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Abstract— We consider a wireless grid network in which
nodes are prone to failure. In the considered failure
mode, each node has an independent probability of failure
p, and failures are of the crash-stop kind. All nodes
are assumed to have a common transmission range r.
We establish necessary and sufficient conditions for the
minimum transmission range, and hence degree, of each
node as a function of the total network size n and the
failure probability p, so as to ensure that the network
is asymptotically connected with probability 1, as n — co.
Our results indicate that the degree of each node must be
6(11;‘—?). We also derive conditions for coverage and obtain

p
the same result.

I. INTRODUCTION

We consider the problem of connectivity and coverage
in a wireless grid network prone to failure. We show that
node degree must be O(III‘:—?) for asymptotic connectivity

P
and coverage.

II. NETWORK MODEL

We consider a network model wherein nodes are
located on a two-dimensional rectangular toroidal
grid (each grid unit is a 1 x 1 square). The case of a
non-toroidal grid will be briefly discussed, and only
affects the constant in our results. We designate an
origin, and all nodes can be uniquely identified by their
grid location (X,y) w.r.t. this origin. All nodes have a
common transmission radius r. A message transmitted
by a node (X,y) is heard by all nodes within distance
r from it (where distance is defined in terms of the
particular metric under consideration, and r is assumed
to be an integer). The set of these nodes is termed the
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neighborhood of (X,y).

In this paper, we consider two distance metrics:
L, and L;. The L. metric is the metric induced by
the L, norm [1], such that the distance between points
(X1,y1) and (X,¥») is given by max{|x; — X/, |[y1 — ¥2|}
in the this metric. Thus nbd(a,b) comprises a square
of side 2r with its centroid at (a,b), and the degree of
a node is 4r%> 44r. The L, metric is induced by the L,
norm [1], and is the Euclidean distance metric. The L,
distance between points (X;,Yy;) and (X,¥,) is given
by /(X1 —%)2+(y1 —Y2)% and nbd(a,b) comprises
nodes within a circle of radius r centered at (a,b).
The L, metric enables more tractable analysis, from
which necessary and sufficient conditions for the L,
(Euclidean) metric proceed. In Section IX, we further
elaborate on how the results for the two metrics are
related.

A random failure mode is assumed, wherein each
node can fail with probability p independently of other
nodes. A failed node simply stops functioning, i.e.,
failures are of the crash-stop kind.

ITI. RELATED WORK

Conditions for connectivity and coverage have been
formulated in the context of different network models.
In [2], it was proved that in a unit area network
with uniformly distributed node placement, where
nodes have a common transmission radius r, such
that 102 = w, the network is asymptotically
connected with probability one iff c(n) — co. In [3],
an alternate model was considered whereby randomly
deployed nodes may modulate their transmission power
(and hence range) to ensure that they have a certain



number of neighbors. It was proved that each node
must be connected to ©(logn) neighbors for asymptotic
connectivity with probability one.

A grid network model was considered in [4] where
nodes are located at grid locations on a square grid,
but may fail independently. Nodes have a common
transmission range r. The probability of not failing is
specified as p, and it is shown that a sufficient condition
for connectivity and coverage is that transmission range
r must be set to ensure that node degree is C; ( Ogn) (for
some constant Cp). It is also shown that a necessary
condition for coverage (and hence for joint coverage and
connetivity) is that node degree be at least CQ(logn) (for
another constant C,. A fallacy in the above necessary
condition was pointed out by [5], and a subsequent
correction [6] by the authors of [4] presents examples
illustrating that the necessary condition may fail to
hold for certain subranges of p. The issue of coverage
has been examined in detail in [5] for random, grid,
and poisson deployments. However, the necessary and
sufficient conditions formulated by them take a more
complex form, and do not point to a single f(n,p)
such that a degree of O(f(n,p)) is both necessary
and sufficient for asymptotic coverage. Besides, the
necessary condition is formulated for the specific case
when rl,g?o p—0

Our results are closely related to the results of
[4]. However, we prove that, given a failure probability
p, it is necessary and sufficient to have a degree of

G)(llogn) for both connectivity and coverage. Expressed
og P

in the notation of [4], we stipulate a degree of @(

10gn )

Our results diverge considerably from those of [4] When
the failure probability becomes extremely small, and
thus our necessary conditions would hold in a certain
subdomain where that of [4] would not. However, there
is a small sub-domain of p in which our necessary
conditions also cease to hold, as with the conditions
of [4]. Besides, we work in the L, distance metric,
and then map the results to L,. This yields much
simpler proofs. We also remark that our joint sufficient
condition for connectivity and coverage is actually
sufficient for 9-coverage and not merely 1-coverage
(where k-coverage implies that each point is covered by
at least kK non-faulty nodes).

IV. NOTATION AND TERMINOLOGY

We briefly describe here notation and terminology that
shall be used in this paper. Nodes can identified by

their grid location i.e. (X,y) denotes the node at (X,Y).
The neighborhood of (X,y) comprises all nodes within
distance r of (X,y) and is denoted as nbd(x,y). The
degree of each node is referred to as d. In L_co metric,
d = 4r2+4r, while the size of a neighborhood (including
the neighborhood center) is d+ 1 = 4r2 4-4r + 1. The
diameter of the network (in terms of distance, and not
number of hops) is referred to as D. If n is a perfect

square, D = \/n.
V. SOME USEFUL MATHEMATICAL RESULTS

We state some mathematical results that have been
used in our proofs:

FACT 1: ¥x€[0,1]:1n

1

FACT 2. If f(n) <m%(0<e<3):
n
lim <1+@) —ef

n—oo

Proof: See Appendix. |

FACT 3: If ¢ > 0 is a positive constant independent
of n, and b > 1 is another positive constant independent
of n, then Eno € AL such that:

1— (lnn) < —r for n > ng

Proof: See Appendix. |

VI. NECESSARY CONDITION FOR CONNECTIVITY

THEOREM 1. When p < 1 — ﬁ, then in the
L, metric, the transmission range I must satisfy
r > max{1,Q(

lnn)}, i.e., the node degree d >
p

max{1,Q(*7 Inn )} else hm Pr[ disconnection] = 1.

Proof: It is obvious that the minimum transmission
range required for connectivity is 1, else the degree of
all nodes is O (except in the case when connectivity
loses meaning as all nodes are faulty, and so the
network can be deemed connected trivially). Similarly,
the network is trivially connected if r = D, as all
nodes are in direct range of each other. Suppose that
r= %"%” Thus, when p > El%', r= Cl“” >./n>D,
and the necessary condition ceases to be relevant (as
r =D ensures connectivity).

We show that the network is asymptotically disconnected
with probability 1 if r < Cl“” for some constant

P
0<c<l1,aslong as p<1-— . Note thatif p<1—0
for any arbitrarily small constant 0 > 0 (independent of
n), then for sufficiently large n, the necessary condition

would hold for all p. Also note that 1 — L < L

lnn nn



for large n (from Fact 3). Thus, the values of p for
which our necessary condition holds are those in which
the transmission range remains less than D. When
p>1-— # all nodes are faulty with probability
approaching 1, and the issue of connectivity is moot.
When p < &, ‘131“,” <1, and for this range of p,
the necessary condition lapses to having the minimum
range of 1.

a p<1-— m Consider a particular node j in the
network. Then, if | is non-faulty, but all its neighbors are
faulty, we have a potential disconnection event. Given
that there are d neighbors, and each may fail indepen-
dently with probability p, the probability that j does not
fail, but all nodes in nbd(j) fail, is (1 — p)p°. We choose
a constant 0 < ¢ < 1 such that cInn <Inn—4Inlnn, for
sufficiently large n. In general, ¢ can be chosen very
close to 1, e.g., | —€(0 <€ < 1), and the condition will
hold for n > Ny, for some Ny. Since p<1— we

obtain that -~ <Inn. Let r < /Sof.
P 8in 1

d=4r? +4r < 4r? +4r> = 8r?, for n> 1. Thus, for our

choice of r, it turns out that d < Clnn Then, it may be
P

ﬁ’

The node degree

seen that:

Pr[ A given node j is alive, but isolated]

> Pr[j is alive and all neighbors of | are faulty |

Inn
—(1-ppt> L p
Inn
IR
" Innn®  nClnn
(Inn)?

> (from our choice of ¢) (1)

n

Let us mark out a subset of nodes j such that the
neighborhoods of these nodes are all disjoint, as in Fig.
1. Then the number of such nodes that we may obtain
=| % > gz — 1 (since /N may not be multiple of
2r+1). Let I} be an indicator variable that takes value 1 if
j is alive but isolated. Then Pr{l; = 1] > ™Y and all I}
are independent. Let X be a random Variable denotlng the
number of nodes from the chosen set that are alive and

ni
isolated. Then X = ¥ I;, and E[X] > o0’ (”' B _ 1) >

n 9clnn

1
1
- Inn

-5t > 5(Inn)?In — > §Inn— oo, We can thus
apply the followmg form of the Chernoff bound [7]:

In
(Inn)3 "

52

PriX < (1-B)E[X) <exp(~ 2 EX) @)

E[X]—1
E[X]

Thus, with suitable 0 <c< 1 and 0 = , We obtain

Fig. 1. Nodes having disjoint neighborhoods

clnn

if r < Sin D then E[X] — oo, and

hence limPr[ At least two alive nodes are isolated] = 1.
n—oo

that for p<1—

ln’

Observe that actually the necessary condition would
hold for all p such that E[X] — co. For instance, the
above analysis holds for all p<1 (GO (where b is a
constant), with a corresponding sultainly Varymg choice
of ¢ to ensure that Pr[l; = 1] > % Besides, if
E[X] — y> 0, the asymptotic disconnection probability
is still a positive finite quantity, and the condition is
still necessary for asymptotic connectedness probability
to approach 1.

b) p>1- #: When the failure probability be-

comes so high as to fall in this range, we obtain:
Pr[ Any node is alive] =1 — p"

:1—(1— !
n

1+€

n
>—>1—enlﬁ—>0fr0mFact2 (3)

Thus the network is trivially connected by definition,
regardless of degree. ]

VII. NECESSARY CONDITION FOR COVERAGE

We now show that for the network to be asymp-
totically covered with probability approaching 1, it
is necessary that the transmission range I satisfy:
r > max{l, Q(\/W)} i.e., the node degree be d >

P

max{1, Q(]—")}



THEOREM 2: For p<1—

0<c<l, 1fd<c1nn :
P

o n, for a suitable constant

lim Pr[Some point is not covered] — 1
n—oo

Proof: As in the case of connectivity it is obvious
that r must be at least 1, else some points will not be
covered. We handle two subranges of p separately.

a p<l-— m The proof relies on subdivision of
the network into disjoint neighborhoods, as in Fig. 1. If
there exists at least one neighborhood with absolutely
no nodes alive (neither the neighborhood center nor its
neighbors), then the center of that neighborhood is not
covered. Thus we seek to determine the probability of
such an event.

We choose a constant such that

%Clnn < Inn — 3Inlnn, for sufficiently large n.
This that # > @ Let
r<

. The neighborhood population is given

0<cx<1

ensures

clnn
81nlp

by d+1 =4r> +4r +1 < 4% +4r2 +r2 = 9r2, for
n> 1. Thus, d+1 <3 2c 1“” Let |; be an indicator
variable that takes Value 1 if there is no alive node
in the neighborhood centered at node j,ganngl value 0
otherwise. Then Pr[X; = 1] = p?*! = psc‘“lp = @
(from our choice of ¢). Let X = Y1

for large n.

be a random
variable indicating the number of neighborhoods with

no alive node. Then E[X] = (132)3 = g(lnr;)clnf (after
plugging in the chosen value of 1). If p<1— m, then

E[X] > Inn(Innln ;= L) >1Inn— o (from Fact 1), and
application of the éhernoff bound from Equation 2
yields that Pr[X = 0] < exp(— %) — 0. Thus there is
some uncovered region with probability 1.

Similar to the necessary condition for connectivity,
observe that this necessary condition would hold for all
p such that E[X] — co. In particular, the above analysis
holds for all p<1— 1nn)b (where b is a constant), with
a corresponding suitably varying choice of C to ensure
that Pr{l; = 1] > W22 Also, if E[X] — y > 0, the
asymptotic probability of some point being uncovered
is a positive finite quantity, and the condition is
still necessary for asymptotic coverage probability to
approach 1.

b) p>1- (0 <e< 1) We obtain that
Pr[ no nodes alive | = p" > ( nllﬁ)n. As n— oo, the

following holds:

lim Pr[some point not covered] > Pr[no node alive]

n—oo

= lim <1 — !
n—oo n

n
1+a) —e ¥ — 1 from Fact 2 (4)

Thus the network is trivially not covered, regardless of
transmission range.

VIII. SUFFICIENT CONDITION FOR CONNECTIVITY
AND COVERAGE

We now present a sufficient condition for the asymp-
totic existence of both connectivity and coverage.

THEOREM 3: When d > 32“”1‘, the network is

asymptotically connected and covered with probability
1.

Proof:

a p< #: When the failure probability is so
small as to fall in this range, the probability of even
a single node failing approaches O asymptotically, and
thus connectivity and coverage is trivially ensured even
with the minimum transmission range of 1. This may be
seen thus:

Pr[No failures;full connectivity/coverage] = (1 —p)"
1 n
()

lim Pr[No failures;full connectivity/coverage]

n—oo

> lim <1 —
n—oo

n
an) — e # — | from Fact 2 (6)

b) p=Q(}): Consider the subdivision of the grid
as depicted in Fig. 2, so that the resulting cells have x-
extents (y-extents) 0 to @, a+1to a+b, a+b+1 to
2a+b+1, and so on. Here a= 5] and b=r—a=
r —[5]. Then, each node is within range of all other
nodes in the cells adjoining its own. Thus it is obvious
that if each square has at least one non-faulty node, there
exists a connected backbone that covers all points, and
hence all nodes. Thus all non-faulty nodes are connected
to each other via this backbone. The dimensions of the
cells thus obtained can be (a+1)2, (a+ l)b or b?. Thus
the population k of any cell satisfies k > -, and the
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Fig. 2. Subdivision of network into cells

maximum possible number of cells m < ‘r‘—?. Then:

Pr[ at least one node alive in a given cell |
2
=1-p‘>1-p=

.. Pr[ at least 1 node alive in each cell]

> (1-p7)" @)

8Ilnn Then:

Let us choose r > ;
lnE

Pr[at least 1 node alive in each cell]
2\ 2mn
> (1-p%)" ®

Since p > O(% for some constant O , ln% < Inn-1Inaq.
Hence:

Prl[at least 1 node alive in each cell]

1
nin & nin p

2 T]E 20\ Zhan 1 ’-2‘(1—'12—‘;
- _ In &
(oo () (3)
&)
Thus, by application of Fact 2, we obtain:
rym Pr[at least 1 node alive in each cell]
1 21—
> lim <1 — —>
n—oo r]2
Sen 1 (10)

Since this condition ensures connectivity and coverage,
we obtain that:

lim Pr [network is connected and covered] — 1

n—oo

(11)
|

IX. CONDITIONS IN EUCLIDEAN METRIC

We show that our results derived for L. metric con-
tinue to hold for L, metric, with only the constants in
the theta notation changing.

Lemma 1: If the network is asymptotically connected
(covered) in L, for all r > ryin, then the network is
connected (covered) asymptotically in L, for all r >

rmin\/i-

Proof: The proof is by contradiction. Suppose
that, for a given failure configuration, the network is
asymptotically connected in Lo, for all r > rpin but
is not asymptotically connected for all r > ryny/2 in
L,. Observe that it is possible to circumscribe a L
neighborhood of range r by a L, neighborhood of range
rv2 (Fig. 3). Hence the nodes in an L, network of
transmission range r/2 can be made to simulate the
operation of nodes in a L. network with range r (as
the L. neigborhood is fully contained within the L,
neighborhood). This implies that if the L, network of
range I is connected (covered), so must be the L,
network of range rv2. If there is some r > ryin for
which the L., network of range r is connected (covered)
asymptotically, but the L, network of range ry/2 is not,
we obtain a contradiction, as connectedness (coverage)
of the L, network would imply connectedness (coverage)
of the L, network. [ |

Lemma 2: If the network is asymptotically discon-
nected (not covered) in L, for all r < ryn, then the
network is disconnected (not covered) asymptotically in
L, for all r < rpjn.

Proof: The proof is by contradiction. Suppose
that the network is asymptotically disconnected (not
covered) in L., for range r, but is not disconnected
(not covered) in L, for range r. Observe that an Lo
neighborhood of transmission range I circumscribes an
L, neighborhood of range r (Fig. 3). Thus, for any given
random failure configuration, if the L, network of range
r were connected (covered), so would be the L., network
of radius r, as we could simply make the nodes in the
L. network simulate the behavior of nodes in the L,
network, and obtain connectedness (coverage). Hence, if
the L, network of range I < ry, is not asymptotically
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Relationship between L« and L, neighborhoods

Fig. 3.

disconnected (not covered), the L, network of range
I < 'min must also not be disconnected (not covered).
This yields a contradiction. [ ]

X. APPENDIX
Proof of FACT 2:

Let f <n: ¢ where 0 <& < 1. Letg(n = (1+
Then:

Sl
—
>

Ing=nin(1+ %)

[4] S. Shakkottai, R. Srikant, and N. Shroff, “Unreliable sensor grids:
Coverage, connectivity, and diameter,” in Proc. of Infocom 2003,
2003.

[5] S. Kumar, T. H. Lai, and J. Balogh, “On k-coverage in a mostly
sleeping sensor network,” in MobiCom ’04: Proceedings of the
10th annual international conference on Mobile computing and
networking. New York, NY, USA: ACM Press, 2004, pp. 144—
158.

[6] S. Shakkottai, R. Srikant, and N. Shroff, “Correction to unreliable
sensor grids: Coverage, connectivity, and diameter,” Personal
Communication, 2005.

[7]1 R. Motwani and P. Raghavan, Randomized algorithms. Cam-
bridge University Press, 1995.

[8] G. B. Thomas, Jr. and R. L. Finney, Calculus and Analytic
Geometry. Addison-Wesley Publishing Company, 1992.

ookl fae TS0 L AN _
=0y O = Y (U () s
limg(n) = €'

Proof of FACT 3:

1% > em (from Fact 1)
~ (nn)P
I e7m5 _ 1 _ 1
(ln n)b - eﬁﬁ e(lnnl)rzgﬂ)
1 1
= ——F— < — for large n
non®0 - N°
C
~-3dng € N[ s.t. W > H,Vn > Ng
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