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Abstract

In this two-part paper, we consider multicomponent systémsvhich each component can iteratively
exchange information with other components in its neighbod in order to compute, in a distributed fashion,
the average of the components’ initial values or some oth@ntiy of interest (i.e., some function of these
initial values). In particular, we study an iterative aliglom for computing the average of the initial values of
the nodes. In this algorithm, each component maintains &t af variables that are updated via two identical
linear iterations. The average of the initial values of tloeles can be asymptotically computed by each node
as the ratio of two of the variables it maintains. In the firattpof this paper, we show how the update rules
for the two sets of variables can be enhanced so that theithlgobecomes tolerant to communication links
that may drop packets, independently among them and indepéy between different transmission times. In
this second part, by rewriting the collective dynamics ofhbiterations, we show that the resulting system is
mathematically equivalent to a finite inhomogenous Markibaia whose transition matrix takes one of finitely
many values at each step. Then, by using e a coefficients ofleity approach, a method commonly used for
convergence analysis of Markov chains, we prove convergehthe robustified consensus scheme. The analysis
suggests that similar convergence should hold under marergeconditions as well.
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Note to readers: Section[l discusses the relation between Part Il (this t¢@ord the companion Part | of the report,

and discusses some related work. The readers may skip S#atithout a loss of continuity.
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. INTRODUCTION

The focus of this paper is to analyze the convergence of thestdied double-iteratitﬁlwalgorithm
for average consensus introduced in Part |, utilizing aed#fit framework that allows us to move
away from the probabilistic model describing the availiépibf communication links of Part . More
specifically, instead of focusing on the dynamics of the farsti second moments of the two iterations
to establish convergence as done in Part I, we consider aefvark that builds upon the theory of
finite inhomogenous Markov chains. In this regard, by augingrthe communication graph, we will
show that the collective dynamics of each of the two iteratioan be rewritten in such a way that the
resulting system is mathematically equivalent to a finiteomogenous Markov chain whose transition
matrix takes values from a finite set of possible matricesceéCthe problem is recasted in this fashion,
tools, such as coefficients of ergodicity, commonly usedednalysis of inhomogenous Markov chains
(see, e.g.,[[1]) are used to prove the convergence of theithgo

Recalling from Part I, when the communication network isfedty reliable (i.e., in the absence
of packet drops), the collective dynamics of the linearaitiens can be described by a discrete-time
transition system with no inputs in which the transition mxais column stochastic and primitive.
Then, each node runs two identical copies of a linear i@nativith each iteration initialized differently
depending on the problem to be solved. This double-itemasilgorithm is a particular instance of
the algorithm in[[2] (which is a generalization of the aldbm proposed in[[3]), where the matrices
describing each linear iteration are allowed to vary as tewelves, whereas in our setup (for the
ideal case when there are no communication link failures)tthnsition matrix is fixed over time. In
general, the algorithm described above is not robust agpasket-dropping communication links. It
might be possible to robustify it by introducing messagaveey acknowledgment mechanisms and
retransmission mechanisms, but this has certain overheddi@awbacks as discussed in Secfion]lI-C.
Also, in a pure broadcast system, which is the communicatiodel we assume in this work, it is easy
to see that the double-iteration algorithm above will notkvproperly. The mechanism we proposed in
Part | to robustify the double iteration algorithm was foclkeanode: to keep track of three quantities
of interest: i) its own internal state (as captured by thé&estariables maintained in the original double
iteration scheme of [2][]4]; ii) an auxiliary variable thatcounts for the total mass broadcasted so far
by node: to (all of) its neighbors; and iii) another auxiliary varlalithat accounts for the total received
mass from each nodg that sends information to node The details of the algorithm are provided
in Section[l, but the key in analyzing convergence of thgoathm is to show that the collective
system dynamics can be rewritten by introducing additior@les—virtual buffers—that account for
the difference between these two auxiliary variables. Hsellting enhanced system is equivalent to an
inhomogenous Markov chain whose transition matrix takdgsegafrom a finite set.

As discussed in Part |, even if relying on the ratio of two éinéerations, our work is different from
the work in [2] in terms of both the communication model ansoathe nature of the protocol itself.

*In this second part we will also refer to this algorithm agitraonsensus” algorithm and will use both denominationerzhangeably.
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In this regard, a key premise ihl[2] is that stochasticity foé transition matrix must be maintained
over time, which requires sending nodes to know the numberodes that are listening, suggesting
that i) either the communication links are perfectly relelor ii) there is some acknowledgment and
retransmission mechanism that ensures messages areretklteethe listening nodes at every round
of information exchange. In our work, we remove both assionpt and assume a pure broadcast
model without acknowledgements and retransmissions. Verg easy to see that in the presence of
lossy communication links, the algorithm ih! [2] does notvsothe average consensus problems as
stochasticity of the transition matrix is not preservedraume. Thus, as mentioned above, the key in
the approach we follow to analyze convergence is to augnhent@mmunication graph by introducing
additional nodes, and to establish the correctness of theriims and establish that the collective
dynamics of the resulting system is equivalent to a finiteombgenous Markov chain with transition
matrix that values values from a finite set. Once the systemewsitten in this fashion, the robust
algorithm for ratio consensus reduces to a similar settiniipé one in[[2], except for the fact that some
of the the resulting transition matrices might not have fpesdiagonals, which is required for the proof
in [2]. Thus, in this regard, our approach may be also viewsd generalization of the main result in
[2].

The idea of augmenting the communication graph has beeninsgmhsensus problems to study the
impact of bounded (fixed and random) communication delayg&} [7]. In our work, the augmented
communication graph that results from rewriting the cdllersystem dynamics has some similarities
to the augmented communication graphlin [7], where the Inoknf node: to node; is replaced by
several paths from nodeto nodej, in order to mimic the effect of communication delays. Intgadar,
in [7], for a maximum delay ofB steps,B paths are added in parallel with the single-edge path that
captures the non-delayed message transmission. The adtiedgresponding to delay (1 < b < B)
hasb nodes, for a total of3(B + 1)/2 additional nodes capturing the effect of message trangmiss
delays from nodé to nodej. At every time step, a message from nade node; is randomly routed
through one of these paths; the authors assume for sinyplfct each of the paths is activated with
probability 1/B. For large communication graphs, one of the drawbacks efrtiadel is the explosion
in the number of nodes to be added to the communication g@phodel the effect of delays. In our
work, for analysis purposes, we also use the idea of augntettie communication graph, but in our
case, a single parallel path is sufficient to capture thecetié packet-dropping communication links.
As briefly discussed later, it is easy to see that our moddlngnalism can also be used to capture
random delays, with the advantage over the formalismlinf@} tn our model, it is only necessary to
add a single parallel path witB nodes (instead of th&(B + 1)/2 nodes added above) per link in the
original communication path, which reduces the number afest added. Additionally, our modeling
framework can handle any delay distribution, as long as tpgvalent augmented network satisfies
properties (M1)-(M5) discussed in Section IV-A.

In order to make Part Il self-contained, we review severehglalready introduced in Part |, including
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the double-iteration algorithm formulation over perfgatkliable networks and its robustified version.
In Part Il, we will embrace the common convention utilizedMarkov chains of pre-multiplying the
transition matrix of the Markov chain by the correspondimglability vector.

The remainder of this paper is organized as follows. Sedfiortroduces the communication model,
briefly describes the non-robust version of the doubleiten algorithm, and discusses some issues that
arise when implementing the double-iteration algorithrmétworks with unreliable links. Sectidnllll
describes the strategy to robustify the double-iteratigorahm against communication link failures.
Sectior1V reformulates each of the two iterations in theusitalgorithm as an inhomogeneous Markov
chain. We employ coefficients of ergodicity analysis to elaserize the algorithm behavior in Sectloh V.
Convergence of the robustified double-iteration algorittsmestablished in Section VI. Concluding
remarks and discussions on future work are presented ino8E¢i]

[1. PRELIMINARIES

This section describes the communication model we adopugfrout the work, introduces nota-
tion, reviews the double-iteration algorithm that can beduso solve consensus problems when the
communication network is perfectly reliable, and discesssues that arise when implementing the
double-iteration algorithm in networks with packet-drogplinks.

A. Network Communication Model

The system under consideration consists of a network ofodes,) = {1,2,...,m}, each of which
has some initial value;, i = 1,2,...,m, (e.g., a temperature reading). The nodes need to reach
consensus to the average of these initial values in aniiter&shion. In other words, the goal is for
each node to obtain the vaILém;%’j in a distributed fashion. We assume a synchron@ystem in
which time is divided intatime stepsof fixed duration. The nodes in the network are connected by a
certain directed network. More specifically, a directedk lir, ) is said to “exist” if transmissions from
node;j can be received by nodeinfinitely often over an infinite interval. Lef denote the set of all
directed links that exist in the network. For notational\eemence, we take thdt,:) € £, Vi, so that a
self-loop exists at each node. Then, gr&pk- (V, £) represents the network connectivity. Let us define
Z,=4j| (4,i) e £} and O; = {j | (i,7) € £}. Thus,Z; consists of all nodes from whom nodéas
incoming links, and®; consists of all nodes to whom nodéias outgoing links. For a sét, we will
denote the cardinality of set by |S|. The outdegree of nodg denoted ad);, is the size of set);,
thus, D; = |O;,|. Due to the assumption that all nodes have self-loopsZ; andi € O;, Vi € V. We
assume that grap@ = (V, £) is strongly connected. Thus, i = (V, ), there exists a directed path
from any node to any nodej, Vi, j € V (although it is possible that the links on such a path between
a pair of nodes may not all be simultaneously reliable in @mgitime slot).

2We later discuss how the techniques we develop for reachimgemsus using the double iteration algorithm in the poeseni
packet-dropping links naturally lead to an asynchronousmdation setup.
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The iterative consensus algorithms considered in thisrpaggime that, at each step of the iteration,
each node transmits some information to all the nodes to witdras a reliable directed link during
that iteration (or “time step”). The iterative consensugoathm summarized in Sectidn 1I}B assumes
the special case wherein all the links agvays reliable(that is, all links are reliable in every time
step). In Sectiof I, and beyond, we consider a network ittentially unreliable links. Our work on
iterative consensus over unreliable links is motivatedhigygresence of such links in wireless networks.
Suppose that the nodes in our network communicate overessdinks, with the node locations being
fixed. In such a wireless network, each node should geneballgble to communicate with the other
nodes in its vicinity. However, such transmissions may rnefags be reliable, due to channel fading
and interference from other sources. To make our subseglisnission precise, we will assume that
a link (i, ) exists (i.e.,(i,7) € &) only if each transmission from is successfully received by node
J with probability ¢;; (0 < ¢;; < 1). We assume that successes of transmissions on differdst dire
independent of each other; also, successes of differamrriasions on any given link are independent
of each other. As we will see, these independence assursptanm be partially relaxed but we adopt
them at this point for simplicity.

We assume that all transmissions from any nodee broadcast@ in the sense that, every node
such that(i, j) € £, may receivei’s transmission with probability;; independently between nodes
and transmission steps. As seen later, this broadcast pyopen potentially be exploited to make
communication more efficient, particularly when a given @odvants to send identical information to
all the nodes in0,;. When node; broadcasts a message to its neighbors, the reliabilitiesa&ptions
at different nodes irO; are mutually independent. Each nodés assumed to be aware of the value
of D; (i.e., the number of nodes if);), and the identity of each node in sét This information can
be learned usingeighbor discoverymechanisms used in wireless ad hoc or mesh networks. Ndte tha
node: does not necessarily know whether transmissions to nodés are successful.

B. Ratio Consensus Algorithm in Perfectly Reliable Compation Networks

In this section, we summarize a consensus algorithm for ei@pease of the above system, wherein
all the links in the network aralways reliable(that is, reliable in every time step). The “ratio consefisus
algorithm presented here performs two iterative compaonatiin parallel, with the solution of the
consensus algorithm being asymptotically obtained asrdtie of the outcome of the two parallel
iterations. We will refer to this approach estio consensusdn prior literature, similar approaches have
also been calledveighted consensuyg], [3].

Each node maintains at iteratiort state variableg;[:] and z;[:]. At each time stegk, each node

3As elaborated later, the results in this paper can also bkedpp networks wherein the transmissions are unicast Qnoadcast).
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updates its state variable as follows:

welil = Y waldl/ Dy, k=>1, 1)
JEL;

alil = D aall/Dy, k=1, (2)
JEL;

whereyy[j] =v;, Vj=1,...,m, andz[j] =1, Vj=1,...,m.

To facilitate implementation of the above iterations, atdistepk, each nodeé broadcasts a message
containing valuesy,_1[i]/D; and z,_4[i|/D; to each node in»;, and awaits reception of a similar
message from each node . When nodei has received, from each nodec 7;, a value (namely,

yk—1j]/D; and z,_1[i]/D,) at stepk, nodei performs the above update of its state variables (by simply

summing the corresponding values). Hereafter, we will iigephrase “message€ to mean “message
containing valuev”.

The above two iterations are represented in a matrix notatiq3) and [(4), where;,, and z;, are row
vectors of sizen, and M is anm x m primitive matri>H, such thatM[i, j| = 1/D; if 7 € O; and 0
otherwise. Compactly, we show

Ye = Yp—1 M, kE>1, (3)
% = 2 M, k> 4)

It is assumed that[j] = 1 andy,[j] = v; are the initial values at each nogec V. Each nodei
calculates, at each time stépthe ratio

Vel = ——= .

kl1] el
For the transition matrix\/, (a) M[i,j] > 0, and (b) for alli, ZjM[z',j] = 1. Any matrix that
satisfies these two conditions is said to bewa stochasticmatrix. It has been shown inl[4] tha,[i]
asymptotically converges to the average of the elementg,obrovided thatM is primitive and row
stochastic That is, if M is a primitive row stochastic matrix, then

tim i = =gy, (5)

k—o00 m

wherem is the number of elements in vectgy.

C. Implementation Aspects of Ratio Consensus AlgorithrhenPresence of Unreliable Links

Let us consider how we might implement iteratiof$ (3) dndidp wireless network. Since the
treatment for they, and z; iterations is similar, let us focus on the iteration for now. Implementing
@) requires that, at iteratioh (to computey;), nodei should transmit message_,[i| M|[i, j] to each

“A finite square matrix4 is said to beprimitive if for some positive integep, A? > 0, that is, A?[i, j] > 0, Vi, j.
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node;j € O;. Conveniently, for all; € O;, the valuesM i, j] are identical, and equal to/D;. Thus,
node: needs to send message 1[:]/D; to each node irQ;. Let us define

peli] = ypai) /D, k21

In a wireless network, the two approaches described nextbeaysed by nodéto transmit message
wili] to all the nodes ir0O;.

Approach 1: In this approach, each nodeensures that its messageg[i| is delivered reliably to
all the nodes inO;. One way to achieve this goal is as follows. Nodean broadcast the message
uili] on the wireless channel, and then wait for acknowlegdem@aty from all the nodes it®;. If
such acks are not received from all nodes(in within some timeout interval, then can retransmit
the message. This procedure will be repeated until ackseasvied from all the intended recipients of
wili]. This procedure ensures that the message is received bynedehinO; reliably in each step of
the iteration. However, as an undesirable side-effecttithe required to guarantee the reliable delivery
to all the neighboring nodes is not fixed. In fact, this time dse arbitrarily large with a non-zero
probability, if each transmission on a lirfk j) € £ is reliable with probabilityy;; < 1. Different nodes
may require different amounts of time to reliably deliveeithmessage to their intended recipients.
Thus, if a fixed finite interval of time is allocated for eacksk, then it becomes difficult to guarantee
that the iterations will be always performedrrectly (because some messages may not be delivered
within the fixed time interval).

Approach 2: Alternatively, each nodeé may just broadcast its messagg[:] once in time stepk,
and hope that all the nodes @; receive it reliably. This approach has the advantage thett step
of the iteration can be performed in a short (and predicjatibee interval. However, it also has the
undesirable property that all the nodes( may not receive the message (due to link unreliability),
and such nodes will not be able to update their state coyrdtils important to note that, since there
are no acknowlegements being sent, a nodannot immediately know whether a noge= O, has
receivedi’s message or not.

Considering the shortcomings of the above two approacheppears that an alternative solution is
required. Our solution to the problem (to be introduced isti®a [ll) is to maintainadditional state
at each node, and utilize this state to mitigate the detriad@mpact of link unreliability. To put it
differently, the additional state can be used to design amtive consensus algorithrabust to link
unreliability. In particular, the amount of state maintinby each node is proportional to|Z;|. In a
large scale wireless network (i.e, with large® with nodes spread over large space, we would expect
that for any node, |Z;| << m. In such cases, the small increase in the amount of stateuistifigble
cost to achieve robustness in presence of link unreligbilit

Although M i, j] is identical (and equal ta/D;) for all j € O; in our example above, this is not
necessary. So long a¢ is a primitive row stochastic matrix, the above iterationl wonverge to the
correct consensus value (provided that the transmissienalaays reliable). Thus, it is possible that in
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a given iteration, nodé may want to send different messages to different nod€s;.iThis goal can be
achieved by performing unicast operation to each nod@;irn this situation as well, two approaches
analogous to Approaches 1 and 2 may be used. The first apprnmadth be to reliably deliver the unicast
messages, using as many retransmissions as necessarysecbine approach may be to transmit each
message just once. In both cases, it is possible that tregittes may not be performed correctly. To
simplify the discussion in this paper, we assume that eacle hmeeds to transmit identical message
to the nodes inD,. However, it is easy to extend the proposed scheme so thatapplicable to the
more general scenario as well.

[1l. ROBUSTIFICATION OF RATIO CONSENSUSALGORITHM

In this section, we present the proposed ratio consensuositalg that is robust in presence of link
unreliability. The correctness of the proposed algoritlenestablished in Sectidn VI. As before, each
node maintains state variablggi| and z[i]. Additional state maintained at each node will be defined
soon. Iterative computation is performed to maintgirand z,.. For brevity, we will focus on presenting
the iterations fory,, but iterations forz, are analogous, with the difference being in the initial estat
The initial values ofy and = are assum@dto satisfy the following conditions:

1) woli] >0, Vi,

2) zli] >0, Vi,

3) >, %l > 0.

Our goal for the robust iterative consensus algorithm idloweeach node to compute (asymptotically)

the ratio
> Yolil

> 2oli]
With a suitable choice ofjy[i] and z[i], different functions may be calculated [4]. In particulérthe
initial input of node: is denoted as;, then by settingy,[:] = w;v; and z,[i] = w;, wherew; > 0, Vi,
the nodes can compute the weighted aver%%ﬁ; with w; = 1, Vi € V, the nodes calculate average
consensus.

A. Intuition Behind the Robust Algorithm

To aid our presentation, let us introduce the notion of “niaBke initial valuey,[:] at node: is to
be viewed as its initial mass. If nodesends a messageto another nodg, that can be viewed as a
“transfer” of an amount of mass equal toto node;. With this viewpoint, it helps to think of each
stepk as being performed over a non-zero interval of time. Thgfi] should be viewed as the mass
at node: at theend of time stepk (which is the same as thstart of stepk + 1). Thus, during ste,
each node transfers (perhaps unsuccessfully, due to unreliables)iskme mass to nodes @, the

*The assumption thajo[i] > 0, Vi, can be relaxed, allowing for arbitrary values faji].
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amount being a function of;_1[:]. The massgy,[i| is the accumulation of the mass thateceives in
messages from nodes i during stepk.

Now, . yo[¢] is the total mass in the system initially. If we implementat#on (3) in the absence
of packet drops, then for all iteratioris

Zyk[i] = Zyo[i]-

That is, the total mass in the system remains constant. magiant is maintained becausé is a row
stochastic matrix. However, if a messagasent by node is not received by some nodec O;, then
the mass in that message is “lost,” resulting in reductiotheftotal mass in the system.

Our robust algorithm is motivated by the desire to avoid thes lof mass in the system, even in the
presence of unreliable links. The proposed algorithm uggzdach 2 for transmission of messages. In
particular, in our algorithm (and as in the original raticneensus), at each stép each node wants
to transfery[i] = yi—1[¢]/D; amount of mass to each nodedh. For this purpose, nodiebroadcas&
messageu,[i]. To make the algorithm robust, let us assume that, for eah(li j) € £, a “virtual
buffer” is available to store the mass that is “undelivered’the link. For each nodg e O;, there are
two possibilities:

(P1) Link (i,7) is not reliable in slotk: In this case, message,[i| is not received by nodg. Node
i believes that it has transferred the masg t@nd thus,; does not include that mass in its own
statey,[i]), and at the same time, that mass is not received at poaled therefore, not included in
yrl7]. Therefore, let us view this missing mass as being “buffengdlink (, j) in a virtual buffer.
The virtual buffer for each directed linki, j) will be viewed as avirtual nodein the network.
Thus, when link(z, 7) is unreliable, the mass is transferred from nede “node” (i, j), instead of
being transferred to nodg Note that when link(z, j) is unreliable, nodg neither receives mass
directly from nodei, nor from the virtual buffer(s, j).

(P2) Link (i,7) is reliable in slotk: In this case, message.[i| is received by nodg. Thus, i
contributes toy,[j]. In addition, all the mass buffered in the virtual buffer ;) will also be
received by nodej, and this mass will also contribute tg.[j]. We will say that buffer(z, j)
“releases” its mass to node

We capture the above intuition by building an “augmentediimoek that contains all the nodes in
Y, and also contains additional virtual nodes, each virtwalencorresponding to the virtual buffer for
a link in £. Let us denote the augmented networksddy= (V*, £*) whereV* =)V U £ and

£ =&U{((6,4),7) | (i,5) € £y Ui, (4,9) | (4,5) € €}
In case (P2) above, the mass sent by ng@ad the mass released from the virtual buffer), both

®In the more general case, nodenay want to transfer different amounts of mass to differasdas in®;. In this case, node may
send (unreliable) unicast messages to these neighborstr@dtenent in this case will be quite similar to the restdctase assumed in
our discussion, except that nodevill need to separately track mass transfers to each of itseighbors.
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contribute to the new statg,[j] at nodej. In particular, it will suffice for node to only know thesum

of the mass being sent by nodet stepk and the mass being released (if any) from buffer) at
stepk. In reality, of course, there is no virtual buffer to hold tmass that has not been delivered yet.
However, an equivalent mechanism can be implemented bydating additional state at each node in
V, which exploits the above observation. This is what we @rpiathe next section.

B. Robust Ratio Consensus Algorithm

We will mitigate the shortcomings of Approach 2 describe&ettio 1I-C by changing our iterations

to be tolerant to missing messages. The modified scheme adslkbwing features:

. Instead of transmitting messagg|i| = yx_1[i|/D; at stepk, each node broadcasts at step a
message with valugfz1 wili], denoted asy[i]. Thus,o[i] is the total mass that nodewants to
transfer to each node i®; through the firstt steps.

. Each node maintains, in addition to state variablggi| and z;[:], also a state variablg,[j, i| for
each node € Z;; prlj, i is the total mass that nodehas received either directly from nogeor
via virtual buffer (7,4), through stepk.

The computation performed at nodeat stepk > 1 is as follows. Note that[i] = 0, Vi € V and

po[l,j] = 0, V<Z,j) - 5

orli] = op_1li] +yr-1li]/Ds, (6)
] = orlj], if (7,i) € £ and message,|[j] is received by from j at stepk, @
Pl = pe—1lj, 1], if (j,7) € £ and no message is received bfrom j at stepk,
wlil = > (oxld il = pe-alisi]). 8)
J€EL;

When link (j,7) € £ is reliable, p;[7,i] becomes equal tey,[j]: this is reasonable, becauseeceives
any new mass sent by at stepk, as well as any mass released by buffgr) at stepk. On the
other hand, when linKj, ) is unreliable, therp,[j, ] remains unchanged from the previous iteration,
since no mass is received frof(either directly or via virtual buffer(j,:)). It follows that, the total
new mass received by nodeat stepk, either from nodej directly or via buffer(j,4), is given by

pilj.i] — palj. i), which explains B}

IV. ROBUST ALGORITHM FORMULATION AS AN INHOMOGENEOUSMARKOV CHAIN

In this section, we reformulate each iteration performedhgyrobust algorithm as an inhomogeneous
Markov chain whose transition matrix takes values from adigiet of matrices. We will also discuss
some properties of these matrices, and analyze the belatiweir products, which helps in establishing
the convergence of the robustified ratio consensus algarith

"As per the algorithm specified above, observe that the vadfies and p increase monotonically with time. This can be a concern
for a large number of steps in practical implementationsweéler, this concern can be mitigated by “resetting” thedees e.g., via
the exchange of additional information between neighbfos ifistance, by piggybacking cumulative acknowledgemewthich will be
delivered whenever the links operate reliably).
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A. Matrix Representation of Each Individual Iteration

The matrix representation is obtained by observing an edprice between the iteration ihl (6)—
@), and an iterative algorithm (to be introduced soon) @efion the augmented network described in
SectiorLII[-A. The vector state of the augmented networlssie ofn = m+|£| elements, corresponding
to the mass held by each of the nodes, and the mass held by each of [fijevirtual buffers: these:
entities are represented by as many nodes in the augmertigdrke

With a slight abuse of notation, let us denoteiaythe state of the nodes in the augmented network
G“®. The vectory, for G* is an augmented version @f, for G. In addition toy[:] for eachi € V,
the augmented,, vector also includes elemenig|(i, j)] for each(i, j) € &, with y[(4,j)] = 08 Due
to the manner in which thg,[:]'s are updatedy|:], i € V, are identical in the original network and
the augmented network; therefore, we do not distinguistvésen them. We next translate the iterative
algorithm in [®)-(8) into the matrix form

Yr = Yr—1 M, (9)

for appropriately row-stochastic matricég, (to be defined soon) that might vary as the algorithm
progresses (but nevertheless take values from a finite qedssible matrices).
Let us define an indicator variabl€,[j,i| for each link(j,i) € £ at each time steg as follows:

(10)

Xl = 1, if link (7,7) is reliable at time stef,
A ) otherwise.

We will now reformulate the iteratio 6)3(8) and show homwfact, it can be described in matrix form
as shown in[(9), where the matrix transition mathi%, is a function of the indicator variables defined
in (I0). First, by using the indicator variables at time stes defined in[(10), it follows froni {6) that

prlds 1] = Xilj, idlowli] + (1 — Xils, i) pr—117, 4. (11)

Now, for k > 0, definev[s, i = ow[j] — prlj, 7] (thuswg[j,i] = 0). Then, it follows from [6) and[(11)
that

vl i) = (1 — Xu[j, 1)) (y’“Dlj[]] + ve1ld, ]), k> 1. (12)

Also, from (8) and[(1l1), it follows thaf{8) can be rewrittes a

=3 X,lj.i (y’“HJr“[,]), k> (13)

JEL; J

At every instantt that the link(j,¢) is not reliable, it is easy to see that the variab}éj, i| increases
by an amount equal to the amount that ngdeished to send to nodg buti never received due to
the link failure. Similarly, at every instarit that the link(j, ) is reliable, the variable;[;,i| becomes

Similarly, zo[(4, )] = 0.
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zero and its value at — 1 is received by node as can be seen if_(13). Thus, froml(12) and (13), we
can think of the variable;[;, i| as the state of a virtual node that buffers the mass that hddes not
receive from nodeg every time the link(j,:) fails. It is important to note that the,[;, i|'s are virtual
variables (no node iV computesy;) that just result from combining, as explained above, Vdes
that the nodes i compute. The reason for doing this is that the resulting rhizdequivalent to an
inhomogeneous Markov chain. This can be easily seen byistackp [13) for all nodes indexed in
V, i.e., the computing nodes, arld {12) for all virtual bufféfsi), with (j,7) € £, and rewriting the
resulting expressions in matrix form, from where the exgi@sin [9) results.

B. Structure and Properties of the Matricés,

Next, we discuss the sparsity structure of the’'s and obtain their entries by inspection 6f (12)
and [13). Additionally, we will explore some properties b&t\/,’s that will be helpful in the analysis
conducted in SectionlV for characterizing the behavior aheaf the individual iterations.

1) Structure ofM,: Let us first define the entries in roiwof matrix M, that corresponds toe V.
For (i,j) € &, there are two possibilitiesXy[i, j] = 0 or X.[i, j] = 1. If X[i,j] = 0, then the mass
wuelt] = yeli]/D; that nodei wants to send to nodgis added to the virtual buffefi, j). Otherwise, no
new mass from nodéis added to buffef:, j). Therefore,

Mili, (4, 5)] = (1 = Xi[i, j])/ Di. (14)
The above value is zero if link, j) is reliable at steg, and1/D; otherwise. Similarly, it follows that

which is zero whenever linki, j) is unreliable at steg, and1/D; otherwise. Observe that for each
j € Oi’

Myli, j] + Myli, (i, 5)] = 1/ D, (16)

with, in fact, one of the two quantities zero and the otheraéqa 1/D;. For (i,j) ¢ &, it naturally
follows that M [i, 7] = 0. Similarly,

Myli, (s,7)] =0, wheneveri# s and (s,r) € £. (17)

Since |O;| = D;, all the elements in row of matrix M) add up to 1.

Now define row(i, ) of matrix My, which describes how the mass of the virtual bufferj), for
(1,7) € &, gets distributed. When linki, j) works reliably at time steg (i.e., X[i,j] = 1), all the
mass buffered on linki, 7) is transferred to nodg; otherwise, no mass is trasferred from buffer;)
to node;j and the buffer retains all its previous mass and increaseg & quantity equal to the mass
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that node; fail to send to nodg. These conditions are captured by definitig entries as follows:

Mk[(zv])v]] = Xk[ivj]v (18)
My((3,7), (i, 7)] = 1— Xgli,j]. (29
Also, for obvious reasons,
Mk[(lvj)vp] = 07 vp 7é jv p € Vv (20)
Mk[('l,]), (S,T)] - 07 V(l,]) 7é (S,T’), (8,7“) € . (21)

Clearly, all the entries of the row labeléd ;) add up to 1, which results in/, being a row stochastic
matrix for all &k > 1.

2) Properties ofM,: Let us denote the set of all possible instances (dependinbeomalues of the
indicator variablesXy[i, j|, (i,j) € £, k > 1) of matrix M, as M. The matrices in the sett have
the following properties:

(M1)

(M2)

(M3)

(M4)

(M5)

The setM is finite.

Each distinct matrix inM corresponds to different instantiations of the indicatarables defined
in (@Q), resulting in exactR/¢! distinct matrices inM.

Each matrix inM is a finite-dimensional square row stochastic matrix.

The number of rows of each matri¥,, € M, as defined above, is = m + |£|, which is finite.
Also, from (14)-{(21), theses matrices are square row-ststa@hmatrices.

Each positive element of any matrix it is lower bounded by a positive constant.

Let us denote this lower bound as Then, due to the manner in which matrices M are
constructed, we can defineto be the positive constant obtained as

= M, 7).

min
i,5,M |MeM,M|i,j]>0
The matrixMy, k£ > 0, may be chosen to be any matriX € M with a non-zero probability. The
choice of the transition matrix at each time step is indepah@nd identically distributed (i.i.d.)
due to the assumption that link failures are independeritvEn nodes and time steps).
Explanation:The probability distribution on\ is a function of the probability distribution on the
link reliability. In particular, if a certain\/ € M is obtained when the links i&i’ C £ are reliable,
and the remaining links are unreliable, then the probahihiat M/, = M is equal to

Wi jeer @i Wi jes—er (1= gij)- (22)

For eachi € V), there exists a finite positive integgrsuch that it is possible to finfd matrices in
M (possibly with repetition) such that their product (in a seo order) is a row stochastic matrix
with the column that corresponds to nodleontaining strictly positive entries.

This property states that, for eache V, there exists a matrif;*, obtained as the product of
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matrices inM that has the following properties:

T > 0, VieV, 23)
7;*[(]17]2)71] > 07 v (jl)j?) S E. (24)

This follows from the fact that the underlying graght is strongly connected (in fact, it can be
easily shown that; < m). To simplify the presentation below, and due to the sadpk we can
takel; to be equal to a constantfor all i € V. However, it should be easy to see that the arguments
below can be generalized to the case wheni/fsanay be different.

We can also show that under our assumption for link failutlesre exists a single matrix, sady,
which simultaneously satisfies the conditions [in] (Z3)-®@#)all i € V. When all the links in
the network operate reliably, netwotkV, £) is strongly connected (by assumption). Sirigeés
strongly connected, there is a directed path between ewarypnodesi andj, i.e.,i,7 € V . In
the augmented network®, for each(i, j) € &, there is a link from node to node(:, j), and a
link from node(i, j) to nodej. Thus, it should be clear that the augmented netwisrks strongly
connected as well. Consider a spanning tree rooted at noslech that all the nodes i = VUE
have a directed path towards node 1, and also a spanningntreleich all the nodes have directed
pathsfrom node 1. Choose that matrix, say* € M, which corresponds to all the links on these
two spanning trees, as well as self-loops atiadl V, being reliable. If the total number of links
that are thus reliable is, it should be obvious that)/*)¢ will contain only non-zero entries in
columns corresponding tb € V. Thus,! defined above may be chosen easThere are several
other ways of constructing@™, some of which may result in a smaller valuelof

V. ERGODICITY ANALYSIS OF PRODUCTS OFMATRICES M,

We will next analyze the ergodic behavior of theward product?, = MM, ... M, = HleM»,
where M; € M, Vj = 1,2,... k. Informally defined, weak ergodicity df; obtains if the rows of
T, tend to equalize a8 — oo. In this work, we focus on the weak ergodicity notion, andabksh
probabilistic statements pertaining the ergodic behawfaf).. The analysis builds upon a large body
of literature on products of nonnegative matrices (see, flpfor a comprehensive account). First, we
introduce the basic toolkit adopted from [8]/) [9]J [1], arftEh use it to analyze the ergodicity Bf.

A. Some Results Pertaining Coefficients of Ergodicity

Informally speaking, a coefficient of ergodicity of a matrik characterizes how different two rows
of A are. For a row stochastic matrix, propell coefficients of ergodicityy(A) and A\(A) are defined

°Any scalar functionr(-) continuous on the set of x n row stochastic matrices, which satisfies< 7(A) < 1, is said to be a proper
coefficient of ergodicity ifr(A) = 0 if and only if A = e”v, wheree is the all-ones row vector, and> 0 is such thatwe” = 1 [I].
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as:

5(A) == max max |Afi, j] — Alia. ]| (25)

J 21,22
MAy:1—Tg§:mmuwhﬁAmgp. (26)
J
It is easy to see that < 6(A) < 1 and0 < A(A) < 1, and that the rows are identical if and only if
d(A) = 0. Additionally, A\(A) = 0 if and only if §(A) = 0.

The next result establishes a relation between the coefficieergodicityd(-) of a product of row
stochastic matrices, and the coefficients of ergodikity of the individual matrices defining the product.
This result will be used in the proof of Lemrha 2. It was eswti®d in [8] and also follows from the
more general statement of Theorem 4.8[inh [1].

Proposition 1: For anyp square row stochastic matricels, A,,... A, 1, A,

0(A1Az - Ap1Ap) < (Hf:_ll)‘(Ai» 6(Ap) < I7_y A(A). (27)

The result in[(2]7) is particularly useful to infer ergodjciif a product of matrices from the ergodic
properties of the individual matrices in the product. Foareple, if \(A4;) is less than 1 for all, then
d(A1Ay--- A, 1 Ay) will tend to zero a®p — oo. We will next introduce an important class of matrices
for which \(-) < 1.

Definition 1: A matrix A is said to be ascrambling matrix, if A\(A) < 1 [1].

In a scrambling matrix4, since\(A) < 1, for each pair of rows; andi,, there exists a colump
(which may depend o, andi,) such thatA[i,, j] > 0 and Afis, j] > 0, and vice-versa. As a special
case, if any one column of a row stochastic matfixcontains only non-zero entries, thenmust be
scrambling.

B. Ergodicity Analysis of Iterations of the Robust Algaomith

We next analyze the ergodic properties of the products oficest that result from each of the
iterations comprising our robust algorithm. Let us focusjast one of the iterations, say., as the
treatment of thez, iteration is identical. As described in Sectionl IV, the pexs of they, iteration
can be recast as an inhomogeneous Markov chain

Yk = Yp—1 My, kK >1, (28)

where M;, € M, Vk. As already discussed, the sequence\ffs that will govern the progress afy
is determined by communication link availability. {28). fineng 7;, = H;?:l M;, we obtain:

Yr = YoM My - - - My,
= yong?:le = yoTk, k>1. (29)

By conventionI1{_, M; = I for any k > 1 (I denotes the: x n identity matrix).
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Recalling the constaritdefined in (M5), defindV,, as follows,
Wi = Iy Mj, k>1, M e M, (30)
from where it follows that
T = Ty Wi, k>1. (31)

Observe that the set of time steps “covered” by and W, i # j, are non-overlapping. It is also
important to note for subsequent analysis that, sincelMhé are row stochastic matrices and the
product of any number of row stochastic matrices is row setib, all thelV,’s andT}’s are also row
stochastic matrices.

Lemma2 will establish that as the number of iteration stegEsdo infinity, the rows of the matrik;,
tend to equalize. For proving LemmaA 2, we need the result mrhall stated below, which establishes
that there exists a nonzero probability of choosing matrioeM such that théV,’s as defined in[{30)
are scrambling.

Lemma 1: There exist constants > 0 andd < 1 such that, with probability equal to, A\(W}) < d
for k£ > 1, independently for different.

Proof: EachV, matrix is a product of matrices from the set1. The choice of thél/,’s that form
W; andW; is independent fof # j, sincelV; andW; “cover” non-overlapping intervals of time. Thus,
under thei.i.d. assumption for selection of matrices fram (property (M4), and property (M5), it
follows that, with a non-zero probability (independentty 1V, and W,. for k& # k), matrix W, for
eachk is scrambling. Let us denote hy the probability thatiV;, is scrambling.

Let us define)V as the set of all possible instancesl®f, that are scrambling. The s&V is finite
because the selt is finite, and)V is also non-empty (this follows from the discussion of (M3)gt
us defined as the tight upper bound ox(IW), for W € W, i.e.,

d = Inax A(W). (32)

Recall that\(A) for any scrambling matrix4 is strictly less than 1. Sinci/ is non-empty and finite,
and contains only scrambling matrices, it follows that

d<1. (33)

[ |
Lemma 2: There exist constants and (0 < a < 1, 0 < 8 < 1) such that, with probability greater
than (1 — o*), §(T,) < B* for k > 81/w.
Proof: Let k* = | 4| and A = k — Ik*. Thus,0 < A < . From [29) through[{31), observe that

A
Ty = T yn = Tiper 152 Migoey g,

where 7).~ is the product oft* of W; matrices, wherd < j < k*. As per Lemmadll, for each’;,
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the probability that\(1W;) < d < 1 is equal tow. Thus, the expected number of scrambling matrices
among thek™ matrices iswk*. Denote byS the actual number of scramblifid; matrices among the
k* matrices. Then the Chernoff lower tail bound tells us that,any ¢ > 0,

=

Let us choose) = 1. Then,

Pr{S<(1-9¢)E(S)} < e~ E(8)9°/2
Pr{S < (1 — ¢)(wk")} < e~ @*I/2,

Pr{S < (wk*)/2} < e wk'/®
Pr{S > wk*/2} > 1 — e WF"/%,

(34)
(35)

(36)
(37)

Thus, at leastwk* /2] of the W matrices from the&* matrices formingl;,- are scrambling (each with
) value < d, by Lemma]l) with probability greater than— e~**"/8. Propositior L then implies that

8(Th) = 6(Tipesa) = 6 (TLZ, W) (T2 Mige13) ) < (T2 A(W5)) (T2 A (Mg 1))

Since at leas{wk* /2] of the W;'s have A\(W;) < d with probability greater than — e=**"/%, and

A(M;) <1, Vj, it follows that

with probability exceeding

1 — e wh/s,

Let us definen = e~1e and 3 = d=. Now, if k > 81/w, then if follows thatk > 2/, and

k*

=

k| k
i S
zJ—zz

sl (because0 <d < 1)

(38)

(39)

(40)
(41)
(42)

(43)
(44)
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Similarly, if & > 81/w, it follows that

k k
ERHES )
= e~ wk"/8 < e_%z = o (46)
=  1—e W/ >1 -k (47)
By substituting [(44) and(47) int@_(B8) and {39), respedyivihe result follows. [

Note thata and 8 in Lemmal2 are independent of time. The thresholdkofor which Lemmal2
holds, namelyt > 81/w, can be improved by using better bounds[inl (40) (45). Kmgwa smaller
threshold onk for which Lemmd_2 holds can be beneficial in a practical imm@etation. In the above
derivation for Lemmdl2, we chose a somewhat loose threshmolotder to maintain a simpler form
for the probability expression (namely,— o*) and also a simpler expression for the boundjf, )
(namely, 3%).

Lemma 3: 6(7}) converges almost surely to O.

Proof: For k > 81 /w, from Lemmd2®, we have thatr{5(7;) > ¥} <aof, 0 <a<1,0< B <1,
Then, it is easy to see thaf, Pr{d(7;) > B*} < 8l/w + Y., a* < occ. Then, by the first Borel-
Cantelli lemma,Pr{the event that(7}) > 3* occurs infinitely ofteh = 0. Therefore §(7},) converges
to 0 almost surely. [ |

VI. CONVERGENCEANALYSIS OF ROBUSTIFIED RATIO CONSENSUSALGORITHM

The analysis below shows that the ratio algorithm achiewgsnatotic consensus correctly in the
presence of the virtual nodes, even if diagonals of the ifiansmatrices (/,’'s) are not always strictly
positive. A key consequence is that the valuezgf] is not necessarily greater from zero (at least not
for all k), which creates some difficulty when calculating the rafi¢]/zx[i]. As noted earlier, aside
from these differences, our algorithm is similar to thatlgped in [2]. Our proof has some similarities
to the proof in [2], with the differences accounting for oetaxed assumptions.

By defining z;, in an analogous way as we defined staten Section 1V, the robustified version of
the ratio consensus algorithm inl (3)-(4) can be describedatrix form as

Y = Yr—1 My, kE>1, (48)
2k = Rk-—1 Mk? k Z 17 (49)

where My, € M, k > 1, yli] > 0, Vi, z[i] > 0, Vi, andy_. z[j] > 0, andyo[(, )] = z0[(4, j)] =

0, V(i,j) € £ The same matrix\/,, is used at steg of the iterations in[(48) and_(49), however,
M, may vary overk. Recall thaty, and 2, in (48) and [49) have: elements, but only the first
elements correspond to computing nodes in the augmenteamef*; the remaining entries ip, and
2 correspond to virtual buffers.
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The goal of the algorithm is for each computing node to obtatonsensus value defined as

oo 2 Yol (50)
Zj 2oJ]
To achieve this goal, each node V calculates
i = %10 (51)
2k[i]

whenever the denominator is large enough, i.e., whenever
zli] > p, (52)

for some constant > 0 to be defined laterWe will show that, for each = 1,2, ..., m, the sequence
7 [i] thus calculated asymptotically converges to the desiregemsus value*. To show this, we first
establish that(32) occurs infinitely often, thus computirgles can calculate the ratio [n [51) infinitely
often. Then, we will show that aB goes to infinity, the sequence of ratio computations[id (5il) w
converge to the value i _(50).

The convergence wheh_; yo[j] = 0 can be shown trivially. So let us now consider the case when
Zj yo[7] > 0, and define new state variablgs and z; for £ > 0 as follows:

o k] ;
W= e ©9
Ca k] ;
<k [7'] - Zj 20 []] ’ vi. (54)

Thus,7, andz, are defined by normalizing, andz,. It follows thaty, andz, are stochastic row vectors.
Also, since our transition matrices are row stochasti@llofvs thaty, andz, are also stochastic vectors
for all k£ > 0.

We assume that each node knows a lower bound om,|j], denoted by... In typical scenarios, for
all i € V, zi] will be positive, and, node € 1 can usez|i] as a non-zero lower bound dn; z|j]
(thus, in general, the lower bound used by different nodeg nw be identical). We also assume an
upper bound, say.,, on_; yo[j].

Let us define

- C
p="rc (55)

As time progresses, each nofle V will calculate a new estimate of the consensus value wheneve
z,[i] > p. The next lemma establishes that nodes will can carry ostdalculation infinitely often.

Lemma 4: Let 7; = {r},7?,---} denote the sequence of time instances when nodedates its
estimate of the consensus usifigl(51), and obeyiny (52),emfex 7', j > 1. The sequencd;
contains infinitely many elements with probability 1.
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Proof: To prove the lemma, it will suffice to prove that for infinitetyany values of:, z.[i] > pu,
with probability 1. Assumptions (M1)-(M5) imply that eachainix W;, j > 1 (defined in[(3D)) contains
a strictly positive column corresponding to index V with a non-zero probability, say; > 0. Also,
the choice ofiV,, and W,, is independent of each other fé; +# k.. Therefore, the second Borel-
Cantelli lemma implies that, with probability 1, for infiely many values ofj, IW; will have the:-th
column strictly positive. Since the non-zero elements @eheaatrix in M are all greater or equal tq
c > 0 (by property M3), and sinc&/; is a product ofl matrices inM, it follows that all the non-zero
elements of each’; must be lower bounded by.

Consider only thosg > 1 for which I¥; contains positive-th column. As noted above, there are
infinitely many suchj values. Now,
Zio= Zg-y Wi
As noted abovej, is a stochastic vector. Thus, for aky> 0,
d il = 1 (56)
and, at least one of the elementsf_,;, must be greater or equal ign. Also, all the elements in

columns of IW; indexed byi € V are lower bounded by’ (recall that we are now only considering
those; for which thei-th column of W; is positive). This implies that,

Zuli) > d/n (57)
o it > (S e
= ziali] > pe d/n (59)
= ozl > op Vi€V (by (BB)) (60)

Since infinitely manylV,’s will contain a positivei-th column (with probability 1),[(60) holds for
infinitely many ;j with probability 1. Therefore, with probability 1, the sgt= {7!,7?,---} contains
infinitely many elements, for all € V. [ |
Finally, the next theorem shows that the ratio consensusritigh will converge to the consensus
value defined in[(30).
Theorem 1: Let m;[¢t] denote nodeé’s estimate of the consensus value calculated at tin&or each

node: € V, with probability 1, the estimate;[t] converges to

. 225 4l0]

-2 Hl0)
Proof: Note that the transition matricéd,, £ > 1, are randomly drawn from a certain distribution.
By an “execution” of the algorithm, we will mean a particulastance of thel/, sequence. Thus, the
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distribution on/,’s results in a distribution on the executions. Lenimha 3 ieplkhat,
Pr{hm 3(T;) = 0} ~1.
k—o0

Together, Lemmak] 3 arid 4 imply that, with probability 1, focteosen execution, (i) for any > 0,
there exists a finité:,, such that, for allt > k,, §(7};) < ¢, and (ii) there exist infinitely many values
of k > k, such thatz[i] > u (i.e., k € T; for the chosen execution).

Consider anyt > ky, such thatz,[i] > p. Sinced(7}) < 1, the rows of matriXZ}, are “within " of
each other. Observe thgt is obtained as the product of stochastic row vegipand 7). Thus, g, is
in the convex hull of the rows df,. Similarly Z; is in the convex hull of the rows df},. Therefore,
the j-th elements ofy, andz, are withiny of each other, for allj. Therefore,

| gelt] =zl | < @ (61)
S| B o (62)
Zi[7] Zi[i
ol Sl il e and sy (63
2 [1] Zj 2o7] 2 [1]
yrli] 2, Yolil (T
= - — . < becausée < 64
Zk[l] Z] ZO[]] Zk[’l] ( E yO[ ] My) ( )
yrli] 2, Yolil (T
= = ‘ < . 65
alil 3, 0] T ©9
Now, given anye > 0, let us choose) = ¢/ p,,. Then [65) implies that
yk[l] B Zj yom <e
zli] 225 70l)]
wheneverk > k, andk € ;. Therefore, in the limit2 for k e 7; converges t JyOF This result
holds with probability 1, since conditions (i) and (ii) stdtabove hold with probablllty 1. [ |

The result above can be strengthened by proving convergeinttee algorithm even if each node
i € V updates its estimate whenewvgii] > 0 (not necessarily> ;). To prove the convergence in this
case, the argument is similar to that in Theofem 1, with twdlifications:

. Lemmal4 needs to be strengthened by observing that thereiefistely many time instants at
which z,[i] > p simultaneously for ali € V. This is true due to the existence of a matfix (as
seen in the discussion of (M5)) that contains positive colsimorresponding to all€ V.

. Using the above observation, and the argument in the prodthebrem(l, it then follows that,
with probability 1, for any, there exists a finité:,, such that)(7;) < ¢» wheneverk > k,. As
before, definingy = e/, it can be shown that for any, there existsa k. > &, such that the
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following inequality holds for alli € V simultaneously

wll Tl |
all Syl | ST (66)
ijo[j] . Y. [i] Eij[j] . ;

Naturally, z¢_[i] # 0, Vi € V. It is now easy to argue that the above inequality will comirio hold for
all £ > k. and each € V wheneverz;[k] > 0. To see this, observe that, fér> k.,

Yk = Yk. Hl;;ﬂ M,

Define P =11} , M, and = euu/p,. Then, we have that, wheneverli] > 0 for & > k.,

, n 1Pl
yk[Z.] _ Zi_l yks[j] [j .] (68)
Zk[l] Zj:l Zke[j] P[]?d
noo | P[j,4
- ZZ_I’PU’Z#O o [j.] [j, | (summation over non-zerf|[j, i| terms)
Zj:l,P[j,i];éO z[J] PlJ,1]
=~ min 2 < yk—m < max Ykeld) (69)
JPEA>0 2k [j] 2elt] T i PLA>0 2k
ijo[j] yeli] 225 YolJ]
= =L ¢ < - < =H——+¢e from 70
S, 2ol alil = %, 20 & 7o
Lol 2wl ey andk s &, (71)
zli] D25 %0lJ]

This proves the convergence of the algorithm in the limitc&lethat for this convergence it suffices if

each node updates its estimate of the consensus wheneyeralse is positive.[(69) follows from the
- jaliluli] alj] _ bljluly] ] - - 7l

observation tha {‘bmum = Zj [b[ﬂ S |§ a weighted average ik and therefore, lower

bounded bymin, Z[—j]] and upper bounded byax; %

VIlI. CONCLUDING REMARKS AND FUTURE WORK

Although our analysis above is motivated by wireless emritents wherein transmissions may not
succeed, the analysis is more general. In particular, itieppo other situations in which properties
(M1)—(M5) are true. Indeed, property (M4) by itself is notiagortant as its consequence that a given
W, matrix has non-zero columns indexed by V.

A particular application of the above analysis is in the cagen messages may be delayed. As
discussed previously, mass is transfered by any node toeitghibors by means of messages. Since
these messages may be delayed, a message sent dum, linkn slot £ may be received by nodgin
a later slot. Let us denote b [i] the set of messages received by nods stepk. It is possible for
Vi[i] to contain multiple messages from the same node. Notelffitmay contain a message sent by
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node: to itself as well. Let us define the iteration fgf as follows:

yelt] = Z v. (72)
vEVili]
The iteration forz, can be defined analogously. Our robust consensus algorgkengally implements
the above iteration, allowing for delays in delivery of massany link (i, ) (caused by link failures).
However, in effect, the robust algorithm also ensures FIR@t{in-first-out) delivery, as follows. In
slot k, if nodei receives mass sent by noglec Z; in slot s, s < k, then mass sent by nodein slots
strictly smaller thars is either received previously, or will be received in stot

The virtual buffer mechanism essentially models asynabmercommunication, wherein the messages
between any pair of nodes in the network may require arlpinlatay, governed by some distribution. It
is not difficult to see that the iterative algorithm {72) shibbe able to achieve consensus correctly even
under other distributions on message delays, with possinielation between the delays. In fact, it is
also possible to tolerate non-FIFO (or out-of-order) mgssielivery provided that the delay distribution
satisfies some reasonable constraints. Delay of up stots on a certain linki, j) € £ can be modeled
using a single chain oB virtual nodes, with links from nodéto every virtual nodes, and link from the
last of the B nodes to nodg—in this setting, depending on the delay incurred by a pacgiropriate
link from node: to one of the virtual node on the delay chain (orjtaf delay is 0) is used.

Note that while we made certain assumptions regarding hilkres, the analysis relies primarily on
two implications of these assumptions, namely (i) the rofvhe transition matriX/;, become close to
identical ask increases, and (ii},[i] is bounded away from 0 for eachinfinitely often. When these
implications are true, similar convergence results mayl lolother environments.
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