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Abstract

This two-part paper discusses robustification methodel@or linear-iterative distributed algorithms for
consensus and coordination problems in multicomponemsyss in which unreliable communication links may
drop packets. We consider a setup where communication bekseen components can be asymmetric (i.e.,
componentj might be able to send information to componeénbut not necessarily vice-versa), so that the
information exchange between components in the system gemeral described by a directed graph that is
assumed to be strongly connected. In the absence of comatiomidink failures, each componehimaintains
two auxiliary variables and updates each of their values doablinear combination of their corresponding
previous values and the corresponding previous values ighbering components (i.e., components that send
information to node:). By appropriately initializing these two (decoupled)r@gons, the system components
can asymptotically calculate variables of interest in drifisted fashion; in particular, the average of the initial
conditions can be calculated as a function that involvesréti® of these two auxiliary variables. The focus
of this paper to robustify this double-iteration algorittagainst communication link failures. We achieve this
by modifying the double-iteration algorithm (by introdongisome additional auxiliary variables) and prove that
the modified double-iteration converges almost surely teraye consensus. In the first part of the paper, we
study the first and second moments of the two iterations, @edtliem to establish convergence, and illustrate
the performance of the algorithm with several numericahgplas. In the second part, in order to establish the
convergence of the algorithm, we use coefficients of ergiydcommonly used in analyzing inhomogeneous
Markov chains.
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. INTRODUCTION

The design of protocols and algorithms for distributed catapon and control/decision tasks has
attracted significant attention by the computer sciencengonication, and control communities (e.g.,
], [2], [3], [4], [5], [6], [7] and references therein). Faexample, given i) a collection of robots
moving in the plane, ii) a collection of sensors in a sensdwak, or iii) a collection of distributed
energy resources in an electrical grid, the components meaytierested in, respectively, i) agreeing
on a common direction to follow (this common direction codld provided by a leader robot), ii)
measurement averaging (with each sensor providing a loeasarement of a global quantity), or iii)
collectively providing a predetermined total amount ofiaetfpower subject to the constraints of each
distributed resource. In the control literature, the fingtl @econd problems are respectively known as
consensus and average consensus (see, [€.9., [2]), wheee#tsrtl problem can be considered as a
distributed resource coordination problem [8], [9].

In this two-part paper, we consider multicomponent systemnvghich each component can exchange
information with other components in its neighborhood idesrto compute, in a distributed fashion,
some quantity of interest. In our setup, communication difdetween components (nodes) can be
asymmetric (i.e., componeritmight be able to send information to componénbut not necessarily
vice-versa), a situation that arises in a wireless settirige transmission power available to different
nodes are also different. In this setting, the informati@ohange between components in the system
can be described by a directed graph which is assumed to drggbtrconnected. Through an iterative
process, nodes in the network are required to compute (wsilyginformation made available by their
neighbors) the quantity of interest. In particular, we gtlidear-iterative algorithms in which each node
j maintains a value (or a set of values) that is updated to beighteel linear combination of nodgs
own previous value and the previous values of its neighlgarodes (i.e., nodes that transmit information
to nodej). The main focus of the paper is to develop strategies tostifguhe linear-iterative algorithms
described above against communication links that may demieds.

In the context of consensus and average-consensus proldenextensive literature in the control
community focuses on the linear-iterative algorithms dbsd above (e.g.[ [7]/[[10]/]2],111]/112],
[13], [14] and references therein). These works have rede#tiat if the network topology satisfies
certain conditions, the weights for the linear iteration & chosen so that all the nodes asymptotically
converge to the same value (even if the network connectiomdime-varying). Additionally, if the
interconnection topology is invariant and bidirectionia¢.( if node; can send information to node
then node can send information to nodg, simple techniques can be used to choose the weights of the
linear iteration so as to ensure that, after running thealieration, the nodes will asymptotically reach
consensus to the average of their initial vallies [2], [112][ Other works have looked at the consensus
and average-consensus problems when the interconneopoiogy is described by directed graph.

In particular, the authors of [15] focus on continuous-titimear iterations and state necessary and
sufficient conditions for a network of integrators to asyatjgally reach agreement to a common value
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(but not necessarily the average of their initial valueghifarly, the authors of[[12] consider discrete-
time iterations, and provide necessary and sufficient ¢mmdi on the weights that allow the nodes to
asymptotically reach consensus to the average of theialinilues. Additionally, the work in[[16],
[17] discusses how average-consensus can be reached atgallytwith linear-iterative algorithms in
which the nodes use fixed weights in their linear updates é&sw develops linear-iterative algorithms
where the nodes adapt their weights in a distributed fasbthat asymptotically average-consensus
is reached. In the context of resource coordination, thersome recent work [18],[8]_[9] that also
focuses on linear-iterative algorithms, similar to thosedito address consensus and average-consensus
problems. Other recent work has addressed the relatedepnobt achieving consensus and average-
consensus in a multicomponent system where some nodes héit eralicious behavior[[19],[[20].
These works assume fault-free communication links, butr@leged to what we do in this paper in the
sense that they can be used to handle unreliable nodes (asempto links).

In our development, we adopt a very general model for the comication modality between nodes,
which allows asymmetric information structures, in thessethat if node can transmit information to
another node, it is not necessarily true that nogecan transmit information to node We only require
that each node, apart from seeing incoming transmissiamstgdt by neighboring nodes, knows the
number of nodes that it can transmit information to, whiclyiaph-theoretic terms is referred to as the
out-degree of that node. In fact, in the proposed algoritech node will broadcast the same quantity to
all receiving nodes, which simplifies the communicationesub between sending and receiving nodes
(as it is not necessary for each sending node to separatelynaaicate with each receiving node).

When the communication network is perfectly reliable (ncket drops), the collective dynamics of
the linear iterations can be described by a discrete-tiauesition system with no inputs in which the
transition matrix is column stochastic and primitive. Theach node will run two identical copies of
the linear iteration each of which, however is initializeidfetently depending on the problem to be
solved.In this paper we mostly focus on the average consemsblem. Under proper initialization,
it can be shown that each node will asymptotically calcuthte desired value as a function of the
outcomes of the two iterations. The details of these doitbtation approach are provided in_[16],
[17] for the average consensus case and_in [8], [9] for theuree coordination problem. For the
average-consensus problem, the double-iteration atgors a particular case of the algorithm In[21]
(which is a generalization of the algorithm proposed_in J2@fhere the matrices describing each linear
iteration are allowed to vary as time evolves, whereas insetup (for the ideal case when there are
no communication link failures) the transition matrix iseftk over time.

The focus of this paper is to robustify the double-iteratidgorithm (informally described above and
formally described in Sectionlll) so that it can toleratdua@s in communication links and converge
to the average value. Our communication link reliability debassumes that at each time step, a
communication link is unavailable with some probabilitydther words, a packet containing information
from nodei to nodej is dropped with some probability. Next we informally deberiour robustification
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approach. Consider two nodeésand j, and assume that receives information from node but not
necessarily vice-versa. Let us refer t@as the receiving node (or receiver) ands the sending node
(or sender). An important requirement is for the graph dbsg the communication network to be
strongly connected, which implies every node must be ablectdoth as a sender and as a receiver.
Then, for each of the two iterations each node performs, riodee sender) will keep track of the
following quantities of interest: i) its own internal stgges captured by the state variables maintained in
the double iteration scheme of [21], [18]; ii) the total massadcasted so far (to be described in detall
soon); and iii) the total received mass from each nbdeat sends information to node Similarly,
for both iterations, each nodg (the receiver) updates the value of its internal state to beear
combination of its own previous internal state value (weghby the inverse of the number of nodes
that havej as a neighbor) and the difference between the two most tgaeceived mass values from
each of its neighbors (also weighted by the inverse of thebaurof nodes that havg as a neighbor).
At time instantk, the total broadcasted mass by ngde the sum up to (and including) time stépof
the sequence of values of nogle internal value, weighted by the inverse of the number afesothat
receive values from nodg. Additionally, nodej updates the value of the received mass from each node
[ that sends information to nodeas follows: the received mass from nodés the total broadcasted
mass sent by nodeup to timek if the communication link from nodéto nodej is available at time
stepk; otherwise, the received mass remains the same as the noestlyereceived mass from node
[. An implicit assumption here is that messages broadcastedote ! are tagged with the sender’s
identity so that the receiving nodecan determine where different packages have originated.fro
Recent work that has addressed the consensus and aversgasas problems in the presence of
unreliable communication links [23], [24], [25] has empdolya communication link availability model
similar to ours. The work in[[23] assumes that the graph daisgy the communication network is
undirected and that when a communication link fails it a@aecommunication in both directions.
Additionally, nodes have some mechanism to detect link aihetvility and compensate for it by rescaling
their other weights (so that the resulting transition nxatémains column stochastic). Following this
strategy, the authors show asymptotic convergence to #rage of initial conditions and also calculate
the rate at which the variance of the total deviation from dlkierage converges to zero. The work in
[24] does not require the graph describing the communicatietwork to be undirected and proposes
two compensation methods to account for communicationfaildres. In the first method, the so-called
biased compensation method, the receiving node comperfsatthe unavailability of an incoming link
by adding the weight associated to the unavailable linkgmwn weight (so that the resulting matrix
remains row stochastic). In the second method, called tlebad compensation method, the receiving
node compensates for link unavailability by rescaling fadl incoming link weights so that the resulting
matrix remains row stochastic. The key in both methods iddbethat at each time step, the resulting
weight matrix is row stochastic; the authors show that thdesoconverge almost surely to the same
value, but this value is not necessarily the average of titi@lioonditions. The work in[[25], which does
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not require the communication graph to be undirected, mepa@ correction strategy that corrects the
errors in the quantity (state) iteratively calculated bghleaode, so that the nodes obtain the average of
their initial values. This correction strategy is based anhenode maintaining some auxiliary variable
that accounts for the amount by which nodehanges its state due to the updates from its neighbors,
i.e., the nodes that can send information to nadeor their strategy to work and ensure that the nodes
converge almost surely to the average consensus, the auéhpion the nodes sending acknowledgment
messages and retransmitting information an appropriateoeu of times.

In [21], the authors proposed a gossip-based algorithm ferage-consensus ver a directed graph
where the transition matrices describing the nodes’ ctlealynamics change at every iteration step
(depending on which node awakes). This scheme requires dde that is awake to perform an
internal state update and send its internal state (weigbyeithe corresponding out-going link weight)
to its neighbors. This approach results in generates a sequef column stochastic matrices (not
necessarily primitive) with the property that all the diagb entries remain positive. The authors
prove that by running two such iterations in parallel, onetloédm initialized with the values on
which the average operation is to be performed and the otlitar tve all-ones vector, each node
will asymptotically achieve average consensus by takirggrdtio of the two values in maintains. A
key premise in their proof is that column stochasticity ¢ thansition matrix is maintained over time,
which requires sending nodes to know the number of nodestkdistening. This suggests that i) either
the communication links are perfectly reliable, or ii) thes some acknowledgment and retransmission
mechanism that ensures messages are delivered to thenigstemdes at every round of information
exchange. In this paper, we remove such assumptions anstifgtibe double-iteration algorithm against
unreliable communication links using a pure broadcastsags model without any requirement for an
acknowledgment/retransmission mechanism. Thus, defmtesliance of our algorithm on the ratio of
two linear iterations, it is different both in the commurtioa model we assume—a broadcast model
in our case—and also in the nature of the protocol itself—oaus is on ensuring convergence in the
presence of communication link failures.

An additional assumption made in_|21] is that the diagonaties of the transition matrix (at every
step) remain positive. In our model, we originally consitteat nodes do not drop self-packets. However,
to ease the analysis, we remove this assumption and corisglease where self-packet drops are also
allowed at every time step, which i) allows us to handle migent faults in the node processing
device, and ii) removes the assumption that all diagonalemniust be positive at every step. Finally,
the analysis machinery in_[21] is quite different from theeamsed in this paper. We employ moment
analysis of the two iterations to establish that they aredity related as the number of steps goes to
infinity, while [21] relies on establishing weak ergodicity the product of the transition matrices as
the number of steps goes to infinity. Finally, as it will be whoin the second part of this paper, our
algorithm can be re-casted into a similar framework as the ion21] by augmenting the dimension
of the vector describing the collective dynamics to accdanthe packets that get dropped once there
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is a communication failure. Note, However, that the resgltmatrices will be column stochastic but
will not necessarily have strictly positive entries on thdingonals. In the second part of the paper, we
provide an analysis framework to establish the convergehaair algorithm and generalizes the ideas
in [21] to the case when the matrices describing the systdiactive dynamics do not have strictly
positive diagonals. In this regard, we will show that everthia case where self-packet drops are not
allowed, the resulting transition matrices might still bazero diagonal entries.

The remainder of this paper is organized as follows. Seéflprovides background on graph theory,
introduces the communication model, and briefly describesibn-robust version of the double-iteration
algorithm we use in this work. Sectiénllll describes the gl strategy to robustify the double-iteration
algorithm against communication link failures and illasés the use/performance of the algorithms via
several examples. The convergence analysis of the roledstbuble-iteration algorithm is provided in
SectionYY. Concluding remarks are presented in Se€fion VI.

[I. PRELIMINARIES

This section provides background of graph-theoretic mstithat are used to describe the communica-
tion network and the distributed consensus/coordinatgiaps introduces the basic communication link
availability model, and reviews a previously proposed tteoation algorithm that can be used to solve
the class of problems addressed in this paper when the coroation network is perfectly reliable.

A. Network Communication Model

Let discrete time instants be indexéd= 0, 1,...; then, the information exchange between nodes
(components) at each time instaintcan be described by a directed gra@fk] = {V,£[k|}, where
V ={1,2,...,n} is the vertex set (each vertex—or node—corresponds to @mysbmponent), and
E[k] €V x Vs the set of edges, whefg, i) € £[k] if node j can receive information from nodeat
instantk. It is assumed thaf[k] C £, Vk > 0, wheref is the set of edges that describe all possibly
available communication links between nodes; furthermtire graph(V, £) is assumed to be strongly
connected. All nodes that can possibly transmit infornmatm node; are called its in-neighbors, and
are represented by the skt = {i € V: (j,i) € £}. Note that there are self-loops for all nodesdn
(i.e., (j,j) € € for all ;7 € V). The number of neighbors gf (including itself) is called the in-degree
of j and is denoted b, = |N7|. The nodes that havg as neighbor (including itself) are called its
out-neighbors and are denoted h§" = {I € V : (I, j) € £}; the out-degree of nodgis D; = |N|.

The existence of a communication link from nod® node;j can be described in probabilistic terms
as follows. At instant;, let x;;[k|, Vi, j € V be an indicator variable that takes value 1 with probability
g and takes value zero with probability— ¢, i.e.,

Pr{z;i[k] = m} = { ¢ Mm=1 1)

1—gq, if m=0.
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Then, for allk > 0, the existence of a communication link between nodasd j can be described be
another indicator variablé;;[k] defined as

| wulk], 0 i) €€
fj"[k]_{ 0, if (j,4i)¢E.

It follows that £[k] contains the elements &f for which ¢;;[k] = z;;[k] = 1.

(2)

B. Double-Iteration Algorithm Formulation in Perfectly Reliable Communication Networks

When the communication network of a multi-component systeperfectly reliable, i.e.Pr{/¢;;[k] =
1} =1, Y(5,4) € &, Vk > 0, it was shown in[[17],[[9] that the components of the multimgonent
system can asymptotically solve average consensus angrcestoordination problems in a distributed
fashion by running two separate appropriately initialiteéar iterations of the form

ylk+ 1= S —ouilh] 3)
ieN; !

Stk 1= 3 ooalk) @
Ny !

where D;.L (D;) is the out-degree of nodg (i). A requirement in all cases is that the underlying
communication graphg, £) is strongly connected.

1) Average Consensus Problem: In this problem, the nodes aim to obtain the average of theegal
vj, j =1,...,n, they each posses. In_[17], it was shown that if the initiadditions in [3) (referred
to as iteration 1) are set tg;[0] = v;, and the initial conditions in[{4) (referred to as iteratidhare
set toz;[0] = 1, then the nodes can asymptotically calculate= > 7, v;/n as

7 = lim s k]
k=00 2;[k]

: ®)

by running the two iterations in3) andl (4).

2) Resource Coordination Problem: In this problem, each nodg¢ can contribute a certain amount
m; > 0 of a given resource, which is upper and lower bounded by kncapacity limits77*** and
w;.m” respectively. The challenge is to coordinate the compansatthat they collectively provide a
pre-determined total amoupf = Z;‘zl w; of the resourc&as specified by an external “leader.” [ [9],
it was shown that i) if the initial conditions ifl(3) are setyd0] = pq/m — 77" if j is an out-neighbor
of the leader (wheren > 1 is the number of nodes contacted initially by the externadér) and
y;[0] = —=7*" otherwise, and ii) if the initial conditions ifi}(4) are set4d0] = #7"** — x7*", then the

In the development if [18]]9], it is assumed t@t?:l 7r']'-’”'" < pa< Z;;l w;"**; this is not a restrictive assumption because in the

proposed algorithms, all nodes will be able to knowif< >°7_, 7 orif pg > >_j— ™" (which means that no feasible solution
exists).
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nodes can asymptotically calculate their own resourceritrion 7; as

. : min y[k]
T = klgglo (7rj + m

max min _ _min Pd — E?:l 71-lmm max min
(7Tj -7y )) =T, + E;LZI 0 ( g T T ), (6)
which satisfies

min max .
" <y <V,

ZWJ = pd- (7)

In this paper, we start with a double iteration of the form [@—(4) that is used for either aver-
age consensus or coordination, and develop systematicodwtyies to handle packet drops in the
communication links.

[Il. ROBUSTIFICATION OF DOUBLE-ITERATION ALGORITHM

In this section, the algorithm described in Section lI-B isdified so as to make it robust against
communication link failures. As i {3)5(4), each node wilinrtwo iterations (which we refer to as
iterations 1 and 2) to calculate quantities of interest amehwially solve the average consensus or
coordination problems.

Consider the setup described in the previous section: wegiaen a (possible directed) strongly
connected graphg, £) representing a multicomponent system and its communicéities between its
components. For the sake of generality, let us refej &5 the receiving node (or receiver) ahas
the sending node (or sender). For each of the two iteratioode: (the sender) will calculate several
guantities of interest, which we refer to as: i) internaltestai) total broadcasted mass; and iii) total
received mass from each in-neighdaf nodei, i.e., for each nodé< N,". For both iterations 1 and 2,
each node updates the value of its internal state to be a linear contibmaf its own previous internal
state value (weighted by the inverse of the number of nodsshive; as a neighbor, i.el/D;F) and
the sum (over all its in-neighbors) of the difference betwte two most recently received mass values.
At instant timek, the total broadcasted mass is the sum up to (and includieg)ksof the weighted
value of nodej’s internal state (used to update the internal state of ngd@dditionally, nodej (the
receiver) updates the value of the received mass from htalee either the total broadcasted mass sent
by node: if the communication link from to j is available at instant, or the most recently received
mass value from nodg otherwise. An implicit assumption here is that messageadwasted by node
1 are tagged with the sender’s identity so that the receiviodery can determine where messages
originated from.

For iteration 1, lety;[k] denote nodej’s internal state at time instarit, s;[k] denote the mass
broadcasted from nodg to each of its out-neighbork (this is a single value ad it is the quantity is
the same for each out-neighbbiof node j, i.e., for eachl € N;), andv;;[k] denote the total mass
received at nodg from nodei € N;". Similarly, let z;[k] denote nodg’s internal state takes at time
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instantk, o;;[k] denote nodg’s broadcasted mass for each out-neighbot € V", and;[k] denote
the total mass received from node N;". Then, the progress of iteration 1 is described by

ylk 1= Seylhl + 32 (valk] — walk — 1), k>0,
J iEN;

k
(k] = pulk — 1] + D+ya }: %' > 0, 8)
J =0
where
7 viilk — 1], if (j,4) ¢ E[k], k>0.

Recall that’D;.r (D;") is the number of nodes that nogds) can transmit information to. Similarly, the
progress of iteration 2 is described by

Lk +1] = Dl+ T+ S (ralk] = lk — 1), k>0,

iEN,
1 "1
oulk] = oyl — 1] + (k] = > oralil, k20, (9)
J =0 J

where

=) oalkl, () &Rl k=0,
NS ko G g €L k>0

As mentioned earlier, for solving the average consensublgmg the initial conditions in[{8) are
set toy;[0] = v;, whereas the initial conditions ifl(9) are set4d0] = 1. Similarly, for solving the
resource coordination problem, the initial conditionsBh 4re set tay;[0] = pa/m—=7"" if j is initially

contacted by the leader ang[0] = —=7"" otherwise, whereas the initial conditions [d (9) are set to
z[0] = 7" — 77" > 0. In both the average consensus and coordination problegis;1] = 0 and
v;i[—1] =0 for all (5,7) € £, andoj;[—1] =0 and7;;[—1] =0 for all (j,7) € £.

Main Result: We shall argue that with the proposed robustification sfsatdespite the presence of
unreliable communication links (at each time step, eack (jni) € &, fails independently from other
links and independently between time steps, with some ibtyal — ¢;;), nodes can asymptotically
estimate the exact solution to the average consensus by calculating, wheneyéf > 0 the ratio

y;lk]/z k], i.e

L
k=00 2;[k]

, (10)
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wheneverz; [k > 0]. Similarly, exact solution to the resource coordinationljfem can be obtained as

min + yj_W(ﬂ_mam o ﬂ_min))7 (11)

mj = lim (7T i ;

k—o00 J Zj [k‘]
whenever;[k] > 0. In both cases, we run the iterationslih (8) dnd (9) and usiegorresponding initial
conditions as outlined above. In particular, we will showtttfor everyj, z;[k] — %yﬂk] -0
ask — oo almost surely. Additionally, we will show that;[k] > 0 occurs infinitely often.

A. Examples

We now illustrate how the proposed algorithm works for theecaf average consensus in the
presence of packet-dropping communication links. We stéitt the rather small network shown in
Fig. [ and assume that the packets on each link (includingéffdinks which are not drawn in the
figur@) can be dropped with probability— ¢, independently between different links and independently
between different iterations. We also assume that thealmitalues of the five nodes are given by
v=[-4,56,-3,1]T, with their average equal tb. Thus, in the iterationg18) anfl(9)

y[0] = [~4,5,6,—3,1]", andz[0] = [1,1,1,1,1]",

with p;;[—1] = v;i[—1] = 0j[—1] = 7;5[—1] = 0 for all (j,4) € £.

We run the iterations i {8) an](9) and plot the ra%}% as a function of the iteration stépfor each
nodej (j = 1,2,3,4,5). Figure[2 shows the typical behavior that we observegfer 0.99 (i.e., for a
probability of a packet drop equal t01). As can be seen in the figure, the ratio at each node quickly
converges to the correct average, though the individualegafory, (k| and z;[k| do not converge.

In Figs.[3 and¥ we show typical behaviors of the same multmament system for; = 0.5 and
g = 0.1. The behavior remains similar to the one observed beforen évoughy; k] and z;[k| do not

2\We make this assumption later in the paper for the purposaeingflifying notation.

Fig. 1. Small directed graph used for illustration of theaalgorithm for obtaining average consensus in the presehpacket-dropping
communication links.
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Fig. 2. Evolution of the values of;[k] (left), z;[k] (middle) and Zj {:} (right) for ¢ = 0.99.
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Fig. 3. Evolution of the values of;[k] (left), z;[k] (middle), andZﬁ:} (right) for ¢ = 0.5, j = 1,2,3,4, 5.

converge (in fact, they seem to behave more radically wittrabesingg), the ratioi’ﬁg does converge
to the average of the initial values. Note that the plot of tigo in Fig.[4 is quite different than the
rest: in this caseq is small enough so that;[k] (and simultaneously,[k|) can take the value zero
(e.g., when all packets destined to nodare dropped at iteratioh); thus, the ratio in such cases is
not defined and is not plotted, resulting in a discontinuaetso$ points in the plot. Nevertheless, we
can see that when packets are received (which happens mtggaaough for each node), the ratio has
the correct value. This is a point addressed later in therpape

An example of what happens in larger graphs is shown in[Figlese we consider a graph with)
nodes, randomly generated by choosing a directed edge foma:nto nodeyj, 1 < i,j < 50, i # 7,
independently with probability /2, and ensuring that the resulting graph is strongly condeds can
be seen the behavior remains similar to what we observedhéosrmaller graph: the ratig% converges
quickly to the average even though the individydlk] and z;[k] do not converge. For this particular
plot, we used; = 0.1, which also justifies the fluctuation in the valuesyofk] and z;[k].
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Fig. 5. Evolution of the values of;[k] (left), z;[k] (middle), and {:} (right) for ¢ = 0.1 for a 50-component system.
J

V. FIRST AND SECOND MOMENT ANALYSIS

In this section, we obtain recurrence relations that dbecthe first and second moment of the
iterations after[(8) and{9); this analysis is used in Sediito establish the claims i (1L0) arld {11). In
order to ease the moment calculations, the expressiong-ui@)8will be rewritten more compactly in
vector form. Also, in order to facilitate notation, we willl@av each nodej to drop the packet carrying
its own previous value when updating its value. This way,enpdandles its own value in the same
way as its neighbors’ values and notation is simplified digantly.

A. Vectorized Description of Double-Iteration Algorithm

Using the definition for the indicator variablg;[%] given in (1) and the resulting indicator variable
(;;[k] given in [2), which describes the successful transmissfoimformation from node: to node;
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over an existing, unreliable communication link, iteragd8) and[(P) can be rewritten as

puilk — 1+ gry;lkl, if le NF, k>0,
k) =4 e (12)
0, if l¢ N, k>0,
pjilklei k] + vyilk — (1 — zy[k]), fie N7, k>0,

Sk = _ ] 13
I/][] { 07 |f7,¢,/\/;_’ ]{3207 ( )
yilk + 11 = (vislk] — viilk = 1]), k>0, (14)

=1
and
o zilk], fleN, k>0,
O'[j l] D+ ][ ] . i (15)
if 1¢ N7, k>0,
T — 0-.72 x]l _'_ T]Z[k - 1](1 - x,?l[k])7 If i S '/\/;'_7 k 2 07 (16)
silk 0, ific N, k>0,
gilk +1] =" (rulk] — 7k = 1]), k>0, (17)
i=1

Whel’e,ulj[—l] = I/ji[—l] = O'lj[—l] = Tji[—l] = 0, VJ,Z
Let Ao B denote the Hadamard (entry-wise) product of a pair of medric and B of identical size.
Then, for allk > 0, iteration [12)4(14) can be rewritten in matrix form as

M, = M,_{+ Pdlag(yk), (18)
Ni, = My, 0 Xj + Ny 0 (U — Xy), (19)
Yk+1 = (Nk — Nk_l)e == [(Mk — Nk—l) (¢] Xk} €, (20)

where P = [p;;] € R™", with p;; = D+, Vj € N;" andp;; = 0 otherwise;M_; = N_; = 0; y; = y[k];

U e R™", with [U;] =1, Vi,7; dlag(yk) Is the diagonal matrix that results by having the entries of
yi. on the main diagonal; ane= [1,1,...,1]" (note thatU = ec”). Similarly, for £ > 0, @3)-{1T) can

be rewritten in matrix form as

Sk = Sk—l + Pdiag(zk), (21)
T :SkOXk—l—Tk_lO(U—Xk), (22)
21 = (T — Th—1)e = [(Sk —Ty—1)o0 Xk]& (23)

whereS_; =T, =0, 2z, = z[k], and diagz;) is the diagonal matrix that results by having the entries
of z; on the main diagonal.
By defining A, := M, — N,_, and B, := S, — T}_,, iteration [I8)4(20) can be rewritten more
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compactly as

Ap = Ap10 (U — Xp_1) + Pdiagyr), k> 1, (24)

Yr+1 = (Ag o Xple, k>0, (25)
and iteration[(21)£(23) as

By = Bi_10 (U — Xy_1) + Pdiagz), k> 1, (26)

21 = (B o Xg)e, k>0, 27)

where Ay = My — N_; = Pdiag(y,), and By = Sy — T = Pdiag z).

For analysis purposes, each matrix [inl(24)}+(25) (@)@l be rewritten in vector form by
stacking up the corresponding colunﬁﬁhen, (24)-{(2b) and (26)=(R7) can be rewritten in vector
form as follows. LetF = [I,, I,, ... I,] € R™"* wherel, is then x n identity matrix, andP =
[E\PT E,PT ... E,PT]" € R"**", whereE; € R"*" hasF;(i,i) = 1 and all other entries equal zero.
[The entries ofE;, PT € R (PE! = PE;) are all zero except for thé" row (column) entries, which
are those of thé'" row (column) of matrixP” (P).] Then, [24)4(2b) can be rewritten as

ar = ap—1 0 (u— 1) + ]-:’yk, kE>1, (28)
Yk+1 = F(ak (¢] .Z’k>, ]{7 2 0, (29)

wherea;, € R, 2, € R", andz,_; € R™ result from stacking the columns of matricds, X, and
X1, respectively. Similarly,[(26)E(27) can be rewritten as

by =bp10(u—ap1)+ Pz, k>1, (30)
Zk+1 = F(bk o) [L’k), k Z 0, (31)

whereb;, € R™ results from stacking the columns of mats,.

Remark 1: It is important to note that matriced4, and B,,, and their corresponding vectodg and
bx, have some entries that remain at zero forkalt 0. Specifically, the(j, i) entry of matrices4, and
By, (and their corresponding entries ap and b;) remain zero if there is no communication link from
nodei to nodej, i.e., (j,i) ¢ £. The reason we keep these entries (despite the fact theyrareand do
not play a role in the analysis) is because they facilitatérimmaotation and calculations in subsequent
developments. O

Since it will appear later at several points of the analyisis, worth noting that when premultiplying
P by F, we recover the matriy, i.e.,

P=FP. (32)

%If we let A = [A;;] € R™", thena = [A11,Ao1,..., An1, A1z, Asa, ... Ao, ..., A1, Ao, ..., Ana]T. Vectors defined by
stacking the columns of a matrix will be denoted with the samall letter as the capital letter of the corresponding ixatr
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B. First Moment Analysis

In this section, we describe the first moment dynamick d@) via discrete-time transition systems
with no inputs, where (as shown below) the correspondingstt@n matrices (which are obtained from
P andq) are column stochastic and primitive. In both iteratiori&e sum of the entries of the first
moment vectors fog, and z; is shown to remain constant over time and be respectivelplequthe
sum ofg >, yo(i) andgq >, z(7). Furthermore, both first momenKy;| andE[z;] are shown to reach
a steady-state value @sgoes to infinity. The above discussion is formalized in théofang lemma.

Lemma 1: Letay, by, yi, andz, be described by the recurrence relationgin (28)-(29), @Gp-(31)
respectively. Let the first moments of, v, by, andz; (i.e., E[ax], E[yx], E[bs], andE[z;]) be denoted
by @, 7, br, andz; respectively. Then the evolution af,, 7, by, andz,, Vk > 1, is governed by

= [¢PF + (1 — q) 1] @1, (33)
Yrt1 = [qP—l— (1—gq In]@ (34)
B = [¢PF + (1= q) L] Bps (35)
Zh+1 = [CIP + (1 — Q)In] 2k, (36)

where1,, is them x m identity matrix, witha, = Py, 7, = ¢Pyo, by = Pz, andz, = qPz,.

Proof: Since the development for obtainiag and7, is parallel to that for obtaining, andz;,
our analysis focuses on the first case. Fcet 0 in (28)-(29), by taking expectations of both sides and
noting that packet drops at time stép= 0 are independent of the initial values fag, it follows that

a0 = Py07 (37)
Y, = qFay. (38)
Substituting [(377) into[(38), we obtaip, = ¢F Py, = ¢P7,.

For k > 1 in (28)-(29), noting that packet drops at time stepre independent of previous packet
drops and the initial values af,, it follows, by taking expectations on both sides, that

ap = Qp_1 © (u — l’k_l) + ISyk = Qp_1 0 (u — sz—l) + Pyk = (1 — q)dk_l + ﬁyk, (39)
ka = F(ak o {L'k) = F(Ek o Tk) = qF&k. (40)

Substituting [(4D) into[{39), we obtain

ar = (1 — )1 + qPFay_, (41)
= [qPF 4 (1 — q) L2 |ax_1, (42)
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Similarly, substituting[(39) intd(40), we have

Upp1 = (1 — Q)qF a1 + ¢F Py, (43)

= (1 — )7y, + ¢F Py, (44)

= [¢P + (1 = ¢)L.]yy, (45)

where,, is then x n identity matrix. [ |

C. Second Moment Analysis

In the order to calculate the second moment dynamics[fdr—(28), we utilize in the following
lemma.

Lemma 2: Letz, c andd be random vectors of dimensian Furthermore, assume that the entries of
are Bernoullii.i.d. random variables such thBi{z; = 1} = g andPr{z; =0} =1—¢,Vi=1,2,...n,
and are independent fromandd. Then

S:=E[(cox)(zod)’] = ¢*Elcd"] + q(1 — ¢q) E [diag(cd")], (46)
T:=E[(cox)((u—x)od)] = q(1—q)Elcd"] — ¢(1 - q) E [diag(cd"))], (47)
where diagcd?) is a diagonal matrix with the same diagonal as mattX.
Proof: The (i,7),7 # j, entry of S can be obtained as follows:

Sij =E [Cillfidjl'j} . (48)

Sincez; andx; are pairwise independent, and independent froamd d, it follows that

E [Cillfidjl'j} = q2 E [Cidj} . (49)
For i = j, observing thalE[z;z;] = E[x;] = ¢, Vi = 1,...,n, we obtain the corresponding entry &f
as

In (49), it is easy to see th& [c,-dj} is the (i, ) entry of E[cd”]. Similarly, in (50), it is easy to see
that E [¢;d;] is the (i, 1) entry of E[cd”]. From these observations, the result[inl (46) follows.
Similarly, the (i, j),7 # j, entry of T' can be obtained as follows:

Sincez; and(1 — z;) are independent, it follows that

E [ciz;d;(1 — ;)] = E [eid;] E [2:(1 — 2;)] = q(1 — q) E [cidj]. (52)
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For i = j, and observing thak[z;(1 — x;)] = 0, Vi = 1,...,n, the corresponding entry df can
obtained as follows;

Ty = E [ciwidi(1 — 2;)] = E [¢;d] B [2;(1 — 2)] = 0. (53)

The result in[(4]7) follows from[(32) and_(53). [ |

The following lemma establishes that the evolutionEifi,al], E[b,bL], and E[a,bl], and can be
expressed as linear iterations with identical dynamics difierent initial conditions. Similarly, the
evolution of E[y,yi], Elz:2)], and E[y,z]] can also be expressed as linear iterations with identical
dynamics but different initial conditions.

Lemma 3: Consider the second moments @f, yx, bx, and z;, and letE[azal], Elyyl], E[bib]],
E[z:2]], Elaxbl], and E[y,2!]) be denoted by, ®;, ¥y, Ay, =5, and T respectively. Then, the
evolutions ofl[', @, VY., A, =, Tk, VE > 1, are described by the following iterations (where Aall
denoten? x n? identity matrices):

Ty = [¢PF + (1 = Q)I|T 1 [qPF + (1 — )I]" + (1 — q)[I — PF)diagTx_1)[I — PF]”, (54)

Oy = F[¢°Tx + q(1 — g)diag(Ty)| F7, (55)
Uy = [qPF + (1 = )I|W 4y [¢PF + (1 — g)1]" + q(1 — ) — PFdiag(W,_,)[I — PF|", (56)
Aey1 = F[@* Vi + q(1 — g)diag W) | F7, (57)
Sk = [qPF + (1 — )15 1 [¢PF + (1 — )] + ¢(1 — ¢)[I — PF]diagZx_1)[I — PF]”, (58)
Tri1 = F¢°Z + q(1 — g)diagZ,) | F7, (59)

with initial conditions

Lo = Pyoyg P, (60)
®, = 7,71 +q(1 — q)Fdiag Pyoys P7)F7, (61)
Uy = Pzl PT, (62)
A= 512? +q(1— q)Fdiaquozng)FT, (63)
o = Pyozg P7, (64)
T, = ylle +q(1— q)Fdiaqpyozng)FT. (65)

Proof: The derivation of[(B4),[(85)[(60), and (61), is the same asdérivation of [(56),[(57)[(62),
and [63), thus the developments in the proof will only adslrié® former. Foik = 0, it follows from
Lemmall and[(28) thai, = Py,. Then,

Iy = E[aoag] = pE[yoyg]]-:’T = Pyoyg]ST, (66)
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and
®, =E[yy]] = E [F(ao o xg)(xg 0 aO)TFT} =FE [(ao o xg)(xg 0 aO)T] FT. (67)
Applying the results in Lemmds 1 and 2 {067), it follows that

P, = ¢’FE [apa] | F" + ¢(1 — q)F E [diag(aga )| F”
= (¢F Pyo)(q¢F Pyo)" + q(1 — q) F E[diag Pyoys PT)]F"
= (¢Pyo)(qPyo)" + q(1 — q) Fdiag Pyoys P*)F"
=1 +4q(1 — q)Fdiag Pyoys P*)F", (68)

where we used the fact th&P = P (refer to Eq. [(3R).
For k > 1, and taking into account thai = F'(ay_1 o zx_1), it follows that

I'.=E [(ak 10(u—xK_q1) + Pyk) (ak_l o (u— Tp_1) + ﬁyk)T}
=E [(ar—10 (u—z-1)) (ag_1 0 (u — :Ek_l))T] +E [(ak—1 0 (u—24-1)) (Pyk)T}
+E [(Pyr) (ar-10 (u— z5-1)) } +E[(Py) (Pyk)T}
=E [(ak_l o (u— $k—1)) (ak_l o(u— xk_l))T} +E [(ak_l o (u— mk_l)) (Clk—1 o xk_l)T} FTpT
+ PFE [(ak_l o xk_l) (ak_l o(u— xk_l))T] + PFE [(%-1 o xk_l) (ak_l o xk_l)T] FTpT,

(69)
Then, from Lemmal2[(89) can be rewritten as
I, =(1-¢q)?*E [ak_lag_l} +q(1—-q)E [dia(‘:(ak_lag_l)]
+q(1 = q) B [ay_1af | FTP" — ¢(1 - q) E [diag(ax_af_,)]F" P"
+q(1— q)pFE [ak_la}g_l} —q(1— q)pFE [diag(ak_la;f_l)]
+ ?PFE [ak_la}g_l}FTﬁT +q¢(1—q)PFE [diag(ak_laf_l)]FTPT. (70)

By re-arranging terms ifi {70) and observing that; = E [a;_1a]_,] and diagl',_;) = E [diag(a;_1af_,)].
the result in[(G}) follows.
Additionally, from Lemmd_ R, it follows that
O =E [ykﬂygﬂ] =FE [(ak o xy)(xy 0 ak)T} FT
=F [qz E [axa)] +q(1—q)E [diag(akag)}] FT
= F[¢°Tx + q(1 — g)diag(Ty,)| . (71)
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To obtain the iterations foE, and T, the developments are very similar to the ones above. For
k=0,

—_
—

Zo = E [aohy | = PE[yozl|PT = Pyl P, (72)
and

T, = E[ylzf] =E [F(ao o xg) (g 0 bO)TFT] =FE [(ao o xg)(zg 0 bO)T] FT
= (qF Pyo)(¢F Pz)" + q(1 — q)F E[diag( Pyozg PT)|F"
= (qPyo)(¢P2)" + q(1 — q) Fdiag Pyoz PT)F"
= 7,71 + q(1 — q)Fdiag Pyozg P*)F", (73)
where again we used the fact thaf®> = P (refer to Eq. [(3P).

For k > 1, from Lemmal®2 and[(28), and taking into account that, =
F (b o xy), it follows that

= = [(ak 10 (u—mp_q) —i—Pyk) (bk 10 (u—mp_q) —i—sz)T]
=E [(ak vo (u—ap)) (bior o (u—21-0)) ]+ B [(ar-1 0 (u = 20)) (Pai) ']
E [(Pyr) (bk vo(u—m1))' ] +E[(Pyy) (Pz)]
=E [(ak yo(u—zp1)) (ber o (w—2x1))" ] +E [(a5_1 0 (u— 24 1)) (b1 0 mp 1) | FTPT
+ PFE [(ak_l ) :L'k_l) (bk_l o(u— xk_l))T} + PFE [(ak_l o a?k_l) (bk_l o xk_l)T] FTpT
=(1 =) E [ar1bj_1] + ¢(1 — ¢) E [diag(ax1b;_,)]
+q(1 — q)E [ag_1bi_ | F*P" — ¢(1 — q) E [diag(a),_b}_, )| F* P"
+q(1— q)pFE [ak_lb}g_l} —q(1— q)PFE [diaQak_lb;f_l)]
+¢*PFE [aj_1b]_|FT"P" + q(1 — q)PF E [diag(ay_b]_, )| FTPT.

F(ay, o xy) and zp4q =

(74)
By re-arranging terms ifi {74) and observing tAat, = E [a,_;b]_, | and diag=;_,) = E [diag(a,_:b]_,)],
the result in[(5B) follows. Finally,

Yit1 = E (Y121 = FE [(ay o zp) (w0 )| FT
_F [q2 E [aib!] + q(1 — ) E [diag(akb;{)}] FT
= F[¢°Zy + q(1 — g)diag =) F7, (75)
which completes the proof.

[
Although omitted in the statement of Lemia 3, it is easy totkeethe dynamics of\; = E[ba] |
and©,, = E[z,yl] can also be obtained by noting thaf, = ¥ and©, = T7.
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V. CONVERGENCEANALYSIS OF ROBUSTIFIED DOUBLE-ITERATION ALGORITHM

The previous Section established that the iterations gawgrthe evolution ofl’,, ¥, and =, are
identical except for the initial conditions. We will show xteghat the steady-state solutions of these
iterations are also identical up to a multiplicative constalo see this, we will rewrite[(54)[ (56),
and [58) in vector form using Kronecker products. For giveatrmesC, A, and B of appropriate
dimensions, the matrix equatidit = AX B (where X is an unknown matrix) can be rewritten as a set
of linear equations of the formB” © A)z = ¢, wherez andc are the vectors that result from stacking
the columns of matriceX andC' respectively, anck denotes the Kronecker prodcctf matrices[[26].
Let v, be the vector that results from stacking the columng pfand 5, the vector that results from
stacking the columns of di&h;). Then, it can be easily seen thatl(54) can be rewritten as

Y =[[qPF + (1 — ¢)I) ® [qPF + (1 — ¢)I)] -1 + [q(1 — @)[I — PF]® [I — PF)|4_1, k > 1.
(76)

Let G be a diagonal matrix with entrieS ((I — 1)n*+ 1, (I — 1)n®+1) = 1, VL =1,2,...,n?% and zero
otherwise. Then, the second term on the right hand side_dfqa@é be written as

q(1—=q)([I = PFI@ [l = PF))Ak1 = q(1 —q)([l = PF]® [I = PF])Gy1, k=1, (77)
which leads us to
Y= [[aPF + (1= )] ® [qPF + (1 —q)I] + q(1 — ) ([ = PF]® [l — PF])G]y_1, k> 1. (78)

Let ¢, and&;, andd, be the vectors that result from stacking the column¥ gf=, andA, respectively.
Then, it is easy to see that the same recurrence relation @8)rgoverns the evolution af;, and¢,.

Theorem 1: Let P € R™*" be a column stochastic and primitive weight matrix assediawith a
directed graptg = {V, &}, with V = {1,2,....n} andE CV x V. Let F = [I,, I,, ... I,] € R"™",
where I,, is the n x n identity matrix, andP = [E,PT E,PT ... E,PT]" € R"*" where each
E; e R 4 € {1,2,...,n}, satisfiesE;(i,7) = 1 and has all other entries equal to zero. Then, for
anyq, 0 < ¢ <1, the matrixII defined as

I=[qPF+(1-qI®[qPF+(1-q)Il+q(l-q)(I-PF|l®[I—-PF)G (79)

is column stochastic, and it has a single eigenvalue of maxirmagnitude at value one.
Proof: We show first column stochasticity of matik Let C' = ¢PF +(1—¢)I andD = I — PF,
so thatll = C®C'+¢q(1—q)(D® D)G. We will establish that’ @ C' is column stochastic and also show

“The Kronecker product of matrice$ = [a;;] € R™*™ and B = [b;;] € RP*4 is defined (see, e.g[ [P6]) as the block matrix
auB e alnB

amiB ... amnB
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that the column sums d® D are all zero. By construction, the entries of tHecolumn of P € R™**"

are all zero, with the possible exception of the ones indebgec@(i — n +j, z’), ,j=1,2,...,n,
each of which corresponds to tiig i) entry of matrixP. Then, it follows thatZ?jl P; = > b=
1,Vi = 1,2,...,n% The matrix PF € R"*" is also column stochastic by construction, as it results

from horizontally concatenating times the matrixP, i.e., PF = [P P ... PJ; therefore, the matrix'
is also column stochastic. The kronecker producfofvith itself, results in am* x n* block matrix of
the formC @ C' = [C} Cy... C,2], whereC; = [c1;CT c;,CT ... ¢,2;,CT]T. Then, it follows that the
sum of the entries of th&" column of C; is ZZ; Ci(m,l) = (Z;il cz-j)(Zf; Crt). Sincezgi1 Cij
and Efil ¢, are the sum of the entries of th& and!" columns ofC' = ¢PF + (1 — ¢)I,+ (which is
column stochastic), it follows thaEZf:1 Cj(m,1) = 1, therefore,C' ® C' is also column stochastic.
Since PF is column stochastic, the column-sumsof= I — PF are zero. The kronecker product
of D with itself is of the formD ® D = [Dy Dy ... D,:], whereD; = [d;D" dy; DT ... d,2;D"]".
Using similar arguments as above, it follows thaf’_, D;(m,1) = (32", di;)(32™ , d,;) = 0, which
implies that the column-sums dP ® D are zero. The only thing left to establish tHatis column
stochastic is to show that all entries Of are nonnegative (from where it immediately follows that
II =C®C+q(l—q)(D® D)G is column stochastic). We argue nonnegativitylbfas follows:
due to the sparsity structure 6f in (79), the only nonzero entries ¢ ® D)G will be in columns
(k—1)n?+k, k=1,2,...,n? thus except for entries in these columns, the entrid$ will be identical
to the corresponding entries @® C. From the structure oP F, entries ofC' @ C' andq(1—¢)(D® D)
can, respectively, take one of the following three forms:

(apij + (1 = @) (gpim + (1 = 0)), (80)
q(1 = q)(1 = pi) (1 = pim), (81)

or
apij (apim + (1 — q)), (82)
—q(1 = @)pi;(1 = pim), (83)

or
quz'jplm, (84)
q(1 — q)pijpim, (85)

where p;; > 0 and p,,, > 0 are the(i,5) and (I,m) entries of matrixP. For (80) and[(81), the
corresponding entry offl is of the form

(gpi; + (1 = @) (qpum + (1 = @) + a(1 = @) (1 = piy)(1 = pum) = qpipim + (1 —q),  (86)
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and satisfie®) < gp;;pim + (1 — ¢) < 1 For (82) and[(8B), the corresponding entryIbfis of the form

api; (qpim + (1 = q)) — a(1 — Q)pi;(1 — Pim) = qpijDim, (87)

and satisfie®) < gp;;pi, < 1. For (84) and[(8b), the corresponding entrylbfs of the form

@*pijpum + 4(1 — Q)PijPim = qPijPim, (88)

and satisfie® < gp;;pi, < 1.
To prove the second assertion, we will show first that mafti can be written via a permutation
of its indices in the form

u v

0o wl’ (89)

whereU is an irreducible column stochastic matrix dind,, ... W* = 0. SincePF is column stochastic,
we can assume that it corresponds to the weight matrix of sgnaghG = {V, £}. We will show that
this graph has a single recurrent class plus a few transiatess from which the decomposition BfF
in (89) follows. Let

V=1{(1,1),(2,1),...,(n,1),(1,2),(2,2),...,(n,2),...,(n,n — 1), (1,n),(2,n),...,(n,n)}. (90)

From the structure of F, it follows that for any node, j) € V, one-step transitions out @f, ;) are

to nodes of the form(m, i), with i € N, where,, is the set in-neighbors of node in the graph

G (with weight matrix P). From the structure ofF, it also follows that there are possibly several
rows of PF with all entries equal to zero, which means that a ntidg) that is associated with such
row cannot be reached from any other node; however, as glagded, from nodes of the forf, j),

it is possible to reach nodes of the forfm, i), wherei € N/,,. Clearly, the nodes corresponding to
rows with all entries being zero are transient. Note thatpbssibility of individual nodes that cannot
be reached from any other node being disconnected is ruledwil is easy to see the only nonzero
diagonal entries o F' correspond to diagonal entries Bf which are strictly smaller than one.

Next we will show that from a nodg, j) whose corresponding row iRF has some nonzero entries
one can reach any other nodie, /) whose corresponding row iR F' has some nonzero entries. This
means that all non-transient nodes form a single recurtass ¢as already argued all nonzero diagonal
entries are strictly smaller than one which means thereatamem absorbing nodes). This follows from
the fact that the graply is strongly connected, which means that for gny < V, there exists a path
betweenj andl. Let iy, 1, ...,7; denote the nodes traversed along the path betwesrd . We will
show next that for any two non-transient nodesj), (r,1) € V there exists a path. As already argued,
from (i, 7) one can reach in a single hop any node of the fonm:), wherem is a neighbor of node
in the graphG. Sincei, is the first node traversed in the path betwgemd!, it follows that (i, ) € %
can be reached in one step frqm;). By repeatedly using this argument, it follows that the ssgpe
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of nodes(iy, i), (i2,41), - - ., (4, %—1), (1, 3;) forms a path betweefi, j) and(r,[), which means that any
non-transient node can be reached by any other non-tramsiee; thus, the set of non-transient nodes
forms a single recurrent class. Clearly, the vertexisean be decomposed into a single recurrent class
and possibly several transient nodes. By re-ordering tliesiat follows thatPF can be rewritten as
in B9) (see, e.9.[[27, p. 126]). Furthermore, sinté (B9) is irreducible, it follows thag@ + (1 —q)I
(where is the identity matrix) is primitive. It follows tha€' = ¢PF + (1 — ¢)I has a unique largest
eigenvalue of value one, i.e\; = 1, and1 > |Ay| > -+ > |A\2]. Let o(C) = {1, Ao, ..., Au2}. Then,
o(C®C)={NN, i=1,...,n, j=1,...,n}, including algebraic multiplicities in both cases [26,
p. 245]. Since\; = 1 is unique (multiplicity one) and\;| < 1, i = 2,...,n? it follows that the
eigenvalue ofC' ® C' = [¢PF + (1 — ¢)I] ® [¢PF + (1 — ¢q)I] of largest magnitude also takes value 1
and is unique. Sinc€ ® C' is column stochastic andl, = 1 is unique, we know that either' @ C' is
also primitive or it can be decomposed following a permotaf indices to the form [27, p. 126]:

[L M] | o1)

where L is a primitive matrix andimy_,., N* = 0.

We will show next thatlll = C ® C' + ¢(1 — ¢)(D ® D)G has exactly the same nonzero entries as
C' ® C and therefore can be decomposed following the same peliontztindices to the form in(91).
As argued before, due to the sparsity structuré&ah (79), the only nonzero entries ¢D ® D)G will
be in columnsk — 1)n? + k, k=1,2,...,n% thus except for entries in the aforementioned columns,
the nonzero entries dil will be the same as those i ® C. For all other columns idl (that include
nonzero entries iD ® D)G), it was shown in[(86)£(88) that the nonzero entrieslofire strictly
positive, from where it follows thall has the same sparsity structure@s> C, which means thall
can also be decomposed in the form[ofl (91) (for some matiitek/’, N'), and the resulting upper-right
block is also a primitive matrix. Therefor&l has a unique largest eigenvalue at one. [ |

The following two lemmas establish that the first and secomdnents ofa, andb,, andy, and z,

converge to the same solution up to a scalar multiplicat‘l;?mse two lemmas will be used to show

Ej:l 20(J7)

that ask — oo, the random vector, = z, — ay;, for a = will converge almost surely to

Zr?/:]_ yO(]) ,
v = 0. This suggests that, ds— oo, and whenevet,, is non]zero, each nodecan obtain an estimate
of a = Ziizwi by calculating the ratiay(:)/2x (7). We will also show that, in facty, will be larger

i=1 yO(j
than some threshold infinitely often.

Lemma 4: The first moments of;, and b, (also y, and z, asymptotically converge to the same
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solution up to scalar multiplication:

lim z, = o lim 7, (92)
k—o0 k—o0
lim b, = a lim @y, (93)
k—o0 k—o0
wherea = M
Zj:l Yo(J)

Proof: In Lemma, it was shown tha, ., = [¢P+(1—¢)I]7;, andzs = [¢P+(1—q)I]Zx with
7, = qyo, andz; = gz. SinceP is column stochastic and primitive, it follows thgt+(1—¢)!] is also
column stochastic and primitive. Thusny o, Zx = alimg_, 7., Where from the column stochasticity
property it follows thaty"_, 7.(j) = a(X}, z0(7)) and 37—, 7 () = a( 1, we(4)). Wk > 1; this

implies thata = ==Y "which establisheg (92).
Zj:l Yo ()

By noting thata, = Py,, andb, = Py,, and using the fact thaP is column stochastic, it follows
that 37, @) = Y5 @(i) = Sy w() and S5, Bel) = X5 Boli) = iy (). Since
qPF + (1 —¢)I (i.e., the matrix that governs the dynamicsafandb;) is column stochastic and, as
shown in the proof of Theorefd 1, has a single largest eigaavat value 1, a similar development to
the one above can be used to show (93). [ |

Lemma 5: Definew, = b, — aa; and denote by, the vector that results from stacking the columns
of X}, := E[wyw}]. Then, it follows that

Xk = X1, (94)

with xo = %o + o*vo — (& + ) and 27:41 Xo(l) = 0.

Proof: Since X} := E[wyw}]| = E[bxbl] + o Elagal] — a(Elaxbl] + E[bral]) = ¥y + Ty —
a(Zx + Ayp), it follows that x, = ¥, + oy — a(& + 6). From [Z8) and subsequent discussion, it
follows thaty, = Ily,_1, ¥, = p_q, & = 11&,_1, andy, = I16,_y, thusy;, = yy,_; + o?Ily,_; —
a(T1& 1 + 10y 1) = (W1 + a?yp—1 — (€1 + 0k—1)) = Hxp_1.
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In Lemmal3, it was shown thdt, = Pyoyl P”, ¥y = Pz2] PT, and=Z, = Pyozl PT = Al. Since
0, Yo, &0, @anddy result from stacking the columns of, ¥, =y, and 4, it follows that

Z%(l) ZZFOZJ (Zyo >7 (95)

=1 j5=1

D o wol) =Y Wo(i,j) = (Z Zo@)) ; (96)

iljl i=1

S =55 =000 = (Suin) (Sat0)

i=1 j=1 =1

250(1) = ZZAO@J) = (Z Zo@)) (Z yo@) ) (97)
=1 i=1 j=1 =1 =1
where the last equality is obtained by taking into accouat ih matrix P is column stochastic by

construction, and ii) for any, b € R", we have thad ", >>"_, ab” (i,5) = (3°, ) (322, br). Since

S0 it follows that 7, xo(l) = Soit (4n(0) + 0%70(1) — a(6o(l) + (1)) = 0. o

Theorem 2: Let y;, andz; be the random vectors that result from iteratidns (2Z8}-€2®) (30)-(31L).
Define v, = z, — ayi, Wherea = %L 1Z°EJ — 0 almost surely. Furthermore, for every
J,» ve(j) = 0 ask — oo almost surely (i.e., for every, limy_,,, vx(j) = 0 with probability one).

Proof: The result follows from the first Borel-Cantelli lemma [28dorem 7.3.10]. For alt > 0
and alle > 0, define the event(¢) = {||vk|l.c > €}. We will first establish an upper bound on
S Pr{Ey(e)} by noting thatPr{Ey(e)} = Pr{||luglle > €} < Bl thus 7 Pr{Ey(e)} <
e s Ellluellee] < 3500 Efllvkllz]. Note thatE [[Juglls] = (E[vf i)'/ = (trac&E[v(]))!/? =
(tracdE[z.2{]) + aztraCE(E[ykyk]) — 2atraceE[y, 2L ])!/2. We will next show thafE [||vg|]s] — 0 as
k — oo geometrically fast. Using Lemnia 3, it can be establishetlfa, v} | = E[z;.2] ]| +a? E[yyl ] —
a(Elyrzl] + Elziyl]) = F[¢*Xe-1 + q(1 — g)diag Xy—1)] FT where X;,_; = E[w,w}] as defined in
Lemma®, thus the evolution & |v, v} ] is governed by the evolution of;,_; or by y;._; (the vector that
results from stacking the columns &f._,). In TheoreniIl, we showed thBt has a unique eigenvector
(with all entries strictly positive) associated to the Esgeigenvalue; = 1. Then, the solution of (94) is
unique and equal to this eigenvector (up to scalar mul@gilhie). Sincel is a column stochastic matrix,
and Lemmdb established thEl"; xo(l) = 0, it follows that 2?:41 xx(l) = 0,k > 0, and therefore
limy, o xx(1) = 0, Vi. Additionally, it is well-known that the convergence 6f |94 geometric with a
rate of convergence given by the eigenvalyeof I1 with the second largest modulus, which satisfies
|A2] < A\ = 1 (see, e.g.,[[27]). Thus, we have established thdal) — 0, VI, geometrically fast,
from where it follows that all the entries & [v;v}] go to zero also geometrically fast. Therefore, the
tracgE[v,v]]) also goes to zero geometrically fast, so thdt|v;|»] also goes td) geometrically fast.

It immediately follows that)";~ E [||lv]ls] < oo and therefored )~ , Pr{|v]| > €} < co. Then,
from the first Borel-Cantelli lemm&r{||v |- > € infinitely often} = 0 (or Pr{||v|/c > € i.0.} = 0).

o =
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Finally, since, for everyj, ||v|l > |vx(j)|, then, for everyj, Pr{||vk||s > €} > Pr{|ux(j)| > €}, and
thus, for everyj, > 7~ Pr{|v.(j)| > €} < co. Then, by Theorem 7.2.4.c of [28], for evetyuvy(j) — 0
almost surely. ]
Theorem 2 has established that, in the limit as the numbeerdtionsk: becomes large, the values
of vectorsy, and z, will be perfectly aligned so that, — ay, = 0 with probability one. Thus, in this
limiting case, each nodg¢ can calculate the value %f by taking the ratio%, aslong as z(j) # 0.
Note that, as also evidenced by the simulations providedh®ismall network of Fid.l1 (e.g., the plots
on the left and in the middle for Figuié 3), the vectgrsandz; do not converge in any wayhowever,
the valuesgy;, andz, become perfectly aligned (with probability one), allowiegch node to calculate
1= Z:—gg The only problem here arises whep(j) and z;(j) have both value zero, which does not
constitute a violation o, — ay, = 0, but clearly does not allow nodgto calculate the desired value
é. This is evidenced also in the simulations provided for timal$ network of Fig[l: for example, in
the plots in Fig[#, the values af.(j) and z(j) often go to zero (simultaneously) leaving their ratio
undefinecﬁ The next two theorems essentially establish tha&j), j = 1,2,...,n, will be greater than
zero (in fact, greater than a constantthat will be specified) infinitely often. Note that, in subseqt
developmentsz(j) is denoted withz;[k] in order to remain close to the notation [n15)4(17).
Theorem 3: Consider a (possibly directed) strongly connected grépk (V, &) and the iteration
in @B5)-(1T7), wherez;;[k], (j,i) € &€, k = 0,1,2,..., are independent identically distributed (i.i.d.)
indicator R.V’s as defined iril1), i.ex;[k] = 1 with probability ¢ and z;;[k] = 0 with probability
1 — g, independently betweefy,i) € £ and independently for differerit. For every; = 1,2,...,n,

define the event] = {zlkn] > C}, k > 1, where C' = b, Dif,, = max;ey{D] },

n = |V|, andm = |£|. Let (] denote the indicator of the evelt/, £ > 1, i.e,, ({ = 1 whenever

E,Z;, k > 1 occurs, anct“,g = 0 otherwise. Then, whateve, ¢, ..., (x_1, We have that
Pr{z[(k+1)n] > C | ¢.¢_\,....d} > ¢", Vi (98)

Proof: Note that the iteration in[(15) td (IL7) involves nonnegatixentities: since for every,
z;[0] > 0, Vj, it follows from (30){31) that, for every, z;[k] > 0, k£ > 0. Then, it is not hard to
establish that the total m&.‘MHl in the system, defined as

n

My =Y 2l + 1+ > (oglk] = malk — 1)(1 — 2[k]) | (99)

J=1 (4)e€

®Earlier, we established that, for largethe quantitiese[y], E[zx], Elyryf ], Elzx2L] and E[y,2] | converge, but this does not imply
any convergence for the values @f or zy.

®Since in the simulations for the plots in FId. 4, each packetliding self-packets) can be dropped with probability ¢ at iteration
k, there is a nonzero probability that all packets destinednfude j will be dropped, causing both of its values at the next iterat
(yr+1(j) and zx11(j)) to be zero. For instance, in the simulation of Fih.z4(1) will be zero with probability at leastl — ¢)* = 0.81
because nodé will have value zero if both packets destined for it (inchglithe self-packet) are dropped.

"This notion is discussed in great detail in Part Il of this grap
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satisfies
Mpii=n, forall k=0,1,2,....

[This follows from the fact that\, = >

i—1%[0] = n and the observation that

n

Misr = D zlk+1]+ Y (05lk] = 7k — 1)) (1 — wj[k])

Jj=1 (§i)e€
= > (ogilk] = malk — Maglk] + D (o5lk] = 7alk — 1)(1 — 253[k])
(Jo)e€ (JR)e€
= > (ogilk] = malk — 1])
(J)e€
= > (sz‘[k‘ — 1]+ %Zj[k‘] — ojilk — Vajilk = 1] = 75k = 2](1 — 25k — 1]))
(ji)e€ J
= Y [k + (0jilk = 1] = 75k = 2])(1 — zi[k — 1]) ,
Jj=1 =

which is equal taM,.]

The definition of M, in (@9) involves the summation of + m nonnegative quantities, namely,
zilk+1] for j =1,2,...,n andmy;[k+ 1] := (0;i[k] — 755k — 1]) (1 — x;;[k]) for (j,7) € £. We can think
of these quantities as follows; [k + 1] is the mass at nodg whereasn;;[k+ 1] is the mass waiting to
get transferred to nodgfrom node:. Since all of these quantities are nonnegative, at leasbbtieem
is larger or equal to.-. Regardless of whether this quantity is associated withder{say nodg*)
or a link (say link(j*,*)), this mass has at least one way of reaching any rnaufeinterest in graph
G via a path of length at most — 1 (because the grapfi is strongly connected): in particular, there
is at least one path of length at most- 1 from node;* to node: and all the links in this path have
weight at IeastD%. If all these links are activated, which occurs with prolliabig”~! (¢” in the case

max

of link (j*,7*) because the mass needs to first transfef*Jpthen a fraction(ﬁ)"‘1 of the mass
will transfer to node; in at mostn steps. Then, since for every z;[k] > 0, k£ > 0, independently of
the values ofz[in], I = 1,2,...,k, Pr{z[(k+1)n] > C | ¢, ¢l_,,...,¢l} > ¢* obtains, whatever
(1, G, - - -5 G- Finally, for everyj , Priz[(k+1)n] > C | ¢, ¢G_,, ..., 0} =1—Pr{z[(k+1)n] <
Cl¢L Gy Y <1=Pr{zl(k+1)n] =0 ¢ ¢y, ..., ¢} < 1—¢" , whereD; is the in-degree
of nodej. [ ]
Given a sequence of events, F,,..., FE,,... defined on some probability space, the next theorem
(which we do not prove) states the 1912 Borel criterion faalelsshing whether the event that infinitely
many of theE, occur, denoted by E}, i.0}, will occur with probability one or zero (see, e.d., [29],
[30]). This result, together with the result in Theoreim 3¢ used to establish that, for evefythe
eventE; = {z;[kn] > C}, k > 1 occurs infinitely often.
Theorem 4: Let{E,}, k=1,2,..., be a sequence of events defined on some probability space. Le
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(x be the indicator function of the evehy,. Let Pr{Ey.1 | (x, (x—1, - - -, (1} denote the conditional prob-
ability of the event£y; given the outcome of previous trials.df< pj, < Pr{Eji1 | (& Cee1,-- -, G} <
py, for everyk, whatever(;, (s, . .., ¢, then i)Pr{E} i.0.} = 0if 72 p} < oo, and ii)Pr{E; i.0.} =1
if > k1 Pk = 00

Theorem 5: Consider a (possibly directed) strongly connected grépk (V, &) and the iteration
in (I8)-[17). For everyj = 1,2,...,n, define the evenE] = {z;[kn] > C}, k > 1, whereC' =
R Dj . = maxjep{D; }, n = [V|, andm = |€]. Then,Pr{E} i.0.} =1 |

Proof: TheoremB established that, for everyPr{z;[(k + 1)n] > C | ¢, {_1,--., (G} > q™

Define pj, = ¢", then it follows that)",”, p, = oo, and by the second assertion in Theordmh 4, we
conclude that, for every, Pr{E} i.0.} = 1. u

The final piece is to establish that whenewgk] > C, which occurs infinitely often, each node will
be able to calculate an estimatewby calculating the ratigy,[%k|/z;[k] and this estimate will converge
to 1/« ask goes to infinity.

Theorem 6: For eachy, letk = t,,1,,... be an increase sequence of time steps for whjot > C.
Then, almost surely

ity 1
lim |l L (100)
n—oo | zj[tn] o
Proof: Sincez;[k] > C for k = t,,t,,..., it follows that ZJH ~-1< %&Zﬂ” Also, in the proof
jlin

of Theorem[B, we established that;, = n,k > 0, from where it follows that;[t,] < n, therefore
wlin] 1> awsltnl =zl 10 Theoren{R, we established thaty;[k] — z;[k]| — 0 almost surely, which

zj[tn] a —

implies that the subsequengey;|t,| — z;[t,]| — 0 almost surely, then sinc€ < n, we have that

ay;jtn] — z[tal
aC

yilta] 1

< lim

T n—oo

lim =0 (101)

almost surely. ]

VI. CONCLUDING REMARKS

In this paper, we proposed a method to ensure robustness lass af linear-iterative distributed
algorithms against unreliable communication links thatyrdeop packets. We used statistical-moment
analysis and the Borel-Cantelli lemmas to establish theectwess of the proposed robustified algorithm.
In Part Il of this paper, we establish similar convergenagpprties by recasting the problem as a finite
inhomogeneous Markov and using coefficients of ergodiaitsnmonly to used in analyzing this type
of Markov chains.
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