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Abstract— We consider a wireless grid network in which
nodes are prone to failure. In the considered failure
mode, each node has an independent probability of failure
p, and failures are of the crash-stop kind. All nodes
are assumed to have a common transmission range r.
We establish necessary and sufficient conditions for the
minimum transmission range, and hence degree, of each
node as a function of the total network size n and the
failure probability p, so as to ensure that the network
is asymptotically connected with probability 1, as n → ∞.
Our results indicate that the degree of each node must be
Θ( lnn

ln 1
p
). We also derive conditions for coverage and obtain

the same result.

I. INTRODUCTION

We consider the problem of connectivity and coverage
in a wireless grid network prone to failure. We show that
node degree must be Θ( lnn

ln 1
p
) for asymptotic connectivity

and coverage.

II. NETWORK MODEL

We consider a network model wherein nodes are
located on a two-dimensional rectangular toroidal
grid (each grid unit is a 1× 1 square). The case of a
non-toroidal grid will be briefly discussed, and only
affects the constant in our results. We designate an
origin, and all nodes can be uniquely identified by their
grid location (x,y) w.r.t. this origin. All nodes have a
common transmission radius r. A message transmitted
by a node (x,y) is heard by all nodes within distance
r from it (where distance is defined in terms of the
particular metric under consideration, and r is assumed
to be an integer). The set of these nodes is termed the
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neighborhood of (x,y).

In this paper, we consider two distance metrics:
L∞ and L2. The L∞ metric is the metric induced by
the L∞ norm [1], such that the distance between points
(x1,y1) and (x2,y2) is given by max{|x1 − x2|, |y1 − y2|}
in the this metric. Thus nbd(a,b) comprises a square
of side 2r with its centroid at (a,b), and the degree of
a node is 4r2 + 4r. The L2 metric is induced by the L2
norm [1], and is the Euclidean distance metric. The L2
distance between points (x1,y1) and (x2,y2) is given
by

√

(x1 − x2)2 +(y1 − y2)2, and nbd(a,b) comprises
nodes within a circle of radius r centered at (a,b).
The L∞ metric enables more tractable analysis, from
which necessary and sufficient conditions for the L2
(Euclidean) metric proceed. In Section IX, we further
elaborate on how the results for the two metrics are
related.

A random failure mode is assumed, wherein each
node can fail with probability p independently of other
nodes. A failed node simply stops functioning, i.e.,
failures are of the crash-stop kind.

III. RELATED WORK

Conditions for connectivity and coverage have been
formulated in the context of different network models.
In [2], it was proved that in a unit area network
with uniformly distributed node placement, where
nodes have a common transmission radius r, such
that πr2 = (logn+c(n))

n , the network is asymptotically
connected with probability one iff c(n) → ∞. In [3],
an alternate model was considered whereby randomly
deployed nodes may modulate their transmission power
(and hence range) to ensure that they have a certain



number of neighbors. It was proved that each node
must be connected to Θ(logn) neighbors for asymptotic
connectivity with probability one.

A grid network model was considered in [4] where
nodes are located at grid locations on a square grid,
but may fail independently. Nodes have a common
transmission range r. The probability of not failing is
specified as p, and it is shown that a sufficient condition
for connectivity and coverage is that transmission range
r must be set to ensure that node degree is c1(

logn
p ) (for

some constant c1). It is also shown that a necessary
condition for coverage (and hence for joint coverage and
connetivity) is that node degree be at least c2(

logn
p ) (for

another constant c2. A fallacy in the above necessary
condition was pointed out by [5], and a subsequent
correction [6] by the authors of [4] presents examples
illustrating that the necessary condition may fail to
hold for certain subranges of p. The issue of coverage
has been examined in detail in [5] for random, grid,
and poisson deployments. However, the necessary and
sufficient conditions formulated by them take a more
complex form, and do not point to a single f (n, p)
such that a degree of Θ( f (n, p)) is both necessary
and sufficient for asymptotic coverage. Besides, the
necessary condition is formulated for the specific case
when lim

n→∞
p → 0

Our results are closely related to the results of
[4]. However, we prove that, given a failure probability
p, it is necessary and sufficient to have a degree of
Θ( logn

log 1
p
) for both connectivity and coverage. Expressed

in the notation of [4], we stipulate a degree of Θ( logn
log 1

1−p
).

Our results diverge considerably from those of [4] when
the failure probability becomes extremely small, and
thus our necessary conditions would hold in a certain
subdomain where that of [4] would not. However, there
is a small sub-domain of p in which our necessary
conditions also cease to hold, as with the conditions
of [4]. Besides, we work in the L∞ distance metric,
and then map the results to L2. This yields much
simpler proofs. We also remark that our joint sufficient
condition for connectivity and coverage is actually
sufficient for 9-coverage and not merely 1-coverage
(where k-coverage implies that each point is covered by
at least k non-faulty nodes).

IV. NOTATION AND TERMINOLOGY

We briefly describe here notation and terminology that
shall be used in this paper. Nodes can identified by

their grid location i.e. (x,y) denotes the node at (x,y).
The neighborhood of (x,y) comprises all nodes within
distance r of (x,y) and is denoted as nbd(x,y). The
degree of each node is referred to as d. In L ∞ metric,
d = 4r2 +4r, while the size of a neighborhood (including
the neighborhood center) is d + 1 = 4r2 + 4r + 1. The
diameter of the network (in terms of distance, and not
number of hops) is referred to as D. If n is a perfect
square, D =

√
n.

V. SOME USEFUL MATHEMATICAL RESULTS

We state some mathematical results that have been
used in our proofs:

FACT 1: ∀x ∈ [0,1] : ln 1
1−x ≥ x

FACT 2: If f (n) ≤ n
1
2−ε(0 < ε <

1
2):

lim
n→∞

(

1+
f (n)

n

)n

= e f

Proof: See Appendix.

FACT 3: If c > 0 is a positive constant independent
of n, and b ≥ 1 is another positive constant independent
of n, then ∃no ∈ N such that:
1− 1

(lnn)b ≤ 1
n

c
n

for n > no

Proof: See Appendix.

VI. NECESSARY CONDITION FOR CONNECTIVITY

THEOREM 1: When p < 1 − 1
lnn , then in the

L∞ metric, the transmission range r must satisfy
r ≥ max{1,Ω(

√

lnn
ln 1

p
)}, i.e., the node degree d ≥

max{1,Ω( lnn
ln 1

p
)}, else lim

n→∞
Pr[ disconnection] = 1.

Proof: It is obvious that the minimum transmission
range required for connectivity is 1, else the degree of
all nodes is 0 (except in the case when connectivity
loses meaning as all nodes are faulty, and so the
network can be deemed connected trivially). Similarly,
the network is trivially connected if r = D, as all
nodes are in direct range of each other. Suppose that
r =

√

c lnn
ln 1

p
. Thus, when p ≥ 1

n
c
n

, r =
√

c lnn
ln 1

p
≥ √

n ≥ D,
and the necessary condition ceases to be relevant (as
r = D ensures connectivity).

We show that the network is asymptotically disconnected
with probability 1 if r <

√

c lnn
ln 1

p
, for some constant

0 < c < 1, as long as p < 1− 1
lnn . Note that if p < 1−δ

for any arbitrarily small constant δ > 0 (independent of
n), then for sufficiently large n, the necessary condition
would hold for all p. Also note that 1 − 1

lnn <
1

n
c
n



for large n (from Fact 3). Thus, the values of p for
which our necessary condition holds are those in which
the transmission range remains less than D. When
p ≥ 1 − 1

n1+ε , all nodes are faulty with probability
approaching 1, and the issue of connectivity is moot.
When p ≤ 1

nc , r =
√

c lnn
ln 1

p
≤ 1, and for this range of p,

the necessary condition lapses to having the minimum
range of 1.

a) p ≤ 1− 1
lnn : Consider a particular node j in the

network. Then, if j is non-faulty, but all its neighbors are
faulty, we have a potential disconnection event. Given
that there are d neighbors, and each may fail indepen-
dently with probability p, the probability that j does not
fail, but all nodes in nbd( j) fail, is (1− p)pd . We choose
a constant 0 < c < 1 such that c lnn ≤ lnn−4ln lnn, for
sufficiently large n. In general, c can be chosen very
close to 1, e.g., 1− ε(0 < ε < 1), and the condition will
hold for n > no, for some no. Since p ≤ 1 − 1

lnn , we
obtain that 1

1−p ≤ lnn. Let r ≤
√

c lnn
8ln 1

p
. The node degree

d = 4r2 +4r ≤ 4r2 +4r2 = 8r2, for n ≥ 1. Thus, for our
choice of r, it turns out that d ≤ c lnn

ln 1
p
. Then, it may be

seen that:

Pr[ A given node j is alive, but isolated]

≥ Pr[ j is alive and all neighbors of j are faulty ]

= (1− p)pd
>

1
lnn

p
c lnn

ln 1
p

=
1

lnn
1
nc

=
1

nc lnn

≥ (lnn)3

n
(from our choice of c) (1)

Let us mark out a subset of nodes j such that the
neighborhoods of these nodes are all disjoint, as in Fig.
1. Then the number of such nodes that we may obtain
= b
( √

n
2r+1

)2
c ≥ n

9r2 −1 (since
√

n may not be multiple of
2r+1). Let I j be an indicator variable that takes value 1 if
j is alive but isolated. Then Pr[I j = 1]≥ (lnn)3

n , and all I j’s
are independent. Let X be a random variable denoting the
number of nodes from the chosen set that are alive and
isolated. Then X = ∑ I j, and E[X ]≥ (lnn)3

n

(

n ln 1
p

9c lnn −1
)

≥

(lnn)3

n

n ln 1
1− 1

lnn
9lnn ≥ 1

9(lnn)2 ln 1
1− 1

lnn
≥ 1

9 lnn→∞. We can thus
apply the following form of the Chernoff bound [7]:

Pr[X ≤ (1−δ)E[X ]) ≤ exp(−δ2

2 E[X ]) (2)

Thus, with suitable 0 < c < 1 and δ = E[X ]−1
E[X ] , we obtain

Fig. 1. Nodes having disjoint neighborhoods

that for p < 1− 1
lnn , if r ≤

√

c lnn
8ln 1

p
, then E[X ] → ∞, and

hence lim
n→∞

Pr[ At least two alive nodes are isolated] = 1.

Observe that actually the necessary condition would
hold for all p such that E[X ] → ∞. For instance, the
above analysis holds for all p ≤ 1− 1

(lnn)b (where b is a
constant), with a corresponding suitably varying choice
of c to ensure that Pr[I j = 1] ≥ (lnn)(b+2)

n . Besides, if
E[X ] → γ > 0, the asymptotic disconnection probability
is still a positive finite quantity, and the condition is
still necessary for asymptotic connectedness probability
to approach 1.

b) p ≥ 1− 1
n1+ε : When the failure probability be-

comes so high as to fall in this range, we obtain:

Pr[ Any node is alive] = 1− pn

= 1−
(

1− 1
n1+ε

)n

→ 1− e−
1

nε → 0 from Fact 2 (3)

Thus the network is trivially connected by definition,
regardless of degree.

VII. NECESSARY CONDITION FOR COVERAGE

We now show that for the network to be asymp-
totically covered with probability approaching 1, it
is necessary that the transmission range r satisfy:
r ≥ max{1,Ω(

√

lnn
ln 1

p
)}, i.e., the node degree be d ≥

max{1,Ω( lnn
ln 1

p
)}.



THEOREM 2: For p < 1− 1
lnn , for a suitable constant

0 < c < 1, if d < c lnn
ln 1

p
:

lim
n→∞

Pr[Some point is not covered] → 1

Proof: As in the case of connectivity it is obvious
that r must be at least 1, else some points will not be
covered. We handle two subranges of p separately.

a) p < 1− 1
lnn : The proof relies on subdivision of

the network into disjoint neighborhoods, as in Fig. 1. If
there exists at least one neighborhood with absolutely
no nodes alive (neither the neighborhood center nor its
neighbors), then the center of that neighborhood is not
covered. Thus we seek to determine the probability of
such an event.

We choose a constant 0 < c < 1 such that
9
8 c lnn ≤ lnn − 3ln lnn, for sufficiently large n.
This ensures that 1

nc ≥ (lnn)3

n for large n. Let
r ≤

√

c lnn
8ln 1

p
. The neighborhood population is given

by d + 1 = 4r2 + 4r + 1 ≤ 4r2 + 4r2 + r2 = 9r2, for
n ≥ 1. Thus, d + 1 ≤ 9

8 c lnn
ln 1

p
. Let I j be an indicator

variable that takes value 1 if there is no alive node
in the neighborhood centered at node j, and value 0
otherwise. Then Pr[X j = 1] = pd+1 = p

9
8 c lnn

ln 1
p = (lnn)3

n
(from our choice of c). Let X = ∑ I j be a random
variable indicating the number of neighborhoods with
no alive node. Then E[X ] = (lnn)3

9r2 =
8(lnn)2 ln 1

p

9c (after
plugging in the chosen value of r). If p < 1− 1

lnn , then
E[X ] ≥ lnn(lnn ln 1

1− 1
lnn

) > lnn → ∞ (from Fact 1), and
application of the Chernoff bound from Equation 2
yields that Pr[X = 0] ≤ exp(−E[X ]

2 ) → 0. Thus there is
some uncovered region with probability 1.

Similar to the necessary condition for connectivity,
observe that this necessary condition would hold for all
p such that E[X ] → ∞. In particular, the above analysis
holds for all p ≤ 1− 1

(lnn)b (where b is a constant), with
a corresponding suitably varying choice of c to ensure
that Pr[I j = 1] ≥ (lnn)(b+2)

n . Also, if E[X ] → γ > 0, the
asymptotic probability of some point being uncovered
is a positive finite quantity, and the condition is
still necessary for asymptotic coverage probability to
approach 1.

b) p ≥ 1 − 1
n1+ε (0 < ε < 1): We obtain that

Pr[ no nodes alive ] = pn ≥
(

1− 1
n1+ε

)n. As n → ∞, the

following holds:

lim
n→∞

Pr[some point not covered] ≥ Pr[no node alive]

= lim
n→∞

(

1− 1
n1+ε

)n

→ e−
1

nε → 1 from Fact 2 (4)

Thus the network is trivially not covered, regardless of
transmission range.

VIII. SUFFICIENT CONDITION FOR CONNECTIVITY
AND COVERAGE

We now present a sufficient condition for the asymp-
totic existence of both connectivity and coverage.

THEOREM 3: When d > 32 lnn
ln 1

p
, the network is

asymptotically connected and covered with probability
1.

Proof:
a) p ≤ 1

n1+ε : When the failure probability is so
small as to fall in this range, the probability of even
a single node failing approaches 0 asymptotically, and
thus connectivity and coverage is trivially ensured even
with the minimum transmission range of 1. This may be
seen thus:

Pr[No failures;full connectivity/coverage] = (1− p)n

≥
(

1− 1
n1+ε

)n

(5)

lim
n→∞

Pr[No failures;full connectivity/coverage]

≥ lim
n→∞

(

1− 1
n1+ε

)n

→ e−
1

nε → 1 from Fact 2 (6)

b) p = Ω( 1
n): Consider the subdivision of the grid

as depicted in Fig. 2, so that the resulting cells have x-
extents (y-extents) 0 to a, a + 1 to a + b, a + b + 1 to
2a + b + 1, and so on. Here a = b r

2c and b = r − a =
r −b r

2c. Then, each node is within range of all other
nodes in the cells adjoining its own. Thus it is obvious
that if each square has at least one non-faulty node, there
exists a connected backbone that covers all points, and
hence all nodes. Thus all non-faulty nodes are connected
to each other via this backbone. The dimensions of the
cells thus obtained can be (a+1)2, (a+1)b or b2. Thus
the population k of any cell satisfies k ≥ r2

4 , and the
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Fig. 2. Subdivision of network into cells

maximum possible number of cells m ≤ 4n
r2 . Then:

Pr[ at least one node alive in a given cell ]

= 1− pk ≥ 1− p
r2
4

∴ Pr[ at least 1 node alive in each cell]

≥
(

1− p
r2
4

)

4n
r2

(7)

Let us choose r ≥
√

8lnn
ln 1

p
. Then:

Pr[at least 1 node alive in each cell]

≥
(

1− p
r2
4

)

n ln 1
p

2lnn

(8)

Since p ≥ α 1
n for some constant α , ln 1

p ≤ lnn − lnα.
Hence:

Pr[at least 1 node alive in each cell]

≥
(

1− p
r2
4

)

n ln 1
p

2lnn

=

(

1− p
2lnn
ln 1

p

)

n ln 1
p

2lnn

≥
(

1− 1
n2

)
n
2 (1− lnα

lnn )

(9)

Thus, by application of Fact 2, we obtain:

lim
n→∞

Pr[at least 1 node alive in each cell]

≥ lim
n→∞

(

1− 1
n2

)
n
2 (1− lnα

lnn )

→ e−
1
2n → 1 (10)

Since this condition ensures connectivity and coverage,
we obtain that:

lim
n→∞

Pr[network is connected and covered] → 1 (11)

IX. CONDITIONS IN EUCLIDEAN METRIC

We show that our results derived for L∞ metric con-
tinue to hold for L2 metric, with only the constants in
the theta notation changing.

Lemma 1: If the network is asymptotically connected
(covered) in L∞ for all r ≥ rmin, then the network is
connected (covered) asymptotically in L2 for all r ≥
rmin

√
2.

Proof: The proof is by contradiction. Suppose
that, for a given failure configuration, the network is
asymptotically connected in L∞ for all r ≥ rmin but
is not asymptotically connected for all r ≥ rmin

√
2 in

L2. Observe that it is possible to circumscribe a L∞
neighborhood of range r by a L2 neighborhood of range
r
√

2 (Fig. 3). Hence the nodes in an L2 network of
transmission range r

√
2 can be made to simulate the

operation of nodes in a L∞ network with range r (as
the L∞ neigborhood is fully contained within the L2
neighborhood). This implies that if the L∞ network of
range r is connected (covered), so must be the L2
network of range r

√
2. If there is some r ≥ rmin for

which the L∞ network of range r is connected (covered)
asymptotically, but the L2 network of range r

√
2 is not,

we obtain a contradiction, as connectedness (coverage)
of the L∞ network would imply connectedness (coverage)
of the L2 network.

Lemma 2: If the network is asymptotically discon-
nected (not covered) in L∞ for all r ≤ rmin, then the
network is disconnected (not covered) asymptotically in
L2 for all r ≤ rmin.

Proof: The proof is by contradiction. Suppose
that the network is asymptotically disconnected (not
covered) in L∞ for range r, but is not disconnected
(not covered) in L2 for range r. Observe that an L∞
neighborhood of transmission range r circumscribes an
L2 neighborhood of range r (Fig. 3). Thus, for any given
random failure configuration, if the L2 network of range
r were connected (covered), so would be the L∞ network
of radius r, as we could simply make the nodes in the
L∞ network simulate the behavior of nodes in the L2
network, and obtain connectedness (coverage). Hence, if
the L2 network of range r ≤ rmin is not asymptotically



r

√

2

r

r
r

r

Fig. 3. Relationship between L∞ and L2 neighborhoods

disconnected (not covered), the L∞ network of range
r ≤ rmin must also not be disconnected (not covered).
This yields a contradiction.

X. APPENDIX

Proof of FACT 2:

Let f ≤ n
1
2−ε, where 0 < ε <

1
2 . Let g(n) = (1 + f

n )n.
Then:

lng = n ln(1+
f
n
)

= n

(

f
n
− 1

2(
f
n
)2 +

1
3(

f
n
)3 − ....

)

[8]

= n
∞

∑
k=1

(−1)k−1 1
k
(

f
n
)k = f +

∞

∑
k=2

(−1)k−1 1
k
(

f k

nk−1 )→ f as n→∞

∴ lim
n→∞

g(n) = e f

Proof of FACT 3:

∵

1
1− 1

(lnn)b

≥ e
1

(lnn)b (from Fact 1 )

∴ 1− 1
(lnn)b

≤ e
− 1

(lnn)b =
1

e
1

(lnn)b

=
1

e
lnn

(lnn)(b+1)

=
1

n
1

(lnn)(b+1)

≤ 1
n

c
n

for large n

∵ ∃no ∈ N s.t. 1
(lnn)(b+1)

≥ c
n
,∀n > no
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