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ABSTRACT
The use of multiple wireless channels has been advocated
as one approach for enhancing network capacity. In many
scenarios, hosts will be equipped with fewer radio interfaces
than available channels. Under these scenarios, several pro-
tocols, which require interfaces to switch frequently, have
been proposed. However, implementing protocols which re-
quire frequent interface switching in existing operating sys-
tems is non-trivial. In this paper, we identify the features
needed in the operating system kernel for supporting fre-
quent interface switching. We present a new channel ab-
straction module to support frequent interface switching.
We identify modifications to interface device driver to re-
duce switching delay. The channel abstraction module, and
an example multi-channel protocol that uses the module,
have been implemented in a multi-channel multi-interface
testbed. We also present results to quantify the overheads
of frequent switching.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Measurement, Design, Experimentation

Keywords
Wireless Testbed, Multiple Channels, Multiple Interfaces,
Interface switching, Mesh networks

1. INTRODUCTION
Wireless technologies, such as IEEE 802.11a [8], provide

for several non-overlapping channels. Several researchers
have proposed the use of multiple wireless channels for en-
hancing network capacity. Two hosts can exchange data
only if they both have a radio interface tuned to a common
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channel. Currently available off-the-shelf interfaces can op-
erate only on any one channel at a time, though over time,
an interface can be switched across different channels. Typi-
cally, hosts are equipped with one or a small number of radio
interfaces, but the number of interfaces per host is expected
to be smaller than the number of channels. This scenario
is expected to be more likely as additional channels become
available, yet there are few protocols for this scenario.

One protocol design approach when hosts have fewer in-
terfaces than channels is to assign the interfaces of different
nodes in a neighborhood to different channels [19,20]. In this
approach, interfaces do not switch channels, but collectively,
the interfaces of all the nodes in a region are distributed
across the available channels. An alternate approach that
is more flexible is to allow each node to potentially access
all the channels by switching some of its interfaces among
the available channels [3,14,21,25]. This interface switching
approach allows channel assignment to be dynamically done
based on node density, traffic, channel conditions, etc., and
has shown to be a good choice in theory [12, 13]. However,
frequently switching interfaces1 introduces extra implemen-
tation complexity.

Building multi-channel protocols that require frequent in-
terface switching in current operating systems raises several
challenges. The use of multiple channels and multiple in-
terfaces, as well as switching interfaces among channels, has
to be insulated from existing user applications. Implement-
ing frequent switching requires new support in the oper-
ating system kernel. In this paper, we present the design
and implementation of a new channel abstraction module
in the kernel that simplifies the implementation of multi-
channel protocols that require interface switching. Switch-
ing an interface incurs a delay, and the magnitude of the
delay impacts the viability of frequent interface switching.
We will describe the driver modifications we made to reduce
the switching delay to around 5 milliseconds, so as to make
frequent switching feasible, and present results to quantify
the impact of switching delay on network throughput.

The development of the abstraction module was moti-
vated by our efforts to implement a hybrid multi-channel
protocol [14, 15] that we had proposed earlier. The hybrid
protocol requires two interfaces per host. One interface at
each node is tuned to one “fixed” channel, and different
nodes use different fixed channels. The second interface at
each node can be switched among different channels, as nec-

1By “frequent switching”, we imply potentially switching an
interface multiple times every second.



essary. A node transmits a packet to a neighbor on the fixed
channel of its neighbor. This protocol was shown to be fairly
effective in utilizing multiple channels when there are fewer
interfaces per host than channels [15]. By using the chan-
nel abstraction module that we have developed, the hybrid
protocol was implemented as a simple user space daemon.
We will outline the hybrid protocol implementation, which
serves as one example use of the channel abstraction module.

The rest of the paper is organized as follows. We present
related work in Section 2. Section 3 identifies the new fea-
tures needed for supporting multi-channel protocols that re-
quire interface switching. Sections 4 and 5 present the sys-
tem architecture and implementation details of the channel
abstraction module. Section 6 describes modifications made
to the device driver to reduce switching delay. Section 7
presents the implementation of the hybrid multi-channel
protocol using the channel abstraction module. Section 8
presents experimental results, and we conclude in Section 9.

2. RELATED WORK
Several protocols have been proposed for utilizing multiple

channels. Most protocols [1, 7, 10, 16–18] require each node
to have one interface per channel (otherwise, only as many
channels as the number of interfaces per host are utilized
in the network). Some of these protocols have been imple-
mented in real systems [7, 17], but the challenges faced in
our implementation are largely different. The few protocols
proposed for the scenario where hosts have fewer interfaces
than channels [3, 14, 19–21, 25] have mostly been evaluated
in a simulation environment.

Raniwala et al. [19] have proposed an approach where dif-
ferent nodes are assigned to different channels, and inter-
faces rarely switch channels. This approach has been imple-
mented in a testbed. However, as their approach does not
require frequent interface switching, their implementation
was feasible with existing operating system support.

“VirtualWifi” [6,24] is an virtualization architecture that
abstracts a single wireless interface into multiple virtual in-
terfaces. VirtualWifi has support for switching the physical
interface across the channels used by each virtual interface.
VirtualWifi has some similarity to the channel abstraction
module that we propose, but does not offer all the features
necessary for controlled switching among multiple channels.
VirtualWifi exports one virtual interface per channel, which
exposes the available channels to the user applications, and
may necessitate modifying these applications. In contrast,
our work hides the notion of multiple channels from user ap-
plications, and therefore, does not require any modifications
to existing applications.

A feature of the channel abstraction module is to export
a single virtual interface to abstract out multiple interfaces.
There are other testbed works that can also abstract mul-
tiple real interfaces into a single virtual interface [5, 11, 23].
However, those approaches are not designed to support the
notion of using multiple channels or interface switching be-
tween channels.

There have been many other testbed implementations for
single channel, single radio networks. However, to the best
of our knowledge, all those implementations require non-
trivial changes to support the use of multiple channels by
switching interfaces.

3. KERNEL SUPPORT FOR MULTIPLE
CHANNELS

Implementing multi-channel protocols that require inter-
faces to switch frequently is non-trivial. Our testbed was
developed with the goal of using off-the-shelf IEEE 802.11
hardware. Existing hardware does not provide sufficient
support for effective interface switching, as elaborated later.
Furthermore, we wanted to ensure that the use of multi-
ple channels would be transparent to user applications and
higher layers of the network stack. This constraint implies
that changes are needed in the kernel to hide the complexi-
ties of using multiple channels with interface switching.

In this section, we identify the features needed in the
kernel, with Linux as an example, for implementing multi-
channel protocols with interface switching. In subsequent
sections, we present details of our implementation that pro-
vides the requisite kernel support.

3.1 Specifying the channel to use for reaching
a neighbor

An implicit assumption made in many operating systems
is that each interface is associated with exactly one channel,
i.e., there is an one-to-one mapping between interfaces and
channels. This assumption is satisfied in a single channel
network where an interface is fixed on the single channel
used throughout the network. This assumption continues
to be met in a network where each node has m interfaces,
and the interfaces of a node are always fixed on some m

channels. However, in the scenario we address, the number
of interfaces per node could be significantly smaller than
the number of channels. When interfaces have to switch
across channels, the assumption that there is an one-to-one
mapping between channels and interfaces is broken.

The one-to-one mapping assumption is evident in the ker-
nel routing tables, which specify only the interface to use
for reaching a neighbor. For example, consider the scenario
shown in Figure 1. In the figure, suppose that each node
has a single interface. Suppose node B is on channel 1 and
node C is on channel 2. Under this scenario, when A has
to send some data to B, it has to send the data over chan-
nel 1, and similarly data to C has to be sent over channel
2 (the interface at A has to be switched between channels
1 and 2, as necessary). This implies that the channel to
use for transmitting a packet may depend on the destina-
tion of the packet. However, in the standard Linux kernel,
routing table entry for each destination is associated only
with the interface to use for reaching that destination, and
has no information about the channel to use. Without this
information in the kernel tables, it is hard to implement
multi-channel protocols which often use a single interface to
send data over multiple channels.

3.2 Specifying channels to use for broadcast
In a single channel network, broadcast packets sent out on

the wireless channel are typically received by nodes within
the transmission range of the sender. The wireless broad-
cast property is used to efficiently exchange information with
multiple neighbors (for example, during route discovery). In
a multi-channel network, different nodes may be listening to
different channels. Therefore, to ensure that broadcast pack-
ets in a multi-channel network reach (almost) all the nodes
that would have received the packet in a single-channel net-
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Figure 1: Example illustrating the lack of kernel

support for multi-channel protocols.

work, copies of the broadcast packet may have to be sent
out on multiple channels. For example, in Figure 1, node
A will have to send a copy of any broadcast packet on both
channel 1 and channel 2 to ensure its neighbors B and C
receive the packet.

There are several existing applications that use broadcast
communication, for example, the address resolution protocol
(ARP). To ensure that the use of multiple channels is trans-
parent to such applications, it is necessary that the kernel
send out copies of broadcast packets on multiple channels,
when necessary. However, there is no support in the exist-
ing kernel to specify on which channels broadcast packets
have to be sent out on, or to actually create and send out
copies of broadcast packets on multiple channels. Therefore,
there is a need to incorporate mechanisms in the kernel for
supporting multi-channel broadcast.

3.3 Support for interface switching
As we discussed earlier, interfaces may have to be switched

between different channels to enable communication among
neighboring nodes that are on different channels, and to sup-
port broadcasts. A switch is required when a packet has to
be sent out on some channel c, and at that time there is
no interface tuned to channel c. Suppose that the kernel
can decide whether a switch is necessary to send out some
packet. Even then, the kernel has to decide whether an im-
mediate switch is feasible. For example, if an interface is still
transmitting an earlier packet, or has buffered some other
packets for transmission, then an immediate switch may re-
sult in the loss of those earlier packets. Therefore, there
is a need for mechanisms in the kernel to decide if earlier
transmissions are complete, before switching an interface.

When an interface cannot be immediately switched to a
new channel, packets have to be buffered in a channel queue
until the interface can be switched. Switching an interface
incurs a non-negligible delay (around 5 ms in our testbed),
and too frequent switching may significantly degrade perfor-
mance. Therefore, there is a need for a queuing algorithm
to buffer packets, as well as a scheduling algorithm to trans-
mit buffered packets using a policy that reduces frequent
switching, yet ensures queuing delay is not too large.

The discussions in this section clearly identify the need for
several new features in the kernel for supporting the use of
multiple channels, especially when interfaces have to switch
between channels.

4. SYSTEM ARCHITECTURE
In this section, we present the design choices we made to

provide in-kernel support for interface switching, and outline
the system architecture.

4.1 Design choices
The Linux kernel’s networking stack is organized into mul-

tiple layers to ease implementation and improve extensibil-
ity. For example, IP belongs to the network layer, while the
device drivers that control access to the interface hardware
are part of the link layer. The key design question was to
identify the layer where interface switching support could be
added. Interface switching support requires close interaction
with the interface device driver. Based on this requirement,
we had three possible locations for adding interface switch-
ing support:

1. Add interface switching support directly into the de-
vice driver. This approach offers the most control in
accessing the interfaces, but has two main drawbacks.
First, this approach ties in our implementation with a
specific device driver. Second, multiple interfaces can-
not be cleanly handled within the device driver of a
single interface.

2. Add interface switching support into the network layer
(for example, as a “Netfilter” hook). This approach in-
sulates the implementation from the specifics of device
drivers. However, multiple interfaces are visible to the
network layer, and this may require modifications to
some protocols that are at (or below) the network layer
(such as ARP).

3. Add interface switching support as a new module that
operates between the network layer (and ARP) and the
device drivers. The module may be logically viewed as
belonging to the link layer. This approach has the
benefit of being insulated from device driver specifics,
while allowing us to present a single virtual interface to
the network layer. The virtual interface can abstract
multiple interfaces that may be actually available, and
insulates the network layer from knowing the details
of the number and types of interfaces. We choose this
approach, and implement a new channel abstraction
module.

The option we chose has some additional benefits. Linux
already has the ability to “bond” multiple interfaces into a
single virtual interface using a link layer “bonding driver”
that resides between the network layer and device drivers.
The bonding driver is typically used for grouping multiple
ethernet-based devices into a single virtual device. The
bonding drivers offers features that allow for load balanc-
ing (striping) over the available interfaces, interface fail-over
support, etc. There is also a set of user space tools which
support management operations, such as specifying which
real interfaces to group into a single virtual interface. We
implemented the channel abstraction module as a new fea-
ture of the bonding driver.

4.2 Architecture overview
Figure 2 depicts the system architecture. As we can see

from the figure, the channel abstraction module resides be-
tween the network layer and the interface device drivers. We
have implemented the hybrid multi-channel protocol [14,15]
as an user space daemon. The user space daemon inter-
acts with the channel abstraction module using ioctl calls.
We also made a few modifications to the interface device
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Figure 2: System architecture.

driver to reduce switching delay, and to improve scheduling
efficiency (details are in Section 6). All existing user appli-
cations, and protocols in the kernel above the link layer, are
unaware of the use of multiple channels, multiple interfaces
and interface switching.

5. CHANNEL ABSTRACTION MODULE
In this section, we will describe the channel abstraction

module. The module is implemented as a new feature of the
bonding driver present in the Linux kernel. Figure 3 shows
the key components of the channel abstraction module:

• Unicast component: Enables specifying the channel to
use to reach a neighbor.

• Broadcast component: Provides support for sending
broadcast packets over multiple channels.

• Scheduling and queuing component: Supports inter-
face switching by buffering packets when necessary,
and scheduling switching across channels.

The details of the components are presented below.

5.1 Unicast component
The unicast component provides support for specifying

the channel to use to reach a neighbor. The unicast compo-
nent maintains a table called the “Unicast table” as shown
in Figure 3. The unicast table is composed of tuples. Each
tuple has a destination IP address, a channel the destination
is expected to be listening on, and a real interface to use to
transmit to the neighbor. The unicast table is populated by
an user space multi-channel protocol via ioctl calls (entries
can be added or deleted). We will describe in Section 7, with
an example, the approach used by the hybrid multi-channel
protocol to populate the unicast table.

When the channel abstraction module receives a unicast
packet from the network layer, it hands the packet off to the
unicast component. The destination address of the packet
is looked up in the unicast table to identify the channel
and the interface to use for reaching the destination. After
this, the packet is handed off to the queuing component for
subsequent transmission.

5.2 Broadcast component
The broadcast component provides support for sending

out copies of a broadcast packet on multiple channels. The

broadcast component maintains a table called the “Broad-
cast table” as shown in Figure 3. The broadcast table main-
tains a list of channels on which copies of a broadcast packet
have to be sent out on, and the interfaces to use for send-
ing out the copies. The table is populated by an user space
multi-channel protocol. This table structure offers proto-
cols the flexibility of changing the set of channels to use for
broadcast over time, as well as controlling the specific inter-
face to use for broadcast. Therefore, protocols that use a
common channel for broadcast, protocols that send a copy
of broadcast packet over all the available channels, can all
use this broadcast architecture.

When the channel abstraction module receives a broad-
cast packet from the network layer, it hands the packet off
to the broadcast component. The broadcast component cre-
ates a copy of the packet for each channel listed in the table,
and hands off the copies of the packet to the queuing com-
ponent.

5.3 Scheduling and queuing component
The scheduling and queuing component is the most com-

plex part of the channel abstraction module. For each avail-
able interface, the component maintains a separate set of
channel queues as shown in Figure 3. The user space multi-
channel protocol, on startup, can specify the list of channels
supported by each interface using ioctl calls. This architec-
ture allows different interfaces to support a possibly different
set of channels.

The queuing component receives a packet, from either the
unicast or the broadcast component, along with information
about the channel and interface to use for sending out the
packet. Using this information, the packet is inserted into
the appropriate channel queue for subsequent transmission.
Each interface runs a separate scheduler to send out the
packets. In our current implementation, we use identical
round-robin schedulers on all interfaces.

The scheduler is responsible for controlling interface switch-
ing. Since interface switching delay is not negligible (around
5 ms for our hardware), we want to amortize the switching
cost by sending multiple packets on each channel (if possi-
ble) before switching to a new channel. However, waiting
for too long on a channel increases packet delay. Once the
interface is switched to a channel, it stays on that channel
for at least Tmin duration. If the channel is continuously
loaded, then the scheduler decides to switch to a different
channel (only if another channel has packets queued for it)
after Tmax duration (Tmax > Tmin).

Figure 4 describes the scheduler operation. The scheduler
maintains an estimate Tfin of the time needed to transmit
packets it has already given to the interface device driver
(these packets are stored in a separate queue within the de-
vice driver). Initially, after a switch, Tfin is set to zero. For
each packet that is sent to the device driver, Tfin is incre-
mented by an estimate of the time needed to transmit that
packet. The estimate is derived based on the size of the
packet and the transmission data rate (we ignore channel
contention as it is not critical to have very accurate esti-
mates). The scheduler sends out packets to the interface
driver until either the channel queue is empty (in which
case, Tfin is set to the maximum of its current value and
Tmin), or Tfin exceeds Tmax. At this time, a timer is set
to expire after Tfin duration, if packets are pending for any
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other channel. When the timer expires, if some other chan-
nel has queued packets, then the interface may have to be
switched.

Before the interface is actually switched, the device driver
is queried to see if all packets, which had been given to the
driver since the last switch, have been transmitted. Such a
querying interface is not common in most wireless drivers,
and we have built a custom querying interface in the device
driver that we use (details are in Section 6). If some packets
are still pending, the actual switch is deferred for some more
time (for Tdefer time, currently set to 10 ms). The driver
flushes its queue when a switch is requested. Therefore,
deferring switching allows any pending packets to be sent
out. After deferral, the interface is switched to the next
channel, in round-robin order, that has buffered packets.

The scheduling component also collects the channel us-
age statistics for different channels. This information is ex-
ported through the proc filesystem, and can also be accessed
through ioctl calls. The statistics can be used by higher layer
multi-channel protocols to do intelligent channel assignment,
route selection, etc.

6. DRIVER MODIFICATIONS
The channel abstraction module has been designed for use

with any existing driver. However, without making some

driver modifications, the switching delay could be excessive,
and many packets could be lost after a switch (the packets
present in the interface driver queue). In this section, we
describe the driver modifications that we have implemented
to improve performance.

Our testbed uses wireless interfaces that are based on
atheros chipsets [2] controlled by “madwifi” open source
driver. Our device driver modifications have been made to
the madwifi driver. We have not yet looked at the feasibility
of making these modifications to other drivers.

6.1 Reducing channel switching delay
An IEEE 802.11 wireless interface operating in the ad hoc

mode is associated with two identifiers called the ESSID (set
by the administrator), and BSSID (chosen by the node that
first came up with that ESSID), and these identifiers are
sent out periodically in beacon packets. When a wireless
interface, running in the ad hoc mode, switches to a new
channel, it is expected to listen for networks which adver-
tise the same ESSID as itself. If no advertisements are heard
within a specified time period, then the interface is supposed
to create a new network by advertising a different randomly
chosen BSSID. This process of listening for beacons and ad-
vertising a new BSSID, if necessary, can take up to 100 ms
(the time for only switching channels is about 5 ms). There-
fore, the overall interface switching delay can be excessive
when normal beaconing is used.

In multi-channel protocols, the beaconing procedure af-
ter a switch is not really required if all nodes belong to the
same network. To reduce the channel switching delay, we
changed the behavior of the interface after a channel switch
request has been made, so as to not search for any bea-
cons. Instead, at startup, all nodes are initialized with a
pre-specified BSSID (in addition to the ESSID). This re-
moves the need for scanning for beacons after the switch.
Beacons have been disabled in a similar fashion in some
other testbed projects as well [4]. Using this technique, we
have reduced the interface switching delay to about 5 ms.



6.2 Query support
As we discussed in Section 5.3, there is a need for the

scheduling component to estimate the queue size in the in-
terface driver. To support this, we overloaded a statistics
function already provided in Linux wireless device drivers
called get wireless stats(). This function normally returns
basic book keeping counters, which are wireless specific. In
the returned data structure, there was an unused field, which
we now use to return the number of packets which have been
handed down to the driver, but have still not been transmit-
ted. This information is used by the scheduling component
to prevent packet losses due to premature channel switching.

7. IMPLEMENTATION OF HYBRID
MULTI-CHANNEL PROTOCOL

We implement a hybrid multi-channel protocol that we
had proposed earlier [14, 15], to demonstrate the use of the
channel abstraction module. As we described in Section 1,
the hybrid protocol requires two interfaces at each node.
One interface is tuned to a specified “fixed” channel, and
the second interface can switch between the remaining chan-
nels. Broadcast is supported by sending a copy of the broad-
cast packet on every channel. The hybrid protocol tries to
ensure that the number of nodes using each fixed channel
is balanced. Each node advertises its fixed channel using
broadcast “hello” packets. When a node A wants to send a
packet to some node B, then it has to first switch its second
interface to the fixed channel of B (if B and A use different
fixed channels), and then transmit the packet. More details
of the protocol are in [15].

Figure 5 presents an example of the interaction between
the hybrid protocol, which has been implemented as an user
space daemon, and the channel abstraction module. The ex-
ample assumes that three channels (1,2,3) and two interfaces
(ath0 and ath1) are available. Initially, the hybrid protocol
informs the channel abstraction module of the set of valid
channels for each interface through AddValidChannel ioctl
call. The hybrid protocol sets up the available interfaces
identically, but other multi-channel protocols could use dif-
ferent interfaces on different channels. Next, the broadcast
table is set up using the AddBroadcastTable ioctl call. In this
example, channel 1 is used as the fixed channel, and interface
ath0 will be assigned to channel 1. Therefore, on channel 1,
interface ath0 is used to send out broadcast packets, while
on channels 2 and 3, interface ath1 is used.

After initialization, when the node receives “hello” pack-
ets from a neighbor, it populates the unicast table in the
channel abstraction module with the channel to be used to
reach the neighbor by invoking the AddUnicastTable ioctl
call. Later, if a neighbor is no longer reachable, then the
neighbor’s entry is deleted from the unicast table using Dele-
teUnicastTable ioctl call. The channel abstraction module
also exports a DeleteBroadcastTable ioctl which may be used
when the fixed interface is changed to a different channel.
There is also ioctl support for getting channel usage statis-
tics.

Using the channel abstraction module significantly sim-
plified the hybrid protocol implementation. We believe that
using the generic support offered by the channel abstrac-
tion module can simplify the implementation of other multi-
channel protocols as well.

Hybrid Protocol
Module

Channel Abstraction

AddValidChannel(ath1, <1, 2, 3>)

AddValidChannel(ath0, <1, 2, 3>)

AddBroadcastTable( ath0, <1>)

AddUnicastTable(192.168.30.3, ath1, 3)

AddUnicastTable(192.168.30.2, ath1, 2)

DeleteUnicastTable(192.168.30.2, ath1, 2)

Fixed channel
is channel 1

Neighbors 
Added

not reachable
Neighbor

Initialization

AddBroadcastTable(ath1, <2, 3>)

Figure 5: Interaction between user space hybrid

protocol and kernel channel abstraction module

through ioctl calls.

8. PERFORMANCE EVALUATION
We have deployed the channel abstraction module and the

hybrid protocol on a multi-interface testbed. Currently, the
testbed includes more than 20 nodes. The testbed nodes
are based on Net 4521 boxes from Soekris [22]. Each node
is currently equipped with two wireless interfaces (one pcm-
cia interface and one mini-pci interface), and it is possible to
have up to 3 wireless radios using this hardware platform.
The wireless cards are based on Atheros chipset [2], and
support IEEE 802.11a/b/g protocols. We are currently de-
ploying the testbed nodes in multiple offices with the goal of
doing multi-hop experiments. Here, we present preliminary
results on measuring the switching delay, and quantifying
the overheads of switching delay.

8.1 Measuring interface switching delay
We have made modifications to the madwifi device driver

to reduce switching delay (as discussed in Section 6). Here,
we present the methodology we used to measure the switch-
ing delay with the modified driver.

When a channel switch request is received via an ioctl call
by the madwifi driver, it invokes the function ath chan set().
This function is responsible for switching the channel on the
card. On analyzing this function, we found that all other
calls made within this function are blocking calls (i.e., the
calls do not sleep), and when the function returns, the chan-
nel switching has been fully completed. We wrapped this
function call with two do gettimeofday() calls, and the dif-
ference in the time returned by the two calls is the time
elapsed in switching. Using this methodology, the interface
switching delay for the atheros chipset-based cards that we
use is approximately 5 milliseconds. We have validated the
switching delay measurements with other indirect measure-
ment experiments as well (the experiments look at the inter-
arrival time between packets while switching an interface
between packet transmissions).

8.2 Throughput measurements
We present results from a 4-node topology that has been

setup to quantify the impact of switching (Figure 6). Every
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Figure 6: Experimental setup.

node has two wireless interfaces operating in IEEE 802.11a
mode, and the data rate of both interfaces is set to 6 Mbps.
One interface at each node is fixed to a channel, and the
fixed channels used are shown next to the node labels in
Figure 6.

There are 12 non-overlapping channels in the IEEE 802.11a
band, but past work has shown that when nodes are equipped
with multiple interfaces, simultaneous transmission on one
interface and reception on another interface, over adjacent
channels, may interfere with each other [7]. Which pair of
channels interfere depends on the frequency separation be-
tween channels, the distance separation between interfaces,
and the distance separation between communicating nodes.
We have conducted measurements which show 5 channels
can be simultaneously used (channels 36, 52, 64, 149, 161)
in our testbed. For results presented below, we have used
only channels 36, 60, and 149.

We use two scenarios to quantify the cost of switching, as
shown in Figure 6. In the first scenario (called “No switch-
ing” scenario), node A sets up two flows to nodes C and
D. We perform two experiments, one with flows using UDP,
and the other with flows using TCP. The flows are created
using iperf tool [9]. C and D are receiving on channel 36,
while A has its first interface fixed to channel 60. There-
fore, node A has to use its second interface to send data
to C and D. However, since C and D are both on channel
36, the second interface does not need to switch at all. In
the second scenario (called “Switching” scenario), node A
sets up two flows to nodes B and C. Now, since B receives
data on channel 149, while C receives data on channel 36,
the second interface at A has to switch between channels
149 and 36 to service the two flows. This scenario creates
frequent interface switching. The difference in the aggregate
throughput achieved between the two scenarios is a measure
of overheads of switching.

The overhead of switching depends on how frequently in-
terfaces are switched, which in turn depends on the schedul-
ing parameters Tmin and Tmax (see Section 5.3 for parameter
descriptions). Recall that Tmin specifies the minimum time
spent on a channel before a switch can be made, while Tmax

specifies the maximum time allowed on a channel if another
channel has pending packets.

Figure 7 plots the aggregate throughput with varying Tmin

(Tmax is set to 130 ms), for both TCP and UDP traffic.
Figure 8 plots the aggregate throughput with varying Tmax

(Tmin is set to 10 ms). As we can see from the figures, in the
“No Switching” scenario, both TCP and UDP get approxi-
mately the same aggregate throughput (the curves overlap
in both figures). TCP throughput is close to UDP through-
put because the TCP ACK packets use a different channel
than the data packets. Also, because interfaces do not have
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to switch, throughput does not change when either Tmin or
Tmax is varied.

In the “Switching” scenario with UDP flows, throughput
is unaffected when Tmin is varied. However, UDP through-
put varies when Tmax is varied. The UDP flows that we have
setup have sufficient load to saturate the channel. When
the second interface switches to a channel to service one
flow, there are enough buffered packets to keep the inter-
face on that channel for Tmax duration. Hence, the number
of switches per second, and therefore the switching over-
head, depends on the value of Tmax. Therefore, UDP traffic
is not affected by Tmin, and only depends on the value of
Tmax. Note that UDP throughput in the “Switching” sce-
nario is within 5% of the throughput in the “No Switching”
scenario when Tmax is sufficiently high. Theoretically, each
switch wastes 5 ms of channel every Tmax duration, and this
is approximately the observed switching overhead. There-
fore, our scheduling algorithm is efficient for saturated UDP
traffic.

In the “Switching” scenario with TCP flows, throughput
depends on the value of Tmin but not on the value of Tmax.
In steady state, TCP sends a new packet only after receiving
the ACK of an earlier packet. Therefore, packet transmis-
sions are spaced out. On switching to a channel, there may
only be a few packets buffered for transmission and most
switches happen after only Tmin duration. Therefore, with
TCP traffic, the number of switches depends on Tmin, and
using larger Tmin reduces the number of switches, thereby
improving aggregate throughput.



These experiments suggest that for improving TCP per-
formance larger Tmin is suitable, while for improving UDP
performance larger Tmax is suitable. Since these two re-
quirements are not contradictory, it may seem like the opti-
mal choice is to use large Tmin and Tmax values. However,
end-to-end delay goes up as Tmin and Tmax are increased,
and large values may not be appropriate with delay-sensitive
traffic. Detailed delay measurements and identifying good
parameter values for delay-sensitive traffic is ongoing.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an architecture to sup-

port multi-channel protocols that require frequent interface
switching. Our contributions in this paper include identify-
ing the features needed in the kernel for supporting interface
switching, designing and implementing a channel abstraction
module that provides the requisite kernel support, and im-
plementing a hybrid multi-channel protocol using the chan-
nel abstraction module. Preliminary results suggest that
interface switching can be supported with moderate over-
heads, and this encourages further development of multi-
channel protocols based on interface switching.

There are several directions for future work. We have
already initiated a detailed evaluation of the architecture
on a 20 node testbed. The architecture we presented here
was partly biased by the requirement of the hybrid multi-
channel protocol that we wanted to implement. To ensure
our architecture is sufficiently general, we intend to imple-
ment other multi-channel protocols proposed in the liter-
ature as well. Further implementations may identify new
features that may be necessary, and we plan to incorporate
any other required features into the architecture as well.
Although this paper has focused on supporting fast inter-
face switching, the architecture may be useful to support
per-packet power and rate control as well, and we intend to
explore these possibilities as well.
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