
SYSTEM ARCHITECTURE FOR MULTICHANNEL
MULTI-INTERFACE WIRELESS NETWORKS

BY

CHANDRAKANTH CHEREDDI

B.E., Osmania University, 2004

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

System Architecture for Multichannel

Multi-interface Wireless Networks

Approved by
Dr. N. H. Vaidya

ABSTRACT

Wireless ad hoc networks typically make use of a single radio interface on a fixed chan-

nel to communicate with neighboring nodes. Previous research has advocated the use

of multiple wireless channels for enhancing the capacity of such networks. IEEE 802.11

based wireless network interfaces are capable of communicating over multiple frequency

separated channels. In existing system architectures the use of multiple channels can

be supported provided every channel has one dedicated interface. However, in many

scenarios, hosts will be equipped with fewer interfaces than available channels, requiring

interfaces to be switched between channels. Implementing protocols, which require fre-

quent switching, is nontrivial.

In this thesis, we developed a system that supports the implementation of protocols which

require frequent switching. Initially, the feasibility of implementing such protocols using

currently available wireless interfaces and system software was studied. The feasibility

study identified several shortcomings in present day operating systems for implementing

multichannel protocols. We developed a system for the Linux kernel which can handle

these shortcomings. Our system includes modifications to the wireless interface device

drivers that improve performance of multichannel protocols. We discuss the details of

the modifications made to the device driver used in our testbed. Following this, an

example multichannel multi-interface protocol interaction with our system is presented.

Finally, the performance of our system is analyzed, and suggestions for selecting system

parameters are made.

iii

To my Parents, Grandparents, Hari and Suma

iv

ACKNOWLEDGMENTS

This thesis would not have been possible without the support of my adviser, Dr. Nitin

Vaidya, my family members, group members, and friends. I would also like to acknowl-

edge my fellow researcher and friend, Pradeep Kyasanur, who has helped me in every

stage of my research. A special thanks to Romit Roy Choudhury for the many long hours

of insightful discussions.

I also acknowledge National Science Foundation (NSF) for financially supporting my

thesis research.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 RELATED WORK . 5

CHAPTER 3 BACKGROUND . 7
3.1 Feasibility Study . 7

3.1.1 Switching delay measurement . 8
3.1.2 IEEE 802.11a orthogonal channel usability 11

3.2 Kernel Support for Multiple Channels . 16
3.2.1 Specifying the channel to use for reaching a neighbor 16
3.2.2 Specifying channels to use for broadcast packets 17
3.2.3 Support for interface switching 18

CHAPTER 4 SYSTEM ARCHITECTURE . 20
4.1 Design Alternatives and Decisions . 20

4.1.1 Kernel space layers . 21
4.2 Bonding Driver . 22
4.3 Channel Abstraction Module . 24

4.3.1 Unicast component . 26
4.3.2 Broadcast component . 26
4.3.3 Scheduling and queueing component 27
4.3.4 Statistics component . 29

CHAPTER 5 DRIVER MODIFICATIONS . 31
5.1 Reducing Channel Switching Delay . 32
5.2 Avoiding Network Partitioning . 34
5.3 Query Support . 35

CHAPTER 6 MULTICHANNEL PROTOCOL IMPLEMENTATION 37
6.1 Communicating with the Channel Abstraction Module 37
6.2 Hybrid Protocol Implementation . 39

vi

CHAPTER 7 PERFORMANCE ANALYSIS . 41
7.1 Throughput Measurements . 41
7.2 Delay Measurements . 48
7.3 Summary . 51

CHAPTER 8 CONCLUSION AND FUTURE WORK 53
8.1 Suggestions for Future Hardware Design 54

REFERENCES . 55

vii

LIST OF FIGURES

Figure Page

3.1 Throughput with the presence of interference on each lower and mid-
dle band channel, nodes are separated by a distance of 20 ft and 40 ft.
Throughput with no interference is at 5.3 Mbps. 13

3.2 Throughput with the presence of interference on each lower and mid-
dle band channel, nodes are separated by a distance of 60 ft and 80 ft.
Throughput with no interference is at 5.3 Mbps. 14

3.3 Throughput with the presence of interference on each upper band channel,
nodes are separated by a distance of 20 ft and 40 ft. Throughput with no
interference is at 5.3 Mbps. 14

3.4 Throughput with the presence of interference on each upper band channel,
nodes are separated by a distance of 60 ft and 80 ft. Throughput with no
interference is at 5.3 Mbps. 15

3.5 Example illustrating the lack of kernel support for specifying the channel
to use to reach a neighbor. 17

3.6 Example illustrating support required for queueing and switching. 19

4.1 System architecture. 24
4.2 Components of channel abstraction module: Tables are filled with the

assumption that there are two interfaces “ath0” and “ath1,” and three
channels. 25

4.3 Timeline of scheduling operations: Example shows scheduling process after
switching into channel 1. 29

6.1 Interaction between user space hybrid protocol and kernel channel abstrac-
tion module through ioctl calls. Example assumes that three channels (1,
2, 3) and two interfaces (ath0, ath1) are available. 40

7.1 Experimental setup. 42
7.2 Throughput when minimum time spent on a channel is varied. Note that

the curves for UDP and TCP with no switching overlap. 43
7.3 Throughput when maximum time spent on a channel is varied. Note that

the curves for UDP and TCP with no switching overlap. 44

viii

7.4 Channel switches per second when maximum time spent on a channel is
varied. 45

7.5 Channel switches per second when minimum time spent on a channel is
varied. 46

7.6 Testbed throughput in a 4-node scenario with varying number of channels
and flows. 47

7.7 Timeline of queueing to understand experienced packet delay. 49
7.8 Packet delay when varying maximum time on a channel. 50
7.9 Packet delay when varying minimum time on a channel. 51

ix

CHAPTER 1

INTRODUCTION

Wireless technologies, such as IEEE 802.11a [1], are widely used for building wireless

ad hoc networks. IEEE 802.11a provides for 12 different channels that are separated in

frequency. Several researchers have proposed the use of multiple wireless channels for en-

hancing network capacity. Multiple channels have been exploited in infrastructure-based

networks by assigning different channels to adjacent access points, thereby minimizing

interference between access points. However, in ad hoc networks, two hosts can exchange

data only if they both have a radio interface tuned to a common channel. Currently

available off-the-shelf interfaces can operate only on any one channel at a time, though

over time, an interface can be switched across different channels. Typically, hosts are

equipped with one or a small number of radio interfaces, but the number of interfaces

per host is expected to be smaller than the number of channels. However, by exploiting

their ability to switch between channels over time, it is possible to develop new protocols,

where nodes can communicate over all possible channels, leading to increased network

capacity. This scenario is expected to be more likely as additional channels become avail-

able, yet there are few protocols for this scenario.

One protocol design approach when hosts have fewer interfaces than channels is to assign

the interfaces of different nodes in a neighborhood to different channels [2,3]. In this ap-

proach, interfaces do not switch channels, but collectively the interfaces of all the nodes

in a region are distributed across the available channels. An alternate approach that is

1

more flexible is to allow each node to potentially access all the channels by switching some

of its interfaces among the available channels [4–7]. This interface switching approach

allows dynamic channel assignment based on node density, traffic, channel conditions,

etc., and has shown to be a good choice in theory [8, 9]. However, frequently switching1

interfaces introduces extra implementation complexity.

Multichannel wireless protocols also assume that wireless transmissions by radio inter-

faces on different channels do not interfere. Though this is true when the interfaces

have considerable separation (greater than 10 m), at shorter distances they may experi-

ence some interference, especially when the channels are adjacent. Experimentation with

802.11a based hardware has shown that transmissions on suitably separated channels do

not interfere even when the radio interfaces are close to each other (less than 6 in), as

explained in Chapter 3. This study was useful in determining which 802.11a channels to

use for communication when interface separation is small.

Building multichannel protocols that require frequent switching in current operating sys-

tems raises several challenges. The use of multiple channels and multiple interfaces, as

well as switching interfaces among channels, has to be insulated from existing user ap-

plications. As described in Chapter 3, implementing frequent switching also requires

new features in the operating system kernel. In Chapter 4, we present the design and

implementation of a new channel abstraction module in the kernel that simplifies the

implementation of multichannel protocols that require interface switching.

First generation 802.11a based radio interfaces implemented a majority of the 802.11

protocol in hardware. Hence it was impractical to implement research protocols which

changed fundamental assumptions made by the protocol. Recent wireless hardware

chipsets implement time insensitive parts of the 802.11 Medium Access Control (MAC)

1By “frequent switching,” we imply potentially switching an interface, between channels, multiple

times every second.

2

protocol in software and perform only time critical tasks in hardware. The software and

hardware components of such interfaces communicate using a hardware abstraction layer

(HAL). This approach to interface design is also known as the “thin” MAC approach,

where the components of the MAC protocol implemented in hardware are kept at a min-

imum (thin). The wireless interfaces that we used in our testbed were based on such a

design, giving us the flexibility to change some parts of the MAC protocol. Switching

channels on an interface incurs a delay, and the magnitude of the delay influences the

frequency of interface switching. Modifications, such as those required to reduce channel

switching delay, were made to the device driver to improve the performance of multi-

channel protocols, and are presented in Chapter 5.

The development of the channel abstraction module was motivated by our efforts to im-

plement a hybrid multichannel protocol [7, 10] that was proposed earlier. The hybrid

protocol requires two interfaces per host. One interface at each node is tuned to one

“fixed” channel, and different nodes use different fixed channels. The second interface at

each node can be switched among different channels, as necessary. A node transmits a

packet to a neighbor on the fixed channel of its neighbor. This technique of tuning one

of the hosts’ wireless interfaces to a fixed channel reduces the complexity of coordination

required to maintain connectivity. The hybrid protocol was shown to be fairly effective

in utilizing multiple channels when there are fewer interfaces per host than channels [10].

By using the channel abstraction module that we have developed, the hybrid protocol

was implemented as a simple user space daemon. In Chapter 6, we will describe the

programming interface a multichannel protocol implementation can use to control the

behavior of our channel abstraction layer. Following this, the hybrid protocol implemen-

tation is detailed, which serves as one example interaction with the channel abstraction

module.

The channel abstraction module running the hybrid protocol was analyzed under topolo-

gies which require frequent switching. This is compared with the expected performance

3

when there is little or no switching, and comparison shows that multichannel protocols

can significantly improve network performance. The study also makes recommendations

on the choice of two important parameters used by the channel abstraction layer. These

details are presented in Chapter 7.

Chapter 8 concludes the thesis, followed by some ideas for future work. It also makes

a few suggestions for future radio interface hardware design, which can improve the

performance of multichannel protocols.

4

CHAPTER 2

RELATED WORK

Several protocols have been proposed for utilizing multiple channels. Most protocols

[11–17] require each node to have one interface per channel (only as many channels as

the number of interfaces per host are utilized in the network). Some of these protocols

have been implemented in real systems [16, 17], but the challenges faced in our imple-

mentation are largely different. The few protocols proposed for the scenario where hosts

have fewer interfaces than channels [2–7] have mostly been evaluated in a simulation

environment.

Raniwala and Chiueh [3] have proposed an approach where different nodes are assigned

to different channels, and interfaces rarely switch channels. This approach has been

implemented in a testbed. However, as their approach does not require frequent inter-

face switching, their implementation was feasible with existing operating system support.

Chandra and Bahl [18] have developed an interface switching architecture called “Multi-

net.” Multinet is designed for nodes with a single interface, and virtualizes the single

physical interface into two virtual interfaces. One virtual interface is used to connect to

an infrastructure network, while the second virtual interface is used to connect to an ad

hoc network. Multinet has some similarity to the channel abstraction module that we

propose, but does not offer all the features necessary to allow an interface to switch among

multiple channels. Multinet exports one virtual interface per channel, which exposes the

5

available channels to the user applications, and may necessitate modifying these applica-

tions. In contrast, our work hides the notion of multiple channels from user applications

and therefore does not require any modifications to existing applications.

A feature of the channel abstraction module is to export a single virtual interface to

abstract out multiple interfaces. There are other testbed works that can also abstract

multiple real interfaces into a single virtual interface [19–21]. However, with those ap-

proaches it is harder to support the notion of using multiple channels or interface switch-

ing between channels.

There have been many other testbed implementations for single channel, single radio

networks, such as MIT Roofnet [22], Uppsala University ad hoc protocol evaluation

testbed [23], system services for ad hoc routing [21], and similar other implementations

presented in [24–26]. However, to the best of our knowledge, all those implementations

would require nontrivial changes to support the use of multiple channels by switching

interfaces.

6

CHAPTER 3

BACKGROUND

In this chapter we will make the case for the feasibility of multichannel protocol imple-

mentation. After this we will discuss the shortcomings in present day operating systems

to implement such protocols, which motivated the development of the system presented

in this thesis.

3.1 Feasibility Study

In this section we will discuss the two main requirements to implement any multichan-

nel protocols which require interface switching multiple times a second. The first is to

have a reasonably low “switching delay” (defined later). The second is the simultaneous

usability of frequency separated channels. We are interested in knowing which channels

may be used for simultaneous transmission/reception, i.e., interference characteristics of

signals on these channels needs to be understood. Both these measures are properties of

the hardware and are specific to the hardware used in developing such a system.

Note that it is possible to develop hardware which aims at performing better with respect

to both these measures. Such hardware may be of particular interest in ISM bands at

higher frequencies, which provide for multiple frequency separated channels.

7

3.1.1 Switching delay measurement

Multichannel protocols in the literature often assume that it is possible for wireless inter-

faces to switch between channels, and start transmission and reception on a new channel

in a relatively short period of time. The assumption is that the “switching time” is small

in comparison with the time taken to transmit a given number of packets. Switching

time varies based on the hardware design, and it is beneficial to have a relatively short

switching time. Such a use of the hardware was not a design goal for hardware designers

with the current wireless cards,1 and hence there was no particular motivation for them

to keep switching delay small. Fortunately, this switching time was discovered to be

small enough for certain hardware models.

As a first step, we decided to quantify the switching delay we would experience in using

the Atheros card deployed on our testbed. The hardware on which these measurements

were performed is based on the Atheros chipset [27] running the Madwifi [28] driver. The

card came in a Personal Computer Memory Card Interface Association (PCMCIA) bus

form factor and used the Atheros 5212 chip, capable of 802.11 a/b/g communication. The

wireless interface was configured to the 802.11a wireless channels in the ad hoc mode.

In the next few sections, details of our analysis and steps in reproducing them will be

presented.

Before explaining the measurement technique, it is necessary to first understand the

madwifi driver. The madwifi driver is divided into four main parts. The first part is the

hardware abstraction layer (HAL), which is the lowest level of detail exposed to us. For

example, commands such as “reset device” are translated to device and chip-specific calls

and delivered to the device via this layer. Next is the IEEE 802.11 stack which has been

written entirely in software. This portion of the driver handles 802.11 protocol-specific

functionality which is not time-critical. For instance, all scanning, association, etc., are

1The terms “wireless card,” “card,” “radio interface,” and “wireless network interface” are used

interchangeably, and imply the same meaning.

8

performed by this part of the driver. Third is the layer which glues the HAL and the

802.11 stack parts of the driver. This part takes care of complexities related to the device

interrupts, buffer management, beacon generation, etc. The last portion is where the rate

control algorithms are implemented. At driver load time, one can select the rate control

algorithm to use by choosing the correct module to be loaded.

In the unmodified madwifi device driver, when a channel switch command is issued from

user space via ioctl2 calls, the call first reaches the 802.11 stack part of the madwifi

driver. Specifically, the call is traced to the ieee80211 ioctl siwfreq() function. This

function immediately requests for reinitialization of the Atheros hardware. Reinitial-

ization request is handled by the ath init() function, which prepares the driver and

device for a reset and finally requests the HAL to reset the device to tune to a new

channel via the ath chan set() function. After device reset, the driver performs some

postprocessing and sets up the requisite driver state before returning control to the caller.

In the above procedure, some of the steps may be unnecessary for typical multichannel

protocols, which break the assumption that all neighbors are tuned to a specific channel.

Specifically, some parts of the preprocessing before device reset, and postprocessing are

extraneous, and were removed. Details on which parts were by-passed and how this was

achieved are explained in Chapter 5.

In the modified version of the device driver, where parts of preprocessing and postpro-

cessing have been removed, the ioctl call to switch channel is routed directly to the

ath chan set() function via ieee80211 ioctl swifreq(). Hence, we shall look at this

function in detail to quantify switching delay.

2“Ioctl” calls are a mechanism for communicating with kernel space devices from user space. Ioctl

informally stands for “input and output control.”

9

The ath chan set() function makes a series of calls to the HAL layer before and after

issuing the device reset call. The total delay experienced by a switch channel call is the

amount of time it would take for all of these calls to complete. Each of these steps is

detailed below.

1. Disable Interrupts: The device has to disable all receive and send interrupts to

avoid any interruptions from the device. The function ath hal intrset() is called

to achieve this.

2. Drain Pending Transmission Packets: In preparation for a device reset, any

packets pending transmission are flushed, by calling ath draintxq(). Note that

care has to be taken before issuing a switch channel call because of this step. The

interface does not wait for any pending packets to be transmitted before resetting,

but discards them altogether.

3. Disable Packet Transmissions: Once we have disabled all interrupts, we should

instruct the card to stop any ongoing packet direct memory access (DMA) for

transmission. A call to the function ath hal stoptxdma() is made to achieve this.

Following this step, the driver instructs all higher layers to queue any packets that

are to be transmitted by this card, using the netif stop queue() call.

4. Disable Packet Reception: Call ath hal stoppcurecv() to disable the re-

ceive functions in the program control unit (PCU). This is followed by a call to

ath hal setrxfilter() to clear the receive filter, and finally, to disable any fur-

ther receiver DMA, ath hal stopdmarecv() is called. Following this the driver

waits for 3 ms in a busy wait loop to complete any reception DMA which may have

already started. This turns out to be a major portion of the total switching delay.

5. Reset to New Channel: Call ath hal reset() to reset device and configure to

new channel. This is the most important step in the channel switch procedure,

which actually tunes the wireless interface to a new frequency.

10

6. Enable Packet Transmission: The ath hal putrxbuf() function is called to

re-enable packet transmission logic and DMA buffers.

7. Enable Packet Reception: Call ath hal rxena() to enable receiver descriptors,

followed by a call to ath hal startpcurecv() to enable the receive functionality

of the program control unit.

All the above calls, including the call to perform a device reset, do not have any portions

of code which may sleep, i.e., they are synchronous calls which do not give up control

until the process is complete. Investigation into a reverse engineered hardware abstrac-

tion layer, called OpenHAL [29], revealed that, most likely, all the above listed calls are

synchronous. Hence, to measure delay, we instrumented the function ath chan set()

with do gettimeofday() calls at the start and end of the function.

Such instrumentation measured the time required to complete the call and return to the

caller to be about 5 ms. Out of the measured 5 ms, 3 ms are spent waiting for any ongoing

receive DMA to complete, and may be further optimized. In multichannel protocols, it is

possible to achieve performance improvement with this switching delay, and we validate

this claim with measurements of a protocol implementation.

3.1.2 IEEE 802.11a orthogonal channel usability

The 802.11a specification provides for 12 nonoverlapping3 channels, 4 each in the U-NII

lower band (5.15 to 5.25 GHz), U-NII middle band (5.25 to 5.35 GHz), and U-NII upper

band (5.725 to 5.825 GHz). Each of these channels is 20 MHz wide. The channels in

the lower band are numbered 36, 40, 44, and 48. Similarly the channels in the middle

band are numbered 52, 56, 60, 64; and 149, 153, 157, and 161 in the upper band. In

theory it should be possible to have simultaneous reliable transmission on these channels.

3IEEE 802.11a allows for the use of 12 different channels in the United States. These channels are

each 20 MHz wide, and their center frequencies are separated by 20 MHz, so they do not overlap in

frequency. We refer to these channels as “nonoverlapping” channels.

11

In practice though, due to signal leakage from one channel to another, transmissions on

these nonoverlapping channels may still interfere with one another. The interference level

is affected by many factors such as the hardware used, distance between transmitters,

antennas used, etc. A pair of channels are orthogonal, if simultaneous communication on

those channels do not interfere with each other.

We conducted a small study using two nodes, node A and node B, in our lab corridor.

The nodes were single board computers from Soekris Engineering [30] (model net4521),

equipped with two 802.11a wireless interfaces. One wireless interface made use of the

MiniPCI bus and external antennas, while the other was a PCMCIA bus based card with

an antenna directly attached to the interface. Both cards were based on the Atheros 5212

chipset, and made use of the open-source madwifi driver.

For the experiment, two nodes were placed at the two ends of our laboratory corridor. An

ad hoc wireless network was setup, and the PCMCIA wireless interface on node A was

setup to transmit data to the MiniPCI wireless interface on node B. Node B was directly

connected to a laptop over Ethernet for data collection and control. The MiniPCI wireless

interface on node A was used in 802.11b mode to communicate with the laptop for data

logging and control. Since the nodes used were based on an Intel 486 microprocessor at

100 MHz with 64 Mbytes of memory, they were unable to handle transmission and recep-

tion at high data rates. To avoid processing bottlenecks from skewing the experiment, we

forced the cards to use the 6 Mbps bit rate. For transmission and reception, the Iperf [31]

measurement tool was used. The second wireless interface on node B (PCMCIA) was

now used to create interference for the reception happening on node B’s MiniPCI based

interface. The interference data traffic was created using the ping program, by transmit-

ting packets to the broadcast address in flood mode. The scenario we were testing here

is known to create the worst possible interference at any node; i.e., when a node has two

interfaces, one involved in transmission, and the other in reception, the interface which

is receiving traffic will experience low signal to interference-plus-noise ratio (SINR). For

12

 0

 1

 2

 3

 4

 5

 6

 36 40 44 48 52 56 60 64

T
hr

ou
gh

pu
t (

M
bp

s)

Channel number

Main flow on channel 52

40 feet
20 feet

Figure 3.1 Throughput with the presence of interference on each lower and middle
band channel, nodes are separated by a distance of 20 ft and 40 ft. Throughput with no
interference is at 5.3 Mbps.

other scenarios, where both interfaces are either receiving or transmitting data, the SINR

tends to be much better.

The experiment was conducted at distances of 80 ft, 60 ft, 40 ft, and 20 ft. The main

data flow between node A and node B was set to channel 52. The interfering flow was set

to different channels, one after the other, from 36 to 64, to cover the lower and middle

bands, as shown in Figures 3.1 and 3.2. After this, the main flow was shifted to channel

149 and the interfering traffic was generated on channels starting from 149 to 161, to

cover the upper band, as shown in Figures 3.3 and 3.4. This clearly showed one trend,

viz., as the node distance was reduced, the tolerance to interference caused due to power

leakage from adjacent channels increased. That is, when nodes are closer there may be

more channels which can be used.

13

 0

 1

 2

 3

 4

 5

 6

 36 40 44 48 52 56 60 64

T
hr

ou
gh

pu
t (

M
bp

s)

Channel number

Main flow on channel 52

80 feet
60 feet

Figure 3.2 Throughput with the presence of interference on each lower and middle
band channel, nodes are separated by a distance of 60 ft and 80 ft. Throughput with no
interference is at 5.3 Mbps.

 0

 1

 2

 3

 4

 5

 6

 149 153 157 161

T
hr

ou
gh

pu
t (

M
bp

s)

Channel number

Main flow on channel 149

40 feet
20 feet

Figure 3.3 Throughput with the presence of interference on each upper band channel,
nodes are separated by a distance of 20 ft and 40 ft. Throughput with no interference is
at 5.3 Mbps.

14

 0

 1

 2

 3

 4

 5

 6

 149 153 157 161

T
hr

ou
gh

pu
t (

M
bp

s)

Channel number

Main flow on channel 149

80 feet
60 feet

Figure 3.4 Throughput with the presence of interference on each upper band channel,
nodes are separated by a distance of 60 ft and 80 ft. Throughput with no interference is
at 5.3 Mbps.

At higher distances, the observed throughput shows an interesting phenomenon. When

using the 802.11 Distributed Coordination Function (DCF) for channel access, it is pos-

sible to achieve throughputs of 3.5 Mbps for the main flow, even when a completing flow

(ICMP ping traffic in our case) is contending for the channel, as shown in Figures 3.2 and

3.4. Contrary to what is expected, a transmission on a channel adjacent to the current

channel causes more performance degradation than in the case when the interfering flow

was on the same channel, as seen in Figures 3.2 and 3.4. We expect that this is because

when a transmission is happening on an adjacent channel, the carrier sense mechanism

would fail to detect it, and hence results in more collisions and lower performance.

In essence, we feel that it is possible to use three channels in the lower and middle band

without any noticeable interference when at distance of about 80 ft, and similarly two

channels are usable in the upper band. We are unsure about the behavior at higher

distances, or at network edges when the normal channel itself may be unstable. At lower

15

distances, it may be possible to use an extra channel in the lower and middle bands,

depending on specific channel conditions.

3.2 Kernel Support for Multiple Channels

Implementing multichannel protocols that require interfaces to switch frequently is non-

trivial. Existing hardware does not provide sufficient support for very fast interface

switching, as previously explained. Furthermore, we want to ensure that the use of mul-

tiple channels would be transparent to user applications and higher layers of the network

stack. This constraint implies that changes are needed in the kernel to hide the complex-

ities of using multiple channels with interface switching.

We identify and present the features needed in the kernel, with Linux as an example, for

implementing multichannel protocols with interface switching. In Chapter 4, we present

details of our implementation that provides the requisite kernel support.

3.2.1 Specifying the channel to use for reaching a neighbor

An implicit assumption made in most operating systems is that there is a one-to-one

mapping between channels and interfaces. This assumption is satisfied in a single chan-

nel network because an interface is fixed on the single channel used in the network. This

assumption continues to be met in a network where each node has m interfaces, and

the interfaces of a node are always fixed on some m channels, or switching is infrequent

enough to seem like a static channel assignment. However, in the scenario we address,

the number of interfaces per node could be significantly smaller than the number of chan-

nels. When interfaces have to switch channels, the assumption that there is a one-to-one

mapping between channels and interfaces is invalid.

16

1 B

A

C2

Figure 3.5 Example illustrating the lack of kernel support for specifying the channel to
use to reach a neighbor.

The one-to-one mapping assumption is evident in the kernel routing tables, which spec-

ify only the interface to use for reaching a neighbor. For example, consider the scenario

shown in Figure 3.5. In the figure, suppose that each node has a single interface. Suppose

node B is on channel 1 and node C is on channel 2. Under this scenario, when A has to

send some data to B, it has to send the data over channel 1, and similarly data to C has

to be sent over channel 2. To achieve this, the interface at A has to be switched between

channels 1 and 2, as necessary.

This implies that the channel to use for transmitting a packet may depend on the desti-

nation of the packet. However, in the standard Linux kernel, the routing table entry for

each destination is associated only with the interface to use for reaching that destination,

and has no information about the channel to use. Without this information in the kernel

tables, it is hard to implement multichannel protocols which often use a small number of

interfaces to send data over more channels than interfaces.

3.2.2 Specifying channels to use for broadcast packets

In a single channel network, broadcast packets sent out on the wireless channel are re-

ceived by nodes within the transmission range of the sender. The wireless broadcast

property is used to efficiently exchange information with multiple neighbors (for exam-

ple, during route discovery). In a multichannel network, different nodes may be listening

to different channels. Therefore, to ensure that broadcast packets in a multichannel net-

17

work reach (almost) all the nodes that would have received the packet in a single-channel

network, copies of the broadcast packet may have to be sent out on multiple channels.

For example, in Figure 3.5, node A will have to send a copy of each broadcast packet on

both channel 1 and channel 2 to ensure its neighbors B and C receive the packet.

Several existing applications use broadcast communication, for example, the address res-

olution protocol (ARP). To ensure that the use of multiple channels is transparent to

such applications, it is necessary that the kernel send out copies of broadcast packets on

multiple channels, when necessary. However, there is no support in the kernel to specify

the channels on which broadcast packets have to be sent out, or to actually create and

send out copies of broadcast packets on multiple channels. Therefore, there is a need to

incorporate mechanisms in the kernel for supporting multichannel broadcast.

3.2.3 Support for interface switching

As we discussed earlier, an interface may have to be switched between different channels

to enable communication with neighboring nodes on different channels, and to support

broadcasts. A switch is required when a packet has to be sent out on some channel c,

and at that time there is no suitable interface tuned to channel c. Assume that the kernel

can decide whether a switch is necessary to send out some packet. Even then, the kernel

has to decide whether an immediate switch is feasible. For example, if an interface is still

transmitting an earlier packet, or has buffered some other packets for transmission on

the present channel, then an immediate switch may flush those earlier packets. There-

fore, there is a need for mechanisms in the kernel to decide if earlier transmissions are

complete, before switching an interface.

When an interface cannot be immediately switched to a new channel, packets have to

be buffered in a channel queue until the interface can be switched, as depicted in Figure

3.6. Switching an interface incurs a nonnegligible delay (around 5 ms in our testbed

18

At node A

buffer packet
Channel 2

Channel 1

Packet to node C arrives

Interface switches to channel 2Packet to node B

Packet to node C

Figure 3.6 Example illustrating support required for queueing and switching.

as previously explained), and too frequent switching may significantly degrade perfor-

mance. Therefore, there is a need for a queueing algorithm to buffer packets, as well as

a scheduling algorithm to transmit buffered packets using a policy that reduces frequent

switching, yet ensures that queueing delay of packets is not too large. Scheduling policies

are protocol-specific, and in our implementation we implemented one such policy specific

to the protocol explained in [10].

The discussion in this section identified the need for several new features in the kernel

for supporting the use of multiple channels, especially when interfaces have to switch

between channels.

19

CHAPTER 4

SYSTEM ARCHITECTURE

In this chapter we will detail the architecture of our system which enables multichannel

multi-interface protocol implementation. Initially, we shall discuss the various design

possibilities in implementing our target system. Later, a more detailed discussion about

the actual implementation and various tradeoffs will be presented.

4.1 Design Alternatives and Decisions

In Chapter 3, we presented the major challenges which had to be addressed in imple-

menting our protocols. There are potentially many alternative solutions to these. In this

section we shall discuss such alternatives, and argue in support of the choices we made

for our system.

In most current systems, the operating system is divided into multiple address spaces.

The main divisions are “kernel space” and “user space,” which are differentiated by the

privilege level. It is well known that programming the required software in user space is

a much easier task given the current system design, and isolation provided by the kernel.

Given the privilege level restrictions of user space, and the requirement to abstract sys-

tem level details such as existence of multiple cards, it was infeasible to implement our

system fully in user space. Therefore, we made the choice of implementing most of our

20

system in kernel space. This also had the advantage of providing better timing response

when implementing the queueing and switching module.

4.1.1 Kernel space layers

The Linux kernel is a large and complex system, running in a single address space. It has

many complicated interactions, and various layers at which clean “extensions” may be

written. The Linux kernel’s networking stack is layered in a fashion very similar to that

of the OSI stack. This approach was used to ease implementation and improve extensi-

bility. Given that our protocols mainly involved MAC and network layer modifications,

we had to choose between the two layers to extend. The Linux network layer is very well

developed and allows for extensions to be written via the “Netfilter” architecture of the

Linux kernel. However, implementing our extensions at the network layer in the kernel

posed three main problems. First, the ability to abstract multiple interfaces as a single

interface would not be possible here. Second, we would not have tight control over the

packet delivery delay from the network layer to the actual device. Though we only give

best-effort guarantee as far as switching and timing requirements go, it is better done

at the MAC layer to reduce the levels of indirection. Third, broadcast data which is

generated below the network layer, such as ARP, will be out of our control and will have

to be routed back to the network layer for multichannel broadcast. Though intercepting

ARP traffic may be possible via MAC layer netfilter hooks, they are at best cumbersome

and unclean extensions.

The Linux networking layer is implemented in software, while the MAC layer may be

partly implemented in hardware. Most complexities involving the MAC protocol are

dealt with by the device hardware or by the device driver. However, the MAC layer

exposes a common interface between the complex device driver and hardware and the

other parts of the kernel. This layer also deals with the data structures which expose

device and driver related information to other parts of the kernel. This gives us the abil-

21

ity to abstract multiple devices as a single virtual interface. The last layer of buffering

and queue maintenance is performed at this layer, thus minimizing any further queue-

ing delays. Also, since all kernel traffic is generated above this layer, both unicast and

broadcast data traffic can be handled without any special changes.

The Linux kernel has functionality to abstract multiple interfaces as one interface, us-

ing a special driver known as “bonding driver.” This driver was mainly developed for

Ethernet (802.3) based devices to perform load balancing (striping), fail over, adaptive

shaping, etc. The bonding driver exposes a single virtual interface and has the ability to

“bond” together many interfaces into one. It also has a set of user space tools which can

bond or debond real networking devices together. The bonding driver is well integrated

into the Linux kernel and has been made part of the main kernel source tree.

Given that the bonding driver already achieves one of our main goals of multi-interface

abstraction, we chose to develop other capabilities as extensions to it. The bonding driver

is implemented as a loadable module in the Linux kernel; thus kernel recompilations and

unnecessary system reboots can be avoided, easing the development and testing process.

4.2 Bonding Driver

Our system is closely coupled with the functionality of the bonding driver, so we must

present its functionality before explaining our extensions.

The bonding driver is a dummy networking interface not linked to a real networking

device. A bonding device can be invoked by loading the bonding.o module which creates

a virtual interface, named starting from bond0 onwards. There can be multiple instances

of the bonding driver, by loading the bonding module multiple times. The bonding driver

has a user space helper program, known as “if-enslave,” which can bond multiple real

22

network interfaces into one. The devices which are bonded together are referred to as a

slave devices, and the process of bonding them together is also known as enslaving the

devices. Once enslaved, a slave flag is set up in the real devices’ kernel data structure

to mean that the devices are now incapable of receiving any data directly from user pro-

grams. Any data to be transmitted using these devices has to be routed via the bonding

device. Typically each network interface has one or more network addresses assigned to

them. However, once enslaved, the network addresses are automatically released, and all

devices will now share the same network address or addresses assigned to the bonding

device. All bonded devices also share the same 48-bit MAC address. The first slave’s

(first device to be enslaved) network address is used for all other enslaved devices.

At module load time bonding driver allows us to set the bonding mode. Every bonding

mode has different semantics. Except for a few common functions, such as setting up

the basic data structures and device enslaving routines, the actual scheduling and packet

delivery routines to the real devices are implemented independently as bonding modes.

Bonding modes are large sections of code and are the main part of the bonding driver.

In essence a new bonding mode can be used to cleanly extend the current functionality

of the bonding driver. By default the bonding driver is loaded in the balanced round

robin mode. As the name suggests, in this mode packets are scheduled in a round robin

fashion to each device.

Our extensions were implemented as a new mode, named the Multi Channel Multi Inter-

face mode. During initial development, we have also implemented two different modes,

namely, Mutli Interface mode and Channel Broadcast mode. They were mainly used for

testing different functionalities and have been integrated in a more polished fashion into

our final Multi Channel Multi Interface mode.

23

Device Driver

User space

KernelIoctl
Calls

Channel abstraction module

InterfaceInterface

IP stack

Hybrid protocol

ARP

Device Driver

Figure 4.1 System architecture.

4.3 Channel Abstraction Module

In this section we will discuss in detail the most important part of our system, the Chan-

nel Abstraction Module (CAM). Figure 4.1 depicts the system architecture showing the

CAM. As we can see from the figure, the channel abstraction module resides between

the network layer and the interface device drivers. The user space daemon is an example

implementation of a multichannel protocol which interacts with the channel abstraction

module using ioctl calls. The user space daemon deals with complexities of multichannel

protocols which are not time sensitive, and are hence best done at user space. A more

detailed discussion of this will follow in Chapter 6.

Using this system architecture, we mask all complexity of underlying protocols from user

applications. Such an abstraction of complexity is an important design goal, which facil-

itates all applications, including kernel space protocols such as ARP, to function without

any changes. Therefore, applications are oblivious to multiple interfaces, channel switch-

ing, buffering, etc. Also, the system has been implemented above the link layer, making

it independent of the underlying device driver.

24

BROADCAST TABLE

Channel Interface

1 ath0

2 ath1

3 ath1

Queues of ath0

1 2 3

Schedule

To interface ath0

Queues of ath1

1 2 3

Schedule

To interface ath1

Copies
Make

LookupPacket?
BroadcastLookup

From network layer

No Yes

Assign to
queues

Broadcast componentUnicast component

Scheduling and queueing component

ChannelIP addr Interface

192.168.0.1 ath0 1

192.168.0.5 ath1 2

UNICAST TABLE

Figure 4.2 Components of channel abstraction module: Tables are filled with the as-
sumption that there are two interfaces “ath0” and “ath1,” and three channels.

Channel Abstraction Module can be best explained as a combination of four key compo-

nents, which address different challenges. Though these components are closely coupled

in implementation, they are explained independently for conceptual clarity. Figure 4.2

shows the key components of the channel abstraction module:

• Unicast component: Enables specifying the channel to use to reach a neighbor/

destination.

• Broadcast component: Provides support for sending broadcast packets over multi-

ple channels.

• Scheduling and queueing component: Supports interface switching by buffering

packets when necessary, and scheduling switching across channels.

• Statistics component: Maintains various counters and statistics which may be used

for debugging, route selection, etc.

25

4.3.1 Unicast component

The unicast component provides support for specifying the channel to use to reach a

neighbor. The unicast component maintains a table called the “Unicast table” as shown

in Figure 4.2. The unicast table is composed of tuples. Each tuple has a destination

IP address, a channel the destination is expected to be listening on, and a real inter-

face to use to transmit to the neighbor. The unicast table is populated by a user space

multichannel protocol via ioctl calls (entries can be added, deleted or updated). We

will describe in Chapter 6 an example of the approach used by the hybrid multichannel

protocol to populate the unicast table.

When the channel abstraction module receives a unicast packet from the network layer,

it hands the packet off to the unicast component. The destination address of the packet

is looked up in the unicast table to identify the channel and interface to use for reaching

the destination. After this, the packet is handed off to the queueing component for sub-

sequent transmission.

4.3.2 Broadcast component

The broadcast component provides support for sending out copies of a broadcast packet

on multiple channels. The broadcast component maintains a table called the “Broadcast

table” as shown in Figure 4.2. The broadcast table maintains a list of channels over which

copies of a broadcast packet have to be sent, and the interfaces to use for sending out the

copies. The table is populated by an user space multichannel protocol. This table struc-

ture offers protocols the flexibility of changing the set of channels to use for broadcast

over time, as well as controlling the specific interface to use for broadcast. Therefore,

protocols that use a common channel for broadcast, and protocols that send copies of

broadcast packets over all the available channels can all use this broadcast architecture.

26

When the channel abstraction module receives a broadcast packet from the network layer,

it hands the packet off to the broadcast component. The broadcast component creates

a copy of the packet for each channel listed in the table, and hands off the copies of the

packet to the queueing component.

4.3.3 Scheduling and queueing component

The scheduling and queueing component is the most complex part of the channel ab-

straction module. For each available interface, the component maintains a separate set

of channel queues as shown in Figure 4.2. The user space multichannel protocol, on

startup, can specify the list of channels supported by each interface using ioctl calls.

This architecture allows different interfaces to support possibly different sets of channels.

The queueing component receives a packet, from either the unicast or the broadcast com-

ponent, along with information about the channel and interface to use for sending out

the packet. Using this information, the packet is inserted into the appropriate channel

queue for subsequent transmission. Each interface runs a separate scheduler to send out

the packets. In our current implementation, we use identical round-robin schedulers on

all interfaces.

The scheduler is responsible for controlling interface switching. Since interface switching

delay is not negligible (around 5 ms for our hardware), we want to amortize the switching

cost by sending multiple packets on each channel (if possible) before switching to a new

channel. However, waiting for too long on a channel increases packet delay. Once the

interface is switched to a channel, it stays on that channel for a duration of at least Tmin.

If the channel is continuously loaded, then the scheduler decides to switch to a different

channel (only if another channel has packets queued for it) after a duration of at most

Tmax. Both Tmin and Tmax are module load time parameters and can be suitably modified

27

as per network requirements.

Figure 4.3 describes the scheduler operation. The scheduler maintains an estimate Tfin

of the time needed to transmit packets it has already delivered to the interface device

driver (these packets are stored in a separate queue within the device driver). Tfin is

the sum of the expected transmission time for each packet delivered to the device driver.

The time required to transmit a packet Tt, is estimated based on packet size as follows:

Tt =
Packet Size + Ack Packet Size

Bit Rate
+ SIFS T ime + Preamble T ime

Initially, after a switch, Tfin is set to zero. For each packet that is sent to the device

driver, Tfin is incremented by an estimate of the time needed to transmit that packet.

We ignore channel contention in the calculations as it is not critical to have very accu-

rate estimates, as explained later. Also, the bit rate used is assumed to be a fixed value

(802.11a rate of 6 Mbps for our testbed), which is true in our experiments. This limitation

is because all wireless drivers do not use the same bit rate selection algorithms. Ready

to send (RTS) packet and clear to send (CTS) packet transmission times are ignored in

our estimation, as they are not used in our testbed, as well as in most wireless network

deployments. The scheduler sends packets to the interface driver until either the channel

queue is empty (in which case Tfin is set to the maximum of its current value and Tmin),

or Tfin exceeds Tmax. At this time, a timer is set to expire after Tfin duration, if packets

are pending for any other channel. When the timer expires, if some other channel has

queued packets, then the interface may have to be switched to service that channel.

Before the interface is actually switched, the device driver is queried to see if all packets

that had earlier been delivered to the driver, have been transmitted. Such a querying

interface is not common in most wireless drivers, and we have built a custom querying

interface in the device driver that we use (details are in Chapter 5). If some packets are

still pending, the actual switch is deferred for some more time (for Tdefer time). The

driver flushes its queue when a switch is requested. Therefore, deferring switching allows

28

Defer to finish

����
����
����
����

����
����
����
����

TIME
Switch to
channel 1

T_fin
Switch to
channel 2

queue is empty or T_fin = T_max
Schedule transmissions until

pending transmissions

Figure 4.3 Timeline of scheduling operations: Example shows scheduling process after
switching into channel 1.

any pending packets to be sent out. This technique is required to compensate for trans-

mission time estimation inaccuracies and variable network conditions. After deferral, the

interface is switched, in round-robin order, to the next channel that has buffered packets.

The number of deferrals was limited because of conditions which may delay transmis-

sions beyond reasonably expected time. For example, if a particular channel experiences

heavy interference due to an external signal source, the interface may try multiple times

to transmit each packet, thus keeping all other packets in queue waiting indeterminis-

tically. Also, in the event of a node failure, head of line blocking by data destined to

such a host may cause extremely long waits. Though such conditions are uncommon,

we nevertheless limited deferrals to avoid possibly long waits. By default, the maximum

number of channel switch deferrals has been fixed at two, and may be optimized further.

4.3.4 Statistics component

This component collects channel usage statistics for different channels. Statistics are

collected on number of packets sent on each channel, average service time per channel,

and so on. Most of this information is exported through the proc filesystem. A fixed

subset of the statistics, which may be of interest to higher layer multichannel protocols,

is also exported via an ioctl call. By default, when queried for a specific wireless interface

29

(via an ioctl), channel usage in terms of milliseconds per channel for all valid channels is

returned. Choice of the information to export can be easily incorporated as per require-

ments of the higher layer protocol, with a small change in the code. These statistics can

be used by higher layer protocols to do intelligent channel assignment, route selection, etc.

30

CHAPTER 5

DRIVER MODIFICATIONS

In this chapter we will discuss modifications which were made to the wireless driver

used in our testbed. These changes are required to derive reasonable performance from

multichannel protocols which rely on frequent channel switching. The modifications and

additions made should be of interest for other multichannel protocol implementations.

The channel abstraction module’s design was made to allow for its use with any existing

Linux wireless network device driver. However, without making some driver modifica-

tions, the switching delay could be excessive. Some changes were required to the 802.11

protocol implementation for suitable use in the multichannel scenario. Furthermore with-

out specific feedback, it is possible for the scheduling component to prematurely switch

to a new channel, while still having some packets pending to be delivered in the previous

channel. To overcome these challenges the driver had to be suitably modified. In the

next few sections we will present more details about these changes.

As explained in Chapter 3, the wireless interfaces used in our testbed make use of the

“madwifi” open source driver, and our modifications are based on this driver. We have

not yet looked at the feasibility of making these modifications to other wireless network

drivers. Similar changes should be possible for devices which make use of a software

implementation of the time insensitive portions of the 802.11 protocol (“thin” MACs),

31

in the device driver, provided they are available in open source.

5.1 Reducing Channel Switching Delay

An IEEE 802.11 wireless interface operating in the ad hoc mode is associated with two

identifiers called the Extended Service Set Identifier (ESSID) and Basic Service Set Iden-

tifier (BSSID). BSSID is a 48-bit address used at the MAC layer to uniquely identify a

wireless network. ESSID is an alphanumeric string set by an administrator and is infor-

mally referred to as the network name. On startup, once a node is assigned an ESSID,

it searches all possible channels or a specific channel for nodes which may be advertising

the same ESSID, by listening for “beacons.” Beacons are messages periodically transmit-

ted by nodes in ad hoc mode. These messages contain network information such as the

ESSID, BSSID, network age, channel number, etc. On successfully receiving a beacon

with the same ESSID, the new node learns about the network’s BSSID. The same BSSID

is used by the nodes for all further communication with nodes in the same network. The

ESSID is not used in data communication after determining the network’s BSSID. In

case of an unsuccessful search, where no nodes advertise the same ESSID, the new node

selects a random 48-bit address for the BSSID and starts advertising this via beaconing.

The process discussed so far is referred to as 802.11 ad hoc mode network association

process. However, due to ambiguity in the 802.11 specification about the ad hoc mode

association process, some wireless interfaces may slightly differ or improve on this process.

Association is an infrequent process and is time insensitive. Hence, the madwifi driver

implemented most of this functionality in software. This gave us the flexibility to modify

it for our needs. When a channel switch command is issued to a wireless interface, it

assumes that since we are changing to a new channel, we will be breaking communication

with the present wireless network. Hence, it restarts the association phase and listens

for beacons advertising the same ESSID. Most wireless interfaces send out beacons at

32

the rate of 10 per second, with a 100-ms gap between each beacon. Therefore, wireless

interface cards have to wait for at least 100 ms in anticipation of a beacon. Depending

on when a suitable beacon is heard, the amount of time the association phase would take

to complete varies from less than a millisecond to hundreds of milliseconds.

In multichannel networks, the assumption that we would disassociate from the present

network when we switch to a new channel is inaccurate. Given that such a use was not

envisioned by the 802.11 designers, the assumption was previously justified. Because of

this, we modified the driver to not change its internal 802.11 “state,” other than the

channel information, on switching to a new channel. Details on how this was achieved

are explained in the next paragraph. Following this change, association is invoked only

at interface bring-up time.

In Chapter 3 we briefly described the channel switch call and how it is routed to the ac-

tual channel switch function. As explained previously, when a higher kernel layer or user

space program issues a channel switch command via an ioctl call, it reaches the function

named ieee80211 ioctl swifreq(). In the unmodified version of the driver, this func-

tion first checks that the requested channel is within possible frequency range, and finally

invokes the ath init() function, which is also invoked on system initialization. Hence,

the whole association procedure is restarted after completion of the channel switch. The

channel switch is still achieved by a single function named ath chan set(), which is not

exposed to other kernel modules. In the madwifi driver design, the 802.11 protocol is

implemented and loaded as a separate module, to which the ath chan set() function is

invisible. This required the implementation of a wrapper in the madwifi driver, named

ath chan wrapper(), responsible only for passing the arguments to ath chan set()

function. This function is now exposed to the 802.11 protocol module in a fashion similar

to exposing other device related functions. Following this modification, all channel switch

requests are handed directly by the ath chan set() function. Details of this function

33

have been explained in Chapter 3.

Thus, by by-passing the association process on switching to a new channel, the overall

channel switching delay has been reduced in our testbed.

5.2 Avoiding Network Partitioning

IEEE 802.11a defines two modes of operation, managed/infrastructure and ad hoc mode.

In the managed mode, there is a clear understanding of the requirements of a BSSID,

ESSID and their use in the association phase. Since the managed mode always has a

central authority in the form of an access point, mobility will not cause complications.

However, in the ad hoc mode, the association process was complicated due to the lack

of a central authority. Ideally all nodes, using the same ESSID, in communication range

should use the same BSSID value. Under practical network conditions, nodes using the

same ESSID (network name) may end up using different BSSIDs, leading to network

partitioning. Many reasons such as changing channel conditions, node mobility, faulty

beacon processing, etc., cause this problem. In the multichannel network case, nodes

which are in communication range may use different channels on powering on, causing

network partitioning. Specific changes were required to overcome this problem, as ex-

plained in the next few paragraphs.

Commonly proposed solutions for network partitioning involve either totally disregard-

ing the BSSID value, or making sure that all nodes somehow use a preset BSSID value.

Some real world experience on this from other testbed projects such as MIT Roofnet

were also published [22]. In MIT Roofnet the BSSID value in the 802.11 frame is set to

null, and is disregarded. However, to avoid too many changes to the driver, we used the

process where all nodes on startup choose a known BSSID value. All nodes which run

34

our multichannel protocols are loaded with this modified driver.

Since BSSID and ESSID values are of no functional significance in our present setup,

the requirement to advertise these in beacon packets was also unnecessary. Beaconing

involves sending about 10 packets per second per interface. We removed all beaconing

from our driver to avoid these unnecessary transmissions. These modifications avoid any

possible network partitioning.

5.3 Query Support

In the scheduling policy discussed in Section 4.3.3, we mentioned that we query the un-

derlying driver to know the number of packets yet to be transmitted. This information is

used in deciding whether to defer switches. Such information is not available as a directly

readable counter. Even if such a counter was present, no standard query interface was

defined for such information in the current Linux wireless extensions.

This required us to first extend the driver to maintain a single counter which has in-

formation on the number of packets yet to be transmitted. To support this, a counter

was incremented every time a packet was sent to the hardware. Similarly, the counter

was decremented on the completion, i.e., on the reception of a transmission completion

descriptor from the hardware (transmission could have succeeded or failed on the card).

This seemingly trivial extension, however, required instrumentation in carefully selected

places in the driver to account for all possible driver/device conditions and outcomes of

transmissions.

Linux wireless extensions define a function called get wireless stats() for querying

basic interface statistics. This function normally returns wireless specific statistics from

the device driver. In the returned data structure, there was an unused field, initially de-

35

signed to return the number of packets which have been discarded due to fragmentation

errors. We now use this field to return the value discussed above. This information is

used by the scheduling component to prevent packet losses due to premature channel

switching.

36

CHAPTER 6

MULTICHANNEL PROTOCOL

IMPLEMENTATION

In this chapter we will discuss the programming interface a multichannel protocol may

use to communicate with our channel abstraction module (CAM). As shown in Figure

4.1, user space multichannel protocols can communicate with CAM to set up various

tables and control its behavior. Initially we will discuss the available ioctl interfaces, and

then discuss in detail an example interaction between a multichannel protocol and CAM.

6.1 Communicating with the Channel Abstraction

Module

In this section we will discuss in detail the available ioctl calls which a user space proto-

col can use to communicate with our channel abstraction module. “Ioctl” is an acronym

used in operating systems to informally mean “Input Output Control.” An ioctl call

from user space is sent to a specific device, identified by an ioctl number, along with

an user request. Since our channel abstraction module is built into the bonding driver,

which exposes a pseudo-networking device, we found ioctls to be a suitable communica-

tion mechanism with user space applications.

In the Linux kernel, each device can define and implement up to 16 private ioctls. We

implemented five new private ioctls in CAM, detailed below.

37

1. Add Valid Channel: On startup, every multichannel protocol is expected to inform

the channel abstraction module about the channels it expects to service. This

ioctl call reads in a slave interface name, channel number, validates the inputs,

and initializes internal data structures and queues for that particular interface

and channel pair. At this point, we do not have functionality to delete a valid

channel. One can set up the channel abstraction module to not service a channel

by controlling entries in the broadcast and unicast tables. However, implementing

the delete functionality is trivial.

2. Unicast Entry: This ioctl is used to set up the unicast table. It expects a destination

IPv4 address, destination channel, and the interface to use to transmit on this

channel. Unicast entries can be added, deleted, and updated using this call. Recall

that an IPv4 address is the unique key for the unicast table. When an IPv4 address

passed is not found in the table, and the channel and interface are valid, a new

entry is created. If the address passed is already found in the table, the new channel

and interface information is used to update the entry. A unicast entry is deleted

when its IP address is passed with a blank interface name.

3. Broadcast Entry: This ioctl is used to set up the broadcast table. It expects a valid

channel and the interface to use to service that channel for broadcast packets. For

the broadcast table, the wireless channel is the unique key, and semantics to add,

update or delete an entry are similar to that of the unicast ioctl.

4. Switch Channel: The switch channel ioctl passes a channel switch call to the un-

derlying interface device driver. However, since the channel abstraction module

maintains local state on current channel, it is suggested that all multichannel pro-

tocols, which would like to request a channel switch on a specific wireless interface,

do so using this ioctl call via the channel abstraction module, instead of directly

invoking a switch request.

38

5. Get Statistics: Channel abstraction module has a statistics component which ex-

poses channel usage information via the Linux proc filesystem and also via this ioctl

call. On passing an interface name, this ioctl returns channel usage in milliseconds

per second for each valid channel.

6.2 Hybrid Protocol Implementation

In this section we will discuss the interaction between a multichannel protocol and the

channel abstraction module. A hybrid multichannel protocol, proposed earlier in [7, 10],

will be used to demonstrate the use of the channel abstraction module. The hybrid pro-

tocol requires at least two interfaces at each node. One interface is tuned to a specified

“fixed” channel, and the second interface can switch between the remaining channels. All

incoming traffic to a node is expected to arrive on the fixed channel, while most outgoing

transmissions (except on the fixed channel) are through the switchable interface. Broad-

cast is supported by sending a copy of each broadcast packet on every channel. Each

node advertises its fixed channel using broadcast “hello” packets. The hybrid protocol

tries to ensure that the number of nodes using each fixed channel is balanced. More

details of the protocol are in [10].

Figure 6.1 presents an example of the interaction between the hybrid protocol, imple-

mented in user space, and the channel abstraction module. The example assumes that

three channels (1,2,3) and two interfaces (ath0 and ath1) are available. Initially, the hy-

brid protocol informs the channel abstraction module of the set of valid channels for each

interface through Add Valid Channel ioctl call. The hybrid protocol sets up the available

interfaces identically, but other multichannel protocols could use different interfaces on

different channels. Next, the broadcast table is set up using the Broadcast Entry ioctl

call. In this example, channel 1 is used as the fixed channel, and interface ath0 will be

assigned to channel 1. Therefore, on channel 1, interface ath0 is used to send broadcast

39

Module
Channel Abstraction

AddValidChannel(ath1, <1, 2, 3>)

AddValidChannel(ath0, <1, 2, 3>)

Add BroadcastEntry(ath0, <1>)

Add UnicastEntry(192.168.30.3, ath1, 3)

Add UnicastEntry(192.168.30.2, ath1, 2)

Fixed channel
is channel 1

Neighbors
Added

not reachable
Neighbor

Initialization

Add BroadcastEntry(ath1, <2, 3>)

Hybrid Protocol

Delete UnicastEntry(192.168.30.2, ath1, 2)

Figure 6.1 Interaction between user space hybrid protocol and kernel channel abstrac-
tion module through ioctl calls. Example assumes that three channels (1, 2, 3) and two
interfaces (ath0, ath1) are available.

packets, while on channels 2 and 3, interface ath1 is used.

After initialization, when the node receives “hello” packets from a neighbor, it populates

the unicast table in the channel abstraction module with the channel to be used to reach

the neighbor by invoking the Unicast Entry ioctl call. Later, if a neighbor is no longer

reachable, then the neighbor’s entry is deleted from the unicast table using Unicast Entry

ioctl call with a suitable request. The channel abstraction module uses the Broadcast

Entry ioctl to change the interfaces used to service each channel, should it change its

“fixed” channel to a different one. The Get Statistics ioctl is used by the routing proto-

col [10] in optimizing multihop routes.

Using the channel abstraction module significantly simplified the hybrid protocol imple-

mentation. We believe that using the generic support offered by the channel abstraction

module can simplify the implementation of other multichannel protocols as well.

40

CHAPTER 7

PERFORMANCE ANALYSIS

In this section we will look at some performance analysis of the scheduling component

of our system. The system is running the hybrid multichannel protocol explained in

Chapter 6.

7.1 Throughput Measurements

We present results from a 4-node topology, running the Hybrid Protocol, to quantify the

impact of switching (Figure 7.1). Every node has two wireless interfaces operating in

IEEE 802.11a mode, and the data rate of both interfaces is set to 6 Mbps. One interface

at each node is fixed to a channel, and the fixed channels used are shown next to the

node labels in Figure 7.1, for instance, node A has one interface fixed on channel 60.

The Hybrid protocol is disabled once initial neighbor discovery is complete to avoid any

interference with the experimentation. In reality the Hybrid protocol adds very little

broadcast traffic overhead (less than one packet per second), but we chose to disable it

to prevent any effect on results.

As explained in Section 3.1.2, five channels can be simultaneously used (channels 36, 52,

64, 149, 161) in our testbed in 11a mode. For results presented below, we have used only

channels 36, 60, and 149.

41

Switching: Flows are A−>B, A−>C

D (36) C (36)

B (149)A (60)

No Switching: Flows are A−>C, A−>D

Figure 7.1 Experimental setup.

We use two scenarios to quantify the cost of switching, as shown in Figure 7.1. In the first

scenario (called “No switching” scenario), node A sets up two flows to nodes C and D.

We perform two experiments, one with flows using UDP, and the other with flows using

TCP. The flows are created using Iperf tool [31]. C and D are receiving on channel 36,

while A has its first interface fixed to channel 60. Therefore, node A has to use its second

interface to send data to C and D. However, since C and D are both on channel 36, the

second interface does not need to switch at all, and can stay on channel 36 for the entire

duration of communication. In the second scenario (called “Switching” scenario), node

A sets up two flows to nodes B and C. Now, since B receives data on channel 149, while

C receives data on channel 36, the second interface A has to switch between channels 149

and 36 to service the two flows. This scenario creates frequent interface switching. The

difference in the aggregate throughput achieved between the two scenarios is a measure

of overheads of switching.

The overhead of switching depends on how frequently interfaces are switched, which in

turn depends on the scheduling parameters Tmin and Tmax (see Section 4.3.3 for parame-

ter descriptions). Recall that Tmin specifies the minimum time spent on a channel before

a switch can be made, while Tmax specifies the maximum time allowed on a channel if

another channel has pending packets.

42

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 10 30 50 70 90 110

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Minimum time on channel (T_min) in milliseconds

UDP - No switching
UDP - Switching

TCP - No switching
TCP - Switching

Figure 7.2 Throughput when minimum time spent on a channel is varied. Note that
the curves for UDP and TCP with no switching overlap.

Figure 7.2 plots the aggregate throughput with varying Tmin (Tmax is set to 130 ms),

for both TCP and UDP traffic. Figure 7.3 plots the aggregate throughput with varying

Tmax (Tmin is set to 10 ms). As we can see from the figures, in the “No Switching” sce-

nario, both TCP and UDP get approximately the same aggregate throughput (the curves

overlap in both figures). TCP throughput is close to UDP throughput because the TCP

ACK packets use a different channel than the data packets. Also, because interfaces do

not have to switch, throughput does not change when either Tmin or Tmax is varied.

Note in Figures 7.2 and 7.3 that when there is no switching the aggregate throughput

observed is 5.3 Mbps, for both UDP and TCP traffic. That is, when node A is sending

data to nodes C and D, each flow gets approximately the same throughput, together

adding to 5.3 Mbps. From simple throughput measurement experiments, where Node A

is talking directly to Node D, using an unmodified driver, without our system in place,

the throughput observed for UDP is 5.3 Mbps. TCP throughput observed for the same

unmodified case was less than 5.3 Mbps since TCP acknowledgments are being sent on

the same channel, while for our system, TCP acknowledgments are sent on another non

43

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 50 70 90 110 130 150

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Maximum time on channel (T_max) in milliseconds

UDP - No switching
UDP - Switching

TCP - No switching
TCP - Switching

Figure 7.3 Throughput when maximum time spent on a channel is varied. Note that
the curves for UDP and TCP with no switching overlap.

interfering channel. This shows that our system does not add any overhead when not

switching channels.

In the “Switching” scenario with UDP flows, throughput is unaffected when Tmin is var-

ied. However, UDP throughput varies when Tmax is varied. The UDP flows that we have

set up have sufficient load to saturate the channel. By saturate, we mean UDP load is

high enough to force the scheduling protocol to stay for maximum possible time (Tmax)

on that particular channel. Therefore, when the second interface switches to a channel to

service its flow, there are enough buffered packets to keep the interface on that channel

for Tmax duration. Hence, the number of switches per second, and therefore the switching

overhead, depends on the value of Tmax, as shown in Figure 7.4. Hence, UDP traffic is not

affected by Tmin, and only depends on the value of Tmax. Note that UDP throughput in

the “Switching” scenario is within 5% of the throughput in the “No Switching” scenario

when Tmax is sufficiently high as seen in Figure 7.3. Earlier measurements showed that

each switch takes roughly 5 ms. When UDP flows are fully loaded, a switch happens

every Tmax duration. Therefore, the overhead due to switching is proportional to 5/Tmax,

44

 0

 5

 10

 15

 20

 25

 30

 35

 50 70 90 110 130 150

C
ha

nn
el

 s
w

itc
he

s
pe

r
se

co
nd

Maximum time on channel (T_max) in milliseconds

UDP Flow
TCP Flow

Figure 7.4 Channel switches per second when maximum time spent on a channel is
varied.

and this is approximately the observed switching overhead. This shows that our schedul-

ing algorithm is efficient for saturated UDP traffic, implying that our system does not

add a measurable overhead when switching.

In the “Switching” scenario with TCP flows, throughput is quite sensitive to the value

of Tmin, but not as sensitive to the value of Tmax. In steady state, TCP sends a new

packet only after receiving the ACK of an earlier packet, spacing out packet transmis-

sions over time. Upon switching to a channel, there may only be a few packets buffered

for transmission and most switches happen after Tmin duration. Therefore, with TCP

traffic, the number of switches depends on Tmin, as shown in Figure 7.5, and using larger

Tmin reduces the number of switches, thereby improving aggregate throughput.

These experiments suggest that for improving TCP performance larger Tmin is suitable,

while for improving UDP performance larger Tmax is suitable. Since these two require-

ments are not contradictory, it may seem like the optimal choice is to use large Tmin and

Tmax values. However, end-to-end delay goes up as Tmin and Tmax are increased, and

large values may not be appropriate with delay-sensitive traffic, and in certain cases for

TCP traffic as well. Detailed delay measurements and identifying good parameter values

45

 0

 5

 10

 15

 20

 25

 30

 35

 10 30 50 70 90 110

C
ha

nn
el

 s
w

itc
he

s
pe

r
se

co
nd

Minimum time on channel (T_min) in milliseconds

UDP Flow
TCP Flow

Figure 7.5 Channel switches per second when minimum time spent on a channel is
varied.

for delay-sensitive traffic is ongoing.

Results from the same 4-node topology, using different flows, are presented below. These

results illustrate the throughput benefits of using multichannel protocols. In one set of

experiments, two channels are available (IEEE 802.11a channels numbered 36 and 149),

while in the second set of experiments, four channels are available (IEEE 802.11a chan-

nels numbered 36, 60, 149, and 161). This increase in number of channels used shows an

increase in performance while not breaking connectivity, as seen below.

Figure 7.6 plots the aggregate network throughput in a 4-node topology for 2-channel

and 4-channel scenarios. All nodes are in the transmission range of each other. We set

up UDP flows using the Iperf tool [31]. For each channel scenario, we run experiments

with 4-flows and 8-flows. The flows used for the 4-flow case are A to B, B to C, C to

D, and D to A as shown in the figure. In the 8-flow case, each node is sending data to

two of its neighbors, as shown in the figure. The hybrid protocol balances fixed channel

assignment of nodes (after a few iterations of the protocol). Therefore, in the 2-channel

scenario, there are two nodes per channel, while in the 4-channel scenario there is one

node per channel. In the 2-channel scenario, since there are 2 interfaces per node, in-

46

A B

CD

 0

 5

 10

 15

 20

 25

 2 4

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Number of channels

4 flows
8 flows

4 flows: A−>B, B−>C, C−>D, D−>A

8 flows: A−>B, A−>D, B−>A, B−>C
C−>B, C−>D, D−>C, D−>A

Figure 7.6 Testbed throughput in a 4-node scenario with varying number of channels
and flows.

terface switching is not required. In the 4 channel scenario, when each node has one

outgoing flow (4-flow scenario), again interface switching is not required (except for oc-

casional broadcast packets). However, in the 4-channel, 8-flow scenario, each node has

to frequently switch interfaces to send data along its two outgoing flows.

As we can see from Figure 7.6, in the 4-flow scenario, using 4 rather than 2 channels,

doubles the aggregate network throughput. In this scenario, interface switching is not re-

quired, and the result indicates that our architecture does not add unnecessary overheads

when switching is not needed. For the 8-flow scenarios, using 4 instead of 2 channels,

provides approximately 50% throughput improvement. The throughput improvement in

this scenario is lower than the expected 100% for two reasons. First, the 8-flow setup

requires frequent interface switching as Tmax is set to 50 ms even though the UDP flows

can saturate the channel. Second, each node has only one channel for it to receive on;

that is, when two nodes, say B and D, would like to send data to A, they need to do so

on A’s receiving channel, causing contention. Since the Hybrid protocol does not control

when nodes can talk on a channel, it is possible for two nodes to contend for a channel for

47

a given period of time, while later both may switch channels to service their other flows.

This can create periods of heavy traffic on each node’s incoming channel, followed by

possible idle periods. Though this specific case shows the Hybrid protocol in a bad light,

it still gives a 50% increase in aggregate throughput. Therefore, this result indicates that

multichannel protocols can in practice increase overall throughput of a system by using

multiple channels.

7.2 Delay Measurements

In the previous section, we saw how throughput is affected by switching, and the value of

Tmin and Tmax that may be suitable for better performance. In this section, we will study

the same topology, from the perspective of delay experienced by the traffic while using

our system. Delay measurements are important for real time and multimedia traffic,

which is typically very delay-sensitive.

Before we present the results, we would like to explain the expected delay when using

our system with two flows, requiring switching. Of the two flows, assume that one, a

UDP flow, is saturating and can force the scheduling component to stay on its destina-

tion channel for Tmax duration. The second flow, an ICMP echo request and reply flow

(generated using “ping”), is a low rate flow and requires between Tmin and Tmax time

to service it. A timeline is shown in Figure 7.7. In the diagram, the packets Pi and Pj

are used to refer to the first and the last ICMP packets queued because the interface

is currently servicing a different channel. The ICMP packets received from user space

after packet Pi and before Pj all experience some queueing delay. Observe that the extra

queueing delay is highest for packet Pi, and least for Pj, decreasing in that order. The

amount of delay added to packets arriving between Pi and Pj depends on the value of

Tmax. Therefore, maximum delay is expected to be affected mainly by the Tmax param-

eter. Packets arriving after Pj and before switching channel to service the UDP flow

48

T_max T_max

No

Delay
QueuingDelay

Queueing
Delay

Queueing No

Delay
Queuing

Max. Queueing Delay Max. Queueing Delay

UDP Flow UDP Flow

P_i P_j

ICMP Flow ICMP Flow

P_i

Figure 7.7 Timeline of queueing to understand experienced packet delay.

again, do not experience extra queueing delay, given that all queued ICMP packets can

be transmitted before switching. The amount of delay experienced by ICMP packets

which arrive while servicing this flow is the least possible delay. Therefore, decreasing

the chance of queueing ICMP packets decreases the average delay of this flow. More

packets are likely to be transmitted directly without any queueing, when the value of

Tmin is large. Thus, average queueing delay is effected by the Tmin parameter.

To understand the effect of Tmin and Tmax parameters on delay, we studied the same

4-node topology using one heavily loaded UDP flow along with one lower load ICMP

flow. Node A, as shown in Figure 7.1, has to switch between channels 36 and 149 to

communicate with nodes C and B, respectively. We set up a UDP flow from node A to

node B, which is capable of saturating the channel, i.e., the flow is heavy enough to force

node A to stay on channel 149 for Tmax duration. Such a flow would create the worst

possible delay for any flow on channel 36, i.e., the flow to node C. We used the common

Unix utility ping to generate ICMP traffic on channel 36. Typically, ping gives us a

measure of round-trip time. However, in our multichannel protocol, the communication

to C from A uses channel 36, while the reply packet comes on channel 60, which has no

traffic on it, and has a delay of approximately 1 ms. Hence, in this case the round-trip

time reported by ping is dominated by the delay from A to C.

49

 60

 80

 100

 120

 140

 160

 50 70 90 110 130 150

M
ax

im
um

 IC
M

P
 d

el
ay

 (
m

s)

T_max (ms)

Maximum delay

Figure 7.8 Packet delay when varying maximum time on a channel.

In Figure 7.8 we set the Tmin value to 30 ms on node A and plot the observed maximum

delay for different values of Tmax at node A. Ping returns various statistics from observed

delays including maximum delay experienced. However, due to wireless errors, some

packets may experience delays which are significantly above the expected value. Such

numbers are outliers, and do not reflect the delay introduced by the protocol. Hence,

such values are discarded. After discarding these outliers, there are multiple delay values

which are within 10 ms of the maximum delay value, thus validating our confidence in

the maximum delay value. Those maximum delay values are plotted in the Figure 7.8

for each Tmax. Recall that maximum queueing delay is experienced by ICMP packets

which arrive just after switching to service the UDP channel, as shown in Figure 7.7.

If the UDP load is too high, the queues in the kernel may become too large, and the

kernel starts dropping packets. To avoid this, multiple trials were made to choose an

appropriate UDP load to saturate the time on channel. As expected, the consistently

observed maximum delays, plotted in Figure 7.8, show a direct relation to Tmax. This

result indicates that higher Tmax results in higher maximum queueing delay.

50

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70

A
ve

ra
ge

 IC
M

P
 d

el
ay

 (
m

s)

T_min (ms)

Average delay

Figure 7.9 Packet delay when varying minimum time on a channel.

In the second experiment, we tried to measure the average ICMP delay experienced while

varying the value of Tmin. On node A we set Tmax to 100 ms and varied Tmin, as seen

in Figure 7.9. An increase in Tmin decreases the average delay experienced by the ICMP

packets. The maximum experienced delay remains constant at 120 ms (not shown in

figure), as Tmax is not varied. As stated above, UDP load was chosen to saturate the

time on channel, while ensuring ICMP packets were not dropped. In conclusion, average

queueing delay is effected primarily by Tmin, as long as the difference between Tmin and

Tmax is not too large.

7.3 Summary

In summary we would like to restate the main observations made in this chapter. From

initial throughput results, it can be concluded that our system does not add any extra

overhead when not switching between channels, suggesting that our system does not

perform worse than an unmodified 802.11 based system. Under heavy switching, given

suitable values of Tmin and Tmax, the overheard added by our system can be less than

51

10%. Even under heavy switching, and a suboptimal scenario where the multichannel

protocol may not achieve best performance, our system still achieves a 50% gain over the

base case when number of channels is doubled, supporting its practical use. Delay ex-

periments indicate that average packet delay and maximum packet delay are dependent

on Tmin and Tmax.

A question which has been repeatedly posed in our analysis was the suitable choice of

Tmin and Tmax. Throughput experiments, under symmetric loads, seem to be suggest

that larger Tmin and Tmax values are better. However, under asymmetric loads, such as

those used in the delay experiments, the flow with lower load may not be able to keep

the channel busy for Tmin duration, leading to channel under-utilization. Hence, a very

large Tmin may also be a poor choice. From our measurements presented in Chapter 3, it

is clear that every channel switch costs roughly 5 ms. Therefore, if a switch happens too

frequently, say, more than once every 20 ms, the switching overhead will be high. Hence,

a Tmin of 20 ms to 40 ms is suggested, depending on traffic patterns. Under sufficiently

high load, the value of Tmax is of importance, and larger values have a lower overhead

with respect to throughput. However, in the delay experiments, higher Tmax results in

higher maximum delay. Hence, a value of Tmax between 100 ms to 140 ms is suggested,

depending on the network load expected.

52

CHAPTER 8

CONCLUSION AND FUTURE WORK

We designed and implemented an architecture for supporting multichannel multi-interface

protocols. This thesis identified shortcomings in the present day operating systems in

implementing multichannel protocols. A software architecture for overcoming has been

presented. In the implementation process, many related issues pertaining to the 802.11

protocol and its incompatibilities when used in a multichannel scenario were resolved.

Experimentation has shown that the extra layer of functionality does not worsen network

performance, even when using devices with low processing power such as those in our

study. An example multichannel protocol proposed by Kyasanur and Vaidya in [10] was

implemented, and its interaction with our system was explained. This thesis showed

that it is possible to implement multichannel protocols which require interface channel

switching with relatively low overheads using existing hardware.

Goal of the system presented in this thesis was to enable multichannel protocol research.

However, no initial architecture would be holistic enough to support all possible multi-

channel protocols. Our system was developed to address the issues presented in Section

3.2. Other multichannel protocols may present a different set of requirements. A few

such protocols may require changes to hardware, which is out of the scope of software

architectures like ours, but some may warrant for extensions to our system. Such exten-

sions could be a possible future direction for our system.

53

Future wireless chipsets are expected to support faster switching between wireless chan-

nels. This feature is informally referred to as “fast switching.” The ability to switch

channels considerably faster than what is possible at present could change some of the

assumptions made, and impact both our system architecture and multichannel protocol

design. It is necessary to carefully follow this development and exploit such abilities to

full potential in the future.

8.1 Suggestions for Future Hardware Design

In our study of multichannel protocols we made use of 802.11a based wireless interfaces,

which provide for 12 different channels. But experimentation proved that when the in-

terfaces are very close (within a few inches) to each other, it would be impractical to use

more than 3-5 channels depending on the distance between the transmitter and the re-

ceiver. This is because of the leakage of power into side-bands with filters used in current

cards. Communication with other practitioners suggests that the filter used was consid-

erably better than what is recommended by the 802.11a specification. This showed that

the design of the 802.11 protocol never envisioned such an use, and hence manufacturers

had no reason or advantage in implementing better filters. It may however be possible

to allow for much better channel diversity with the use of better filters.

54

REFERENCES

[1] IEEE Standard for Wireless LAN-Medium Access Control and Physical Layer Spec-

ification, P802.11, 1999.

[2] A. Raniwala, K. Gopalan, and T. Chiueh, “Centralized channel assignment and

routing algorithms for multi-channel wireless mesh networks,” Mobile Computing

and Communications Review, vol. 8, pp. 50–65, April 2004.

[3] A. Raniwala and T. Chiueh, “Architecture and algorithms for an IEEE 802.11-based

multi-channel wireless mesh network,” in INFOCOM 2005. Proceedings of the 24th

Annual Joint Conference of the IEEE Computer and Communications Societies,

vol. 3, March 2005, pp. 2223– 2234.

[4] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A new multi-channel MAC

protocol with on-demand channel assignment for multi-hop mobile ad hoc networks,”

in Proceedings of the International Symposium on Parallel Architectures, Algorithms

and Networks (ISPAN), 2000, pp. 232–237.

[5] J. So and N. H. Vaidya, “Multi-channel MAC for ad hoc networks: Handling multi-

channel hidden terminals using a single transceiver,” in MobiHoc ’04: Proceedings

of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Com-

puting, 2004, pp. 222–233.

[6] P. Bahl, R. Chandra, and J. Dunagan, “SSCH: Slotted seeded channel hopping for

capacity improvement in IEEE 802.11 ad-hoc wireless networks,” in MobiCom ’04:

Proceedings of the 10th Annual International Conference on Mobile Computing and

Networking, 2004, pp. 216–230.

[7] P. Kyasanur and N. H. Vaidya, “Routing and interface assignment in multi-channel

multi-interface wireless networks,” in Proceedings of the IEEE Wireless Communi-

cations and Networking Conference (WCNC), vol. 4, March 2005, pp. 2051–2056.

55

[8] P. Kyasanur and N. H. Vaidya, “Capacity of multi-channel wireless networks: im-

pact of number of channels and interfaces,” in MobiCom ’05: Proceedings of the

11th Annual International Conference on Mobile Computing and Networking, 2005,

pp. 43–57.

[9] M. Kodialam and T. Nandagopal, “Characterizing the capacity region in multi-

radio multi-channel wireless mesh networks,” in MobiCom ’05: Proceedings of the

11th Annual International Conference on Mobile Computing and Networking, 2005,

pp. 73–87.

[10] P. Kyasanur and N. H. Vaidya, “Routing and link-layer protocols for multi-channel

multi-interface ad hoc wireless networks,” Sigmobile Mobile Computing and Com-

munications Review, vol. 10, pp. 31–43, Jan. 2006.

[11] M. A. Marsan and F. Neri, “A simulation study of delay in multichannel CSMA/CD

protocols,” IEEE Transactions on Communications, vol. 39, pp. 1590–1603, Novem-

ber 1991.

[12] A. Nasipuri, J. Zhuang, and S. Das, “A multichannel CSMA MAC protocol for

multihop wireless networks,” in IEEE Wireless Communications and Networking

Conference (WCNC), vol. 3, Sept. 1999, pp. 1402–1406.

[13] A. Nasipuri and S. Das, “Multichannel CSMA with signal power-based channel

selection for multihop wireless networks,” in Proceedings of the 52nd IEEE Vehicular

Technology Conference, vol. 1, Sept. 2000, pp. 211–218.

[14] N. Jain, S. Das, and A. Nasipuri, “A multichannel CSMA MAC protocol with

receiver-based channel selection for multihop wireless networks,” in Proceedings of

the 10th International Conference on Computer Communications and Networks, Oc-

tober 2001, pp. 432–439.

[15] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A multi-radio unification

protocol for IEEE 802.11 wireless networks,” in Proceedings of the First International

Conference on IEEE International Conference on Broadband Networks (Broadnets),

2004, pp. 344–354.

[16] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless mesh

networks,” in MobiCom ’04: Proceedings of the 10th Annual International Confer-

ence on Mobile Computing and Networking, 2004, pp. 114–128.

[17] A. Miu, H. Balakrishnan, and C. E. Koksal, “Improving loss resilience with multi-

radio diversity in wireless networks,” in MobiCom ’05: Proceedings of the 11th An-

nual International Conference on Mobile Computing and Networking, 2005, pp. 16–

30.

56

[18] R. Chandra and P. Bahl, “Multinet: Connecting to multiple IEEE 802.11 networks

using a single wireless card,” in INFOCOM 2004. Proceedings of the 23rd Annual

Joint Conference of the IEEE Computer and Communications Societies, vol. 2, Hong

Kong, March 2004, pp. 882–893.

[19] P. Stuedi and G. Alonso, “Transparent heterogeneous mobile ad hoc networks,” in

Proceedings of the 2nd Annual International Conference on Mobile and Ubiquitous

Systems (MobiQuitous), 2005, pp. 237–246.

[20] N. Boulicault, G. Chelius, and E. Fleury, “Experiments of ana4: An implementation

of a 2.5 framework for deploying real multi-hop ad-hoc and mesh networks,” in

REALMAN ’05: Proceedings of the 2005 Realman Workshop, 2005, pp. 19–26.

[21] V. Kawadia, Y. Zhang, and B. Gupta, “System services for ad-hoc routing: Archi-

tecture, implementation and experiences,” in Proceedings of the First International

Conference on Mobile Systems, Applications, and Services (MobiSys), 2003, pp. 99–

112.

[22] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and evaluation of an

unplanned 802.11b mesh network,” in MobiCom ’05: Proceedings of the 11th Annual

International Conference on Mobile Computing and Networking, 2005, pp. 31–42.

[23] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrm, and C. Tschudin, “A large-scale

testbed for reproducible ad hoc protocol evaluations,” in Proceedings of the IEEE

Wireless Communications and Networking Conference (WCNC), vol. 1, Mar. 2002,

pp. 412–418.

[24] D. Raychaudhuri, I. Seska, S. G. M. Ott, K. Ramachandra, H. Krem, R. Siracus,

H. Liu, and M. Singh, “Overview of the orbit radio grid testbed for evaluation of

next-generation wireless network protocols,” in Proceedings of the IEEE Wireless

Communications and Networking Conference (WCNC), vol. 3, Mar. 2005, pp. 1664–

1669.

[25] B. Raman and K. Chebrolu, “Design and evaluation of a new MAC protocol for long-

distance 802.11 mesh networks,” in MobiCom ’05: Proceedings of the 11th Annual

International Conference on Mobile Computing and Networking, 2005, pp. 156–169.

[26] K. Ramachandran, E. Belding-Royer, and K. Almeroth, “Overview of the orbit

radio grid testbed for evaluation of next-generation wireless network protocols,”

in Proceedings of the First Annual IEEE Communications Society Conference on

Sensor and Ad Hoc Communications and Networks(SECON), Oct. 2004, pp. 601–

609.

57

[27] “AR5212 Chipset from Atheros Communications Inc.,” 2005,

http://www.atheros.com.

[28] “Multiband Atheros Driver for WiFi (MADWiFi), BSD-branch CVS snaphot,” May

25th, 2005, http://madwifi.org.

[29] “Openhal,” October 2005, http://pdos.csail.mit.edu/˜jbicket/openhal/.

[30] “Hardware model Net4521 from Soekris Engineering, Inc.,” 2005,

http://www.soekris.com/net4521.htm.

[31] “Iperf version 2.0.2,” May 2005, http://dast.nlanr.net/Projects/Iperf/.

58

