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Abstract

This two-part paper discusses robustification methodologies for linear-iterative distributed algorithms for
consensus and coordination problems in multicomponent systems, in which unreliable communication links may
drop packets. We consider a setup where communication linksbetween components can be asymmetric (i.e.,
componentj might be able to send information to componenti, but not necessarily vice-versa), so that the
information exchange between components in the system is ingeneral described by a directed graph that is
assumed to be strongly connected. In the absence of communication link failures, each componenti maintains
two auxiliary variables and updates each of their values to be a linear combination of their corresponding
previous values and the corresponding previous values of neighboring components (i.e., components that send
information to nodei). By appropriately initializing these two (decoupled) iterations, the system components
can asymptotically calculate variables of interest in a distributed fashion; in particular, the average of the initial
conditions can be calculated as a function that involves theratio of these two auxiliary variables. The focus
of this paper to robustify this double-iteration algorithmagainst communication link failures. We achieve this
by modifying the double-iteration algorithm (by introducing some additional auxiliary variables) and prove that
the modified double-iteration converges almost surely to average consensus. In the first part of the paper, we
study the first and second moments of the two iterations, and use them to establish convergence, and illustrate
the performance of the algorithm with several numerical examples. In the second part, in order to establish the
convergence of the algorithm, we use coefficients of ergodicity commonly used in analyzing inhomogeneous
Markov chains.
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I. INTRODUCTION

The design of protocols and algorithms for distributed computation and control/decision tasks has

attracted significant attention by the computer science, communication, and control communities (e.g.,

[1], [2], [3], [4], [5], [6], [7] and references therein). For example, given i) a collection of robots

moving in the plane, ii) a collection of sensors in a sensor network, or iii) a collection of distributed

energy resources in an electrical grid, the components may be interested in, respectively, i) agreeing

on a common direction to follow (this common direction couldbe provided by a leader robot), ii)

measurement averaging (with each sensor providing a local measurement of a global quantity), or iii)

collectively providing a predetermined total amount of active power subject to the constraints of each

distributed resource. In the control literature, the first and second problems are respectively known as

consensus and average consensus (see, e.g., [2]), whereas the third problem can be considered as a

distributed resource coordination problem [8], [9].

In this two-part paper, we consider multicomponent systemsin which each component can exchange

information with other components in its neighborhood in order to compute, in a distributed fashion,

some quantity of interest. In our setup, communication links between components (nodes) can be

asymmetric (i.e., componentj might be able to send information to componenti, but not necessarily

vice-versa), a situation that arises in a wireless setting if the transmission power available to different

nodes are also different. In this setting, the information exchange between components in the system

can be described by a directed graph which is assumed to be strongly connected. Through an iterative

process, nodes in the network are required to compute (usingonly information made available by their

neighbors) the quantity of interest. In particular, we study linear-iterative algorithms in which each node

j maintains a value (or a set of values) that is updated to be a weighted linear combination of nodej’s

own previous value and the previous values of its neighboring nodes (i.e., nodes that transmit information

to nodej). The main focus of the paper is to develop strategies to robustify the linear-iterative algorithms

described above against communication links that may drop packets.

In the context of consensus and average-consensus problems, an extensive literature in the control

community focuses on the linear-iterative algorithms described above (e.g., [7], [10], [2], [11], [12],

[13], [14] and references therein). These works have revealed that if the network topology satisfies

certain conditions, the weights for the linear iteration can be chosen so that all the nodes asymptotically

converge to the same value (even if the network connections are time-varying). Additionally, if the

interconnection topology is invariant and bidirectional (i.e., if nodej can send information to nodei,

then nodei can send information to nodej), simple techniques can be used to choose the weights of the

linear iteration so as to ensure that, after running the linear iteration, the nodes will asymptotically reach

consensus to the average of their initial values [2], [11], [12]. Other works have looked at the consensus

and average-consensus problems when the interconnection topology is described by adirected graph.

In particular, the authors of [15] focus on continuous-timelinear iterations and state necessary and

sufficient conditions for a network of integrators to asymptotically reach agreement to a common value
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(but not necessarily the average of their initial values). Similarly, the authors of [12] consider discrete-

time iterations, and provide necessary and sufficient conditions on the weights that allow the nodes to

asymptotically reach consensus to the average of their initial values. Additionally, the work in [16],

[17] discusses how average-consensus can be reached asymptotically with linear-iterative algorithms in

which the nodes use fixed weights in their linear updates and also develops linear-iterative algorithms

where the nodes adapt their weights in a distributed fashionso that asymptotically average-consensus

is reached. In the context of resource coordination, there is some recent work [18], [8], [9] that also

focuses on linear-iterative algorithms, similar to those used to address consensus and average-consensus

problems. Other recent work has addressed the related problem of achieving consensus and average-

consensus in a multicomponent system where some nodes can exhibit malicious behavior [19], [20].

These works assume fault-free communication links, but arerelated to what we do in this paper in the

sense that they can be used to handle unreliable nodes (as opposed to links).

In our development, we adopt a very general model for the communication modality between nodes,

which allows asymmetric information structures, in the sense that if nodei can transmit information to

another nodej, it is not necessarily true that nodej can transmit information to nodei. We only require

that each node, apart from seeing incoming transmissions sent to it by neighboring nodes, knows the

number of nodes that it can transmit information to, which ingraph-theoretic terms is referred to as the

out-degree of that node. In fact, in the proposed algorithm,each node will broadcast the same quantity to

all receiving nodes, which simplifies the communication scheme between sending and receiving nodes

(as it is not necessary for each sending node to separately communicate with each receiving node).

When the communication network is perfectly reliable (no packet drops), the collective dynamics of

the linear iterations can be described by a discrete-time transition system with no inputs in which the

transition matrix is column stochastic and primitive. Then, each node will run two identical copies of

the linear iteration each of which, however is initialized differently depending on the problem to be

solved.In this paper we mostly focus on the average consensus problem. Under proper initialization,

it can be shown that each node will asymptotically calculatethe desired value as a function of the

outcomes of the two iterations. The details of these double-iteration approach are provided in [16],

[17] for the average consensus case and in [8], [9] for the resource coordination problem. For the

average-consensus problem, the double-iteration algorithm is a particular case of the algorithm in [21]

(which is a generalization of the algorithm proposed in [22]), where the matrices describing each linear

iteration are allowed to vary as time evolves, whereas in oursetup (for the ideal case when there are

no communication link failures) the transition matrix is fixed over time.

The focus of this paper is to robustify the double-iterationalgorithm (informally described above and

formally described in Section II) so that it can tolerate failures in communication links and converge

to the average value. Our communication link reliability model assumes that at each time step, a

communication link is unavailable with some probability. In other words, a packet containing information

from nodei to nodej is dropped with some probability. Next we informally describe our robustification
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approach. Consider two nodesi and j, and assume thatj receives information from nodei but not

necessarily vice-versa. Let us refer toj as the receiving node (or receiver) andi as the sending node

(or sender). An important requirement is for the graph describing the communication network to be

strongly connected, which implies every node must be able toact both as a sender and as a receiver.

Then, for each of the two iterations each node performs, nodei (the sender) will keep track of the

following quantities of interest: i) its own internal state(as captured by the state variables maintained in

the double iteration scheme of [21], [18]; ii) the total massbroadcasted so far (to be described in detail

soon); and iii) the total received mass from each nodel that sends information to nodei. Similarly,

for both iterations, each nodej (the receiver) updates the value of its internal state to be alinear

combination of its own previous internal state value (weighted by the inverse of the number of nodes

that havej as a neighbor) and the difference between the two most recently received mass values from

each of its neighbors (also weighted by the inverse of the number of nodes that havej as a neighbor).

At time instantk, the total broadcasted mass by nodej is the sum up to (and including) time stepk of

the sequence of values of nodej’s internal value, weighted by the inverse of the number of nodes that

receive values from nodej). Additionally, nodej updates the value of the received mass from each node

l that sends information to nodej as follows: the received mass from nodel is the total broadcasted

mass sent by nodel up to timek if the communication link from nodel to nodej is available at time

stepk; otherwise, the received mass remains the same as the most recently received mass from node

l. An implicit assumption here is that messages broadcasted by node l are tagged with the sender’s

identity so that the receiving nodej can determine where different packages have originated from.

Recent work that has addressed the consensus and average-consensus problems in the presence of

unreliable communication links [23], [24], [25] has employed a communication link availability model

similar to ours. The work in [23] assumes that the graph describing the communication network is

undirected and that when a communication link fails it affects communication in both directions.

Additionally, nodes have some mechanism to detect link unavailability and compensate for it by rescaling

their other weights (so that the resulting transition matrix remains column stochastic). Following this

strategy, the authors show asymptotic convergence to the average of initial conditions and also calculate

the rate at which the variance of the total deviation from theaverage converges to zero. The work in

[24] does not require the graph describing the communication network to be undirected and proposes

two compensation methods to account for communication linkfailures. In the first method, the so-called

biased compensation method, the receiving node compensates for the unavailability of an incoming link

by adding the weight associated to the unavailable link to its own weight (so that the resulting matrix

remains row stochastic). In the second method, called the balanced compensation method, the receiving

node compensates for link unavailability by rescaling all the incoming link weights so that the resulting

matrix remains row stochastic. The key in both methods is thefact that at each time step, the resulting

weight matrix is row stochastic; the authors show that the nodes converge almost surely to the same

value, but this value is not necessarily the average of the initial conditions. The work in [25], which does
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not require the communication graph to be undirected, proposes a correction strategy that corrects the

errors in the quantity (state) iteratively calculated by each node, so that the nodes obtain the average of

their initial values. This correction strategy is based on each node maintaining some auxiliary variable

that accounts for the amount by which nodei changes its state due to the updates from its neighbors,

i.e., the nodes that can send information to nodei. For their strategy to work and ensure that the nodes

converge almost surely to the average consensus, the authors rely on the nodes sending acknowledgment

messages and retransmitting information an appropriate number of times.

In [21], the authors proposed a gossip-based algorithm for average-consensus ver a directed graph

where the transition matrices describing the nodes’ collective dynamics change at every iteration step

(depending on which node awakes). This scheme requires the node that is awake to perform an

internal state update and send its internal state (weightedby the corresponding out-going link weight)

to its neighbors. This approach results in generates a sequence of column stochastic matrices (not

necessarily primitive) with the property that all the diagonal entries remain positive. The authors

prove that by running two such iterations in parallel, one ofthem initialized with the values on

which the average operation is to be performed and the other with the all-ones vector, each node

will asymptotically achieve average consensus by taking the ratio of the two values in maintains. A

key premise in their proof is that column stochasticity of the transition matrix is maintained over time,

which requires sending nodes to know the number of nodes thatare listening. This suggests that i) either

the communication links are perfectly reliable, or ii) there is some acknowledgment and retransmission

mechanism that ensures messages are delivered to the listening nodes at every round of information

exchange. In this paper, we remove such assumptions and robustify the double-iteration algorithm against

unreliable communication links using a pure broadcast-message model without any requirement for an

acknowledgment/retransmission mechanism. Thus, despitethe reliance of our algorithm on the ratio of

two linear iterations, it is different both in the communication model we assume—a broadcast model

in our case—and also in the nature of the protocol itself—ourfocus is on ensuring convergence in the

presence of communication link failures.

An additional assumption made in [21] is that the diagonal entries of the transition matrix (at every

step) remain positive. In our model, we originally considerthat nodes do not drop self-packets. However,

to ease the analysis, we remove this assumption and considerthe case where self-packet drops are also

allowed at every time step, which i) allows us to handle intermittent faults in the node processing

device, and ii) removes the assumption that all diagonal entries must be positive at every step. Finally,

the analysis machinery in [21] is quite different from the one used in this paper. We employ moment

analysis of the two iterations to establish that they are linearly related as the number of steps goes to

infinity, while [21] relies on establishing weak ergodicityof the product of the transition matrices as

the number of steps goes to infinity. Finally, as it will be shown in the second part of this paper, our

algorithm can be re-casted into a similar framework as the one in [21] by augmenting the dimension

of the vector describing the collective dynamics to accountfor the packets that get dropped once there
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is a communication failure. Note, However, that the resulting matrices will be column stochastic but

will not necessarily have strictly positive entries on their diagonals. In the second part of the paper, we

provide an analysis framework to establish the convergenceof our algorithm and generalizes the ideas

in [21] to the case when the matrices describing the system collective dynamics do not have strictly

positive diagonals. In this regard, we will show that even inthe case where self-packet drops are not

allowed, the resulting transition matrices might still have zero diagonal entries.

The remainder of this paper is organized as follows. SectionII provides background on graph theory,

introduces the communication model, and briefly describes the non-robust version of the double-iteration

algorithm we use in this work. Section III describes the proposed strategy to robustify the double-iteration

algorithm against communication link failures and illustrates the use/performance of the algorithms via

several examples. The convergence analysis of the robustified double-iteration algorithm is provided in

Section V. Concluding remarks are presented in Section VI.

II. PRELIMINARIES

This section provides background of graph-theoretic notions that are used to describe the communica-

tion network and the distributed consensus/coordination setup, introduces the basic communication link

availability model, and reviews a previously proposed two-iteration algorithm that can be used to solve

the class of problems addressed in this paper when the communication network is perfectly reliable.

A. Network Communication Model

Let discrete time instants be indexedk = 0, 1, . . . ; then, the information exchange between nodes

(components) at each time instantk can be described by a directed graphG[k] = {V, E [k]}, where

V = {1, 2, . . . , n} is the vertex set (each vertex—or node—corresponds to a system component), and

E [k] ⊆ V × V is the set of edges, where(j, i) ∈ E [k] if node j can receive information from nodei at

instantk. It is assumed thatE [k] ⊆ E , ∀k ≥ 0, whereE is the set of edges that describe all possibly

available communication links between nodes; furthermore, the graph(V, E) is assumed to be strongly

connected. All nodes that can possibly transmit information to nodej are called its in-neighbors, and

are represented by the setN−
j = {i ∈ V : (j, i) ∈ E}. Note that there are self-loops for all nodes inG

(i.e., (j, j) ∈ E for all j ∈ V). The number of neighbors ofj (including itself) is called the in-degree

of j and is denoted byD−
j = |N−

j |. The nodes that havej as neighbor (including itself) are called its

out-neighbors and are denoted byN+
j = {l ∈ V : (l, j) ∈ E}; the out-degree of nodej is D+

j = |N+
j |.

The existence of a communication link from nodei to nodej can be described in probabilistic terms

as follows. At instantk, let xji[k], ∀i, j ∈ V be an indicator variable that takes value 1 with probability

q and takes value zero with probability1− q, i.e.,

Pr{xji[k] = m} =

{

q, if m = 1,

1− q, if m = 0.
(1)
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Then, for allk ≥ 0, the existence of a communication link between nodesi andj can be described be

another indicator variableℓji[k] defined as

ℓji[k] =

{

xji[k], if (j, i) ∈ E ,

0, if (j, i) /∈ E .
(2)

It follows that E [k] contains the elements ofE for which ℓji[k] = xji[k] = 1.

B. Double-Iteration Algorithm Formulation in Perfectly Reliable Communication Networks

When the communication network of a multi-component systemis perfectly reliable, i.e.,Pr{ℓji[k] =

1} = 1, ∀(j, i) ∈ E , ∀k ≥ 0, it was shown in [17], [9] that the components of the multi-component

system can asymptotically solve average consensus and resource coordination problems in a distributed

fashion by running two separate appropriately initializedlinear iterations of the form

yj[k + 1] =
∑

i∈N−

j

1

D+
i

yi[k], (3)

zj [k + 1] =
∑

i∈N−

j

1

D+
i

zi[k], (4)

whereD+
j (D+

i ) is the out-degree of nodej (i). A requirement in all cases is that the underlying

communication graph(G, E) is strongly connected.

1) Average Consensus Problem: In this problem, the nodes aim to obtain the average of the values

vj , j = 1, . . . , n, they each posses. In [17], it was shown that if the initial conditions in (3) (referred

to as iteration 1) are set toyj[0] = vj , and the initial conditions in (4) (referred to as iteration2) are

set tozj [0] = 1, then the nodes can asymptotically calculatev :=
∑n

j=1 vj/n as

v = lim
k→∞

yj[k]

zj [k]
, (5)

by running the two iterations in (3) and (4).

2) Resource Coordination Problem: In this problem, each nodej can contribute a certain amount

πj ≥ 0 of a given resource, which is upper and lower bounded by knowncapacity limitsπmax
j and

πmin
j respectively. The challenge is to coordinate the components so that they collectively provide a

pre-determined total amountρd =
∑n

j=1 πj of the resource1 as specified by an external “leader.” In [9],

it was shown that i) if the initial conditions in (3) are set toyj[0] = ρd/m−πmin
j if j is an out-neighbor

of the leader (wherem ≥ 1 is the number of nodes contacted initially by the external leader) and

yj[0] = −πmin
j otherwise, and ii) if the initial conditions in (4) are set tozj[0] = πmax

j − πmin
j , then the

1In the development in [18], [9], it is assumed that
∑n

j=1 π
min
j ≤ ρd ≤

∑n

j=1 π
max
j ; this is not a restrictive assumption because in the

proposed algorithms, all nodes will be able to know ifρd <
∑n

j=1 π
min
j or if ρd >

∑n

j=1 π
max
j (which means that no feasible solution

exists).
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nodes can asymptotically calculate their own resource contribution πj as

πj := lim
k→∞

(

πmin
j +

yj[k]

zj [k]
(πmax

j − πmin
j )

)

= πmin
j +

ρd −
∑n

l=1 π
min
l

∑n
l=1 ℓl

(πmax
j − πmin

j ), (6)

which satisfies

πmin
j ≤ πj ≤ πmax

j , ∀j,
n
∑

j=1

πj = ρd. (7)

In this paper, we start with a double iteration of the form in (3)–(4) that is used for either aver-

age consensus or coordination, and develop systematic methodologies to handle packet drops in the

communication links.

III. ROBUSTIFICATION OF DOUBLE-ITERATION ALGORITHM

In this section, the algorithm described in Section II-B is modified so as to make it robust against

communication link failures. As in (3)–(4), each node will run two iterations (which we refer to as

iterations 1 and 2) to calculate quantities of interest and eventually solve the average consensus or

coordination problems.

Consider the setup described in the previous section: we aregiven a (possible directed) strongly

connected graph(G, E) representing a multicomponent system and its communication links between its

components. For the sake of generality, let us refer toj as the receiving node (or receiver) andi as

the sending node (or sender). For each of the two iterations,nodei (the sender) will calculate several

quantities of interest, which we refer to as: i) internal state; ii) total broadcasted mass; and iii) total

received mass from each in-neighborl of nodei, i.e., for each nodel ∈ N−
i . For both iterations 1 and 2,

each nodej updates the value of its internal state to be a linear combination of its own previous internal

state value (weighted by the inverse of the number of nodes that havej as a neighbor, i.e.,1/D+
j ) and

the sum (over all its in-neighbors) of the difference between the two most recently received mass values.

At instant timek, the total broadcasted mass is the sum up to (and including) step k of the weighted

value of nodej’s internal state (used to update the internal state of nodej). Additionally, nodej (the

receiver) updates the value of the received mass from nodel to be either the total broadcasted mass sent

by nodei if the communication link fromi to j is available at instantk, or the most recently received

mass value from nodei, otherwise. An implicit assumption here is that messages broadcasted by node

i are tagged with the sender’s identity so that the receiving node j can determine where messages

originated from.

For iteration 1, letyj[k] denote nodej’s internal state at time instantk, µlj[k] denote the mass

broadcasted from nodej to each of its out-neighborsl (this is a single value ad it is the quantity is

the same for each out-neighborl of nodej, i.e., for eachl ∈ N−
j ), and νji[k] denote the total mass

received at nodej from nodei ∈ N−
j . Similarly, let zj[k] denote nodej’s internal state takes at time
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instantk, σlj[k] denote nodej’s broadcasted mass for each out-neighborl, l ∈ N+
j , andτji[k] denote

the total mass received from nodei ∈ N−
j . Then, the progress of iteration 1 is described by

yj[k + 1] =
1

D+
j

yj[k] +
∑

i∈N−

j

(

νji[k]− νji[k − 1]
)

, k ≥ 0,

µlj[k] = µlj[k − 1] +
1

D+
j

yj[k] =
k
∑

i=0

1

D+
j

yj[i], k ≥ 0, (8)

where

νji[k] =

{

µji[k], if (j, i) ∈ E [k], k ≥ 0,

νji[k − 1], if (j, i) /∈ E [k], k ≥ 0.

Recall thatD+
j (D+

i ) is the number of nodes that nodej (i) can transmit information to. Similarly, the

progress of iteration 2 is described by

zj [k + 1] =
1

D+
j

zj[k] +
∑

i∈N−

j

(

τji[k]− τji[k − 1]
)

, k ≥ 0,

σlj[k] = σlj [k − 1] +
1

D+
j

zj [k] =

k
∑

i=0

1

D+
j

zj [i], k ≥ 0, (9)

where

τji[k] =

{

σji[k], if (j, i) ∈ E [k], k ≥ 0,

τji[k − 1], if (j, i) /∈ E [k], k ≥ 0.

As mentioned earlier, for solving the average consensus problem, the initial conditions in (8) are

set toyj[0] = vj, whereas the initial conditions in (9) are set tozj[0] = 1. Similarly, for solving the

resource coordination problem, the initial conditions in (8) are set toyj[0] = ρd/m−πmin
j if j is initially

contacted by the leader andyj[0] = −πmin
j otherwise, whereas the initial conditions in (9) are set to

zj [0] = πmax
j − πmin

j > 0. In both the average consensus and coordination problems,µji[−1] = 0 and

νji[−1] = 0 for all (j, i) ∈ E , andσji[−1] = 0 and τji[−1] = 0 for all (j, i) ∈ E .

Main Result: We shall argue that with the proposed robustification strategy, despite the presence of

unreliable communication links (at each time step, each link (j, i) ∈ E , fails independently from other

links and independently between time steps, with some probability 1 − qji), nodes can asymptotically

estimate the exact solutionv to the average consensus by calculating, wheneverzj [k] > 0 the ratio

yj[k]/zj [k], i.e.,

v = lim
k→∞

yj[k]

zj [k]
, (10)
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wheneverzj [k > 0]. Similarly, exact solution to the resource coordination problem can be obtained as

πj = lim
k→∞

(

πmin
j +

yj[k]

zj [k]
(πmax

j − πmin
j )

)

, (11)

wheneverzj[k] > 0. In both cases, we run the iterations in (8) and (9) and using the corresponding initial

conditions as outlined above. In particular, we will show that, for everyj, zj[k] −
∑n

j=1 z0(j)∑n
j=1 y0(j)

yj[k] → 0

ask → ∞ almost surely. Additionally, we will show thatzj [k] > 0 occurs infinitely often.

A. Examples

We now illustrate how the proposed algorithm works for the case of average consensus in the

presence of packet-dropping communication links. We startwith the rather small network shown in

Fig. 1 and assume that the packets on each link (including theself-links which are not drawn in the

figure2) can be dropped with probability1−q, independently between different links and independently

between different iterations. We also assume that the initial values of the five nodes are given by

v = [−4, 5, 6,−3, 1]T , with their average equal to1. Thus, in the iterations (8) and (9)

y[0] = [−4, 5, 6,−3, 1]T , andz[0] = [1, 1, 1, 1, 1]T ,

with µji[−1] = vji[−1] = σji[−1] = τji[−1] = 0 for all (j, i) ∈ E .

We run the iterations in (8) and (9) and plot the ratioyj [k]

zj [k]
as a function of the iteration stepk for each

nodej (j = 1, 2, 3, 4, 5). Figure 2 shows the typical behavior that we observe forq = 0.99 (i.e., for a

probability of a packet drop equal to0.01). As can be seen in the figure, the ratio at each node quickly

converges to the correct average, though the individual values foryj[k] andzj[k] do not converge.

In Figs. 3 and 4 we show typical behaviors of the same multicomponent system forq = 0.5 and

q = 0.1. The behavior remains similar to the one observed before: even thoughyj[k] and zj [k] do not

2We make this assumption later in the paper for the purposes ofsimplifying notation.

1 2

3 4

5

Fig. 1. Small directed graph used for illustration of the ratio algorithm for obtaining average consensus in the presence of packet-dropping
communication links.
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Fig. 2. Evolution of the values ofyj [k] (left), zj [k] (middle) and
yj [k]

zj [k]
(right) for q = 0.99.
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Fig. 3. Evolution of the values ofyj [k] (left), zj [k] (middle), and
yj [k]

zj [k]
(right) for q = 0.5, j = 1, 2, 3, 4, 5.

converge (in fact, they seem to behave more radically with decreasingq), the ratio yj [k]

zj [k]
does converge

to the average of the initial values. Note that the plot of theratio in Fig. 4 is quite different than the

rest: in this case,q is small enough so thatzj [k] (and simultaneouslyyj[k]) can take the value zero

(e.g., when all packets destined to nodej are dropped at iterationk); thus, the ratio in such cases is

not defined and is not plotted, resulting in a discontinuous set of points in the plot. Nevertheless, we

can see that when packets are received (which happens frequently enough for each node), the ratio has

the correct value. This is a point addressed later in the paper.

An example of what happens in larger graphs is shown in Fig. 5.Here we consider a graph with50

nodes, randomly generated by choosing a directed edge from node i to nodej, 1 ≤ i, j ≤ 50, i 6= j,

independently with probability1/2, and ensuring that the resulting graph is strongly connected. As can

be seen the behavior remains similar to what we observed for the smaller graph: the ratioyj [k]
zj [k]

converges

quickly to the average even though the individualyj[k] and zj [k] do not converge. For this particular

plot, we usedq = 0.1, which also justifies the fluctuation in the values ofyj[k] andzj [k].
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Fig. 4. Evolution of the values ofyj [k] (left), zj [k] (middle), and
yj [k]

zj [k]
(right) for q = 0.1, j = 1, 2, 3, 4, 5.
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Fig. 5. Evolution of the values ofyj [k] (left), zj [k] (middle), and
yj [k]

zj [k]
(right) for q = 0.1 for a 50-component system.

IV. FIRST AND SECOND MOMENT ANALYSIS

In this section, we obtain recurrence relations that describe the first and second moment of the

iterations after (8) and (9); this analysis is used in Section V to establish the claims in (10) and (11). In

order to ease the moment calculations, the expressions in (8)–(9) will be rewritten more compactly in

vector form. Also, in order to facilitate notation, we will allow each nodej to drop the packet carrying

its own previous value when updating its value. This way, node j handles its own value in the same

way as its neighbors’ values and notation is simplified significantly.

A. Vectorized Description of Double-Iteration Algorithm

Using the definition for the indicator variablexji[k] given in (1) and the resulting indicator variable

ℓji[k] given in (2), which describes the successful transmission of information from nodei to nodej
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over an existing, unreliable communication link, iterations (8) and (9) can be rewritten as

µlj[k] =

{

µlj[k − 1] + 1
D+

j

yj[k], if l ∈ N+
j , k ≥ 0,

0, if l /∈ N+
j , k ≥ 0,

(12)

νji[k] =

{

µji[k]xji[k] + νji[k − 1](1− xji[k]), if i ∈ N−
j , k ≥ 0,

0, if i /∈ N−
j , k ≥ 0,

(13)

yj[k + 1] =
n
∑

i=1

(

νji[k]− νji[k − 1]
)

, k ≥ 0, (14)

and

σlj [k] =

{

σlj[k − 1] + 1
D+

j

zj [k], if l ∈ N+
j , k ≥ 0,

0, if l /∈ N+
j , k ≥ 0,

(15)

τji[k] =

{

σji[k]xji[k] + τji[k − 1](1− xji[k]), if i ∈ N−
j , k ≥ 0,

0, if i ∈ N−
j , k ≥ 0,

(16)

zj [k + 1] =

n
∑

i=1

(

τji[k]− τji[k − 1]
)

, k ≥ 0, (17)

whereµlj[−1] = νji[−1] = σlj [−1] = τji[−1] = 0, ∀j, i.

Let A ◦B denote the Hadamard (entry-wise) product of a pair of matricesA andB of identical size.

Then, for allk ≥ 0, iteration (12)–(14) can be rewritten in matrix form as

Mk =Mk−1 + Pdiag(yk), (18)

Nk =Mk ◦Xk +Nk−1 ◦ (U −Xk), (19)

yk+1 = (Nk −Nk−1)e =
[

(Mk −Nk−1) ◦Xk

]

e, (20)

whereP = [pji] ∈ R
n×n, with pji = 1

D+
i

, ∀j ∈ N+
i andpji = 0 otherwise;M−1 = N−1 = 0; yk = y[k];

U ∈ R
n×n, with [Uji] = 1, ∀i, j; diag(yk) is the diagonal matrix that results by having the entries of

yk on the main diagonal; ande = [1, 1, . . . , 1]′ (note thatU = eeT ). Similarly, for k ≥ 0, (15)–(17) can

be rewritten in matrix form as

Sk = Sk−1 + Pdiag(zk), (21)

Tk = Sk ◦Xk + Tk−1 ◦ (U −Xk), (22)

zk+1 = (Tk − Tk−1)e =
[

(Sk − Tk−1) ◦Xk

]

e, (23)

whereS−1 = T−1 = 0, zk = z[k], and diag(zk) is the diagonal matrix that results by having the entries

of zk on the main diagonal.

By definingAk := Mk − Nk−1 andBk := Sk − Tk−1, iteration (18)–(20) can be rewritten more
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compactly as

Ak = Ak−1 ◦ (U −Xk−1) + Pdiag(yk), k ≥ 1, (24)

yk+1 = (Ak ◦Xk)e, k ≥ 0, (25)

and iteration (21)–(23) as

Bk = Bk−1 ◦ (U −Xk−1) + Pdiag(zk), k ≥ 1, (26)

zk+1 = (Bk ◦Xk)e, k ≥ 0, (27)

whereA0 =M0 −N−1 = Pdiag(y0), andB0 = S0 − T−1 = Pdiag(z0).

For analysis purposes, each matrix in (24)–(25) and (26)–(27) will be rewritten in vector form by

stacking up the corresponding columns.3 Then, (24)–(25) and (26)–(27) can be rewritten in vector

form as follows. LetF = [In In . . . In] ∈ R
n×n2

, whereIn is the n × n identity matrix, andP̃ =

[E1P
T E2P

T . . . EnP
T ]T ∈ R

n2×n, whereEi ∈ R
n×n hasEi(i, i) = 1 and all other entries equal zero.

[The entries ofEiP
T ∈ R

n×n (PET
i = PEi) are all zero except for theith row (column) entries, which

are those of theith row (column) of matrixP T (P ).] Then, (24)–(25) can be rewritten as

ak = ak−1 ◦ (u− xk−1) + P̃ yk, k ≥ 1, (28)

yk+1 = F (ak ◦ xk), k ≥ 0, (29)

whereak ∈ R
n2

, xk ∈ R
n2

, andxk−1 ∈ R
n2

result from stacking the columns of matricesAk, Xk, and

Xk−1, respectively. Similarly, (26)–(27) can be rewritten as

bk = bk−1 ◦ (u− xk−1) + P̃ zk, k ≥ 1, (30)

zk+1 = F (bk ◦ xk), k ≥ 0, (31)

wherebk ∈ R
n2

results from stacking the columns of matrixBk.

Remark 1: It is important to note that matricesAk andBk, and their corresponding vectorsak and

bk, have some entries that remain at zero for allk ≥ 0. Specifically, the(j, i) entry of matricesAk and

Bk (and their corresponding entries inak and bk) remain zero if there is no communication link from

nodei to nodej, i.e., (j, i) /∈ E . The reason we keep these entries (despite the fact they are zero and do

not play a role in the analysis) is because they facilitate matrix notation and calculations in subsequent

developments. �

Since it will appear later at several points of the analysis,it is worth noting that when premultiplying

P̃ by F , we recover the matrixP , i.e.,

P = FP̃ . (32)

3If we let A = [Aij ] ∈ R
n×n, then a = [A11, A21, . . . , An1, A12, A22, . . . , An2, . . . , A1n, A2n, . . . , Ann]

T . Vectors defined by
stacking the columns of a matrix will be denoted with the samesmall letter as the capital letter of the corresponding matrix.
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B. First Moment Analysis

In this section, we describe the first moment dynamics of (28)–(31) via discrete-time transition systems

with no inputs, where (as shown below) the corresponding transition matrices (which are obtained from

P and q) are column stochastic and primitive. In both iterations, the sum of the entries of the first

moment vectors foryk and zk is shown to remain constant over time and be respectively equal to the

sum ofq
∑

i y0(i) andq
∑

i z0(i). Furthermore, both first momentsE[yk] andE[zk] are shown to reach

a steady-state value ask goes to infinity. The above discussion is formalized in the following lemma.

Lemma 1: Let ak, bk, yk, andzk be described by the recurrence relations in (28)–(29), and (30)–(31)

respectively. Let the first moments ofak, yk, bk, andzk (i.e.,E[ak], E[yk], E[bk], andE[zk]) be denoted

by ak, yk, bk, andzk respectively. Then the evolution ofak, yk, bk, andzk, ∀k ≥ 1, is governed by

ak =
[

qP̃F + (1− q)In2

]

ak−1, (33)

yk+1 =
[

qP + (1− q)In
]

yk, (34)

bk =
[

qP̃F + (1− q)In2

]

bk−1, (35)

zk+1 =
[

qP + (1− q)In
]

zk, (36)

whereIm is them×m identity matrix, witha0 = P̃ y0, y1 = qPy0, b0 = P̃ z0, andz1 = qPz0.

Proof: Since the development for obtainingak and yk is parallel to that for obtainingbk and zk,

our analysis focuses on the first case. Fork = 0 in (28)–(29), by taking expectations of both sides and

noting that packet drops at time stepk = 0 are independent of the initial values fora0, it follows that

a0 = P̃ y0, (37)

y1 = qFa0. (38)

Substituting (37) into (38), we obtainy1 = qF P̃y0 = qPy0.

For k ≥ 1 in (28)–(29), noting that packet drops at time stepk are independent of previous packet

drops and the initial values ofa0, it follows, by taking expectations on both sides, that

ak = ak−1 ◦ (u− xk−1) + P̃ yk = ak−1 ◦ (u− xk−1) + P̃ yk = (1− q)ak−1 + P̃ yk, (39)

yk+1 = F (ak ◦ xk) = F (ak ◦ xk) = qFak. (40)

Substituting (40) into (39), we obtain

ak = (1− q)ak−1 + qP̃Fak−1 (41)

= [qP̃F + (1− q)In2]ak−1, (42)
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Similarly, substituting (39) into (40), we have

yk+1 = (1− q)qFak−1 + qF P̃yk (43)

= (1− q)yk + qF P̃yk (44)

= [qP + (1− q)In]yk, (45)

whereIn is then× n identity matrix.

C. Second Moment Analysis

In the order to calculate the second moment dynamics for (28)–(31), we utilize in the following

lemma.

Lemma 2: Let x, c andd be random vectors of dimensionn. Furthermore, assume that the entries ofx

are Bernoullii.i.d. random variables such thatPr{xi = 1} = q andPr{xi = 0} = 1−q, ∀i = 1, 2, . . . n,

and are independent fromc andd. Then

S := E
[

(c ◦ x)(x ◦ d)T ] = q2E[cdT ] + q(1− q)E
[

diag(cdT )], (46)

T := E
[(

c ◦ x
)(

(u− x) ◦ d
)T

] = q(1− q)E[cdT ]− q(1− q)E
[

diag(cdT )], (47)

where diag(cdT ) is a diagonal matrix with the same diagonal as matrixcdT .

Proof: The (i, j), i 6= j, entry ofS can be obtained as follows:

Sij = E
[

cixidjxj
]

. (48)

Sincexi andxj are pairwise independent, and independent fromc andd, it follows that

E
[

cixidjxj
]

= q2E
[

cidj
]

. (49)

For i = j, observing thatE[xixi] = E[xi] = q, ∀i = 1, . . . , n, we obtain the corresponding entry ofS

as

Sii = E
[

cixidixi
]

= E
[

cidixi
]

= qE
[

cidi
]

. (50)

In (49), it is easy to see thatE
[

cidj
]

is the (i, j) entry ofE[cdT ]. Similarly, in (50), it is easy to see

thatE
[

cidi
]

is the (i, i) entry ofE[cdT ]. From these observations, the result in (46) follows.

Similarly, the(i, j), i 6= j, entry ofT can be obtained as follows:

Tij = E
[

cixidj(1− xj)
]

. (51)

Sincexi and (1− xj) are independent, it follows that

E
[

cixidj(1− xj)
]

= E
[

cidj
]

E
[

xi(1− xj)
]

= q(1− q)E
[

cidj
]

. (52)
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For i = j, and observing thatE[xi(1 − xi)] = 0, ∀i = 1, . . . , n, the corresponding entry ofT can

obtained as follows;

Tii = E
[

cixidi(1− xi)
]

= E
[

cidi
]

E
[

xi(1− xi)
]

= 0. (53)

The result in (47) follows from (52) and (53).

The following lemma establishes that the evolution ofE[aka
T
k ], E[bkb

T
k ], andE[akb

T
k ], and can be

expressed as linear iterations with identical dynamics butdifferent initial conditions. Similarly, the

evolution ofE[ykyTk ], E[zkz
T
k ], andE[ykz

T
k ] can also be expressed as linear iterations with identical

dynamics but different initial conditions.

Lemma 3: Consider the second moments ofak, yk, bk, andzk, and letE[akaTk ], E[yky
T
k ], E[bkb

T
k ],

E[zkz
T
k ], E[akb

T
k ], andE[ykz

T
k ]) be denoted byΓk, Φk, Ψk, Λk, Ξk, andΥk respectively. Then, the

evolutions ofΓk, Φk, Ψk, Λk, Ξk, Υk, ∀k ≥ 1, are described by the following iterations (where allI

denoten2 × n2 identity matrices):

Γk =
[

qP̃F + (1− q)I
]

Γk−1

[

qP̃F + (1− q)I
]T

+ q(1− q)[I − P̃F ]diag(Γk−1)[I − P̃F ]T , (54)

Φk+1 = F
[

q2Γk + q(1− q)diag(Γk)
]

F T , (55)

Ψk =
[

qP̃F + (1− q)I
]

Ψk−1

[

qP̃F + (1− q)I
]T

+ q(1− q)[I − P̃F ]diag(Ψk−1)[I − P̃F ]T , (56)

Λk+1 = F
[

q2Ψk + q(1− q)diag(Ψk)
]

F T , (57)

Ξk =
[

qP̃F + (1− q)I
]

Ξk−1

[

qP̃F + (1− q)I
]T

+ q(1− q)[I − P̃F ]diag(Ξk−1)[I − P̃F ]T , (58)

Υk+1 = F
[

q2Ξk + q(1− q)diag(Ξk)
]

F T , (59)

with initial conditions

Γ0 = P̃ y0y
T
0 P̃

T , (60)

Φ1 = y1y
T
1 + q(1− q)Fdiag(P̃ y0y

T
0 P̃

T )F T , (61)

Ψ0 = P̃ z0z
T
0 P̃

T , (62)

Λ1 = z1z
T
1 + q(1− q)Fdiag(P̃ z0z

T
0 P̃

T )F T , (63)

Ξ0 = P̃ y0z
T
0 P̃

T , (64)

Υ1 = y1z
T
1 + q(1− q)Fdiag(P̃ y0z

T
0 P̃

T )F T . (65)

Proof: The derivation of (54), (55), (60), and (61), is the same as the derivation of (56), (57), (62),

and (63), thus the developments in the proof will only address the former. Fork = 0, it follows from

Lemma 1 and (28) thata0 = P̃ y0. Then,

Γ0 = E[a0a
T
0 ] = P̃ E[y0y

T
0 ]P̃

T = P̃ y0y
T
0 P̃

T , (66)
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and

Φ1 = E[y1y
T
1 ] = E

[

F (a0 ◦ x0)(x0 ◦ a0)
TF T

]

= F E
[

(a0 ◦ x0)(x0 ◦ a0)
T
]

F T . (67)

Applying the results in Lemmas 1 and 2 to (67), it follows that

Φ1 = q2F E
[

a0a
T
0

]

F T + q(1− q)F E
[

diag(a0a
T
0 )
]

F T

= (qF P̃y0)(qF P̃y0)
T + q(1− q)F E[diag(P̃ y0y

T
0 P̃

T )]F T

= (qPy0)(qPy0)
T + q(1− q)Fdiag(P̃ y0y

T
0 P̃

T )F T

= y1y
T
1 + q(1− q)Fdiag(P̃ y0y

T
0 P̃

T )F T , (68)

where we used the fact thatFP̃ = P
(

refer to Eq. (32)
)

.

For k ≥ 1, and taking into account thatyk = F (ak−1 ◦ xk−1), it follows that

Γk =E
[(

ak−1 ◦ (u− xk−1) + P̃ yk
)(

ak−1 ◦ (u− xk−1) + P̃ yk
)T ]

=E
[(

ak−1 ◦ (u− xk−1)
)(

ak−1 ◦ (u− xk−1)
)T ]

+ E
[(

ak−1 ◦ (u− xk−1)
)(

P̃ yk
)T ]

+ E
[(

P̃ yk
)(

ak−1 ◦ (u− xk−1)
)T ]

+ E
[(

P̃ yk
)(

P̃ yk
)T ]

=E
[(

ak−1 ◦ (u− xk−1)
)(

ak−1 ◦ (u− xk−1)
)T ]

+ E
[(

ak−1 ◦ (u− xk−1)
)(

ak−1 ◦ xk−1

)T ]
F T P̃ T

+ P̃F E
[(

ak−1 ◦ xk−1

)(

ak−1 ◦ (u− xk−1)
)T ]

+ P̃F E
[(

ak−1 ◦ xk−1

)(

ak−1 ◦ xk−1

)T ]
F T P̃ T .

(69)

Then, from Lemma 2, (69) can be rewritten as

Γk =(1− q)2E
[

ak−1a
T
k−1

]

+ q(1− q)E
[

diag(ak−1a
T
k−1)]

+ q(1− q)E
[

ak−1a
T
k−1

]

F T P̃ T − q(1− q)E
[

diag(ak−1a
T
k−1)]F

T P̃ T

+ q(1− q)P̃F E
[

ak−1a
T
k−1

]

− q(1− q)P̃F E
[

diag(ak−1a
T
k−1)]

+ q2P̃F E
[

ak−1a
T
k−1

]

F T P̃ T + q(1− q)P̃F E
[

diag(ak−1a
T
k−1)]F

T P̃ T . (70)

By re-arranging terms in (70) and observing thatΓk−1 = E
[

ak−1a
T
k−1

]

and diag(Γk−1) = E
[

diag(ak−1a
T
k−1)

]

,

the result in (54) follows.

Additionally, from Lemma 2, it follows that

Φk+1 = E
[

yk+1y
T
k+1

]

= F E
[

(ak ◦ xk)(xk ◦ ak)
T
]

F T

= F
[

q2E
[

aka
T
k

]

+ q(1− q)E
[

diag(aka
T
k )
]

]

F T

= F
[

q2Γk + q(1− q)diag(Γk)
]

F T . (71)
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To obtain the iterations forΞk and Υk, the developments are very similar to the ones above. For

k = 0,

Ξ0 = E
[

a0b
T
0

]

= P̃ E[y0z
T
0 ]P̃

T = P̃ y0z
T
0 P̃ , (72)

and

Υ1 = E[y1z
T
1 ] = E

[

F (a0 ◦ x0)(x0 ◦ b0)
TF T

]

= F E
[

(a0 ◦ x0)(x0 ◦ b0)
T
]

F T

= (qF P̃y0)(qF P̃ z0)
T + q(1− q)F E[diag(P̃ y0z

T
0 P̃

T )]F T

= (qPy0)(qPz0)
T + q(1− q)Fdiag(P̃ y0z

T
0 P̃

T )F T

= y1z
T
1 + q(1− q)Fdiag(P̃ y0z

T
0 P̃

T )F T , (73)

where again we used the fact thatFP̃ = P
(

refer to Eq. (32)
)

.

For k ≥ 1, from Lemma 2 and (28), and taking into account thatyk+1 = F (ak ◦ xk) and zk+1 =

F (bk ◦ xk), it follows that

Ξk =E
[(

ak−1 ◦ (u− xk−1) + P̃ yk
)(

bk−1 ◦ (u− xk−1) + P̃ zk
)T ]

=E
[(

ak−1 ◦ (u− xk−1)
)(

bk−1 ◦ (u− xk−1)
)T ]

+ E
[(

ak−1 ◦ (u− xk−1)
)(

P̃ zk
)T ]

+ E
[(

P̃ yk
)(

bk−1 ◦ (u− xk−1)
)T ]

+ E
[(

P̃ yk
)(

P̃ zk
)T ]

=E
[(

ak−1 ◦ (u− xk−1)
)(

bk−1 ◦ (u− xk−1)
)T ]

+ E
[(

ak−1 ◦ (u− xk−1)
)(

bk−1 ◦ xk−1

)T ]
F T P̃ T

+ P̃F E
[(

ak−1 ◦ xk−1

)(

bk−1 ◦ (u− xk−1)
)T ]

+ P̃F E
[(

ak−1 ◦ xk−1

)(

bk−1 ◦ xk−1

)T ]
F T P̃ T

=(1− q)2E
[

ak−1b
T
k−1

]

+ q(1− q)E
[

diag(ak−1b
T
k−1)]

+ q(1− q)E
[

ak−1b
T
k−1

]

F T P̃ T − q(1− q)E
[

diag(ak−1b
T
k−1)]F

T P̃ T

+ q(1− q)P̃F E
[

ak−1b
T
k−1

]

− q(1− q)P̃F E
[

diag(ak−1b
T
k−1)]

+ q2P̃F E
[

ak−1b
T
k−1

]

F T P̃ T + q(1− q)P̃F E
[

diag(ak−1b
T
k−1)]F

T P̃ T . (74)

By re-arranging terms in (74) and observing thatΞk−1 = E
[

ak−1b
T
k−1

]

and diag(Ξk−1) = E
[

diag(ak−1b
T
k−1)

]

,

the result in (58) follows. Finally,

Υk+1 = E
[

yk+1z
T
k+1

]

= F E
[

(ak ◦ xk)(xk ◦ bk)
T
]

F T

= F
[

q2E
[

akb
T
k

]

+ q(1− q)E
[

diag(akb
T
k )
]

]

F T

= F
[

q2Ξk + q(1− q)diag(Ξk)
]

F T , (75)

which completes the proof.

Although omitted in the statement of Lemma 3, it is easy to seethat the dynamics of∆k = E[bka
T
k ]

andΘk = E[zky
T
k ] can also be obtained by noting that∆k = ΨT

k andΘk = ΥT
k .
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V. CONVERGENCEANALYSIS OF ROBUSTIFIED DOUBLE-ITERATION ALGORITHM

The previous Section established that the iterations governing the evolution ofΓk, Ψk andΞk are

identical except for the initial conditions. We will show next that the steady-state solutions of these

iterations are also identical up to a multiplicative constant. To see this, we will rewrite (54), (56),

and (58) in vector form using Kronecker products. For given matricesC, A, andB of appropriate

dimensions, the matrix equationC = AXB (whereX is an unknown matrix) can be rewritten as a set

of linear equations of the form(BT ⊗A)x = c, wherex andc are the vectors that result from stacking

the columns of matricesX andC respectively, and⊗ denotes the Kronecker product4 of matrices [26].

Let γk be the vector that results from stacking the columns ofΓk and γ̃k the vector that results from

stacking the columns of diag(Γk). Then, it can be easily seen that (54) can be rewritten as

γk =
[

[qP̃F + (1− q)I]⊗ [qP̃F + (1− q)I]
]

γk−1 +
[

q(1− q)[I − P̃F ]⊗ [I − P̃F ]
]

γ̃k−1, k ≥ 1.

(76)

Let G be a diagonal matrix with entriesG
(

(l− 1)n2+ l, (l− 1)n2 + l
)

= 1, ∀l = 1, 2, . . . , n2, and zero

otherwise. Then, the second term on the right hand side of (76) can be written as

q(1− q)
(

[I − P̃F ]⊗ [I − P̃F ]
)

γ̃k−1 = q(1− q)
(

[I − P̃F ]⊗ [I − P̃F ]
)

Gγk−1, k ≥ 1, (77)

which leads us to

γk =
[

[qP̃F + (1− q)I]⊗ [qP̃F + (1− q)I] + q(1− q)
(

[I − P̃F ]⊗ [I − P̃F ]
)

G
]

γk−1, k ≥ 1. (78)

Let ψk andξk andδk be the vectors that result from stacking the columns ofΨk, Ξk and∆k respectively.

Then, it is easy to see that the same recurrence relation as in(78) governs the evolution ofψk and ξk.

Theorem 1: Let P ∈ R
n×n be a column stochastic and primitive weight matrix associated with a

directed graphG = {V, E}, with V = {1, 2, . . . , n} andE ⊆ V × V. Let F = [In In . . . In] ∈ R
n×n2

,

where In is the n × n identity matrix, andP̃ = [E1P
T E2P

T . . . EnP
T ]T ∈ R

n2×n, where each

Ei ∈ R
n×n, i ∈ {1, 2, . . . , n}, satisfiesEi(i, i) = 1 and has all other entries equal to zero. Then, for

any q, 0 < q ≤ 1, the matrixΠ defined as

Π ≡ [qP̃F + (1− q)I]⊗ [qP̃F + (1− q)I] + q(1− q)
(

[I − P̃F ]⊗ [I − P̃F ]
)

G (79)

is column stochastic, and it has a single eigenvalue of maximum magnitude at value one.

Proof: We show first column stochasticity of matrixΠ. LetC = qP̃F +(1−q)I andD = I− P̃F ,

so thatΠ = C⊗C+q(1−q)(D⊗D)G. We will establish thatC⊗C is column stochastic and also show

4The Kronecker product of matricesA = [aij ] ∈ R
m×n andB = [bij ] ∈ R

p×q is defined (see, e.g., [26]) as the block matrix

A⊗B :=







a11B . . . a1nB
...

. . .
...

am1B . . . amnB






∈ R

mp×nq
.
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that the column sums ofD⊗D are all zero. By construction, the entries of theith column ofP̃ ∈ R
n2×n

are all zero, with the possible exception of the ones indexedby
(

(i − 1)n + j, i
)

, i, j = 1, 2, . . . , n,

each of which corresponds to the(j, i) entry of matrixP . Then, it follows that
∑n2

l=1 P̃li =
∑n

j=1 Pji =

1, ∀i = 1, 2, . . . , n2. The matrixP̃F ∈ R
n2×n2

is also column stochastic by construction, as it results

from horizontally concatenatingn times the matrixP̃ , i.e., P̃F = [P̃ P̃ . . . P̃ ]; therefore, the matrixC

is also column stochastic. The kronecker product ofC with itself, results in ann4×n4 block matrix of

the formC ⊗ C = [C1 C2 . . . Cn2 ], whereCj = [c1jC
T c2jC

T . . . cn2jC
T ]T . Then, it follows that the

sum of the entries of thelth column ofCj is
∑n4

m=1Cj(m, l) = (
∑n2

i=1 cij)(
∑n2

r=1 crl). Since
∑n2

i=1 cij

and
∑n2

r=1 crl are the sum of the entries of thejth and lth columns ofC = qP̃F + (1− q)In4 (which is

column stochastic), it follows that
∑n4

m=1Cj(m, l) = 1; therefore,C ⊗ C is also column stochastic.

SinceP̃F is column stochastic, the column-sums ofD = I − P̃F are zero. The kronecker product

of D with itself is of the formD ⊗D = [D1 D2 . . . Dn2 ], whereDj = [d1jD
T d2jD

T . . . dn2jD
T ]T .

Using similar arguments as above, it follows that
∑n4

m=1Dj(m, l) = (
∑n2

i=1 dij)(
∑n2

r=1 drl) = 0, which

implies that the column-sums ofD ⊗ D are zero. The only thing left to establish thatΠ is column

stochastic is to show that all entries ofΠ are nonnegative (from where it immediately follows that

Π = C ⊗ C + q(1 − q)(D ⊗ D)G is column stochastic). We argue nonnegativity ofΠ as follows:

due to the sparsity structure ofG in (79), the only nonzero entries of(D ⊗ D)G will be in columns

(k−1)n2+k, k = 1, 2, . . . , n2; thus except for entries in these columns, the entries ofΠ will be identical

to the corresponding entries inC⊗C. From the structure of̃PF , entries ofC⊗C andq(1−q)(D⊗D)

can, respectively, take one of the following three forms:

(

qpij + (1− q)
)(

qplm + (1− q)
)

, (80)

q(1− q)(1− pij)(1− plm), (81)

or

qpij
(

qplm + (1− q)
)

, (82)

− q(1− q)pij(1− plm), (83)

or

q2pijplm, (84)

q(1− q)pijplm, (85)

where pij ≥ 0 and plm ≥ 0 are the(i, j) and (l, m) entries of matrixP . For (80) and (81), the

corresponding entry ofΠ is of the form

(

qpij + (1− q)
)(

qplm + (1− q)
)

+ q(1− q)(1− pij)(1− plm) = qpijplm + (1− q), (86)



COORDINATED SCIENCES LABORATORY TECHNICAL REPORT UILU-ENG-11-2207 (CRHC-11-05) 22

and satisfies0 ≤ qpijplm + (1− q) ≤ 1 For (82) and (83), the corresponding entry ofΠ is of the form

qpij
(

qplm + (1− q)
)

− q(1− q)pij(1− plm) = qpijplm, (87)

and satisfies0 ≤ qpijplm ≤ 1. For (84) and (85), the corresponding entry ofΠ is of the form

q2pijplm + q(1− q)pijplm = qpijplm, (88)

and satisfies0 ≤ qpijplm ≤ 1.

To prove the second assertion, we will show first that matrixP̃F can be written via a permutation

of its indices in the form
[

U V

0 W

]

, (89)

whereU is an irreducible column stochastic matrix andlimk→∞W k = 0. SinceP̃F is column stochastic,

we can assume that it corresponds to the weight matrix of somegraphG̃ = {Ṽ, Ẽ}. We will show that

this graph has a single recurrent class plus a few transient states, from which the decomposition ofP̃F

in (89) follows. Let

Ṽ = {(1, 1), (2, 1), . . . , (n, 1), (1, 2), (2, 2), . . . , (n, 2), . . . , (n, n− 1), (1, n), (2, n), . . . , (n, n)}. (90)

From the structure of̃PF , it follows that for any node(i, j) ∈ Ṽ, one-step transitions out of(i, j) are

to nodes of the form(m, i), with i ∈ N−
m , whereN−

m is the set in-neighbors of nodem in the graph

G (with weight matrixP ). From the structure of̃PF , it also follows that there are possibly several

rows of P̃F with all entries equal to zero, which means that a node(i, j) that is associated with such

row cannot be reached from any other node; however, as already argued, from nodes of the form(i, j),

it is possible to reach nodes of the form(m, i), where i ∈ N−
m . Clearly, the nodes corresponding to

rows with all entries being zero are transient. Note that thepossibility of individual nodes that cannot

be reached from any other node being disconnected is ruled out as it is easy to see the only nonzero

diagonal entries of̃PF correspond to diagonal entries ofP , which are strictly smaller than one.

Next we will show that from a node(i, j) whose corresponding row iñPF has some nonzero entries

one can reach any other node(m, l) whose corresponding row iñPF has some nonzero entries. This

means that all non-transient nodes form a single recurrent class (as already argued all nonzero diagonal

entries are strictly smaller than one which means there cannot be absorbing nodes). This follows from

the fact that the graphG is strongly connected, which means that for anyj, l ∈ V, there exists a path

betweenj and l. Let i1, i2, . . . , it denote the nodes traversed along the path betweenj and l. We will

show next that for any two non-transient nodes(i, j), (r, l) ∈ Ṽ there exists a path. As already argued,

from (i, j) one can reach in a single hop any node of the form(m, i), wherem is a neighbor of nodei

in the graphG. Sincei1 is the first node traversed in the path betweenj andl, it follows that(i1, i) ∈ Ṽ

can be reached in one step from(i, j). By repeatedly using this argument, it follows that the sequence
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of nodes(i1, i), (i2, i1), . . . , (it, it−1), (r, it) forms a path between(i, j) and(r, l), which means that any

non-transient node can be reached by any other non-transient node; thus, the set of non-transient nodes

forms a single recurrent class. Clearly, the vertex setṼ can be decomposed into a single recurrent class

and possibly several transient nodes. By re-ordering the nodes, it follows thatP̃F can be rewritten as

in (89) (see, e.g., [27, p. 126]). Furthermore, sinceQ in (89) is irreducible, it follows thatqQ+(1−q)I

(whereI is the identity matrix) is primitive. It follows thatC = qP̃F + (1 − q)I has a unique largest

eigenvalue of value one, i.e.,λ1 = 1, and1 > |λ2| ≥ · · · ≥ |λn2|. Let σ(C) = {λ1, λ2, . . . , λn2}. Then,

σ(C ⊗ C) = {λiλj, i = 1, . . . , n, j = 1, . . . , n}, including algebraic multiplicities in both cases [26,

p. 245]. Sinceλ1 = 1 is unique (multiplicity one) and|λi| < 1, i = 2, . . . , n2, it follows that the

eigenvalue ofC ⊗ C = [qP̃F + (1 − q)I]⊗ [qP̃F + (1− q)I] of largest magnitude also takes value 1

and is unique. SinceC ⊗ C is column stochastic andλ1 = 1 is unique, we know that eitherC ⊗ C is

also primitive or it can be decomposed following a permutation of indices to the form [27, p. 126]:
[

L M

0 N

]

, (91)

whereL is a primitive matrix andlimk→∞Nk = 0.

We will show next thatΠ = C ⊗ C + q(1 − q)(D ⊗ D)G has exactly the same nonzero entries as

C⊗C and therefore can be decomposed following the same permutation of indices to the form in (91).

As argued before, due to the sparsity structure ofG in (79), the only nonzero entries of(D⊗D)G will

be in columns(k − 1)n2 + k, k = 1, 2, . . . , n2, thus except for entries in the aforementioned columns,

the nonzero entries ofΠ will be the same as those inC ⊗ C. For all other columns inΠ (that include

nonzero entries in(D ⊗ D)G), it was shown in (86)–(88) that the nonzero entries ofΠ are strictly

positive, from where it follows thatΠ has the same sparsity structure asC ⊗ C, which means thatΠ

can also be decomposed in the form of (91) (for some matricesL′, M ′, N ′), and the resulting upper-right

block is also a primitive matrix. Therefore,Π has a unique largest eigenvalue at one.

The following two lemmas establish that the first and second moments ofak and bk, andyk and zk
converge to the same solution up to a scalar multiplication.These two lemmas will be used to show

that ask → ∞, the random vectorvk = zk − αyk, for α =

∑n
j=1 z0(j)

∑n
j=1 y0(j)

, will converge almost surely to

v = 0. This suggests that, ask → ∞, and wheneverzk is nonzero, each nodei can obtain an estimate

of α =
∑n

j=1 z0(j)∑n
j=1 y0(j)

by calculating the ratioyk(i)/zk(i). We will also show that, in fact,zk will be larger

than some threshold infinitely often.

Lemma 4: The first moments ofak and bk (also yk and zk asymptotically converge to the same
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solution up to scalar multiplication:

lim
k→∞

zk = α lim
k→∞

yk, (92)

lim
k→∞

bk = α lim
k→∞

ak, (93)

whereα =

∑n
j=1 z0(j)

∑n
j=1 y0(j)

.

Proof: In Lemma 1, it was shown thatyk+1 =
[

qP+(1−q)I
]

yk andzk+1 =
[

qP+(1−q)I
]

zk with

y1 = qy0, andz1 = qz0. SinceP is column stochastic and primitive, it follows that[qP+(1−q)I
]

is also

column stochastic and primitive. Thus,limk→∞ zk = α limk→∞ yk, where from the column stochasticity

property it follows that
∑n

j=1 zk(j) = q(
∑n

j=1 z0(j)) and
∑n

j=1 yk(j) = q
(
∑n

j=1 y0(j)
)

, ∀k ≥ 1; this

implies thatα =
∑n

j=1 z0(j)∑n
j=1 y0(j)

, which establishes (92).

By noting thata0 = P̃ y0, and b0 = P̃ y0, and using the fact that̃P is column stochastic, it follows

that
∑n

j=1 ak(j) =
∑n

j=1 a0(j) =
∑n

j=1 y0(j) and
∑n

j=1 bk(j) =
∑n

j=1 b0(j) =
∑n

j=1 z0(j). Since

qP̃F + (1− q)I (i.e., the matrix that governs the dynamics ofak and bk) is column stochastic and, as

shown in the proof of Theorem 1, has a single largest eigenvalue at value 1, a similar development to

the one above can be used to show (93).

Lemma 5: Definewk = bk−αak and denote byχk the vector that results from stacking the columns

of Xk := E[wkw
T
k ]. Then, it follows that

χk = Πχk−1, (94)

with χ0 = ψ0 + α2γ0 − α(ξ0 + δ0) and
∑n4

l=1 χ0(l) = 0.

Proof: SinceXk := E[wkw
T
k ] = E[bkb

T
k ] + α2

E[aka
T
k ] − α(E[akb

T
k ] + E[bka

T
k ]) = Ψk + α2Γk −

α(Ξk + ∆k), it follows that χk = ψk + α2γk − α(ξk + δk). From (78) and subsequent discussion, it

follows thatγk = Πγk−1, ψk = Πψk−1, ξk = Πξk−1, andδk = Πδk−1, thusχk = Πψk−1 + α2Πγk−1 −

α(Πξk−1 +Πδk−1) = Π(ψk−1 + α2γk−1 − α(ξk−1 + δk−1)) = Πχk−1.
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In Lemma 3, it was shown thatΓ0 = P̃ y0y
T
0 P̃

T , Ψ0 = P̃ z0z
T
0 P̃

T , andΞ0 = P̃ y0z
T
0 P̃

T = ∆T
0 . Since

γ0, ψ0, ξ0, andδ0 result from stacking the columns ofΓ0, Ψ0, Ξ0, and∆0, it follows that

n4
∑

l=1

γ0(l) =
n2
∑

i=1

n2
∑

j=1

Γ0(i, j) =

(

n
∑

i=1

y0(i)

)2

, (95)

n4
∑

l=1

ψ0(l) =
n2
∑

i=1

n2
∑

j=1

Ψ0(i, j) =

(

n
∑

i=1

z0(i)

)2

, (96)

n4
∑

l=1

ξ0(l) =

n2
∑

i=1

n2
∑

j=1

Ξ0(i, j) =

(

n
∑

i=1

y0(i)

)(

n
∑

i=1

z0(i)

)

,

n4
∑

l=1

δ0(l) =

n2
∑

i=1

n2
∑

j=1

∆0(i, j) =

(

n
∑

i=1

z0(i)

)(

n
∑

i=1

y0(i)

)

, (97)

where the last equality is obtained by taking into account that i) matrix P̃ is column stochastic by

construction, and ii) for anya, b ∈ R
n, we have that

∑n
i=1

∑n
j=1 ab

T (i, j) = (
∑n

l=1 al)(
∑n

l=1 bl). Since

α =
∑n

j=1 z0(j)∑n
j=1 y0(j)

, it follows that
∑n4

l=1 χ0(l) =
∑n4

l=1(ψ0(l) + α2γ0(l)− α(ξ0(l) + δ0(l))) = 0.

Theorem 2: Let yk andzk be the random vectors that result from iterations (28)–(29)and (30)–(31).

Define vk = zk − αyk, whereα =
∑n

j=1 z0(j)∑n
j=1 y0(j)

. Then,‖vk‖∞ → 0 almost surely. Furthermore, for every

j, vk(j) → 0 ask → ∞ almost surely (i.e., for everyj, limk→∞ vk(j) = 0 with probability one).

Proof: The result follows from the first Borel-Cantelli lemma [28, Theorem 7.3.10]. For allk ≥ 0

and all ǫ > 0, define the eventEk(ǫ) = {‖vk‖∞ > ǫ}. We will first establish an upper bound on
∑∞

k=0 Pr{Ek(ǫ)} by noting thatPr{Ek(ǫ)} = Pr{‖vk‖∞ > ǫ} ≤ E[‖vk‖∞]
ǫ

, thus
∑∞

k=0 Pr{Ek(ǫ)} ≤
1
ǫ

∑∞
k=0E [‖vk‖∞] ≤ 1

ǫ

∑∞
k=0E [‖vk‖2]. Note thatE [‖vk‖2] = (E[vTk vk]))

1/2 = (trace(E[vkvTk ]))
1/2 =

(trace(E[zkzTk ]) + α2trace(E[ykyTk ]) − 2αtrace(E[ykzTk ])
1/2. We will next show thatE [‖vk‖2] → 0 as

k → ∞ geometrically fast. Using Lemma 3, it can be established that E[vkvTk ] = E[zkz
T
k ]+α

2
E[yky

T
k ]−

α(E[ykz
T
k ] + E[zky

T
k ])) = F

[

q2Xk−1 + q(1 − q)diag(Xk−1)
]

F T whereXk−1 = E[wkw
T
k ] as defined in

Lemma 5, thus the evolution ofE[vkvTk ] is governed by the evolution ofXk−1 or byχk−1 (the vector that

results from stacking the columns ofXk−1). In Theorem 1, we showed thatΠ has a unique eigenvector

(with all entries strictly positive) associated to the largest eigenvalueλ1 = 1. Then, the solution of (94) is

unique and equal to this eigenvector (up to scalar multiplication). SinceΠ is a column stochastic matrix,

and Lemma 5 established that
∑n4

l=1 χ0(l) = 0, it follows that
∑n4

l=1 χk(l) = 0, k ≥ 0, and therefore

limk→∞ χk(l) = 0, ∀l. Additionally, it is well-known that the convergence of (94) is geometric with a

rate of convergence given by the eigenvalueλ2 of Π with the second largest modulus, which satisfies

|λ2| < λ1 = 1 (see, e.g., [27]). Thus, we have established thatχk(l) → 0, ∀l, geometrically fast,

from where it follows that all the entries ofE[vkvTk ] go to zero also geometrically fast. Therefore, the

trace(E[vkvTk ]) also goes to zero geometrically fast, so thatE [‖vk‖2] also goes to0 geometrically fast.

It immediately follows that
∑∞

k=0E [‖vk‖2] < ∞ and therefore
∑∞

k=0Pr{‖vk‖∞ ≥ ǫ} < ∞. Then,

from the first Borel-Cantelli lemmaPr{‖vk‖∞ ≥ ǫ infinitely often} = 0 (or Pr{‖vk‖∞ ≥ ǫ i.o.} = 0).
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Finally, since, for everyj, ‖vk‖∞ ≥ |vk(j)|, then, for everyj, Pr{‖vk‖∞ ≥ ǫ} ≥ Pr{|vk(j)| ≥ ǫ}, and

thus, for everyj,
∑∞

k=0Pr{|vk(j)| ≥ ǫ} <∞. Then, by Theorem 7.2.4.c of [28], for everyj, vk(j) → 0

almost surely.

Theorem 2 has established that, in the limit as the number of iterationsk becomes large, the values

of vectorsyk and zk will be perfectly aligned so thatzk − αyk = 0 with probability one. Thus, in this

limiting case, each nodej can calculate the value of1
α

by taking the ratioyk(j)
zk(j)

, as long as zk(j) 6= 0.

Note that, as also evidenced by the simulations provided forthe small network of Fig. 1 (e.g., the plots

on the left and in the middle for Figure 3), the vectorsyk andzk do not converge in any way;5 however,

the valuesyk andzk become perfectly aligned (with probability one), allowingeach nodej to calculate
1
α
= yk(j)

zk(j)
. The only problem here arises whenyk(j) and zk(j) have both value zero, which does not

constitute a violation ofzk − αyk = 0, but clearly does not allow nodej to calculate the desired value
1
α
. This is evidenced also in the simulations provided for the small network of Fig. 1: for example, in

the plots in Fig. 4, the values ofyk(j) and zk(j) often go to zero (simultaneously) leaving their ratio

undefined.6 The next two theorems essentially establish thatzk(j), j = 1, 2, . . . , n, will be greater than

zero (in fact, greater than a constantC that will be specified) infinitely often. Note that, in subsequent

developments,zk(j) is denoted withzj[k] in order to remain close to the notation in (15)–(17).

Theorem 3: Consider a (possibly directed) strongly connected graphG = (V, E) and the iteration

in (15)–(17), wherexji[k], (j, i) ∈ E , k = 0, 1, 2, ..., are independent identically distributed (i.i.d.)

indicator R.V.’s as defined in (1), i.e.,xji[k] = 1 with probability q and xji[k] = 0 with probability

1 − q, independently between(j, i) ∈ E and independently for differentk. For everyj = 1, 2, . . . , n,

define the eventEj
k = {zj [kn] ≥ C}, k ≥ 1, whereC = n

(n+m)(D+
max)n−1 , D+

max = maxj∈V{D
+
j },

n = |V|, andm = |E|. Let ζjk denote the indicator of the eventEj
k, k ≥ 1, i.e., ζjk = 1 whenever

Ej
k, k ≥ 1 occurs, andζjk = 0 otherwise. Then, whateverζ1, ζ2, . . . , ζk−1, we have that

Pr{zj[(k + 1)n] ≥ C | ζjk, ζ
j
k−1, . . . , ζ

j
1} ≥ qn, ∀j. (98)

Proof: Note that the iteration in (15) to (17) involves nonnegativequantities: since for everyj,

zj [0] > 0, ∀j, it follows from (30)–(31) that, for everyj, zj [k] ≥ 0, k ≥ 0. Then, it is not hard to

establish that the total mass7 Mk+1 in the system, defined as

Mk+1 :=
n
∑

j=1

zj [k + 1] +
∑

(j,i)∈E

(σji[k]− τji[k − 1])(1− xji[k]) , (99)

5Earlier, we established that, for largek, the quantitiesE[yk], E[zk], E[yky
T
k ], E[zkz

T
k ] andE[ykz

T
k ] converge, but this does not imply

any convergence for the values ofyk or zk.
6Since in the simulations for the plots in Fig. 4, each packet (including self-packets) can be dropped with probability1− q at iteration

k, there is a nonzero probability that all packets destined for node j will be dropped, causing both of its values at the next iteration
(yk+1(j) andzk+1(j)) to be zero. For instance, in the simulation of Fig. 4,zk(1) will be zero with probability at least(1− q)2 = 0.81
because node1 will have value zero if both packets destined for it (including the self-packet) are dropped.

7This notion is discussed in great detail in Part II of this paper.
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satisfies

Mk+1 = n , for all k = 0, 1, 2, ... .

[This follows from the fact thatM0 =
∑n

j=1 zj[0] = n and the observation that

Mk+1 :=

n
∑

j=1

zj [k + 1] +
∑

(j,i)∈E

(σji[k]− τji[k − 1])(1− xji[k])

=
∑

(j,i)∈E

(σji[k]− τji[k − 1])xji[k] +
∑

(j,i)∈E

(σji[k]− τji[k − 1])(1− xji[k])

=
∑

(j,i)∈E

(σji[k]− τji[k − 1])

=
∑

(j,i)∈E

(

σji[k − 1] +
1

D+
j

zj [k]− σji[k − 1]xji[k − 1]− τji[k − 2](1− xji[k − 1])

)

=
n
∑

j=1

zj [k] +
∑

(j,i)∈E

(σji[k − 1]− τji[k − 2])(1− xji[k − 1]) ,

which is equal toMk.]

The definition ofMk+1 in (99) involves the summation ofn + m nonnegative quantities, namely,

zj [k+1] for j = 1, 2, ..., n andmji[k+1] := (σji[k]− τji[k−1])(1−xji[k]) for (j, i) ∈ E . We can think

of these quantities as follows:zj [k+1] is the mass at nodej, whereasmji[k+1] is the mass waiting to

get transferred to nodej from nodei. Since all of these quantities are nonnegative, at least oneof them

is larger or equal to n
n+m

. Regardless of whether this quantity is associated with a node (say nodej∗)

or a link (say link(j∗, i∗)), this mass has at least one way of reaching any nodei of interest in graph

G via a path of length at mostn − 1 (because the graphG is strongly connected): in particular, there

is at least one path of length at mostn− 1 from nodej∗ to nodei and all the links in this path have

weight at least 1
D+

max
. If all these links are activated, which occurs with probability qn−1 (qn in the case

of link (j∗, i∗) because the mass needs to first transfer toj∗), then a fraction( 1
D+

max
)n−1 of the mass

will transfer to nodei in at mostn steps. Then, since for everyj, zj [k] ≥ 0, k ≥ 0, independently of

the values ofzj [ln], l = 1, 2, . . . , k, Pr{zj [(k + 1)n] ≥ C | ζjk, ζ
j
k−1, . . . , ζ

j
1} ≥ qn obtains, whatever

ζ1, ζ2, . . . , ζk−1. Finally, for everyj , Pr{zj[(k + 1)n] ≥ C | ζjk, ζ
j
k−1, . . . , ζ

j
1} = 1− Pr{zj [(k + 1)n] <

C | ζjk, ζ
j
k−1, . . . , ζ

j
1} ≤ 1−Pr{zj [(k+1)n] = 0 | ζjk, ζ

j
k−1, . . . , ζ

j
1} ≤ 1−qD

−

j , whereD−
j is the in-degree

of nodej.

Given a sequence of eventsE1, E2, . . . , En, . . . defined on some probability space, the next theorem

(which we do not prove) states the 1912 Borel criterion for establishing whether the event that infinitely

many of theEk occur, denoted by{Ek i.o}, will occur with probability one or zero (see, e.g., [29],

[30]). This result, together with the result in Theorem 3 will be used to establish that, for everyj, the

eventEj
k = {zj[kn] ≥ C}, k ≥ 1 occurs infinitely often.

Theorem 4: Let {Ek}, k = 1, 2, . . . , be a sequence of events defined on some probability space. Let
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ζk be the indicator function of the eventEk. LetPr{Ek+1 | ζk, ζk−1, . . . , ζ1} denote the conditional prob-

ability of the eventEk+1 given the outcome of previous trials. If0 < p′k ≤ Pr{Ek+1 | ζk, ζk−1, . . . , ζ1} ≤

p′′k for everyk, whateverζ1, ζ2, . . . , ζk, then i)Pr{Ek i.o.} = 0 if
∑∞

k=1 p
′′
k ≤ ∞, and ii)Pr{Ek i.o.} = 1

if
∑∞

k=1 p
′
k = ∞.

Theorem 5: Consider a (possibly directed) strongly connected graphG = (V, E) and the iteration

in (15)–(17). For everyj = 1, 2, . . . , n, define the eventEj
k = {zj [kn] ≥ C}, k ≥ 1, whereC =

n
(n+m)(D+

max)n−1 , D+
max = maxj∈V{D

+
j }, n = |V|, andm = |E|. Then,Pr{Ek i.o.} = 1.

Proof: Theorem 3 established that, for everyj, Pr{zj [(k + 1)n] ≥ C | ζjk, ζ
j
k−1, . . . , ζ

j
1} ≥ qn.

Define p′k = qn, then it follows that
∑∞

k=1 p
′
k = ∞, and by the second assertion in Theorem 4, we

conclude that, for everyj, Pr{Ej
k i.o.} = 1.

The final piece is to establish that wheneverzj [k] ≥ C, which occurs infinitely often, each node will

be able to calculate an estimate ofv by calculating the ratioyj[k]/zj [k] and this estimate will converge

to 1/α ask goes to infinity.

Theorem 6: For eachj, let k = t1, t2, . . . be an increase sequence of time steps for whichzj [k] > C.

Then, almost surely

lim
n→∞

∣

∣

∣

∣

yj[tn]

zj [tn]
−

1

α

∣

∣

∣

∣

= 0. (100)

Proof: Sincezj [k] ≥ C for k = t1, t2, . . . , it follows that yj [tn]
zj [tn]

− 1
α
≤ αyj [tn]−zj [tn]

αC
. Also, in the proof

of Theorem 3, we established thatMk = n, k ≥ 0, from where it follows thatzj [tn] ≤ n, therefore
yj [tn]

zj [tn]
− 1

α
≥ αyj [tn]−zj [tn]

αn
. In Theorem 2, we established that|αyj[k]− zj[k]| → 0 almost surely, which

implies that the subsequence|αyj[tn]− zj [tn]| → 0 almost surely, then sinceC < n, we have that

lim
n→∞

∣

∣

∣

∣

yj [tn]

zj [tn]
−

1

α

∣

∣

∣

∣

≤ lim
n→∞

∣

∣

∣

∣

αyj[tn]− zj [tn]

αC

∣

∣

∣

∣

= 0 (101)

almost surely.

VI. CONCLUDING REMARKS

In this paper, we proposed a method to ensure robustness of a class of linear-iterative distributed

algorithms against unreliable communication links that may drop packets. We used statistical-moment

analysis and the Borel-Cantelli lemmas to establish the correctness of the proposed robustified algorithm.

In Part II of this paper, we establish similar convergence properties by recasting the problem as a finite

inhomogeneous Markov and using coefficients of ergodicity commonly to used in analyzing this type

of Markov chains.
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