A Distributed Self-Stabilizing Time Synchronization
Protocol for Multi-hop Wireless Networks -

Technical Report
January 2004

Jungmin So
Dept. of Computer Science,
and Coordinated Science Laboratory
University of lllinois at Urbana-Champaign

jsol@uiuc.edu

ABSTRACT

In this paper, we propose a time synchronization protocol for
multi-hop wireless networks. The Multi-hop Time Synchro-
nization Protocol (MTSP) is designed to work in multi-hop
wireless networks, with the following assumptions. First,
a node can only synchronize to another node with a faster
clock to avoid clocks from going backwards. Second, the
time of synchronization must also be synchronized, because
nodes may not be able to participate in the synchroniza-
tion process all the time. Nodes might go to sleep or lis-
ten to another channel after the synchronization process.
Under these assumptions, the goal of the synchronization
protocol is to maintain the network synchronization error,
which is the maximum clock difference between any pair of
nodes in the network, small. These requirements are criti-
cal for power management schemes, multi-channel protocols,
and other protocols that need clock synchronization. Other
proposed synchronization protocols do not work well under
these requirements.

MTSP is fully distributed and self-stabilizing. Starting from
an arbitrary state where each node is at arbitrary time,
MTSP makes the network converge to a steady state. In
the steady state, a spanning tree is established, rooted at
the fastest node. If there is no packet loss, MTSP guar-
antees an upper bound on the synchronization error in the
steady state. If the topology changes due to mobility, the
protocol self-stabilizes to a steady state soon after the net-
work becomes static again. We show that the network self-
stabilizes to a steady state and calculate the upper bound
on the network synchronization error in the steady state.
Also, we show by simulations that MTSP can achieve rea-

*This research was supported in part by Motorola.

Nitin H. Vaidya

Dept. of Electrical and Computer Engineering,

and Coordinated Science Laboratory
University of lllinois at Urbana-Champaign

nhv@uiuc.edu

sonable accuracy at the cost of low overhead. Finally, we
study the impact of controlling transmission power for time
synchronization, using MTSP.

1. INTRODUCTION

Time synchronization is an important feature in distributed
systems. Many applications and protocols require time syn-
chronization among nodes, with various requirements on
the amount of tolerable error. One example of a protocol
which requires synchronization is the power saving mecha-
nism (PSM) of IEEE 802.11 [3]. In IEEE 802.11 PSM, all
nodes must wake up at the beginning of a beacon interval
to exchange messages. While they are awake, they exchange
messages to decide whether to sleep or not for the rest of
beacon interval. If a node decides to sleep during the bea-
con interval, it turns off its radio and goes to sleep after
the message exchange process is finished. Another possible
application of clock synchronization is a multi-channel pro-
tocol using synchronized channel negotiation. In this pro-
tocol, nodes listen to different channels most of the time.
Periodically, all nodes switch to a common channel to ne-
gotiate channels by exchanging messages. After negotiating
the channels, the nodes switch to different channels accord-
ing to their selection during the negotiation phase. To make
this scheme work, the clocks need to be synchronized.

There are two major reasons that we need time synchro-
nization among nodes. The first reason is to figure out the
timing of events. Many applications of sensor networks rely
on time synchronization to obtain useful information from
sensed data. For example, suppose the nodes in Figure 1
are sensors deployed on a road to detect car movement.

car movement

Figure 1: Sensors deployed to detect car movement.

Suppose a car movement was detected by the sensors. Node
A reports that the car was detected at 1 o’clock, and node B

reports that the car was detected at 1 second after 1 o’clock.
We know that node B is located 10m east of A, and we want
to find out the direction and the velocity of the car. Can we
conclude that the car is moving east at a speed of 10m/s?
We cannot, because the clocks at node A and B may not be
synchronized. if the clock of node B was running 2 seconds
faster than A, the car might have actually been moving west.

We need clock synchronization for this kind of applications,
but the clocks need not be synchronized at the moment the
event happens. We can just leave the nodes unsynchronized,
and then figure out the timing of events considering the clock
difference later on. This approach for time synchronization
is called post-facto synchronization, proposed by Elson and
Estrin [4].

Another reason that we need time synchronization is to have
multiple nodes generate synchronized events. In a synchro-
nized power management scheme, the nodes must wake up
at the same time to exchange messages. In a synchronized
channel allocation algorithm, the nodes must listen to a com-
mon channel at the same time to negotiate channels. For
these applications, the clocks must be synchronized prior to
the event, so that the events happen at the same time. Sup-
pose we want to have two sleeping nodes wake up at the
same time and communicate with each other. If the time is
not synchronized, each node will wake up at a different time.
In this case the receiver might not receive a packet just be-
cause its clock was running slower and it did not wake up by
the time the sender sent the packet. Since we do not know
which two nodes in the network is going to communicate
with each other, we need to synchronize the whole network.

In this paper, we focus on the latter case. The post-facto
synchronization does not work in this situation, and we need
a priori synchronization to main the whole network always
synchronized. To maintain the network synchronized, nodes
need to exchange messages from time to time to synchronize
their clocks with each other and prevent clocks from drifting
away.

Tseng et al. points out the difficulty of using IEEE 802.11
PSM in multi-hop networks [14]. The three main problems
are clock synchronization, neighbor discovery, and network
partitioning. These problems occur because all of the nodes
can periodically go to sleep and wake up, according to their
schedules. So even if two partitioned network move close to
each other, they may not discover each other because the
nodes of two groups are awake at different times. To avoid
this problem, we require that a subset of nodes are always
able to receive synchronization packets. Then the nodes
can eventually discover all the neighbors, and synchronize
to each other. One example of protocol that shows this
kind of behavior is SPAN [1].

There are several issues to consider in the environment of
our interest. First, we assume that there is no predeter-
mined reference clock in the network. In wired networks,
the Network Time Protocol (NTP) [2] uses reference clocks
to synchronize the nodes. However, we cannot assume such
a reference clock exists in wireless ad hoc networks. So the
goal of a time synchronization protocol in this environment
is to keep the time difference between any pair of nodes in

the network small. We cannot just pick any node in the net-
work and use its clock as a reference clock, because of the
following problem. One rule in time synchronization is that
a node only synchronize to faster node. Note that when we
say node A is faster than node B, this means that node A
has a clock value larger than node B at some point of time.
The reason that a node only synchronizes to a faster node
is to prevent local clocks from going backwards, which is
considered harmful. Thus, if we pick any node in the net-
work and and use its clock as a reference clock, nodes with
a faster clock may drift away [8]. To prevent this problem,
nodes must synchronize to the fastest node in the network.

Second, nodes might not always be available to participate
in the synchronization process. In a power management
scheme, all nodes are awake for only a certain duration of
time between the synchronization interval, and nodes may
go to sleep after that duration. Since a node cannot partic-
ipate in the synchronization process while it is asleep, the
synchronization process must take place while all nodes are
awake. The same situation happens in a multi-channel pro-
tocol. Once nodes switch to different channels, they cannot
participate in the synchronization process. Thus, the syn-
chronization process must also be synchronized.

To summarize, the environment model we consider has the
following assumptions.

o We consider a wireless ad hoc network with no infras-
tructure support. Also, there is no reference clock in
the network.

e A node only synchronizes to another node with a faster
clock. Thus, all nodes must synchronize to the fastest
node to prevent the fastest node from drifting away.

e The synchronization process must be synchronized, be-
cause nodes may not be available to participate in the
synchronization process all the time.

Under these assumptions, the goal is to make the network
synchronization error small. The network synchronization
error is defined as the maximum of time difference between
any pair of nodes in the network. Also, it is desirable to
achieve this goal at the cost of low communication overhead.

Our proposed protocol, called Multi-hop Time Synchroniza-
tion Protocol (MTSP), is designed to work in this environ-
ment. MTSP establishes a synchronization tree rooted at
the fastest node. The tree is not obtained using an explicit
exchange of messages, but the protocol eventually converges
to a state where the synchronization tree is established. The
protocol is self-stabilizing, meaning that starting from an
arbitrary state where each node has arbitrary logical time,
it eventually enters a state where the synchronization tree
rooted at the fastest nodde is established and the clocks are
synchronized within a certain amount of error. If we as-
sume that there is no packet loss, the protocol guarantees
an upper bound on the time difference between any pair
of nodes in the network. The protocol is fully distributed,
and can adapt to the dynamics of the network. So when a
new node which has the fastest clock joins in, the protocol

automatically switches to forming a tree rooted at the new
node.

The outline of this paper is as follows. In section 2, we de-
fine the problem we are addressing formally. In section 3,
we review the work done in the area of clock synchroniza-
tion. After that, we describe our proposed protocol, MTSP,
in section 4. In section 5, we evaluate the performance of
MTSP using simulations. Finally we draw our conclusion in
section 6.

2. PROBLEM DEFINITION

In this section, we describe the problem that we solve in this
paper. We also describe terms and variables, that will be
used throughout the paper.

We consider a wireless ad hoc network that consists of mul-
tiple nodes connected to each other through wireless inter-
face. Infrastructure does not exist, and the network may
span multiple hops.

Each node maintains a hardware clock. We assume that all
hardware clocks have the same granularity of representing
the time. The value of the hardware clock is called physical
time and the physical time of node i is denoted as T;". We
also assume that there exists a “real” clock, which represents
the real time. We denote the real time as t. Then, we can
express the relationship between physical time of node 7 and
real time as the following.

T = ait + B; (1)

In Equation 1, both a and 8 are both determined by hard-
ware clock and cannot be controlled by the protocol.

Other than the hardware clock, each node also maintains
a software clock, called the logical clock. Logical clock is a
representation of the hardware clock, but it can be modified
by the system. The following equation describes the rela-
tionship between physical time and logical time. The logical
time of node i is denoted as T;.

T, = T¢P + v (2)

In the equation, v is the parameter that can be controlled by
the operating system. A node can correct the logical time to
reduce the time difference with other node, and this process
is called the time synchronization. So when we say node A
synchronizes to node B, it means that node A adjusts the v
value to reduce |T'4 — T's|. Using the above two equations,
we can state the relationship between logical time and the
real time as follows:

T; = ait + 6; 3)

where d; = B; + ;. In the above equation, « is called the
clock rate, and ¢ is called the clock offset. From here on, we

will only consider the logical time and not use physical time.
So when we say the “time” of a node, we mean logical time.

Now the goal of a synchronization protocol is to adjust the &
value of each node so that the time difference among nodes
is kept small. In order to synchronize the time, nodes must
exchange messages telling their local time to other nodes.
Because of the uncertainty in message delay, the network
cannot be synchronized to the exact same time. Every pair
of nodes may have a time difference, and we denote the time
difference between node ¢ and j as A;j.

IT: = Tj] = Ay (4)

The goal is to make the network synchronization error small
so that it can be kept below a certain threshold for most of
the time. The threshold value represents the amount of ac-
curacy an application requires. If we represent the network
as a graph (V, E), the goal of a synchronization protocol is
to meet the following requirement:

max Aij S w (5)

for all 4,5 € V. W is called the synchronization threshold.

If the protocol guarantees that the above equation holds for
most of the time, the application that makes use of clock
synchronization can use this information to set up a mar-
gin before starting a synchronized state. For example, in a
power management scheme, assume that the time is divided
into beacon intervals, and node A and B are supposed to
wake up at the beginning of each beacon interval and ex-
change messages. If A knows that A;; < W, then A can
wait for W before transmitting a packet, after A starts a
new beacon interval. This is depicted in Figure 2.

beacon interval
starts at A

\

W

Packets

Ll

A

time
beacon interval
starts at B

Figure 2: Node A knows that the maximum syn-
chronization error is W, so A waits for W at the
beginning of its beacon interval and starts trans-
mitting.

3. RELATED WORK

Numerous time synchronization schemes exist in the con-
text of wired and wireless networks [2, 4, 5, 7, 9, 6, 10].
Traditionally in wired networks, the main focus of a time

synchronization is to reduce the network synchronization er-
ror as much as possible, without much concern on message
overhead. Also, synchronization protocols for wired net-
works are designed with the assumption that the network
is mostly static, although they have some fault tolerant fea-
tures to overcome node and link failures. Recently, several
time synchronization protocols for wireless networks have
been proposed. These protocols consider the dynamic na-
ture of wireless networks. Also, time synchronization proto-
cols designed for wireless sensor networks have much concern
on energy consumption, because energy is a critical factor
in sensor networks. In this section, we review the existing
work in the area of time synchronization.

In wired networks, clock synchronization is achieved using
the Network Time Protocol (NTP) [2]. In NTP, multiple
canonical sources are used as reference clocks, and a hier-
archical structure is built that are rooted at these sources.
Timestamped packets are exchanged along the branches of
the trees, so that all nodes can synchronize to one of the
canonical sources.

However, NTP does not work well in wireless ad hoc net-
works, where topology may change frequently due to mo-
bility. This is because NTP’s synchronization hierarchy is
pre-configured, assuming the network is static. To synchro-
nize nodes in a wireless ad hoc networks, the protocol must
adapt to link failures, topology changes and even temporary
partitions of the network. Also, in wireless ad-hoc networks,
reference clocks may not be available. In this kind of envi-
ronment, the goal of time synchronization is to keep the time
difference between any two nodes in the network as small as
possible.

Now we review the synchronization protocols for wireless
networks. IEEE 802.11 standard has a time synchronization
function (TSF) designed for a wireless LAN [3]. The pro-
tocol is based on beacon transmission. At the beginning of
each beacon interval, each node picks a random delay before
transmitting the beacon packet. If a node transmits a bea-
con, all other nodes in the network will receive the beacon.
When a node receives a beacon, it suppresses its beacon,
and synchronizes to the node that sent the beacon, using the
timestamp included in the beacon packet. Huang and Lai
[8] identifies the problem of this scheme, which is the fastest
node asynchronism. A node only synchronizes to another
node which has a faster clock then itself. This is to avoid
moving backward in time, which may ruin the local order-
ing of events. Thus the fastest node will keep drifting away
from other nodes, unless it becomes the beacon transmitter.
Huang and Lai propose a simple modification to reduce the
impact of fastest node asynchronism. This scheme works
well in wireless LAN. However, when these schemes are ap-
plied to multi-hop networks, the clocks might still drift away
because of the time clustering problem. The time clustering
problem will be explained in the next section.

One major challenge in synchronizing two nodes is estimat-
ing the packet delay between the sender and the receiver.
This is mainly due to contention-based medium access, and
the delay before a node gains the channel access varies dra-
matically depending on the amount of traffic and channel
condition. This delay is called access time, and it is the ma-

jor source of error in estimating the delay of packet delivery.

To address this issue of uncertainty in the access time, Elson
et al. proposed Reference-Broadcast Synchronization (RBS)
[5]. Instead of sender-receiver synchronization, this proto-
col performs receiver-receiver synchronization. The basic
idea of RBS is to have a reference node broadcast a refer-
ence packet, and multiple receivers synchronize to each other
comparing the packet arrival time of the reference packet.
In this approach, the uncertainty of access time is removed
from and the accuracy is increased. However, the overhead
of RBS is very high, because each node must receive a mes-
sage from the reference clock, and exchange messages with
each other to synchronize their clocks.

Ganeriwal et al. proposed a scheme similar to NTP, but a
modified version that works in sensor networks [10]. The
protocol, called Timing-Sync protocol for Sensor networks
(TPSN), uses pairwise message exchange to remove the un-
certainty in the message delay. The pairwise message ex-
change does not remove the uncertainty of access time, but
they remove it by stamping time on the packet at the MAC
layer, just before transmitting the packet. To synchronize
a multi-hop network, the protocol establishes a hierarchical
structure in the initial level discovery phase. After that, the
protocol enters the synchronization phase, where pairwise
synchronization is performed along the edges of the tree.
This protocol assumes a pre-assigned root node, and does
not address the issue of fastest node asynchronism. Also, 2n
transmissions are required for each synchronization process,
which is a higher overhead, especially in a dense network.

The lightweight tree-based synchronization algorithm (LTS)
[6] proposed by Greunen and Rabaey, also uses pairwise
message exchange for synchronizing two nodes. LTS has
centralized and distributed version for multi-hop synchro-
nization, and the centralized version is similar to TPSN.
In the distributed version, each node chooses the synchro-
nization period based on the desired accuracy. When a node
needs to be synchronized with other nodes, it sends a request
packet to the reference node to trigger the synchronization
process. Then all the nodes in the path to the root node
will be synchronized using pairwise communications. The
main advantage of LTS over TPSN is that LTS may have
less overhead, because nodes that do not require frequent
synchronization are synchronized at a slow rate. Although
LTS can be efficient then TPSN, but it still has the problem
of fastest node asynchronism.

The above two protocols use pair-wise message exchange to
remove the error of estimating delays. However, if we remove
access time by timestamping at the MAC layer similar to
[10], a node can estimate the delay with sufficient accuracy,
using only one packet sent by the sender. The process of
synchronizing a pair of nodes is explained in the next section.

Elson and Estrin proposed the concept of post-facto syn-
chronization [4]. In post-facto synchronization, the clocks
are left unsynchronized. When an event happens, the rel-
evant nodes coordinate with each other to figure out what
event happened at what time. On the other hand, in a pri-
ori synchronization, nodes exchange messages to maintain
clocks synchronized.

Post-facto synchronization and a priori synchronization have
the characteristics of reactive and proactive protocols, re-
spectively. If events do not occur frequently and only a
small portion of the networks is relevant to the event, then
post-facto synchronization is more efficient than a priori syn-
chronization. On the other hand, if events occur frequently
and span over most of the network, a priori synchronization
may be more efficient.

Our proposed protocol, MTSP, takes the approach of a pri-
ori synchronization, because post-facto synchronization is
not suitable for the environment of our interest. Post-facto
synchronization is only useful when the purpose is to deter-
mine the time at which the events happened, but cannot be
used to coordinate node activities such as synchronous wake

up.

4, PROTOCOL DESCRIPTION

In this section we present the details of our proposed proto-
col, the Multi-hop Time Synchronization Protocol (MTSP).
First we describe the method used to synchronize a pair of
nodes. Then we discuss how we can synchronize the whole
network which spans multiple hops. As a conclusion of the
discussion, we present MTSP.

4.1 Synchronizing a pair of nodes

To synchronize a pair of nodes A and B, we need to have ei-
ther A or B send a message, including the timestamp gener-
ated by its logical clock. Suppose node A generates a packet
and stamps the time at ¢;. The timestamp value is the log-
ical time of node A at t1, which is T'a(¢1). After stamping
the time, node A sends the packet to B. When node B re-
ceives the packet, it also stamps the time using its logical
clock to record the time of reception. Suppose at t2, node
B stamps the time. Now node B knows two values: T4 (t1)
and T'B(t2). To find out the time difference, node B needs
to estimate the delay from t1 to t2, so that it can obtain
an estimated value of T'a(t2). The time difference between
two nodes at t2 is |Ta(t2) — TB(t2)|- Once B determines
the time difference between A and B, it can synchronize to
A by adjusting the clock offset § in its logical clock. Note
that node B can synchronize to node A only if A’s clock is
running faster than B’s.

The delay between t1 and t» is called the critical path [5].
The reason that B cannot exactly synchronize to A is due
to the uncertainty in the critical path. The critical path
can be decomposed into five components as follows. The
decomposition follows from [5, 10].

e Send time: This is the delay from the time a packet
is generated until the time it reaches the MAC layer
for transmission. Send time mainly depends on the
operating system of the sender.

e Access time: After the packet reaches the MAC layer,
it has to wait until the node gains access to the chan-
nel. Access time is the delay between the time a packet
reaches the MAC layer and the time the node starts
transmitting the packet. This delay depends on the
MAC protocol the network uses.

e Transmission time: When the node gains access to the
channel, the node transmits the packet, bit by bit.
Transmission time is the duration from the time the
first bit of the packet is transmitted, until the time
the last bit is transmitted. This delay is a function of
transmission rate and packet size.

e Propagation time: This is the duration for a packet to
travel from the source to the destination. Propagation
time is a function of distance between the source and
the destination.

e Receive time: This is the delay from the time when the
packet reaches the destination node until the time the
destination node stamps the time to record the time
of reception. Receive time depends on the operating
system of the receiver.

The components of the critical path are illustrated in Fig-
ure 3. The major source of error among these components
is the access time, because most common MAC protocols
are contention-based, and the access time varies significantly
based on the channel condition at the time of packet trans-
mission. The send time and the receive time may also be
significant depending on the operating system policy. Com-
pared to the other components, the transmission time and
the propagation time are insignificant in their contribution
to the estimation error.

Sender Receiver
send
time
time access
time
transmission
time
propagation
time
receive
time

Figure 3: Components of the critical path.

We can significantly reduce the estimation error using the
following two strategies. First, the sender stamps the time
at the MAC layer, just before putting the packet on the
channel. This strategy is also used in [10]. This removes
the send time and the access time from the critical path.
Second, the receiver records the time of reception as soon as
it starts receiving the packet. This removes the receive time
from the critical path.

Now only the transmission time and the propagation time

are left. Let B be the transmission rate and p be the packet
size. Then the transmission time can be calculated as:

Since we know the the transmission rate and the packet
size, we can accurately estimate this delay in unit of real
time. However, the rate of the receiver’s clock is different
from the real clock, and this is where the estimation error
occurs. Since the clock rate at the receiver is ag, the error
of estimated transmission time, ¢, is:

et=|aR—1|th (7)

The IEEE 802.11 standard requires the clock accuracy to
be within +0.01%. We follow this specification and assume
that the clock rates are within the range [0.9999, 1.0001].
Also, we assume that the synchronization packet size is 56
bytes, which is the size we use in our simulations. The 56
bytes consist of 24 bytes of preamble, which is transmitted
at 1Mbps, and other 32 bytes which can be transmitted at
the transmission rate of 2Mbps. Then, in Equation 7,

max |a — 1| = 0.0001 (8)
and,
192 256
T =906 T 3100~ 320ms ©)

So the maximum estimation error for the transmission time
is:

maxe; = 320 x 0.0001 = 0.032us (10)

To estimate the propagation time, we need to know the dis-
tance from the source to the destination. However, since
the propagation time is very small, we can just use an up-
per bound on the propagation time and tolerate the error.
Then the maximum estimation error for the propagation
time would be:

1
maxep = dmaz X — (11)

c

where dpq, is the maximum transmission range and C is
the speed of light. If we assume dpqz to be 250m, then
the maximum error for propagation time would be approx-
imately 0.8us. To reduce the error for propagation time,
the receiver can measure the signal strength of the received
packet and estimate the distance from the sender. However,
we use a fixed propagation delay in our simulations.

On the whole, the maximum estimation delay, €maz is:

€mar = MaX € + Maxe, (12)

With 2Mbps of channel bandwidth, 56 bytes of packet size
and the transmission range of 250m, we can synchronize a
pair of nodes with accuracy less than 1us.

4.2 Synchronizing the network

Now that we know how to synchronize a pair of nodes,
we want to synchronize the whole network, meaning that
we want to make the clock difference of any two nodes in
the network small. We first discuss several alternative ap-
proaches to synchronizing the network, then present pro-
posed MTSP protocol in the next section.

Before we discuss the alternative approaches, we summarize
the requirements again. First, a node only synchronizes to
a faster node. So every node must be synchronized to the
fastest node in the network. Second, The synchronization
process must happen at a synchronized period of time. This
is because nodes might not be able to participate in the
synchronization process all the time. The nodes might be
sleeping, or listening to different channels. At a synchro-
nized point of time, they all wake up or listen to a common
channel for the purpose of synchronization.

The most simple way to synchronize the network is to have
one node, say node R, flood the whole network with its
beacon periodically. The beacon transmitter node can be
preassigned, or elected using a leader election algorithm.
There are several problems that make this scheme not work
well under our requirements. First, node R may not be the
fastest node. Since a node only synchronizes to a faster
node, nodes that are running faster than R will keep on
drifting away. Second, the duration of the synchronization
process, which we call the synchronization period, may be
very long, since each node has to wait for a beacon to come
and then rebroadcast it!. A node that is far from node R
must wait a long time to receive a beacon, after the beacon
interval starts. Consider the chain topology shown in Fig-
ure 4. Suppose node 1 is assigned to be the beacon trans-
mitter. We measured the average synchronization period
varying the distance d between nodes. As shown in Fig-
ure 5, the synchronization period can be very long when
flooding algorithm is used. A long synchronization period
degrades the performance of the protocol, which is not desir-
able. Thus, flooding-based schemes are not suitable for our
environment model. In Figure 5, the average synchroniza-
tion period increases as the distance between two adjacent
nodes increases. This is because the maximum hop distance
from node 1 increases. If the distance between adjacent
nodes becomes more than 150m, the synchronization period
does not increase any more because the maximum hop dis-
tance does not change. Since the transmission range of a
node is 250m, node % can only reach node ¢ — 1 and ¢ + 1,
when the distance between adjacent nodes exceeds 150m.

-

Figure 4: A chain topology with 20 nodes. The
distance between two adjacent nodes is fixed.

n a power management scheme, a node may wake up just
for the purpose of synchronization, even if it does not have
packets to send or receive. In a multi-channel MAC proto-
col, a node switches to the common channel periodically to
be synchronized with other nodes. In both cases, the syn-
chronization period is an overhead, so it is desirable to have
short synchronization period

Synchronization Period of Flooding Scheme
30 T T

25 B

20 - B

Average Synchronization Period (ms)

10 I I I I I
0 50 100 150 200 250 300

Distance between two adjacent nodes

Figure 5: The average synchronization period of
flooding scheme.

Instead of one node flooding the network, each node can in-
dependently transmit beacons to synchronize with its neigh-
bors. For a wireless LAN, IEEE 802.11 Timing Synchro-
nization Function (TSF) [3] may be used to synchronize the
network. At the beginning of each interval, every node waits
for a random delay before transmitting a beacon. If a node
receives a beacon from another node during this delay, it
suppresses its own beacon, and synchronizes to the sender
if the sender is running faster than the receiver. We can
apply this scheme to a multi-hop network. We refer to this
scheme as “802.11 TSF”. Using this scheme, only one trans-
mission occurs in a “broadcast region”. So this scheme has
short synchronization period and low overhead. However, as
identified in [8], the clock of the fastest node may drift away,
because the fastest node may not get a chance to transmit
its beacon. Since the fastest node does not synchronize to
any other node, its clock will keep drifting away from other
clocks. This problem is called fastest node asynchronism [8].

Another problem of using 802.11 TSF in a multi-hop net-
work is time clustering. Consider the scenario in figure 6.
If each node waits for a random delay and transmits the
beacon, it might happen that node A always sends beacon
before B and node D always sends beacon before C. Then
the nodes form clusters, A and B in one cluster, and C and D
in the other cluster. The clocks in these clusters may drift
away unboundedly. Due to this time clustering problem,
802.11 TSF cannot guarantee that the network is always
synchronized within a certain bound.

Figure 6: A simple chain topology with 4 nodes.

To avoid the fastest node asynchronism and time clustering,
we can have every node transmit beacon at each beacon
interval. We refer to this scheme as “One-Hop Broadcast”.
Since every node transmits beacon, the fastest node will also
transmit beacon and the other nodes can synchronize to the
fastest node. Also, since a node receives beacons from all
its neighbors, the time clustering problem cannot happen.
However, the cost of this scheme is very high, especially
for a dense network, since n transmissions take place every
beacon interval.

MTSP follows the approach of One-Hop Broadcast scheme,
but reduces the number of beacon transmission in one in-
terval by establishing a synchronization tree rooted at the
fastest node. The tree structure makes every node in the
network synchronized with the fastest node, by having only
a subset of nodes transmit beacons at each beacon interval.
The details of MTSP is explained in the next section.

4.3 Multi-hop Time Synchronization Protocol
(MTSP)

The main idea of MTSP is to establish a synchronization
tree in the network, rooted at the fastest node. The de-
sired synchronization tree is such that the depth of the tree
is minimized, and the number of leaf nodes is maximized.
The depth of the synchronization tree determines the up-
per bound of network accuracy, and the number of non-leaf
nodes affects the overhead of the protocol.

First, we look at how MTSP establishes a tree rooted at the
fastest node. Unlike TPSN [10], MTSP does not need an ex-
plicit process to form a synchronization tree. Instead, each
node independently picks one node among its neighbor as its
parent node. It can be shown that if a node chooses as par-
ent a node which has the fastest clock among neighbors, the
node will eventually point towards the fastest node, mean-
ing that it will join the tree rooted at the fastest node. So
when every node always picks its parent this way, the whole
network eventually converges to forming a synchronization
tree rooted at the fastest node. So MTSP is self-stabilizing,
meaning that starting from an arbitrary state where each
node has arbitrary logical time, the protocol eventually en-
ters a state where the synchronization tree rooted at the
fastest node is established. We state this in Theorem 1, and
present the proof in Appendix A.

THEOREM 1. Starting from an arbitrary state, the proto-
col will enter a steady state, where a synchronization tree
rooted at the fastest node is established in the network, pro-
vided that the network is steady for the duration of stabiliza-
tion. Thus the protocol is self-stabilizing.

Next, we look at how MTSP reduces communication over-
head. The idea is to establish the tree, which has a large
number of leaf nodes. A leaf node in the synchronization
tree is a node that has a parent, and does not have any
children. The leaf nodes do not need to transmit beacons
every interval, because no node benefits from their trans-
missions. However, if leaf nodes do not transmit beacons at
all, two partitioned networks may not be able to find each
other even if their leaf nodes are adjacent to each other. So
we want to have only a subset of leaf nodes transmit bea-
cons at each beacon interval. To achieve this, we apply the
counter-based method from broadcast storm solutions [11].
With this method, in each beacon interval, if a leaf node
receives more than m beacon packets before transmitting
its own beacon, it suppresses its beacon. m is called the
suppress threshold.

However, this method may result in time clustering, if it
is used without caution. Suppose node A is a leaf node of
one tree and node B is a leaf node of another tree. These

two trees are initially partitioned, because they are distant
with each other. Later on, the two trees move closer to each
other, so that B and D become close enough to reach each
other. However, it is possible B and D might never transmit
beacons because their beacons are suppressed by the beacon
suppression method in every beacon interval. In this case,
the two network cannot be merged in terms of clocks. To
prevent this, it must be guaranteed that every node will
eventually transmit beacon. To implement this idea, we still
assign a non-zero probability to a leaf node, which receives
m beacon packets in a beacon interval. The probability is
proportional to the number of consecutive beacon intervals
the node has been silent. After a fixed number of beacon
intervals, the probability becomes 1, so that the node will
be forced to transmit a beacon. This guarantees that a node
will eventually find all of its neighbors, and thus it prevents
time clustering in the network.

A node may have multiple potential parents that points to-
wards the same root. If two potential parents point towards
the same root, the node can choose either one as its parent,
without choosing the faster one (The purpose of choosing
a faster node is to point to the fastest node). In this case,
nodes can choose a parent based on other criteria. To make
the depth of the synchronization tree as small as possible, it
is preferable for a node to choose the parent with the least
hop count from the root. On the other hand, To make the
number of leaf nodes large, it is preferable for a node to
choose a parent which has the largest number of children.
We give priority to minimizing the depth of the synchro-
nization tree. So among multiple potential parents, a node
chooses the one with the least hop distance from the root.
If there are multiple nodes that have the same hop count,
then a parent with the largest number of children is chosen.

Now we describe the protocol in detail.

In MTSP, each node maintains four variables: p, r, d, and c:
pis the address of the parent node, and r is the address of the
root node in the synchronization tree. d is the hop distance
from the root node, and c is the number of children the
node has in the synchronization tree. In addition to these
variables, each node maintains the list of children, which is
denoted as C. So c is the number of elements in C. Initially
in every node, p is NULL, r is the address of itself, d is
infinity, c is zero and C is empty.

If a node has a parent and no children, it regards itself as a
leaf node, otherwise it is a non-leaf node. Initially, all nodes
are non-leaf nodes because any node does not have a parent.

At the start of a beacon interval, each node picks a random
number from the range [0, BCW] and waits for the selected
number of “slots” before transmitting the beacon. BCW is
the beacon contention window, and we use 62 in our sim-
ulations. If the node is a non-leaf node, it transmits the
beacon after the delay, regardless of how many beacons it
receives while waiting to access the channel. If the node is a
leaf node, it counts the number of beacons it receives while
waiting to access the channel. If m beacon packets are re-
ceived during the wait, the node suppresses its own beacon.
If less than m beacon packets are received, the node trans-
mits its beacon. The leaf node also keeps track of how many

consecutive beacon intervals it did not transmit beacon. If
a node has not transmitted beacon for b consecutive bea-
con intervals, it transmits beacon with propability b/B even
though it receives m beacon packets in the current beacon
interval (B is a constant). Thus, a node is forced to transmit
a beacon at least every B beacon intervals. This guarantees
that a node will eventually find all of its neighbors, and thus
it prevents time clustering in the network.

Suppose node A is transmitting the beacon. Then node A
includes in the packet the four variables it maintains. p and
r are 6 bytes each, and d and ¢ are 2 bytes each. Thus we
need 16 additional bytes to include the four variables in the
beacon packet. When node A gains access to the channel, A
adds a timestamp to the packet and transmits the packet.

Suppose node B receives a beacon from node A. We denote
the variables of A as pa, 74, da and ca, and similarly denote
the variables of B as pg, rB, dg and cp.

When the beacon is received, B estimates the packet delay
using the scheme explained in section 4.1, and obtains T'4.
If Ta > TB, then B synchronizes to A by adjusting its clock
offset dp.

dp0p+Ta—1Ts (13)

If Tao < Tp, then B does not adjust its clock.

First we look at the case where A was running faster than B.
After adjusting the clock, B has to decide whether it should
regard A as its parent toward the fastest node. To do this,
B compares rp with r4. If rg # r4, then B regards A as a
new parent, and updates its variables as the following 2.

pB A, rp+ra, dpda+1 (14)

If rg = r4 then B compares dp with da. If dg > da+1, then
B can reduce the hop distance from the root by choosing A
as its parent. So in this case, B chooses A as a new parent
and updates its variables. If dg < da then B does not choose
A as its parent.

If dg = da + 1, this means that dg does not change when
B chooses A as its parent. In this case, B compares cg with
ca. If ca > cp, then B chooses A as its parent and updates
its variables. If c4 < ¢p, then B does not choose A as its
parent. This is to make the number of leaf nodes in the
synchronization tree as large as possible.

Next we look at the case where A was running slower than
B. In this case, B does not synchronize to A. Instead, B
checks to see if A’s parent is node B itself. If ps = B, then
B adds A in its list of children C, if A was not already in
the list. If pa # B, then B checks the list of children C,
and removes A if A was previously a child of B. ¢ is updated
according to the number of elements in C.

*We show in Appendix A that if the node always chooses
this way, it will eventually point towards the fastest node.

In Appendix A, we show that MTSP is self-stabilizing, by
proving Theorem 1. Also, in Appendix B, we calculate
the upper bound on the synchronization error in the steady
state.

5. SIMULATIONS

In this section, we report the results from simulations we
performed to study the performance of our protocol, MTSP.
We also implemented IEEE 802.11 TSF and One-hop Broad-
cast scheme to compare with MTSP.

As stated earlier, we have two main goals. First, the clock
difference between nodes in the network must be small. Sec-
ond, the communication overhead must be low.

To study how the synchronization protocols achieve these
goals, we measure the following metrics.

e Maximum Synchronization Error: This is the maxi-
mum of clock differences between any pair of nodes in
the network, over the whole simulation time. The syn-
chronization protocols that have probabilistic aspect
such as IEEE 802.11 TSF, might have low synchroniza-
tion error most of the time, but sometimes the clocks
can drift away unboundedly, as explained in 4.2. On
the other hand, MTSP aims to deterministically main-
tain the bound on synchronization error. Measuring
the maximum synchronization error will capture this
difference.

e Communication Overhead: This is measured as num-
ber of bits transmitted per second, because different
protocols use different beacon sizes. This metric will
show how successfully MTSP reduces the cost of syn-
chronization.

After comparing the protocols, we study the impact of trans-
mission power control on the performance of MTSP. Since
the time of synchronization is also synchronized, we can as-
sume that nodes use a different transmission power during
the synchronization period, for the purpose of synchroniza-
tion. If higher transmission power is used, the accuracy is
expected to increase because the network diameter becomes
smaller.

First we describe our simulation setup, and then we present
the results.

5.1 Simulation Setup

We have used ns-2 [13] with CMU wireless extensions [12]
for our simulations. For medium access control, CSMA/CA
scheme is used since it is widely used for wireless communi-
cation.

We require the physical clock accuracy to be within +0.01%,
which follows from the IEEE 802.11 specification [3]. So
after 1 second, the difference between the fastest clock and
the slowest clock is at most 20us. The beacon period is
100ms, unless otherwise specified.

For MTSP protocol, we use 56 bytes for the beacon packet
size. For other protocols, we use 40 bytes. This is because

a beacon packet of MTSP requires 16 additional bytes to
include more information, as explained in section 4.3.

If a node decides to transmit a beacon in the beacon period,
it waits for a random delay before transmitting, to reduce
the chance of collision. To make the random delay, each
node picks a random value between [0, BCW]. We use 62
“slots” for the beacon contention window (BCW), which is
also used in [8]. Each slot is 20 us.

The transmission range of each node is 250m, unless oth-
erwise specified. So the maximum propagation delay is ap-
proximately 0.83us. When estimating the packet delay, we
use a fixed estimated propagation delay of 0.5us, which is
roughly the half of maximum propagation delay.

Finally, the total simulation time is 100 seconds for each
simulation, and each data point in the graphs is result of 20
simulation runs.

5.2 Simulation Results

Figure 7(a) and 7(b) shows the result from simulations per-
formed in a 1000m x 1000m area. The number of nodes is
varied from 100 to 500. In the graphs, “One-Hop” refers to
the One-Hop Broadcast scheme, and “802.11 TSF” refers
to the IEEE 802.11 TSF applied to multi-hop networks.
These schemes were explained and discussed in section 4.2.
“MTSP-m” refers to our proposed protocol, with the sup-
press threshold m. So in “MTSP-2” scheme, a leaf node
suppresses its beacon if it receives two other beacons in
the beacon interval. Figure 7(a) shows the maximum syn-
chronization error over the whole simulation time. Since all
nodes transmit beacons at every beacon interval in One-Hop
Broadcast scheme, it achieves the best accuracy among all
protocols. However, it is achieved at a very high cost, as
shown in Figure 7(Db).

On the other hand, 802.11 TSF protocol introduces the least
amount of overhead. This is because only one node trans-
mits beacon in a broadcast region. Thus, the amount of
overhead in 802.11 TSF stays constant as the node density
increases. However, the accuracy of 802.11 TSF is much
worse than other two protocols.

MTSP-1 and MTSP-2 achieves accuracy comparable to One-
Hop Broadcast, at a cost much less than the cost of One-Hop
Broadcast. As we can see in 7(b), the overhead of MTSP
grows slowly with increasing number of nodes. In terms of
accuracy, MTSP-2 achieves a slightly better accuracy than
MTSP-1. This is because each node has more chance of
receiving beacons from faster nodes at each beacon interval.
However, MTSP-2 pays approximately 80% more overhead
over MTSP-1.

Figure 8(a) and 8(b) show the impact of suppress threshold
on the accuracy and overhead of MTSP. The simulation is
done in 1000m x 1000m area with 200 nodes, and the sup-
press threshold m is varied from 2 to 7. The result shows
that MTSP with higher suppress threshold achieves better
accuracy in average, at a cost of additional communication
overhead. However, the benefit is not significant compared
to the additional overhead. So it is sufficient to just use 1
or 2 as the suppress threshold.

Maximum Synchronization Error (ms)

Maximum Synchronization Error (ms)

0.3

0.25

0.2

0.15

0.1

0.05

Figure 7: Maximum synchronization

0.3

0.25

0.2

0.15

0.1

0.05

Maximum Synchronization Error vs Number of Nodes

‘ ‘ ‘ ‘ ‘ ‘ " ONE-HOP —+—
802.11 TSF ---x---
MTSP-1 -----
A MTSP-2 @
B emmmmmmmmmmT
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
50 100 150 200 250 300 350 400 450 500

Number of Nodes

(a) Maximum synchronization error

Maximum Synchronization Error vs Suppress Threshold

550

‘ ‘ ‘ ‘ MTSPm‘4447

1 2 3 4 5 6 7
Suppress Threshold m

(a) Maximum synchronization error

Synchronization Overhead (kbps)

Synchronization Overhead (kbps)

2000

1500

1000

500

2000

1500

1000

500

Synchronization Overhead vs Number of Nodes

T T T T T T \ONE-\HOP T
802.11 TSF -
MTSP-1 -
MTSP-2 -8
=} B,, o ”i
%:; x
: i ‘ ; ‘ ‘ ‘ ‘ ‘
50 100 150 200 250 300 350 400 450 500 550
Number of Nodes
(b) Synchronization overhead
of nodes.

error and Synchronization overhead vs. number

Synchronization Overhead vs Suppress Threshold

‘ ‘ ‘ ‘ MTSPm‘4447

1 2 3 4 5 6 7 8
Suppress Threshold m

(b) Synchronization overhead

Figure 8: Maximum synchronization error and Synchronization overhead vs. suppress threshold.

Now we study the impact of controlling transmission power
on MTSP. When a higher transmission power is used, the
transmission range increases and thus the depth of the syn-
chronization tree will be smaller. So the network synchro-
nization error is expected to be lower.

For this simulation, we have used a 500m x 500m area with
200 nodes. Figure 9(a) and 9(b) shows the maximum syn-
chronization error and the overhead, when using different
transmission range.

For MTSP, the results show that if energy consumption is
not an issue, we can benefit from using higher transmission
power. Both the synchronization error and the overhead
goes down as the transmission range of a node increases.
The reason that the overhead of MTSP is reduced when
using higher transmission power is because the number of
leaf nodes in the synchronization tree decreses when higher
power is used.

6. CONCLUSION

In this paper, we have proposed MTSP, a time synchroniza-
tion protocol for multi-hop wireless networks. MTSP is de-
signed to work under the assumption that the synchroniza-
tion process must also be synchronized. This requirement
is valid for many applications such as power management
schemes and multi-channel MAC protocols that require time
synchronization among nodes.

Since a node only synchronizes to a faster node, the synchro-
nization protocol must make sure that every node is synchro-
nized to the fastest node. MTSP achieves this by implicitly
building up a synchronization tree rooted at the fastest node
in the network. Thus, when the network is static, the net-
work eventually converges to a steady state where an upper
bound on network synchronization error is guaranteed, as-
suming that there is no beacon packet loss. This upper
bound information can be used to set up a time margin
before starting each new beacon interval. If the topology
changes, the network self-stabilizes to a steady state after
the network becomes static again. We have shown that the
protocol eventually converges to the steady state, and also
calculated the upper bound on network synchronization er-
ror in the steady state.

Also, using the tree structure, MTSP reduces the number
of beacon transmissions in each period. This is important
because the synchronization process should not harm the
performance of applications that use the synchronization
service, by occupying significant amount of bandwidth or
using up a large amount of energy.

The simulation results show that IEEE 802.11 TSF has the
least amount of overhead. However, its accuracy is very low.
On the other hand, the One-Hop Broadcast scheme where
every node transmits beacon at every beacon interval shows
the best performance in terms of accuracy, but the over-
head is very high. MTSP is shown to achieve a reasonable
accuracy at the cost of low overhead.

We also have studied the impact of transmission power us-
ing MTSP. When nodes use higher transmission power, the
accuracy increases because the depth of the synchronization

tree is reduced. For MTSP, the communication overhead
decreases as the transmission power increases, because the
number of leaf nodes in the synchronization tree increases.
So MTSP can benefit from using higher power for synchro-
nizaiton, if energy consumption is not an issue.

If we take energy into account, the trade off between energy
consumption and the accuracy of synchronization would make
an interesting problem. If higher power is used, more en-
ergy is consumed, but a higher accuracy is achieved using
less communication overhead. So we can reduce the synchro-
nization frequency to reduce energy consumption, while still
achieving the desired level of accuracy. So given a network
topology, one might be able to find the optimal tuning of
transmission power and synchronization frequency, so that
a desired level of accuracy is achieved consuming the least
amount of energy. We are planning to extend our research
in this direction in the future.

7. REFERENCES
[1] B. Chen, K. Jamieson, H. Balakrishnan, and
R. Morris. Span: An energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless
networks. In Mobile Computing and Networking, pages
85-96, 2001.

[2] D. Mills. Internet Time Synchronization: The
Network Time Protocol. IEEE Trans.
Communications., October 1991.

[3] IEEE 802.11 Working Group. Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
specifications, 1997.

[4] J. Elson and D. Estrin. Time Synchronization for
Wireless Sensor Networks. In International Parallel
and Distributed Processing Symposium (IPDPS), April
2001.

[5] J. Elson, L. Girod, and D. Estrin. Fine-Grained
Network Time Synchronization using Reference
Broadcasts. In Fifth Symposium on Operating Systems
Design and Implementation (OSDI), December 2002.

[6] Jana van Greunen and Jan Rabaey. Lightweight Time
Synchronization for Sensor Networks. In Workshop on
Wireless Sensor Networks and Applications (WSNA),
September 2003.

[7] Kay Romer. Time Synchronization in Ad Hoc
Networks. In ACM MOBIHOC, October 2001.

[8] L. Huang and T. Lai. On the Scalability of IEEE
802.11 Ad Hoc Networks. In ACM MOBIHOC, June
2002.

[9] M.L. Sichitiu and C. Veerarittiphan. Simple, Accurate
Time Synchronization for Wireless Sensor Networks.

In IEEE Wireless Communications and Networking
Conference (WCNC), 2003.

[10] S. Ganeriwal, R. Kumar, M. B. Srivastava.
Timing-sync Protocol for Sensor Networks. In First
ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2003.

Maximum Synchronization Error vs Transmission Range

0.3 ; T T
™ MTSP-1 —+—
£
— 025 e
1]
=
]
=
©
N
§ 0.15 e
<
o
S
& o1lr e
£
>
g ooy M |
x
a
=

o

50 100 150 200 250 300 350 400 450 500 550

Transmission Range (m)

(a) Maximum synchronization error

Synchronization Overhead (kbps)

Synchronization Overhead vs Transmission Range
2000 T

MTSP-1 ——

1500 1

1000 1

a
(=]
o
T
L

0 I I 1
50 100 150 200 250 300 350 400

Transmission Range (m)

450 500 550

(b) Synchronization overhead

Figure 9: Maximum synchronization error and Synchronization overhead vs. transmission range.

[11] S. Ni, Y.C. Tseng, Y.S. Chen and J.P. Sheu. The
Broadcast Storm Problem in a Mobile Ad Hoc
Network. In ACM MobiCom, 1999.

[12] The CMU Monarch Project. Wireless and Mobility
Extension to ns.

[13] VINT Group. UCB/LBNL/VINT network simulator
ns (version 2).

[14] Y.C. Tseng, C.S. Hsu and T.Y. Hsieh. Power-Saving
Protocols for IEEE 802.11-Based Multi-Hop Ad Hoc
Networks. In IEEE INFOCOM, 2002.

APPENDIX

A. PROOF OF SELF-STABILIZATION

In this section, we prove Theorem 1. We prove this by say-
ing that if a node always chooses the fastest neighbor as its
parent, it will eventually point towards the fastest node in
the network, meaning that the node will join the synchro-
nization tree rooted at the fastest node. So if every node
always chooses its parent this way, all nodes will eventually
point towards the root, and the synchronization tree rooted
at the fastest node will be established. Once the synchro-
nization tree is established, it stays unchanged if the network
is static, because a node does not switch parents. Thus, the
protocol enters a steady state.

First, we start with a simple example, and generalize the
argument to any possible cases.

Consider the scenario in Figure 10. The clock rate of node
A B, C,D and E is aa, aB, ac, ap, and ag, respectively.
Suppose as > ag > ap > ap > ac. At some point of
time, B regards A as the root of the synchronization tree,
which is the fastest node in the network. On the other hand,
D regards E as the root. Node C has to decide whether
it should pick node B or node D as its parent. We argue
that if C always chooses a faster node as its parent, C will
eventually choose B as its parent.

The requirement implied in the above argument is that node
C receives beacons from B and D every once in while so
that C can eventually point toward the root. It may be the
situation that B and D are already identified as leaf each in
a different tree. Then, B and D do not transmit beacons
in every beacon interval. However, as discussed in section
4.3, due to the requirement that forces leaf nodes to transmit
beacons at least after r iterations of silence, the requirement

O O O OO

Figure 10: A network scenario with 5 nodes.

To show this, we consider the clock difference Agc and Acp
at the start of kth beacon interval. Considering all possi-
ble situations, we show that eventually Apc becomes larger
than Acp so that node C chooses B as its parent. For the
analysis here, we ignore the impact of €4, in Equation 12.
However, the argument below still holds even if the estima-
tion error is taken into account.

Let L be the length of a beacon interval. Assume that in
(k — 1)th beacon interval, node A broadcasts a beacon, and
B synchronizes to A. So at the start of kth beacon interval,

Aap =(aa —ap)L (15)

Ignoring nodes D and E for now, there can be two situations
at the kth beacon interval: Either node A or B can transmit
a beacon first. If node A sends the beacon first, node B will
synchronize to A and then transmit its beacon. In this case,

Apc =T —Tc =Ta—Tc = aat+6a — (act+6dc) (16)

If node B transmits a beacon before node A, then Apc
would be:

Apc =Tg—Tc =Ta—Asp—Tc = aAt+5A—(aA—aB)L—(act+gv
1

(17)

In both situations we obtain:

Apc =(aa —ac)t+u (18)

where u is a constant (In the former case, u = 4 — d¢, and
in the latter case, u = 04 — (@a —ap)L — dc). Similarly,

Acp = (ag —ac)t +v (19)

where v is a constant. Since aa > ag, eventually Apc
becomes larger than A¢p. Thus, node C eventually chooses
node B as its parent.

We can generalize this argument and prove that if the net-
work is static, every node in the network will eventually
choose its parent towards the fastest node, which means ev-
ery node will eventually join the synchronization tree rooted
at the fastest node.

We prove this using the previous argument and induction
on hop distance of a node from the fastest node. Let R be
the fastest node in the network. For the base case, suppose
node A; is a one-hop neighbor of node R. Since node R is
the fastest node, for any node i in A;’s neighbor set.

AAlR Z AAl’[(20)

Now suppose node Agy1 is k + 1 hops away from node R.
It has a neighbor node Ay, which is already in the synchro-
nization tree rooted at R. All of Aj’s ancestors, A1, As, ...,
Ap_1, are also in the synchronization tree rooted at R.

Since the nodes A; (i = 1,2,...,k) already in the synchro-
nization tree rooted at R, from Equation 30 in Appendix B,
beacon interval, the maximum of AAxR at the start of a
beacon interval is:

maxAar =Y (ar —)L (21)

where ¢ € Pa, r. Pa,r is the set of nodes that are in the
path from node Agy1 to node R. Thus,

min A a4, =Tr — (O ar —osL) = Ta,, (22)

Thus, Aa,,,4, can be written as:

AAk+1Ak = (O‘R - aAk+1)t +c (23)

ere c is a constant. Similarly, if another neighbor of node
“A/11, B, has node S as its root, then

ApyB = (as —aa,)t+c (24)

Since ar is greater than ag, eventually node Ap4q will
choose Ay, as its parent.

So if every node always chooses the fastest neighbor as its
parent, then eventually every node will point towards the
fastest node in the network, meaning that the every node
joins the synchronization tree rooted at the fastest node.
Once the tree is established, the parent of each node does
not change given that the network stays static. Thus the
network will eventually enter the steady state, where a syn-
chronization tree rooted at the fastest node is established.

B. UPPERBOUND ONTHE SYNCHRONIZA-

TION ERROR

Given that the network is in the steady state, we can calcu-
late the upper bound on the clock difference between a node
and the fastest node in the network. Suppose the fastest
node in the network is R, and the node we want to calculate
the clock difference is £ hops away from R in the synchro-
nization tree. We name the node C}, and the nodes in the
path from R to C}, are Cq, Co, ..., Cr_1.

To make the equations simple, we ignore the impact of es-
timation error €mq, (in Equation 12) in the analysis. The
effect of ¢; is added to the upper bound at the end of the
analysis.

To make the worst case, we assume that the order of trans-
mission in each beacon interval is Ck, Ck-1, - .., C1, R.

At ith beacon interval, node R sends a beacon to node Ci,
so C1 synchronizes to node R. After the synchronization,
Téfl = T%. Then at the beginning of (i + 1)th interval, T¢,
can be expressed as follows:

TEH =Th +ac, L (25)

where ac, is the clock rate of C1 and L is the length of
the beacon interval. Now at (i + 1)th interval, C1 sends a
beacon and C is synchronized to Ci. Since C is the fastest
neighbor of C», C; is the last node that C> synchronizes to
in the beacon interval. Then at the beginning of (¢ + 2)th
interval, the time of Cj is:

T = TEM + ac, L = Th + (ac, +ac,)L (26)

Continuing this process, node Cy—; will send a beacon at
(i + k — 1)th beacon interval, and Cj will synchronize to

Crk—1. Then at the beginning of (¢ + k)th beacon interval,
the time of Cy is:

T =Tr + (O ac,)L (27)
where j =1,2,..., k. Also, since node R never synchronizes
to other nodes,

TitF = Th + arkL (28)

Thus, the clock difference between Cy and R at the begin-
ning of (i + k)th beacon interval is:

Acyr =Tg™*=T5"* = arkL—(>_ac;,)L= (> _(ar—ac;))L

(29)
where j =1,2,... k.
Suppose D is the network diameter, which is the maximum
hop distance between any pair of nodes in the network. Then

the maximum clock difference between any pair of nodes in
the network will be:

max A = () (ar —ac;))L (30)

where j =1, 2, ..., D (C1, Co, ..
the path from R to D).

., Cp-1 are the nodes in

Since the clock rates are unknown, a node cannot precisely
determine max A. So we can just assume the worst case,
where R has the maximum allowable clock rate and all other
nodes have the minimum allowable clock rate. If the clock
rate is required to be within the range [1-f, 1+f], then
max A becomes:

max A = () (ar — ac;))L = 2fDL (31)

Now we take into account €mae. Since the maximum esti-
mation error for each hop is €mqz, the new upper bound on
the network synchronization error is:

max A = 2fDL + Depmac (32)

If we assume f is 0.0001, D is 10, L is 100ms, and €mqz is
1us, then the maximum network synchronization error will
be 210 ps.

This is a very conservative calculation of the maximum syn-
chronization error given the clock accuracy requirement, be-
cause it is obtained from considering all possible worst cases.
In reality, the clock rates are not distributed as we assumed,

the maximum hop distance from the fastest node may be
less than D, and the order of synchronization may vary all
the time. So the maximum network synchronization error of
MTSP is expected to be lower than what we have calculated.

