended recipients of

µk[i]. This procedure ensures that the message is received by eachnode inOi reliably in each stepk of

the iteration. However, as an undesirable side-effect, thetime required to guarantee the reliable delivery

to all the neighboring nodes is not fixed. In fact, this time can be arbitrarily large with a non-zero

probability, if each transmission on a link(i, j) ∈ E is reliable with probabilityqij < 1. Different nodes

may require different amounts of time to reliably deliver their message to their intended recipients.

Thus, if a fixed finite interval of time is allocated for each stepk, then it becomes difficult to guarantee

that the iterations will be always performedcorrectly (because some messages may not be delivered

within the fixed time interval).

Approach 2: Alternatively, each nodei may just broadcast its messageµk[i] once in time stepk,

and hope that all the nodes inOi receive it reliably. This approach has the advantage that each step

of the iteration can be performed in a short (and predictable) time interval. However, it also has the

undesirable property that all the nodes inOi may not receive the message (due to link unreliability),

and such nodes will not be able to update their state correctly. It is important to note that, since there

are no acknowlegements being sent, a nodei cannot immediately know whether a nodej ∈ Oi has

receivedi’s message or not.

Considering the shortcomings of the above two approaches, it appears that an alternative solution is

required. Our solution to the problem (to be introduced in Section III) is to maintainadditional state

at each node, and utilize this state to mitigate the detrimental impact of link unreliability. To put it

differently, the additional state can be used to design an iterative consensus algorithmrobust to link

unreliability. In particular, the amount of state maintained by each nodei is proportional to|Ii|. In a

large scale wireless network (i.e, with largem) with nodes spread over large space, we would expect

that for any nodei, |Ii| << m. In such cases, the small increase in the amount of state is a justifiable

cost to achieve robustness in presence of link unreliability.

AlthoughM [i, j] is identical (and equal to1/Di) for all j ∈ Oi in our example above, this is not

necessary. So long asM is a primitive row stochastic matrix, the above iteration will converge to the

correct consensus value (provided that the transmissions are always reliable). Thus, it is possible that in
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a given iteration, nodei may want to send different messages to different nodes inOi. This goal can be

achieved by performing unicast operation to each node inOi. In this situation as well, two approaches

analogous to Approaches 1 and 2 may be used. The first approachwould be to reliably deliver the unicast

messages, using as many retransmissions as necessarys. Thesecond approach may be to transmit each

message just once. In both cases, it is possible that the iterations may not be performed correctly. To

simplify the discussion in this paper, we assume that each node i needs to transmit identical message

to the nodes inOi. However, it is easy to extend the proposed scheme so that it is applicable to the

more general scenario as well.

III. ROBUSTIFICATION OF RATIO CONSENSUSALGORITHM

In this section, we present the proposed ratio consensus algorithm that is robust in presence of link

unreliability. The correctness of the proposed algorithm is established in Section VI. As before, each

node maintains state variablesyk[i] andzk[i]. Additional state maintained at each node will be defined

soon. Iterative computation is performed to maintainyk andzk. For brevity, we will focus on presenting

the iterations foryk, but iterations forzk are analogous, with the difference being in the initial state.

The initial values ofy andz are assumed5 to satisfy the following conditions:

1) y0[i] ≥ 0, ∀i,

2) z0[i] ≥ 0, ∀i,

3)
∑

i z0[i] > 0.

Our goal for the robust iterative consensus algorithm is to allow each nodei to compute (asymptotically)

the ratio ∑

i y0[i]
∑

i z0[i]
.

With a suitable choice ofy0[i] and z0[i], different functions may be calculated [4]. In particular,if the

initial input of nodei is denoted asvi, then by settingy0[i] = wivi andz0[i] = wi, wherewi ≥ 0, ∀i,

the nodes can compute the weighted average
∑

i wivi∑
i wi

; with wi = 1, ∀i ∈ V, the nodes calculate average

consensus.

A. Intuition Behind the Robust Algorithm

To aid our presentation, let us introduce the notion of “mass.” The initial valuey0[i] at nodei is to

be viewed as its initial mass. If nodei sends a messagev to another nodej, that can be viewed as a

“transfer” of an amount of mass equal tov to nodej. With this viewpoint, it helps to think of each

stepk as being performed over a non-zero interval of time. Then,yk[i] should be viewed as the mass

at nodei at theend of time stepk (which is the same as thestart of stepk + 1). Thus, during stepk,

each nodei transfers (perhaps unsuccessfully, due to unreliable links) some mass to nodes inOi, the

5The assumption thaty0[i] ≥ 0, ∀i, can be relaxed, allowing for arbitrary values fory0[i].
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amount being a function ofyk−1[i]. The massyk[i] is the accumulation of the mass thati receives in

messages from nodes inIi during stepk.

Now,
∑

i y0[i] is the total mass in the system initially. If we implement iteration (3) in the absence

of packet drops, then for all iterationsk
∑

i

yk[i] =
∑

i

y0[i].

That is, the total mass in the system remains constant. This invariant is maintained becauseM is a row

stochastic matrix. However, if a messagev sent by nodei is not received by some nodej ∈ Oi, then

the mass in that message is “lost,” resulting in reduction ofthe total mass in the system.

Our robust algorithm is motivated by the desire to avoid the loss of mass in the system, even in the

presence of unreliable links. The proposed algorithm uses Approach 2 for transmission of messages. In

particular, in our algorithm (and as in the original ratio consensus), at each stepk, each nodei wants

to transferµk[i] = yk−1[i]/Di amount of mass to each node inOi. For this purpose, nodei broadcasts6

messageµk[i]. To make the algorithm robust, let us assume that, for each link (i, j) ∈ E , a “virtual

buffer” is available to store the mass that is “undelivered”on the link. For each nodej ∈ Oi, there are

two possibilities:

(P1) Link (i, j) is not reliable in slotk: In this case, messageµk[i] is not received by nodej. Node

i believes that it has transferred the mass toj (and thus,i does not include that mass in its own

stateyk[i]), and at the same time, that mass is not received at nodej, and therefore, not included in

yk[j]. Therefore, let us view this missing mass as being “bufferedon” link (i, j) in a virtual buffer.

The virtual buffer for each directed link(i, j) will be viewed as avirtual node in the network.

Thus, when link(i, j) is unreliable, the mass is transferred from nodei to “node” (i, j), instead of

being transferred to nodej. Note that when link(i, j) is unreliable, nodej neither receives mass

directly from nodei, nor from the virtual buffer(i, j).

(P2) Link (i, j) is reliable in slotk: In this case, messageµk[i] is received by nodej. Thus,µk[i]

contributes toyk[j]. In addition, all the mass buffered in the virtual buffer(i, j) will also be

received by nodej, and this mass will also contribute toyk[j]. We will say that buffer(i, j)

“releases” its mass to nodej.

We capture the above intuition by building an “augmented” network that contains all the nodes in

V, and also contains additional virtual nodes, each virtual node corresponding to the virtual buffer for

a link in E . Let us denote the augmented networks byGa = (Va, Ea) whereVa = V ∪ E and

Ea = E ∪ {((i, j), j) | (i, j) ∈ E} ∪ {i, (i, j) | (i, j) ∈ E}.

In case (P2) above, the mass sent by nodei, and the mass released from the virtual buffer(i, j), both

6In the more general case, nodei may want to transfer different amounts of mass to different nodes inOi. In this case, nodei may
send (unreliable) unicast messages to these neighbors. Thetreatment in this case will be quite similar to the restricted case assumed in
our discussion, except that nodei will need to separately track mass transfers to each of its out-neighbors.
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contribute to the new stateyk[j] at nodej. In particular, it will suffice for nodej to only know thesum

of the mass being sent by nodei at stepk and the mass being released (if any) from buffer(i, j) at

stepk. In reality, of course, there is no virtual buffer to hold themass that has not been delivered yet.

However, an equivalent mechanism can be implemented by introducing additional state at each node in

V, which exploits the above observation. This is what we explain in the next section.

B. Robust Ratio Consensus Algorithm

We will mitigate the shortcomings of Approach 2 described inSection II-C by changing our iterations

to be tolerant to missing messages. The modified scheme has the following features:

• Instead of transmitting messageµk[i] = yk−1[i]/Di at stepk, each nodei broadcasts at stepk a

message with value
∑k

j=1 µk[i], denoted asσk[i]. Thus,σk[i] is the total mass that nodei wants to

transfer to each node inOi through the firstk steps.

• Each nodei maintains, in addition to state variablesyk[i] andzk[i], also a state variableρk[j, i] for

each nodej ∈ Ii; ρk[j, i] is the total mass that nodei has received either directly from nodej, or

via virtual buffer (j, i), through stepk.

The computation performed at nodei at stepk ≥ 1 is as follows. Note thatσ0[i] = 0, ∀i ∈ V and

ρ0[i, j] = 0, ∀(i, j) ∈ E .

σk[i] = σk−1[i] + yk−1[i]/Di, (6)

ρk[j, i] =

{

σk[j], if (j, i) ∈ E and messageσk[j] is received byi from j at stepk,

ρk−1[j, i], if (j, i) ∈ E and no message is received byi from j at stepk,
(7)

yk[i] =
∑

j∈Ii

(ρk[j, i]− ρk−1[j, i]). (8)

When link (j, i) ∈ E is reliable,ρk[j, i] becomes equal toσk[j]: this is reasonable, becausei receives

any new mass sent byj at stepk, as well as any mass released by buffer(j, i) at stepk. On the

other hand, when link(j, i) is unreliable, thenρk[j, i] remains unchanged from the previous iteration,

since no mass is received fromj (either directly or via virtual buffer(j, i)). It follows that, the total

new mass received by nodei at stepk, either from nodej directly or via buffer(j, i), is given by

ρk[j, i]− ρk−1[j, i], which explains (8).7

IV. ROBUST ALGORITHM FORMULATION AS AN INHOMOGENEOUSMARKOV CHAIN

In this section, we reformulate each iteration performed bythe robust algorithm as an inhomogeneous

Markov chain whose transition matrix takes values from a finite set of matrices. We will also discuss

some properties of these matrices, and analyze the behaviorof their products, which helps in establishing

the convergence of the robustified ratio consensus algorithm.

7As per the algorithm specified above, observe that the valuesof σ and ρ increase monotonically with time. This can be a concern
for a large number of steps in practical implementations. However, this concern can be mitigated by “resetting” these values, e.g., via
the exchange of additional information between neighbors (for instance, by piggybacking cumulative acknowledgements, which will be
delivered whenever the links operate reliably).
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A. Matrix Representation of Each Individual Iteration

The matrix representation is obtained by observing an equivalence between the iteration in (6)–

(8), and an iterative algorithm (to be introduced soon) defined on the augmented network described in

Section III-A. The vector state of the augmented network consists ofn = m+|E| elements, corresponding

to the mass held by each of them nodes, and the mass held by each of the|E| virtual buffers: thesen

entities are represented by as many nodes in the augmented network.

With a slight abuse of notation, let us denote byyk the state of the nodes in the augmented network

Ga. The vectoryk for Ga is an augmented version ofyk for G. In addition toyk[i] for eachi ∈ V,

the augmentedyk vector also includes elementsyk[(i, j)] for each(i, j) ∈ E , with y0[(i, j)] = 0.8 Due

to the manner in which theyk[i]’s are updated,yk[i], i ∈ V, are identical in the original network and

the augmented network; therefore, we do not distinguish between them. We next translate the iterative

algorithm in (6)–(8) into the matrix form

yk = yk−1Mk, (9)

for appropriately row-stochastic matricesMk (to be defined soon) that might vary as the algorithm

progresses (but nevertheless take values from a finite set ofpossible matrices).

Let us define an indicator variableXk[j, i] for each link(j, i) ∈ E at each time stepk as follows:

Xk[j, i] =

{

1, if link (j, i) is reliable at time stepk,

0, otherwise.
(10)

We will now reformulate the iteration (6)–(8) and show how, in fact, it can be described in matrix form

as shown in (9), where the matrix transition matrixMk is a function of the indicator variables defined

in (10). First, by using the indicator variables at time stepk, as defined in (10), it follows from (6) that

ρk[j, i] = Xk[j, i]σk[j] + (1−Xk[j, i])ρk−1[j, i]. (11)

Now, for k ≥ 0, defineνk[j, i] = σk[j] − ρk[j, i] (thusν0[j, i] = 0). Then, it follows from (6) and (11)

that

νk[j, i] = (1−Xk[j, i])

(

yk−1[j]

Dj
+ νk−1[j, i]

)

, k ≥ 1. (12)

Also, from (6) and (11), it follows that (8) can be rewritten as

yk[i] =
∑

j∈Ii

Xk[j, i]

(

yk−1[j]

Dj
+ νk−1[j, i]

)

, k ≥ 1. (13)

At every instantk that the link(j, i) is not reliable, it is easy to see that the variableνk[j, i] increases

by an amount equal to the amount that nodej wished to send to nodei, but i never received due to

the link failure. Similarly, at every instantk that the link(j, i) is reliable, the variableνk[j, i] becomes

8Similarly, z0[(i, j)] = 0.
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zero and its value atk − 1 is received by nodei as can be seen in (13). Thus, from (12) and (13), we

can think of the variableνk[j, i] as the state of a virtual node that buffers the mass that nodei does not

receive from nodej every time the link(j, i) fails. It is important to note that theνk[j, i]’s are virtual

variables (no node inV computesνk) that just result from combining, as explained above, variables

that the nodes inV compute. The reason for doing this is that the resulting model is equivalent to an

inhomogeneous Markov chain. This can be easily seen by stacking up (13) for all nodes indexed in

V, i.e., the computing nodes, and (12) for all virtual buffers(j, i), with (j, i) ∈ E , and rewriting the

resulting expressions in matrix form, from where the expression in (9) results.

B. Structure and Properties of the MatricesMk

Next, we discuss the sparsity structure of theMk’s and obtain their entries by inspection of (12)

and (13). Additionally, we will explore some properties of theMk’s that will be helpful in the analysis

conducted in Section V for characterizing the behavior of each of the individual iterations.

1) Structure ofMk: Let us first define the entries in rowi of matrix Mk that corresponds toi ∈ V.

For (i, j) ∈ E , there are two possibilities:Xk[i, j] = 0 or Xk[i, j] = 1. If Xk[i, j] = 0, then the mass

µk[i] = yk[i]/Di that nodei wants to send to nodej is added to the virtual buffer(i, j). Otherwise, no

new mass from nodei is added to buffer(i, j). Therefore,

Mk[i, (i, j)] = (1−Xk[i, j])/Di. (14)

The above value is zero if link(i, j) is reliable at stepk, and1/Di otherwise. Similarly, it follows that

Mk[i, j] = Xk[i, j]/Di, (15)

which is zero whenever link(i, j) is unreliable at stepk, and1/Di otherwise. Observe that for each

j ∈ Oi,

Mk[i, j] +Mk[i, (i, j)] = 1/Di, (16)

with, in fact, one of the two quantities zero and the other equal to 1/Di. For (i, j) /∈ E , it naturally

follows thatMk[i, j] = 0. Similarly,

Mk[i, (s, r)] = 0, whenever i 6= s and (s, r) ∈ E . (17)

Since|Oi| = Di, all the elements in rowi of matrix Mk add up to 1.

Now define row(i, j) of matrix Mk, which describes how the mass of the virtual buffer(i, j), for

(i, j) ∈ E , gets distributed. When link(i, j) works reliably at time stepk (i.e., Xk[i, j] = 1), all the

mass buffered on link(i, j) is transferred to nodej; otherwise, no mass is trasferred from buffer(i, j)

to nodej and the buffer retains all its previous mass and increases itby a quantity equal to the mass
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that nodei fail to send to nodej. These conditions are captured by definingMk entries as follows:

Mk[(i, j), j] = Xk[i, j], (18)

Mk[(i, j), (i, j)] = 1−Xk[i, j]. (19)

Also, for obvious reasons,

Mk[(i, j), p] = 0, ∀p 6= j, p ∈ V, (20)

Mk[(i, j), (s, r)] = 0, ∀(i, j) 6= (s, r), (s, r) ∈ E . (21)

Clearly, all the entries of the row labeled(i, j) add up to 1, which results inMk being a row stochastic

matrix for all k ≥ 1.

2) Properties ofMk: Let us denote the set of all possible instances (depending onthe values of the

indicator variablesXk[i, j], (i, j) ∈ E , k ≥ 1) of matrix Mk asM. The matrices in the setM have

the following properties:

(M1) The setM is finite.

Each distinct matrix inM corresponds to different instantiations of the indicator variables defined

in (10), resulting in exactly2|E| distinct matrices inM.

(M2) Each matrix inM is a finite-dimensional square row stochastic matrix.

The number of rows of each matrixMk ∈ M, as defined above, isn = m + |E|, which is finite.

Also, from (14)–(21), theses matrices are square row-stochastic matrices.

(M3) Each positive element of any matrix inM is lower bounded by a positive constant.

Let us denote this lower bound asc. Then, due to the manner in which matrices inM are

constructed, we can definec to be the positive constant obtained as

c = min
i,j,M |M∈M,M [i,j]>0

M [i, j].

(M4) The matrixMk, k ≥ 0, may be chosen to be any matrixM ∈ M with a non-zero probability. The

choice of the transition matrix at each time step is independent and identically distributed (i.i.d.)

due to the assumption that link failures are independent (between nodes and time steps).

Explanation:The probability distribution onM is a function of the probability distribution on the

link reliability. In particular, if a certainM ∈ M is obtained when the links inE ′ ⊆ E are reliable,

and the remaining links are unreliable, then the probability thatMk =M is equal to

Π(i,j)∈E ′ qij Π(i,j)∈E−E ′ (1− qij). (22)

(M5) For eachi ∈ V, there exists a finite positive integerli such that it is possible to findli matrices in

M (possibly with repetition) such that their product (in a chosen order) is a row stochastic matrix

with the column that corresponds to nodei containing strictly positive entries.

This property states that, for eachi ∈ V, there exists a matrixT ∗
i , obtained as the product ofli
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matrices inM that has the following properties:

T ∗
i [j, i] > 0, ∀ j ∈ V, (23)

T ∗
i [(j1, j2), i] > 0, ∀ (j1, j2) ∈ E . (24)

This follows from the fact that the underlying graphGa is strongly connected (in fact, it can be

easily shown thatli ≤ m). To simplify the presentation below, and due to the self-loops, we can

takeli to be equal to a constantl, for all i ∈ V. However, it should be easy to see that the arguments

below can be generalized to the case when theli’s may be different.

We can also show that under our assumption for link failures,there exists a single matrix, sayT ∗,

which simultaneously satisfies the conditions in (23)–(24)for all i ∈ V. When all the links in

the network operate reliably, networkG(V, E) is strongly connected (by assumption). SinceG is

strongly connected, there is a directed path between every pair of nodesi andj, i.e., i, j ∈ V . In

the augmented networkGa, for each(i, j) ∈ E , there is a link from nodei to node(i, j), and a

link from node(i, j) to nodej. Thus, it should be clear that the augmented networkGa is strongly

connected as well. Consider a spanning tree rooted at node 1,such that all the nodes inV = V ∪E

have a directed path towards node 1, and also a spanning tree in which all the nodes have directed

pathsfrom node 1. Choose that matrix, sayM∗ ∈ M, which corresponds to all the links on these

two spanning trees, as well as self-loops at alli ∈ V, being reliable. If the total number of links

that are thus reliable ise, it should be obvious that(M∗)e will contain only non-zero entries in

columns corresponding toi ∈ V. Thus, l defined above may be chosen ase. There are several

other ways of constructingT ∗, some of which may result in a smaller value ofl.

V. ERGODICITY ANALYSIS OF PRODUCTS OFMATRICESMk

We will next analyze the ergodic behavior of theforward productTk = M1M2 . . .Mk = Πk
j=1Mj ,

whereMj ∈ M, ∀j = 1, 2, . . . , k. Informally defined, weak ergodicity ofTk obtains if the rows of

Tk tend to equalize ask → ∞. In this work, we focus on the weak ergodicity notion, and establish

probabilistic statements pertaining the ergodic behaviorof Tk. The analysis builds upon a large body

of literature on products of nonnegative matrices (see, e.g., [1] for a comprehensive account). First, we

introduce the basic toolkit adopted from [8], [9], [1], and then use it to analyze the ergodicity ofTk.

A. Some Results Pertaining Coefficients of Ergodicity

Informally speaking, a coefficient of ergodicity of a matrixA characterizes how different two rows

of A are. For a row stochastic matrixA, proper9 coefficients of ergodicityδ(A) andλ(A) are defined

9Any scalar functionτ (·) continuous on the set ofn× n row stochastic matrices, which satisfies0 ≤ τ (A) ≤ 1, is said to be a proper
coefficient of ergodicity ifτ (A) = 0 if and only if A = eT v, wheree is the all-ones row vector, andv ≥ 0 is such thatveT = 1 [1].
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as:

δ(A) := max
j

max
i1,i2

|A[i1, j]−A[i2, j]|, (25)

λ(A) := 1−min
i1,i2

∑

j

min(A[i1, j], A[i2, j]). (26)

It is easy to see that0 ≤ δ(A) ≤ 1 and 0 ≤ λ(A) ≤ 1, and that the rows are identical if and only if

δ(A) = 0. Additionally, λ(A) = 0 if and only if δ(A) = 0.

The next result establishes a relation between the coefficient of ergodicityδ(·) of a product of row

stochastic matrices, and the coefficients of ergodicityλ(·) of the individual matrices defining the product.

This result will be used in the proof of Lemma 2. It was established in [8] and also follows from the

more general statement of Theorem 4.8 in [1].

Proposition 1: For anyp square row stochastic matricesA1, A2, . . . Ap−1, Ap,

δ(A1A2 · · ·Ap−1Ap) ≤
(

Πp−1
i=1λ(Ai)

)

δ(Ap) ≤ Πp
i=1 λ(Ai). (27)

The result in (27) is particularly useful to infer ergodicity of a product of matrices from the ergodic

properties of the individual matrices in the product. For example, ifλ(Ai) is less than 1 for alli, then

δ(A1A2 · · ·Ap−1Ap) will tend to zero asp→ ∞. We will next introduce an important class of matrices

for which λ(·) < 1.

Definition 1: A matrix A is said to be ascrambling matrix, if λ(A) < 1 [1].

In a scrambling matrixA, sinceλ(A) < 1, for each pair of rowsi1 and i2, there exists a columnj

(which may depend oni1 and i2) such thatA[i1, j] > 0 andA[i2, j] > 0, and vice-versa. As a special

case, if any one column of a row stochastic matrixA contains only non-zero entries, thenA must be

scrambling.

B. Ergodicity Analysis of Iterations of the Robust Algorithm

We next analyze the ergodic properties of the products of matrices that result from each of the

iterations comprising our robust algorithm. Let us focus onjust one of the iterations, sayyk, as the

treatment of thezk iteration is identical. As described in Section IV, the progress of theyk iteration

can be recast as an inhomogeneous Markov chain

yk = yk−1Mk, k ≥ 1, (28)

whereMk ∈ M, ∀k. As already discussed, the sequence ofMk’s that will govern the progress ofyk
is determined by communication link availability. (28). Defining Tk = Πk

j=1Mj , we obtain:

yk = y0M1M2 · · ·Mk

= y0Π
k
j=1Mj = y0Tk, k ≥ 1. (29)

By convention,Π0
i=kMi = I for any k ≥ 1 (I denotes then× n identity matrix).
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Recalling the constantl defined in (M5), defineWk as follows,

Wk = Πkl
j=(k−1)l+1Mj , k ≥ 1, Mj ∈ M, (30)

from where it follows that

Tlk = Πk
j=1 Wk, k ≥ 1. (31)

Observe that the set of time steps “covered” byWi andWj , i 6= j, are non-overlapping. It is also

important to note for subsequent analysis that, since theMk’s are row stochastic matrices and the

product of any number of row stochastic matrices is row stochastic, all theWk’s andTk’s are also row

stochastic matrices.

Lemma 2 will establish that as the number of iteration steps goes to infinity, the rows of the matrixTk
tend to equalize. For proving Lemma 2, we need the result in Lemma 1 stated below, which establishes

that there exists a nonzero probability of choosing matrices in M such that theWk’s as defined in (30)

are scrambling.

Lemma 1: There exist constantsw > 0 andd < 1 such that, with probability equal tow, λ(Wk) ≤ d

for k ≥ 1, independently for differentk.

Proof: EachWk matrix is a product ofl matrices from the setM. The choice of theMk’s that form

Wi andWj is independent fori 6= j, sinceWi andWj “cover” non-overlapping intervals of time. Thus,

under thei.i.d. assumption for selection of matrices fromM
(

property (M4)
)

, and property (M5), it

follows that, with a non-zero probability (independently for Wk andWk′ for k 6= k′), matrix Wk for

eachk is scrambling. Let us denote byw the probability thatWk is scrambling.

Let us defineW as the set of all possible instances ofWk that are scrambling. The setW is finite

because the setM is finite, andW is also non-empty (this follows from the discussion of (M5)). Let

us defined as the tight upper bound onλ(W ), for W ∈ W, i.e.,

d ≡ max
W∈W

λ(W ). (32)

Recall thatλ(A) for any scrambling matrixA is strictly less than 1. SinceW is non-empty and finite,

and contains only scrambling matrices, it follows that

d < 1. (33)

Lemma 2: There exist constantsα andβ (0 < α < 1, 0 ≤ β < 1) such that, with probability greater

than (1− αk), δ(Tk) ≤ βk for k ≥ 8l/w.

Proof: Let k∗ =
⌊

k
l

⌋

and∆ = k − lk∗. Thus,0 ≤ ∆ < l. From (29) through (31), observe that

Tk = Tlk∗+∆ = Tlk∗ Π∆
j=1 Mlk∗+j,

whereTlk∗ is the product ofk∗ of Wj matrices, where1 ≤ j ≤ k∗. As per Lemma 1, for eachWj ,
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the probability thatλ(Wj) ≤ d < 1 is equal tow. Thus, the expected number of scrambling matrices

among thek∗ matrices iswk∗. Denote byS the actual number of scramblingWj matrices among the

k∗ matrices. Then the Chernoff lower tail bound tells us that, for anyφ > 0,

Pr{S < (1− φ)E(S)} < e−E(S)φ2/2 (34)

⇒ Pr{S < (1− φ)(wk∗)} < e−(wk∗)φ2/2. (35)

Let us chooseφ = 1
2
. Then,

Pr{S < (wk∗)/2} < e−wk
∗/8 (36)

⇒ Pr{S ≥ wk∗/2} > 1− e−wk
∗/8. (37)

Thus, at least⌊wk∗/2⌋ of theW matrices from thek∗ matrices formingTlk∗ are scrambling (each with

λ value≤ d, by Lemma 1) with probability greater than1− e−wk
∗/8. Proposition 1 then implies that

δ(Tk) = δ(Tlk∗+∆) = δ
((

Πk∗

i=1Wi

) (

Π∆
i=1Mlk∗+i

))

≤
(

Πk∗

i=1λ(Wi)
) (

Π∆
i=1λ(Mlk∗+i)

)

Since at least⌊wk∗/2⌋ of the Wi’s haveλ(Wi) ≤ d with probability greater than1 − e−wk
∗/8, and

λ(Mj) ≤ 1, ∀j, it follows that

δ(Tk) ≤ d⌊wk
∗/2⌋ (38)

with probability exceeding

1− e−wk
∗/8. (39)

Let us defineα = e−
w
16l andβ = d

w
8l . Now, if k ≥ 8l/w, then if follows thatk ≥ 2l, and

k∗ =

⌊

k

l

⌋

≥
k

2l
(40)

⇒

⌊

wk∗

2

⌋

≥

⌊

wk

4l

⌋

(41)

⇒

⌊

wk∗

2

⌋

≥
wk

8l
(42)

⇒ d⌊
wk∗

2
⌋ ≤ d

wk
8l (because0 ≤ d < 1) (43)

⇒ d⌊
wk∗

2
⌋ ≤ βk. (44)
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Similarly, if k ≥ 8l/w, it follows that

k∗ =

⌊

k

l

⌋

≥
k

2l
(45)

⇒ e−wk
∗/8 ≤ e−

wk
16l = αk (46)

⇒ 1− e−wk
∗/8 ≥ 1− αk. (47)

By substituting (44) and (47) into (38) and (39), respectively, the result follows.

Note thatα and β in Lemma 2 are independent of time. The threshold onk for which Lemma 2

holds, namelyk ≥ 8l/w, can be improved by using better bounds in (40) and (45). Knowing a smaller

threshold onk for which Lemma 2 holds can be beneficial in a practical implementation. In the above

derivation for Lemma 2, we chose a somewhat loose threshold in order to maintain a simpler form

for the probability expression (namely,1 − αk) and also a simpler expression for the bound onδ(Tk)

(namely,βk).

Lemma 3: δ(Tk) converges almost surely to 0.

Proof: For k ≥ 8l/w, from Lemma 2, we have thatPr{δ(Tk) > βk} ≤ αk, 0 < α < 1, 0 ≤ β < 1.

Then, it is easy to see that
∑

k Pr{δ(Tk) > βk} ≤ 8l/w +
∑

k α
k < ∞. Then, by the first Borel-

Cantelli lemma,Pr{the event thatδ(Tk) > βk occurs infinitely often} = 0. Therefore,δ(Tk) converges

to 0 almost surely.

VI. CONVERGENCEANALYSIS OF ROBUSTIFIED RATIO CONSENSUSALGORITHM

The analysis below shows that the ratio algorithm achieves asymptotic consensus correctly in the

presence of the virtual nodes, even if diagonals of the transition matrices (Mk ’s) are not always strictly

positive. A key consequence is that the value ofzk[i] is not necessarily greater from zero (at least not

for all k), which creates some difficulty when calculating the ratioyk[i]/zk[i]. As noted earlier, aside

from these differences, our algorithm is similar to that analyzed in [2]. Our proof has some similarities

to the proof in [2], with the differences accounting for our relaxed assumptions.

By definingzk in an analogous way as we defined stateyk in Section IV, the robustified version of

the ratio consensus algorithm in (3)–(4) can be described inmatrix form as

yk = yk−1 Mk, k ≥ 1, (48)

zk = zk−1 Mk, k ≥ 1, (49)

whereMk ∈ M, k ≥ 1, y0[i] ≥ 0, ∀i, z0[i] ≥ 0, ∀i, and
∑

j z0[j] > 0, and y0[(i, j)] = z0[(i, j)] =

0, ∀(i, j) ∈ E . The same matrixMk is used at stepk of the iterations in (48) and (49), however,

Mk may vary overk. Recall thatyk and zk in (48) and (49) haven elements, but only the firstm

elements correspond to computing nodes in the augmented network Ga; the remaining entries inyk and

zk correspond to virtual buffers.
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The goal of the algorithm is for each computing node to obtaina consensus value defined as

π∗ =

∑

j y0[j]
∑

j z0[j]
. (50)

To achieve this goal, each nodei ∈ V calculates

πk[i] =
yk[i]

zk[i]
, (51)

whenever the denominator is large enough, i.e., whenever

zk[i] ≥ µ, (52)

for some constantµ > 0 to be defined later. We will show that, for eachi = 1, 2, . . . , m, the sequence

πk[i] thus calculated asymptotically converges to the desired consensus valueπ∗. To show this, we first

establish that (52) occurs infinitely often, thus computingnodes can calculate the ratio in (51) infinitely

often. Then, we will show that ask goes to infinity, the sequence of ratio computations in (51) will

converge to the value in (50).

The convergence when
∑

j y0[j] = 0 can be shown trivially. So let us now consider the case when
∑

j y0[j] > 0, and define new state variablesỹk and z̃k for k ≥ 0 as follows:

ỹk[i] =
yk[i]

∑

j y0[j]
, ∀i, (53)

z̃k[i] =
zk[i]

∑

j z0[j]
, ∀i. (54)

Thus,ỹ0 andz̃0 are defined by normalizingyk andzk. It follows thatỹ0 andz̃0 are stochastic row vectors.

Also, since our transition matrices are row stochastic, it follows thatỹk andz̃k are also stochastic vectors

for all k ≥ 0.

We assume that each node knows a lower bound on
∑

j z0[j], denoted byµz. In typical scenarios, for

all i ∈ V, z0[i] will be positive, and, nodei ∈ V can usez0[i] as a non-zero lower bound on
∑

j z0[j]

(thus, in general, the lower bound used by different nodes may not be identical). We also assume an

upper bound, sayµy, on
∑

j y0[j].

Let us define

µ =
µz c

l

n
. (55)

As time progresses, each nodei ∈ V will calculate a new estimate of the consensus value whenever

zk[i] ≥ µ. The next lemma establishes that nodes will can carry out this calculation infinitely often.

Lemma 4: Let Ti = {τ 1i , τ
2
i , · · · } denote the sequence of time instances when nodei updates its

estimate of the consensus using (51), and obeying (52), where τ ji < τ j+1
i , j ≥ 1. The sequenceTi

contains infinitely many elements with probability 1.
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Proof: To prove the lemma, it will suffice to prove that for infinitelymany values ofk, zk[i] > µ,

with probability 1. Assumptions (M1)-(M5) imply that each matrixWj , j ≥ 1 (defined in (30)) contains

a strictly positive column corresponding to indexi ∈ V with a non-zero probability, sayγi > 0. Also,

the choice ofWk1 andWk2 is independent of each other fork1 6= k2. Therefore, the second Borel-

Cantelli lemma implies that, with probability 1, for infinitely many values ofj, Wj will have thei-th

column strictly positive. Since the non-zero elements of each matrix inM are all greater or equal toc,

c > 0 (by property M3), and sinceWj is a product ofl matrices inM, it follows that all the non-zero

elements of eachWj must be lower bounded bycl.

Consider only thosej ≥ 1 for which Wj contains positivei-th column. As noted above, there are

infinitely many suchj values. Now,

z̃jl = z̃(j−1)l Wj .

As noted above,̃zk is a stochastic vector. Thus, for anyk ≥ 0,
∑

i

z̃k[i] = 1 (56)

and, at least one of the elements ofz̃(j−1)l must be greater or equal to1/n. Also, all the elements in

columns ofWj indexed byi ∈ V are lower bounded bycl (recall that we are now only considering

thosej for which thei-th column ofWj is positive). This implies that,

z̃jl[i] ≥ cl/n (57)

⇒ zjl[i] ≥

(

∑

j

z0[j]

)

cl/n (58)

⇒ zjl[i] ≥ µz c
l/n (59)

⇒ zjl[i] ≥ µ, ∀i ∈ V (by (55)) (60)

Since infinitely manyWj ’s will contain a positivei-th column (with probability 1), (60) holds for

infinitely many j with probability 1. Therefore, with probability 1, the setTi = {τ 1i , τ
2
i , · · · } contains

infinitely many elements, for alli ∈ V.

Finally, the next theorem shows that the ratio consensus algorithm will converge to the consensus

value defined in (50).

Theorem 1: Let πi[t] denote nodei’s estimate of the consensus value calculated at timeτ ti . For each

nodei ∈ V, with probability 1, the estimateπi[t] converges to

π∗ =

∑

j yj[0]
∑

j zj [0]
.

Proof: Note that the transition matricesMk, k ≥ 1, are randomly drawn from a certain distribution.

By an “execution” of the algorithm, we will mean a particularinstance of theMk sequence. Thus, the
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distribution onMk’s results in a distribution on the executions. Lemma 3 implies that,

Pr
{

lim
k→∞

δ(Tk) = 0
}

= 1.

Together, Lemmas 3 and 4 imply that, with probability 1, for achosen execution, (i) for anyψ > 0,

there exists a finitekψ such that, for allk ≥ kψ, δ(Tk) < ψ, and (ii) there exist infinitely many values

of k ≥ kψ such thatzk[i] ≥ µ (i.e., k ∈ Ti for the chosen execution).

Consider anyk ≥ kψ such thatzk[i] > µ. Sinceδ(Tk) ≤ ψ, the rows of matrixTk are “within ψ” of

each other. Observe thatỹk is obtained as the product of stochastic row vectorỹ0 andTk. Thus, ỹk is

in the convex hull of the rows ofTk. Similarly z̃k is in the convex hull of the rows ofTk. Therefore,

the j-th elements of̃yk and z̃k are withinψ of each other, for allj. Therefore,

| ỹk[i]− z̃k[i] | ≤ ψ (61)

⇒

∣

∣

∣

∣

ỹk[i]

z̃k[i]
− 1

∣

∣

∣

∣

≤
ψ

z̃k[i]
(62)

⇒

∣

∣

∣

∣

∣

yk[i]

zk[i]
−

∑

j y0[j]
∑

j z0[j]

∣

∣

∣

∣

∣

≤
ψ
∑

j y0[j]

zk[i]
(by (53) and (54)) (63)

⇒

∣

∣

∣

∣

∣

yk[i]

zk[i]
−

∑

j y0[j]
∑

j z0[j]

∣

∣

∣

∣

∣

≤
ψ µy
zk[i]

(because
∑

j y0[j] ≤ µy) (64)

⇒

∣

∣

∣

∣

∣

yk[i]

zk[i]
−

∑

j y0[j]
∑

j z0[j]

∣

∣

∣

∣

∣

≤
ψ µy
µ

. (65)

Now, given anyǫ > 0, let us chooseψ = ǫµ/µy. Then (65) implies that
∣

∣

∣

∣

∣

yk[i]

zk[i]
−

∑

j y0[j]
∑

j z0[j]

∣

∣

∣

∣

∣

≤ ǫ

wheneverk ≥ kψ andk ∈ Ti. Therefore, in the limit,yk[i]
zk[i]

for k ∈ Ti converges to
∑

j y0[j]∑
j z0[j]

. This result

holds with probability 1, since conditions (i) and (ii) stated above hold with probability 1.

The result above can be strengthened by proving convergenceof the algorithm even if each node

i ∈ V updates its estimate wheneverzk[i] > 0 (not necessarily≥ µ). To prove the convergence in this

case, the argument is similar to that in Theorem 1, with two modifications:

• Lemma 4 needs to be strengthened by observing that there exist infinitely many time instants at

which zk[i] > µ simultaneously for alli ∈ V. This is true due to the existence of a matrixT ∗ (as

seen in the discussion of (M5)) that contains positive columns corresponding to alli ∈ V.

• Using the above observation, and the argument in the proof ofTheorem 1, it then follows that,

with probability 1, for anyψ, there exists a finitekψ such thatδ(Tk) < ψ wheneverk ≥ kψ. As

before, definingψ = ǫµ/µy, it can be shown that for anyǫ, there existsa kǫ ≥ kψ such that the
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following inequality holds for alli ∈ V simultaneously.
∣

∣

∣

∣

∣

ykǫ[i]

zkǫ [i]
−

∑

j y0[j]
∑

j z0[j]

∣

∣

∣

∣

∣

≤ ǫ ∀i ∈ V (66)

⇒

∑

j y0[j]
∑

j z0[j]
− ǫ ≤

ykǫ[i]

zkǫ [i]
≤

∑

j y0[j]
∑

j z0[j]
+ ǫ ∀i ∈ V (67)

Naturally,zkǫ[i] 6= 0, ∀i ∈ V. It is now easy to argue that the above inequality will continue to hold for

all k > kǫ and eachi ∈ V wheneverzi[k] > 0. To see this, observe that, fork > kǫ,

yk = ykǫ Π
k
kǫ+1 Mk

DefineP = Πk
kǫ+1 Mk andψ = ǫµ/µy. Then, we have that, wheneverzk[i] > 0 for k > kǫ,

yk[i]

zk[i]
=

∑n
j=1 ykǫ[j] P [j, i]

∑n
j=1 zkǫ[j] P [j, i]

(68)

=

∑n
j=1,P [j,i] 6=0 ykǫ[j] P [j, i]

∑n
j=1,P [j,i] 6=0 zkǫ[j] P [j, i]

(summation over non-zeroP [j, i] terms)

⇒ min
j,P [j,i]>0

ykǫ[j]
zkǫ[j]

≤
yk[i]

zk[i]
≤ max

j,P [j,i]>0

ykǫ[j]
zkǫ[j]

(69)

⇒

∑

j y0[j]
∑

j z0[j]
− ǫ ≤

yk[i]

zk[i]
≤

∑

j y0[j]
∑

j z0[j]
+ ǫ from (67) (70)

⇒

∣

∣

∣

∣

∣

yk[i]

zk[i]
−

∑

j y0[j]
∑

j z0[j]

∣

∣

∣

∣

∣

≤ ǫ for all i ∈ V andk ≥ kǫ (71)

This proves the convergence of the algorithm in the limit. Recall that for this convergence it suffices if

each node updates its estimate of the consensus whenever itsz value is positive. (69) follows from the

observation that
∑

j a[j]u[j]∑
j b[j]u[j]

=
∑

j

[

a[j]
b[j]

b[j]u[j]∑
k b[k]u[k]

]

is a weighted average ofa[j]
b[j]

, and therefore, lower

bounded byminj
a[j]
b[j]

and upper bounded bymaxj
a[j]
b[j]

.

VII. CONCLUDING REMARKS AND FUTURE WORK

Although our analysis above is motivated by wireless environments wherein transmissions may not

succeed, the analysis is more general. In particular, it applies to other situations in which properties

(M1)–(M5) are true. Indeed, property (M4) by itself is not asimportant as its consequence that a given

Wk matrix has non-zero columns indexed byi ∈ V.

A particular application of the above analysis is in the casewhen messages may be delayed. As

discussed previously, mass is transfered by any node to its neighbors by means of messages. Since

these messages may be delayed, a message sent on link(i, j) in slot k may be received by nodej in

a later slot. Let us denote byVk[i] the set of messages received by nodei at stepk. It is possible for

Vk[i] to contain multiple messages from the same node. Note thatVk[i] may contain a message sent by
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nodei to itself as well. Let us define the iteration foryk as follows:

yk[i] =
∑

v∈Vk [i]

v. (72)

The iteration forzk can be defined analogously. Our robust consensus algorithm essentially implements

the above iteration, allowing for delays in delivery of masson any link(i, j) (caused by link failures).

However, in effect, the robust algorithm also ensures FIFO (first-in-first-out) delivery, as follows. In

slot k, if node i receives mass sent by nodej ∈ Ii in slot s, s ≤ k, then mass sent by nodej in slots

strictly smaller thans is either received previously, or will be received in slotk.

The virtual buffer mechanism essentially models asynchronous communication, wherein the messages

between any pair of nodes in the network may require arbitrary delay, governed by some distribution. It

is not difficult to see that the iterative algorithm (72) should be able to achieve consensus correctly even

under other distributions on message delays, with possiblecorrelation between the delays. In fact, it is

also possible to tolerate non-FIFO (or out-of-order) message delivery provided that the delay distribution

satisfies some reasonable constraints. Delay of up toB slots on a certain link(i, j) ∈ E can be modeled

using a single chain ofB virtual nodes, with links from nodei to every virtual nodes, and link from the

last of theB nodes to nodej—in this setting, depending on the delay incurred by a packet, appropriate

link from nodei to one of the virtual node on the delay chain (or toj, if delay is 0) is used.

Note that while we made certain assumptions regarding link failures, the analysis relies primarily on

two implications of these assumptions, namely (i) the rows of the transition matrixTk become close to

identical ask increases, and (ii)zk[i] is bounded away from 0 for eachi infinitely often. When these

implications are true, similar convergence results may hold in other environments.
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