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Abstract

This paper studies how the capacity of a static multichanesliork scales as the number of nodesincreases.
Gupta and Kumar have determined the capacity of single eHametworks, and those bounds are applicable to
multichannel networks as well, provided each node in thevolt has a dedicated interface per channel. In this
work, we establish the capacity of general multichannelodts wherein the number of interfaces, may be
smaller than the number of channets,We show that the capacity of multichannel networks exkiblifferent
bounds that are dependent on the ratio betweandm. When the number of interfaces per node is smaller than
the number of channels, there is a degradation in the neteaykcity in many scenarios. However, one important
exception is a random network with up @(logn) channels, wherein the network capacity remains at the Gupta
and Kumar bound 0® (W @) bits/sec, independent of the number of interfaces availabeach node. Since
in many practical networks, number of channels availablensgll (e.g., IEEE 802.11 networks), this bound is of
practical interest. This implies that it may be possible toldb capacity-optimal multichannel networks with as
few as one interface per node. We also extend our model tadmmthe impact of interface switching delay, and

show that in a random network with up @ (logn) channels, switching delay may not affect capacity if migtip

interfaces are used.

*This report is an extended version of the Mobicom 2005 paplerThis work was funded in part by National Science Fourmagrants
ANI-0125859 and CNS 06-27074, and a Vodafone Graduate wsiip.



. INTRODUCTION

In this report, we study the asymptotic capacity of multiuhel wireless networks with varying number of
interfaces. Past research on wireless network capacity{3Rhas typically considered wireless networks with a
single channel, although the results are applicable to aeless network with multiple channels as well, provided
that at each node there is a dedicated interface per chaffitela dedicated interface per channel, a node can use
all the available channels simultaneously. However, thaber of available channels in a wireless network can be
fairly large, and it may not be feasible to have a dedicat¢erfimce per channel at each node. When nodes are
not equipped with a dedicated interface per channel, ttagracity degradatiormay occur, compared to using a

dedicated interface per channel.

In this report, we characterize the impact of number of cetsand interfaces per node on the network capacity,
and show that in certain scenarios, even with only a singérfecce per node, there is no capacity degradation. This
implies that it may be possible to build capacity-optimalltishannel networks with as few as one interface per
node. Our initial analysis assumes that the interface kimigcdelay is zero, which may not be valid in practice.
Nevertheless, even when interface switching delay is adeolufor, capacity-optimal performance can be achieved
by using only a few interfaces per node. In addition, if eacdenhas a single interface that is never switched, then
there is a degradation in the network capacity. Howevet) witly two interfaces per node, there is no capacity

degradation even if the interfaces are not switched.

The rest of this report is organized as follows. We presemtctiannel and network model, as well as an overview
of the main results in Section Il. We present related workect®n Ill. In Section 1V, we establish the capacity of
multichannel networks under arbitrary network settingcti®a V establishes the capacity of multichannel networks
under random network setting. Section VI characterizesinipact of interface switching delay, and Section VII

studies the capacity when interfaces do not switch at all.céfeclude this report in Section VIII.

I[I. PRELIMINARIES

In this section, we first define the channel and network maated, then provide an overview of results.

A. Channel and interface model

We consider a static wireless network containingnodes. In our model there arechannels, and we assume
that every node is equipped with interfaces,l < m < ¢. We assume that an interface is capable of transmitting
or receiving data on any one channel at a given time. We usaadtation (m, c¢)-network to refer to a network

with m interfaces per node, andchannels.

We define two channel models to represent the data rate sepgpay each channel:



Channel Model 1:In model 1, we assume that the total data rate possible by using allnghsris W. The
total data rate is divided equally among the channels, aacktbre the data rate supported by any one ofd¢he
channels igV/c. This was the channel model used by Gupta and Kumar [2], andrimgarily use this model in
our analysis. In this model, as the number of channels isesgaeach channel supports a smaller data rate. This
model is applicable to the scenario where the total avalalindwidth is fixed, and new channels are created by

partitioning existing channels.

Channel Model 2in model2, we assume that each channel can support a fixed data réite mfdependent of
the number of channels. Therefore, the aggregate data eatbfe by using alt channels i ¢. This model is

applicable to the scenario where new channels are createdilizyng additional frequency spectrum.

The capacity results are derived using channel madélowever, all the derivations are applicable for channel

model2 as well, and the results for mod2lare obtained by replacing’ in the results of model by We.

B. Network and traffic model

We study the capacity of static multichannel wireless nétwainder the two settings introduced by Gupta and

Kumar [2].

Arbitrary Networks:In the arbitrary network setting, the location of nodes, aaffic patterns can be controlled.
Since any suitable traffic pattern and node placement casd®, the bounds for this scenario are applicable to any
network. Therefore, the arbitrary network bounds may bavettas thebest casdoounds on network capacity, as
the bounds are applicable to all networks. The network dapscmeasured in terms of “bit-meters/sec” (originally
introduced by Gupta and Kumar [2]). The network is said togport one “bit-meter/sec” when one bit has been

transported across a distance of one meter in one second.

Random Networksin the random network setting, node locations are randothtsen, i.e. independently and
uniformly chosen, on the surface of an unit torus. Each nede sp one flow to a randomly chosen destination
The network capacity is defined to be the aggregate throughgar all the flows in the network, and is measured

in terms of bits/sec.

C. Definitions
We use the following notation [4] to represent asymptoticiius:
1) f(n) = O(g(n)) implies that there exists some constdrand integerN such thatf(n) < dg(n) for n > N.

1Gupta and Kumar [2] choose a random point and then choosedtie nearest to the chosen point as the destination. Our nimdel

slightly different as we directly choose a random node asdfsination.
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2) f(n) = o(g(n)) implies thatlim,, ... Z& = 0.

3) f(n) =Q(g(n)) implies g(n) = O(f(n)).

4) f(n) =w(g(n)) implies g(n) = o(f(n)).

5) f(n) = 0O(g(n)) implies f(n) = O(g(n)) andg(n) = O(f(n)).

6) MINo (f(n),g(n)) is equal tof(n), if f(n) =0(g(n)), else, is equal tg(n).

The bounds for random networks holdth high probability (whp) In this reportwhpimplies “with probability
1 whenn — 0.
D. Main Results

Gupta and Kumar [2] have shown that in an arbitrary netwoktwork capacity scales a® (W./n) bit-

meters/sec, and in a random network, the network capacitles@so (W bgn) bits/sec. Under the channel
model 1, which was the model used by Gupta and Kumar [2], the capadity network with a single channel
and one interface per node (that is(lal)-network in our notation) is equal to the capacity of a netweith ¢
channels andn = ¢ interfaces per node (that is,(a, ¢)-network). This equivalence arises becausectirerfaces
can operate in parallel over channels of data f{,‘;‘ttw mimic the operation of one interface operating over a nkan
of data ratel¥ (this is formally proved in Lemma 1). Furthermore, undertbohannel models, the capacity of a
(c,c)-network is at least as large as the capacity dhac)-network, whenm < ¢ (this is trivially true, by not

usingc — m interfaces in thgc, c)-network).

In the results presented in this report, we capture the imphaising fewer tharc interfaces per node by
establishing théoss in capacityif any, of a(m, ¢)-network in comparison to &, c)-network. We show that there
are distinct capacity regions, the boundaries of which depm the ratio”, and not on the exact values of either

¢ or m. Here we present an overview of the main results, under aianadell.

1. Results for arbitrary networkThe network capacity of @m, c)-network has two regions (see Figure 1) as
follows (from Theorem 2 and Theorem 4):
1) WhenZ is O(n), the network capacity i® (W %) bit-meters/sec (segment A-B in Figure 1). Compared
to a (¢, ¢)-network, there is a capacity loss by a factorlof \/é
2) When=< is Q(n), the network capacity i® (W2) bit-meters/sec (line B-C in Figure 1). In this case, there
is a larger capacity degradation than case 177as< ,/™* when > > n.
Therefore, there is always a capacity loss in arbitrary nete/whenever the number of interfaces per node is fewer

than the number of channels.

2. Results for random networkhe network capacity of &n, ¢)-network has three regions (see Figure 2) as follows

(from Theorem 6 and Theorem 9):
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Fig. 1. Impact of number of channels on capacity scaling bit@ary networks (figure is not to scale).
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Fig. 2. Impact of number of channels on capacity scaling imoan networks (figure is not to scale).

1) When = is O(logn), network capacity is9 (W &) bits/sec (segment D-E in Figure 2). In this case,

there is no lossompared to dc, ¢)-network. Hence, in many practical scenarios wheraay be constant
or small,a single interface per node suffices.

2) When = is Q(logn) and alsoO (n (%)2), the network capacity i® (W %) bits/sec (segment
E-F in Figure 2). In this case, there is some capacity lossthEtmore, in this region, the capacity of a
(m, c)-random networkis the sameas that of a(m, c)-arbitrary network (segment E-F in Figure 2 overlaps
part of segment A-B in Figure 1), implying that “randomnedses not incur a capacity penalty.

3) When < is Q <n (“’ﬁ}%‘")z), the network capacity i® (%‘ﬁ(’g") bits/sec (line F-G in Figure 2). In

this case, there is a larger capacity degradation than caBarthermore, in this region, the capacity of a
(m, c)-random networkis smaller thanthat of a(m, c)-arbitrary network, in contrast to case 2.
3. Impact of switching delayThe results presented above are derived under the assuntipibthere is no delay
in switching an interface from one channel to another. H®xewe show that in a random network with up to

O (log n) channels, even if interface switching delay is considetfeel network capacity is not reduced, provided a



few additional interfaces are provisioned for at each nddks implies that it may be possible to hide the interface
switching delay by using extra interfaces in conjunctiothvagarefully designed routing and transmission scheduling

protocols.

4. Impact of keeping interfaces fixel: practice, protocol implementation can be simplified ifeifiaces are fixed
to channels. We show that if every node has a single interfane the interface is never switched (after initially
assigning the interface to some channel), then there issaifmothe network capacity. This loss in capacity can be

avoided, by having only two interfaces per node, even if titerfaces do not switch.

[1l. RELATED WORK

In their seminal work, Gupta and Kumar [2] established thgac#ty of ad hoc wireless networks. The results are
applicable to single channel wireless networks, or mudtiztel wireless networks where every node has a dedicated
interface per channel. We extend the results of Gupta andakumthose multichannel wireless networks where
nodes may not have a dedicated interface per channel, antbaveansider the impact of interface switching delay

on network capacity.

Grossglauser and Tse [3] showed that mobility can improwevar& capacity, though at the cost of increased
end-to-end delay. Subsequently, other research [5], [6]dmalyzed the trade-off between delay and capacity in
mobile networks. Gamal et al. [4] characterize the optirhabughput-delay trade-off for both static and mobile
networks. In this thesis, we adapt some of the proof teclmsquesented by Gamal et al. [4] to the multichannel

capacity problem. Lin et al. [7], [8] also study the throughgelay trade-off in wireless networks.

Recent results have shown that the capacity of wirelessankéacan be enhanced by introducing infrastructure
support [9]1-[11]. Other approaches for improving netwaabacity include the use of directional antennas [12], and
the use of unlimited bandwidth resources (UWB), albeit vitiwer constraints [13], [14]. Li et al. [15] have used
simulations to evaluate the capacity of multichannel netwdased on IEEE 802.11. Other research on capacity is
based on considerations of alternate communication m¢te}s[18], but do not consider the multichannel scaling

problem.

Kodialam et al. [19] have studied the throughput achievabla multichannel multi-interface network by using
constrained optimization techniques. Their work is agille to scenarios where the network topology and traffic
patterns are known a priori. Alicherry et al. [20] have cdesed a similar multichannel multi-interface problem,
but for a restricted class of mesh networks (where all traffidirected toward gateway nodes). Zhang et al. [21]
have studied the benefits of jointly optimizing both routamgd scheduling in multichannel multi-interface networks.
All these works are well suited for network planning, but Bres useful in understanding scaling properties of the

network.



IV. CAPACITY RESULTS FOR ARBITRARY NETWORKS

We assume that all nodes transmit at the same data rate, antieisame transmission power. We model the
impact of interference by using the protocol model propdsgdsupta and Kumar [2]. The transmission from a
nodei to a nodej on some channet is successful, if for every other node simultaneously transmitting on

channelz, the following condition holds:
d(k,5) > (1+ A)d(i,5), A >0

where d(i, j) is the distance between nodésand j, and A is a “guard” parameter to ensure that any other

concurrently transmitting nodes are sufficiently farthesag from the receiver to prevent excessive interference.

It is shown in [2] that the protocol model is equivalent to diermate physical model that is based on received
Signal-to-Interference-Noise Ratio (SINR) (when pathslexponent is greater tha). Therefore, the results in
this thesis are applicable under the physical model as W&ldo not consider other physical layer characteristics
such as channel fading in our analysis. We derive the capasults for arbitrary and random networks under the
assumption that there is no switching delay. We extend outainto consider the impact of switching delay in

Section VI.

In an arbitrary network, the location of nodes, and traffittgras can be controlled. Recall that the network is
said to transport one “bit-meter/sec” when one bit has besrsported across a distance of one meter in a second.
The network capacity of an arbitrary network is measurecerms of bit-meters per second, instead of bits per
second. The bit-meters/sec metric is a measure of the “witikt’ is done by the network in transporting bits. In
the case of random networks, the average distance travgledybbit is©(1), and therefore the “bit-meters/sec”

and “bits/sec” capacity is of the same order.

We assume that nodes can be located anywhere on the surface of a torus cdnesit as in [4]. The assumption
of a torus enables us to avoid technicalities arising outdufeeeffects, but the results are applicable for nodes
located on an unit square as well. We first establish an uppemdon the network capacity of arbitrary networks,

and then construct a network to prove that the bound is tight.

A. Upper bound on capacity

The capacity of multichannel arbitrary networks is limitbg two constraints (described below), and each of
them is used to obtain a bound on the network capacity. Thémam of the two bounds (the bounds depend on
ratio between the number of channeland the number of interfaces) is an upper bound on the network capacity.
While there may be other constraints on capacity as well ctivestraints we consider are sufficient to provide a

tight bound. Later in this section, we will present a loweubd that matches the upper bound established by the



two constraints, which validates our claim that the corstsaare tight. We derive the bounds under channel model

1, although the derivation can be applied to channel madas welP.

Constraint 1 — Interference constraint.he capacity of any wireless network is constrained by fatence.
Since the wireless channel is a shared medium, under thenasgsprotocol model of interference, two nodes
simultaneously receiving a packet from two different traitters must have a minimum separation between them,
which depends or\. This implies that there is a bound on the maximum number miikaneous transmissions
in the network. Based on this observation, using the prodtirtgjues presented in [2] with some modifications to
account for multiple interfaces and channels, one boundchemetwork capacity i® (W %) bit-meters/sec.

The detailed derivation is below in Theorem 1.

Theorem 1:An upper bound on the capacity ofa, c)-network under the arbitrary network settin@s(W\/@)
bit-meters/sec under channel model
Proof: We prove the result under channel motleThe proof is based on a proof in [2]. We assume that nodes
are synchronized, and slotted transmissions of duratiane used. We assume that each source node originates
bits/sec. Let the average distance between source andatésti pairs bel. Therefore, the capacity of the network

is \nL bit-meters/sec.

We consider any time period of length one second. In this titexval, consider a bi, 1 < b < An. We assume
that bitb traversedi(b) hops on the path from its source to its destination, wherehttiehop traverses a distance
of r'. Since the distance traversed by a bit from its source todtginiation is at least equal to the length of the

line joining the source and the destination, by summing @ebits we obtain,
An h(b)

Z Z 7“{,‘ > AnL 1)

b=1h=1
Let us defineH to be the total number of hops traversed by all transmittéglibia second, i.eH = 2221 h(b).

Therefore, the number of bits transmitted by all nodes in @ (including bits relayed) is equal . Since
each node has: interfaces, and each interface transmits over a channklnaie 1W/c (assuming channel model
1), the total bits that can be transmitted by all nodes oveinédirfaces is at mos&‘% (Transporting a bit across

one hop require$wno interfaces, one each at the transmitting and the receiviatges). Hence, we have,

Wmn
. @
c

Under the protocol model, a transmission over a hop of lemgih successful only if there is no other node

H <

transmitting within a distance dfl + A)r of the receiver. Suppose node A is transmitting a bit to nodeviiile
node C is simultaneously transmitting a bit to node D, andhlibe transmissions are over a common channel.

Then, using the protocol interference model, both transimis are successful only if

%Recall that the results under channel moglelan be obtained by replacirig’ with We in the results derived under channel model



d(C,B) > (1+ A)d(A, B)
d(A,D) > (14 A)d(C, D)
Adding the above two expressions together, and applyilaggie inequality, we obtain,
d(B,D) > %(d(A,B) +d(C, D))

This implies that the receivers of two simultaneous trassions have to be separated by a distance proportional
to the distance from their senders. This may be viewed as le@gltonsuming a disk of radiL@ times the length
of the hop around each receiver. Since the area “consumedaoh channel is bounded above by the area of the

domain (1 sgq meter), summing over all channels (which caroial tpotentially transpori’’ bits) we have the

constraint, ®
n h b 2
TA
>SSy < w 3)
b=1h=1
which can be rewritten as,
An h(b)
4W
>y AT @)
o H T
Since the expression on the left hand side is convex, we have,
An h(b) 1 An h(b) 1
( )2 <Y = () (5)
oo H oo H
Therefore, from (4) and (5),
An h(b)
e ©)
b=1h=1 i
Substituting forH from (2), and using (1) we have,
- 2mn
L <W 7
ne= TA2c 0

This proves that the network capacity of an arbitrary nekwsrO (W\/@) bit-meters/sec under channel model
1. [ |
Constraint 2 — Interface bottleneck constraifithe capacity of a wireless network is also constrained by the
maximum number of bits that can be transmitted simultangayer all interfaces in the network. Since each node
hasm interfaces, there are a total ofn interfaces in thgm, c¢)-network. Each interface can transmit at a rate of
% bits/sec. Also, the maximum distance a bit can travel in tbevark isO(1) meters. Hence, the total network

capacity is at mos© (W ™) bit-meters/sec. This bound is tight whehis Q(n)
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Combining the two constraints, the network capacit@iéMlNo (W . W%)) bit-meters/sec, under chan-
nel modell. Therefore, we have the following theorem on the networkac#p of arbitrary networks (Figure 1

has a pictorial representation).

Theorem 2:The upper bound on the capacity of:a, c)-arbitrary network under channel models as follows:

1) When = is O(n), network capacity i) (W %) bit-meters/sec.

2) When < is Q(n), network capacity i) (IW22) bit-meters/sec.

The result for channel modél can be similarly derived, and is given by:

Theorem 3:The upper bound on the capacity of:a, c)-arbitrary network under channel models as follows:

1) When< is O(n), network capacity i) (W/nmc) bit-meters/sec.

2) When = is Q(n), network capacity ig) (Wnm) bit-meters/sec.

The network capacity of dc, c¢)-network isO (W /n) bit-meters/sec under channel modelwhich was the
result obtained by Gupta and Kumar [2]. When fewer interdaaee available, there is a capacity degradation by at
least a factor ofl — \/? . Intuitively, the capacity degradation arises becausedta bits that can be simultaneously

transmitted decreases.

B. Constructive lower bound

In this section, we construct a network to establish a lowarnlol on the network capacity. The lower bound
matches the upper bound, implying that the bounds are tifyatfirst establish two results that we use in the rest

of the report. The results are proved under channel modelit hold for channel mode as well.

Lemma 1:Supposen, c, ¢ are positive integers such that= -~. Then, a(m, c)-network can support at least
the capacity supported by @, ¢)-network, under channel model
Proof: Consider a(m, c¢)-network. We group the channels into groups (numbered fronh to ¢), with m
channels per group as shown in Figure 3. Specifically, cHagmoeip i, 1 < i < ¢, contains all channelg such

that (i — 1)m +1 < j < im.

Assume that time on the channels is divided into slots of tituwar. Consider any slot. Suppose a nod# in
the (1, ¢)-network has its interface on some chanpdl < i < ¢, in slots. We simulate this behavior in then, c)-
network by assigning the: interfaces ofX in the slots to them channels in the channel grouplin this fashion,
in any slot, them interfaces of any node in then, ¢)-network are mapped to a channel group. The aggregate data
rate of each channel groupi®m/c = W/é (sincec = mc). Therefore, a channel group in tle:, ¢)-network can
support the same data rate as a channel in(thé)-network. This mapping allows thén, ¢)-network to mimic
the behavior of(1, ¢)-network; thelV 7 /¢ bits sent on some channel in any time sioin the (1, ¢)-network can
be simulated by sending/7/c bits (in the same slot) on each of then channels in the corresponding channel

group of the(m, c)-network. Hence, &m, c)-network can support the capacity of( ¢) network, whernc = me.
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Fig. 3. Lemma 1 construction: Formirigchannel groups, withn channels per group, in @n, ¢)-network.

[
Lemma 2:Supposen andc are positive integers. Then, (&, ¢)-network can support at Iea%t the capacity
supported by g1, | < |)-network, under channel modél
Proof: Suppose £ | = <. Then the result directly follows from the previous lemmah@wise,m < ¢, and
we usec’ = m | <] of the channels in thém, c)-network, and ignore the rest of the channels. This can beede
as a(m, ¢’)-network, with a total data rate 67" = W2 | < | (as each channel suppoﬁ‘g/s bits/sec). Using Lemma
1, a(m, d)-network with total data rate dfi”’ can support at least the capacity ofla | < |)-network with total
data rate ofi’’. However, whenlV’ < W, the (m, ¢)-network with total data ratél”’ can achieve only a fraction
W of the capacity of 1, | < |)-network with total data ratél” (instead ofi¥’). Now,
w’ m { c J
W c

c

m

c

> }%, since = < {iJ +1
, since {EJ >1

2 m

Hence, a'm, c¢)-network can support at Iea%tthe capacity supported by (@, | <|) network. Hence, asymptot-

| =

>

ically, a (m, c¢)-network has the same order of capacity ad g < |)-network. |

We now provide the construction to establish that a capadfit§2 (MINO (W LS W%)) bit-meters/sec is
achievable in 41, ¢)-network, under the channel modelThe result is then extended tq®, c)-network by using

Lemma 2.

Step 1:We consider a torus of unit area. Llet= min (c, §). This implies thatk < c. Partition the square area
into g equal-sized square cells, and plaéenodes in each cell. Since the total ared igach cell has an area of
8k - _ [8k
pu and sides of length= o

Step 2:The 8k nodes within each cell are distributed by placihgnodes at each of the eight positions shown

in Figure 4. Nodes placed at locations S1, S2, S3, S4 act aeerand nodes placed at remaining locations act
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Fig. 4. The placement of nodes within a cell. There faneodes at each of the labeled positions.

as receivers. The sender locations S1 through S4 are atamcksofrA from the center of the cell (recall that

is the “guard” parameter from the protocol model of intezfage), where: = 2(1+12A) = (1+12A) \/%. The receiver

locations R1 through R4 are at a distance-@f + A) from the center of the cell. Therefore, the distance between
S1-R1, S2-R2, S3-R3, and S4-R4 is equat t&cach receiver location is at a distancerdf from nearest edge of

the cell, and each sender location is at a distancg bf+ A) from the nearest edge of the cell.

Step 3:Label thek nodes in any location (S1 through S4, R1 through R4) #woughk. The j?* node in each
sender location] < j < k, communicates with thé’” node in the nearest receiver location (at a distance) of
on channelj. Consider any pair of communicating nodes A and B that aratémtat, say, S1 and R1 respectively.
Then, the nearest senders within the cell, other than A fgaocat S1), which are sending on the same channel as
A are located at one of S2, S3, S4, and are at least a distan¢é #fA) away from B (located at R1). Similarly,
in every cell, senders are at leasi + A) distance from the cell boundary. Therefore, senders incadjacells of
B are at least a distance of1 + A) away from B as well. Hence, under the protocol model of itenfice, the
transmission between A and B is not interfered with by anyeothansmission in the network, and this property

holds for all communicating pairs.

From the above construction, there %fepairs of nodes in thé1, ¢)-network, each transmitting at a rate of
% over a distance: = mq/%. Hence, the total capacity of the network (summing overrathodes) is
5% = W ey bitmeters/sec. Recall that= min (¢, §). Substituting fork in the above derivation, we
obtain the capacity of &, c¢)-network to be2 (MINO (W 2, W%)) bit-meters/sec under channel modekince

A is a constant.
Using Lemma 2, the capacity of (@, c)-network, under the arbitrary network setting and channediehl, is

Q <MINO (W ﬁ, Wﬁ)) bit-meters/sec. Sincof.i—J > L, we have the capacity of arbitrary networks to be
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Q (MINO (W LE W%)) bit-meters/sec, which leads to the following theorem:

Theorem 4:The achievable network capacity of(a, c)-arbitrary network under channel modeis as follows:

1) When = is O(n), network capacity i< (W %) bit-meters/sec.

2) When < is Q(n), network capacity i€2 (W™2) bit-meters/sec.

The result for channel modél can be similarly derived, and is given by:

Theorem 5:The achievable network capacity of(a, c)-arbitrary network under channel modgis as follows:

1) When= is O(n), network capacity ig2 (W/nmc) bit-meters/sec.

2) When =< is Q(n), network capacity i€2 (WWnm) bit-meters/sec.

The upper bound and lower bound of the capacity of arbitratyvarks have the same order, indicating that the

bounds are tight.

C. Implications

A common scenario is when the number of channels is not tagel§f = O(n)). Under this scenario, the
capacity of a(m,c)-network in the arbitrary setting scales G)S(W %) under channel model. Similarly,
under channel model 2, the capacity of the network scale® @& \/nmc). Under either model, the capacity of
a (m, c)-network goes down by a factor df— \/? when compared with &c, c¢)-network. Therefore, doubling
the number of interfaces at each node (as long as numberefaoes is smaller than the number of channels)
increases the channel capacity by a factor of oy}, Furthermore, the ratio between and ¢ demarcates the
capacity regions, rather than the individual valuesrofindc. Increasing the number of interfaces may result in
a linear increase in the cost but only a sub-linear (propodi to square-root of number of interfaces) increase
in the capacity. Therefore, the optimal nhumber of interfatte use may be smaller than the number of channels

depending on the relationship between cost of interfacdsudifity obtained by higher capacity.

Different network architectures have been proposed fdizimg multiple channels when the number of available
interfaces is smaller than the number of available charj@2ls[24]. The construction used in proving lower bound
shows that capacity is maximized when all channels areetlliOne architecture used in the past [22] is to use only
m channels whem interfaces are available, leading to wastage of the remgini- m channels. That architecture
results in a factor of — 7 loss in capacity which can be significantly higher than thénogl 1 — \/? loss (when
< = 0(n)). Hence, in general, higher capacity may be achievablarblyitectures that use all channglsossibly

by dynamically switching channels.
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V. CAPACITY RESULTS FOR RANDOM NETWORKS

We assume that nodes are randomly located on the surface of a torus of wrdt &ach node selects a destination
uniformly at random from the remaining nodeand sends\(n) bits/sec to the destination. The highest value of
A(n) which can be supported bgvery source-destination pair with high probability is definedths per-node
throughputof the network. The traffic between a source-destination ipaieferred to as a “flow”. Since there are

a total ofn flows, the network capacity is defined to ha(n).

Note that each node picks a destination node randomly, &rdftre, a node may be the destination of multiple
flows. Let D(n) be the maximum number of flows for which a node in the networ& destination. We use the

following result to boundD(n).

Lemma 3: The maximum number of flows for which a node in the network igstidation,D(n), is © (log’ign),
with high probability.
Proof: The process of nodes selecting a random destination may ppadao the well-known “Balls into
Bins” problem [25]. Each source node may be viewed as a “palitd each destination node may be viewed as
a “bin”. The process of selecting a destination node may ket as randomly dropping a “ball” into a “bin”.

Based on this mapping, the proof of the lemma follows fromlakebwn results (cf. [25], Section 4). [ |

A. Upper bound for random networks

The capacity of multichannel random networks is limited et constraints, and each of them is used to obtain
a bound on the network capacity. The minimum of the three dsuthe bounds depend on ratio between the
number of channels and the number of interfaces) is an upper bound on the network capacity. While there
may be other constraints on capacity as well, the conssraiet consider are sufficient to provide a tight bound.

We derive the bounds under channel motebut the results are applicable under channel madss well.

Constraint 1 — Connectivity constrainthe capacity of random networks is constrained by the needgare that
the network is connected, so that every source-destinpioncan successfully communicate. Since node locations
are randomly chosen, there is some minimum transmissiageraach node should use to ensure that the network
is connected. Since all transmissions cover at least anpaog@rtional to the square of the minimum transmission
range, there is a bound on the number of simultaneous traegms that can occur in the network. Based on this
observation, Gupta and Kumar [2] have presented one boumtiteometwork capacity to b@ <W %) bits/sec.
This bound is applicable to multichannel networks as well.

®Recall that Gupta and Kumar [2] choose a random point and ¢hense the node nearest to the chosen point as the destin@tio

model is slightly different as we directly choose a randordenas the destination.
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Constraint 2 — Interference constrairk random network is a special case of an arbitrary networH, tharefore
the arbitrary network constraints are applicable to randetworks as well. Therefore, the capacity of multichannel
random networks is also constrained by interference (isame as the constraint 1 listed for arbitrary networks
in Section IV-A). This constraint was already captured ie thpper bound for arbitrary networks, and we had
obtained a bound of (W %) bit-meters/sec. In a random network, each of theource-destination pairs are
separated by an average distancecdfi) meter. Consequently, the network capacity of random nédsveg at
mostO (W %) bits/sec. We do not explicitly use the second arbitrary petveonstraint (“Interface bottleneck
constraint” from Section IV-A) in the random network procf the bounds established by that constraint are not

tight, and that bound is subsumed by the bound for “destinatiottleneck constraint” below.

Constraint 3 — Destination bottleneck constraifithe capacity of a multichannel network is constrained by the
data that can be received by a destination node. ConsidateXavhich is the destination of the maximum number
(that is,D(n)) of flows. Recall that in dm, ¢)-network, each channel supports a data rat?—igdﬁits/sec. Therefore,
the total data rate at which X can receive data oxeinterfaces is" bits/sec. Since X haB(n) incoming flows,
the data rate of the minimum rate flow is at mecgt(% bits/sec. Therefore, by definition df(n), A(n) < %,

implying that network capacity (which by definitionis\(n)) is at mostO ((%%) bits/sec. Substituting fob (n)

from Lemma 3, the network capacity is at m@(w) bits/sec.

clogn

The bound obtained from constraint 3 is applicable to anwor, including mobile networks, as long as
the destination of every flow is randomly chosen among theesaa the network. Even whem = ¢, this bound
implies that the per-flow throughput(n), is at mostO (%) bits/sec. Previous results on capacity of mobile
networks [3], [4], [26] have stated a per-flow throughput@fi¥) bits/sec is possible, as in their models, each
node does not randomly select a destination node. Recdallirthaur work we choose the destination of a flow
randomly from among: — 1 possible destinations. Considering the discussion akibvee) (17) bits/sec bound
with mobility cannot apply when destination nodes are raniggacchosen. The previous results for mobile networks
hold under other models of selecting destination nodesreun@ach node is the destination of at mest ) flows

(for example, such a constraint is satisfied when permutatiating is used).

Combining the above three bounds, the capacity of a randdwonle under channel modél| is upper bounded
by O <MINO <W Ly, W)) bits/sec. From this, we have the following theorem on theeupp

logn?’ ¢ clogn

bound on capacity of random networks (Figure 2 has a pidtogj@resentation).

Theorem 6:The upper bound on the capacity ofa, c)-random network under channel modeis as follows:
1) When= is O(logn), network capacity i) (W] /%) bits/sec.

P
2) When< is Q(logn) and alsoO <n (%) ) network capacity i) (W, /%) bits/sec.



16

2
3) When< is Q (n (“’glﬂ) > the network capacity i§) (Mogbg") bits/sec.

logn clogn

The result for channel modél can be similarly derived, and is given by:

Theorem 7:The upper bound on the capacity ofa, c)-random network under channel modeis as follows:

1) When< is O(logn), network capacity i) (Wc, /bgn) bits/sec.

2) When< is Q(logn) and alsoO (n (loglﬂf), network capacity i€) (W /nmc) bits/sec.

logn
2
3) When < is Q (n (%) > the network capacity i€) (%) bits/sec.
An interesting observation from the upper bound resulta #s long as- is O(log n), the number of interfaces
has no impact on channel capacity. This implies that whenntimaber of channels i§)(logn) (which is the

common case today), there is no loss in network capacity gveach node has a single interface.

B. Constructive lower bound

The lower bound is established by constructing a routingsehand a transmission schedule for any random
network. The lower bound matches the upper bound implyireg the bounds are tight. We will provide a
construction for a1, c)-network (a network wherein each node has a single intérfander channel model,
and then invoke Lemma 2 to extend the result t¢na c)-network. The steps involved in the construction are

described next.

Cell construction

The surface of the unit torus is divided using a square gtid square cells (see Figure 5), each of aréa),
similar to the approach used in [4]. The key difference inwark from [4] is that the size of the cell(n), varies
with the number of channels, and has to be carefully chosendet multiple constraints (which are described
later in the text). In particular, we sein) = min (max (M E) , (%)2) where D(n) = @( log n )

n ‘n loglogn

as described before. Intuitively, the three values thatiémftea(n) are based on the three constraints that were
described in the upper bound proof: cell size needed to ensomnectivity, cell size needed when capacity is
constrained by interference, and cell size needed whercitaps constrained by the maximum number of flows

to any destination node, respectively.
We need to bound the number of nodes that are present in elictvitieh is derived in Lemma 4.

Lemma 4:If a(n) > 1001%, then each cell ha® (na(n)) nodes per cell, with high probability.

Proof: A similar result was stated in [4] without proof. Here we pide/a proof based on VC-theory (see [27]
for details on VC-theory), similar to the approach used byt@wand Kumar [2]. The total number of square cells
is ﬁ Since nodes are randomly located on the torus, the pratyathiat any given node will lie in a specific
cell isa(n). We want to derive bounds on number of nodegwerycell in the square grid, which requires a proof

of uniform convergence. The set of axis-parallel squ@rese known to have VC-dimension 3. By applying the



17

X axis
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Fig. 5. Routing through cells: Packets are routed first almmgw till the destination column is reached, and then al¢regcolumn to the

destination cell.

Vapnik-Chervonekis theorem [28], similar to the approasbdiin [2], we have the following bound on the number

of nodesN¢ in any cellC:

Ne _ a(n)

n

(8)

- n n

Pl’ob(sup
ceC

’ < 5010gn> o1_ 50logn
where the constants in the above expression have beenlbaotfosen to satisfy the Vapnik-Chervonekis theorem.
The above result implies that with high probability, we have

na(n) —50logn < Ng < na(n) + 50logn

provided thata(n) > 1%0lan

Hence, we can conclude that the number of nodes in any cél(is:(n)) with high probability, as long as

1001
a(n) > =82, [

100 logn
n

By construction, we ensure thatn) > %2°" for Jarge n becausanax( is at least!?%2" and

2
1 ; ; 1 . . .
(D(n)) is asymptotically at least as large égﬂnogn as long asD(n) = O (, / To01egn |- Thus, with our choice

<
n

of a(n), Lemma 4 holds for suitably large, and each cell ha® (na(n)) nodes per cellwhp

The transmission ranef each noder(n), is set to be,/8a(n). With this transmission range, a node in one
cell can communicate with any node in its eight neighborietisc Note that when the cell sizgn) increases,

larger transmission range is required, @8) is dependent or(n).

“Transmission range is defined to be the maximum distancewoieh any node can communicate.
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A transmission originating from a node S interferes with thro transmission from A destined to B, only if S
is within a distance of1 + A)r(n) of receiver B (using the interference definition of protoomdel). Since the
distance between A and B is at most), the distance between the two transmitters, S and A, mustdsethan
(24 A)r(n) if the transmissions were to interfere. Hence, any transioriscan possibly interfere with only those
transmissions from transmitters within a distanc¢2f A)r(n). Therefore, nodes in a cell can be interfered with by
only nodes in cells within a distance @f+ A)r(n), and this interfering area can be completely enclosed imgeta
square of side&3(2 + A)r(n) (this is a loose bound). Consequently, there are at r@éﬁ%ﬂ = T72(2 + A)?
interfering cells (recalr(n) = \/S8a(n)). Hence, the number of interfering cells, ..., < 72(2+ A)?, is a constant
that only depends o\ (and is independent af(n) andn).

Routing Scheme

We use a “row-column” strategy for routing the packets (&B]]. A random cell is chosen as the origin of a
cell co-ordinate system. Each cell is assigned X and Y cdnatds, such that the co-ordinate values change by
1 per cell (along each axis from the origin). The X-axis isusssd to be along a line from east to west, and the
Y-axis is assumed to be along a line from north to south. Teerénom a node in a cell with co-ordinatés,, y;)
to a node in a cell with co-ordinatéss, y2), the packets are first sent east along the row containingdbees
till it intersects with the column containing the destioati(i.e., follow along the row till the X-coordinate of the
cell is x3). After that, packets are sent south along the column coingithe destination till the destination cell is

reached. Figure 5 shows an example of the cells used to rataefal a flow between sourceand destinatiorD.

In previously proposed constructions for proving lower bhdwn capacity [2], [4], it was immaterial which
node in a chosen cell forwarded packets for some flow. Howeweh an approach mapverload certain nodes,
leading to capacity degradation, when the number of intedgper node is smaller than the number of channels.
Consequently, it is important to ensure that the routingl lizadistributed among the nodes in a cell. This is a key

extension to the routing procedure used in earlier capaegylts [2], and the extension is described next.

For each flow passing through a cell, one node in the cell isidagd” to the flow. The assigned node of a
flow in a cell is the only node in that cell which may receivafismit data along that flow. The assignment is done

using aflow distribution proceduras below:

Step 1 — Assign source and destination nodes: any flow that originates in a cell, the source nédis assigned
to the flow (S is necessarily in the originating cell). Similarly, for afigw that terminates in a cell, the destination
nodeD is assigned to the flow. Since a single node in each cell isvatioto receive or transmit data for a flow,

it is required that the source and destination nodes beres$igp flows originating or terminating from them.

Step 2 — Balance distribution of remaining flowster step 1 is complete, we are left with only those flows that

pass through a cell. Each such remaining flow passing threugéll is assigned to the node in the cell that has
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the least number of flows assigned to it so far. This step bakthe assignment of flows to ensure that all nodes
are assigned (nearly) the same number of flows. The nodenasksig a flow will receive packets from some node

in the previous cell and send the packet to a node in the ndixt ce

Each node is the originator of one flow. Each node is the detstim of at mostD(n) flows, which by Lemma 3

is © (1o§§)gn)' Therefore, step 1 of the flow distribution procedure assigneach node at most+ D(n) flows.

We use the following lemma to bound the number of flows thas ghsough any cell when using the routing

strategy described above.

Lemma 5:When the row-column routing is used, an¢h) > 1"%, the maximum number of flows that pass
through any cell (including flows originating and termimatiin the cell) isO (n\/a(n)), with high probability.
Proof: See Appendix | for the proof. [ |

The bound from the lemma always holds because by construatioensure thai(n) > 1001ng71_ Step 2 of the
flow distribution procedure carefully assigns the remajnilows among the nodes in the cell to ensure that all
nodes end up with nearly same number of flows. By Lemma 4, eekth&s© (na(n)) nodes, and by Lemma 5

at mostO (n«/a(n)) flows pass through a cell. Therefore, step 2 will assign tor@oge in the network at most

(0] < L ) flows. Therefore the total flows assigned to any node is at @él + D(n) + —~ > Based on

a(n) Va(n)
2
the rules to seti(n), described earlier, the maximum value @fn) is at most(%) , Which implies\/% is

at leastD(n). Hence, the total flows assigned to any node is always asyitgitp dominated byﬁ, and is

therefore equal t@ [ —= ) flows.
a (x/a(m

Scheduling transmissions
The transmission scheduling scheme is responsible forrgtmg a transmission schedule for each node in the

(1, c)-network that satisfies the following constraints:

Constraint 1:When a nodeX transmits a packet to a nodé over a channej for some flow,X andY should
not be scheduled to transmit/receive at the same time foro#mgr flow (since each node is assumed to have a

single interface in the construction).
Constraint 2: Any two simultaneous transmissions on any channel shouldnterfere.

The multichannel construction differs from the mechanisrsed in earlier constructions [2], [4] in two ways.
First, the scheduling is on a per-node basis since flows ateldited among nodes, whereas in the past work it
was sufficient to schedule on a per-cell basis. Second, #ireze is a single interface, butchannels are available
(recall that we are assuming(&, ¢)-network for now), the schedule has to additionally ensheg &t most a single

transmission/reception is scheduled for a node at any tooesfraint 1).
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We build a suitable schedule using a two-step process. Ifirstestep, we satisfy constraint 1 by scheduling
transmissions in “edge-color” slots so that at every nodenduany edge-color slot, at most one transmission or
reception is scheduled. In the second step, we satisfy reamis? by dividing each edge-color slot into “mini-slots”,
and assigning mini-slots to channels such that any schéthalesmission is interference-free. By using the two-step

process, each transmission in a mini-slot satisfies botstaint 1 and constraint 2.

Step 1 — Build a routing graphVe build a graph, called the “routing graph”, whose vertiaes the nodes in the
network. One edge is inserted between all node pairsAsayd B, for every flow on which4 and B are consecutive
nodes (the routing scheme for selecting nodes along a flondessribed earlier). Therefore, by this construction,

every hop in the network along any flow is associated with one edge inrding graph. The resulting routing

graph is a multi-graghin which each node has at mo@t(\/%) edges, since each flow through a node can

result in at most two edges, one incoming and one outgoirgyyanhave already shown that each node is assigned

to at mostO <\/%) flows. It is a well-known result [29] that a multi-graph witl moste edges per vertex

can be edge-colorédvith at most?’—z8 colors. Therefore, the routing graph can be edge coloreldl atitmost some

f=0 <ﬁ) colors.

We use edge coloring to ensure that when a transmission éslstdd along an edge, the interfaces on the nodes
at either end of the edge are free, thereby satisfying cainstt. We divide every 1 second period infqwhich is
(@] <\/%)) “edge-color” slots, each of Iengt% (which is Q2 («/a(n))) seconds. Each of these edge-color slots is

associated with an unique edge color. An edge is schedutedaiossmission some time during the slot associated

with its edge color (the exact duration of transmission isidied in step 2). Since edge coloring ensures that at a
vertex, all edges connected to the vertex use differentrgoé@ach node will have at most one transmission/reception
scheduled in any edge-color slot. By construction, eacle esgresponds to a hop in the network. Therefore this
scheme ensures that during every 1 second interval, alopg@m in the network, one transmission is scheduled

on each hop of a flow.

Step 2 — Build an interference graph step 2, each edge-color slot is further sub-divided intani-slots” as
explained below, and every node has an opportunity to trarisraome mini-slot. We develop a schedule for using
mini-slots, which satisfies constraint 2. The schedulediExrbn which mini-slot within an edge-color slot and on

what channel a node may transmit, and the same scheduledsruseery edge-color slot.

We build another graph, called the “interference graph”esein, vertices are nodes in the network, and there

is an edge between two nodes if they may interfere with ealbbroSince every cell has at most some constant

5A hop is a pair of consecutive nodes on a flow.
A graph with possibly multiple edges between a pair of nodes.
"Edge-coloring requires any two edges incident on a commaiex¢o use different colors.
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One Second

Edge-color slot

Mini-slot

Fig. 6. Transmission schedule: Every hop along every flonsgaed to exactly one edge-color slot in each one secordsaht Within

the edge-color slot assigned to a hop, a specific mini-sloh@sen during which the transmitter node on that hop maystnén

kinter NUmMber of cells that may interfere with each other, and eathhas© (na(n)) nodes, each node has at
mostg = O (na(n)) edges in the interference graph. It is well-known that a lgnafth maximum degree can be
vertex-colore with at moste + 1 colors [29]. Therefore, the graph can be vertex-coloredh witmeO (na(n))
colors, i.e., at mosk;na(n) colors for some constart;. Transmissions by two nodes assigned the same vertex-
color do not interfere with each other. Hence, they can beduled to transmit on the same channel at the same
time. On the other hand, nodes colored with different catoay interfere with each other, and need to be scheduled

either on different channels, or at different time slots lba $ame channel.

We divide each edge-color slot in{d“%(’ﬂ mini-slots on every channel, and number the slots on eadmneha
from 1 to ["“"—Z(”W There is a total of: ["“"—Z(”W mini-slots across the channels. Channels are numbered from
1 to ¢. A node which is allocated a colgr,1 < p < kjna(n) is allowed to transmit in mini—slofg] on channel
(p mod ¢) + 1. The node actually transmits if the edge-coloring has atled an outgoing edge from the node to

the corresponding edge-color slot, in which case a packsgns in that mini-slot on that outgoing edge.

Figure 6 depicts a schedule of transmissions on the netwewrkldped after the two-step scheduling process. The
first step allocates one edge-color slot for each hop of eflewy The second step decides within each edge-color

slot when the transmitter node on a hop may actually tranarpiacket.

From step 1, each edge-color slot is of Iengﬂ(\/a(n)) seconds. From step 2, each edge-color slot is sub-

C

divided into P‘”"—“("W mini-slots. Therefore, each mini-slot is of Iengﬁh(wi%) seconds. Each channel can
W;\/a(n)

transmit at the rate of’ bits/second. Hence, in each mini-slotn) = Q( ) bits can be transported.

8Vertex-coloring requires any two vertices sharing a comradge to use different colors.
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Since[klnj(")w < kmaln) 41, we have(n) = Q < Wyaln)

< klna(n)+c> bits/sec. Depending on the asymptotic order:of

eitherna(n) or ¢ will dominate the denominator of(n). Hence \(n) = Q (MINO ( W( S cha("))) bits/sec.
Since each flow is scheduled to receive one mini-slot on eaphduring every 1 second interval, every source-
destination flow can support a per-node throughpuk(ef) bits/sec. Therefore, the total network capacity is equal

to nA(n) which is equal to (MINO ( w_ Wn Vca("))) bits/sec.

Va(n)’
2
Recall thata(n) is set tomin (max (1001%, %) : (ﬁ) ) whereD(n) = © (lolgoﬁ)gn). Substituting fora(n)

(the three possible values afn) gives rise to three capacity regions) in the equation foacay (derived above),

we have the result:

Theorem 8:The achievable capacity of @, ¢)-random network under channel models as follows:
1) Whenc is O(logn), a(n) = © (“’%) and the network capacity @ <W\/$) bits/sec.

2) Whenc is Q(logn) and alsoO (n (bglﬂ)z), a(n) = ©(£), and the network capacity i€ (W\/g)

logn
bits/sec.
; loglogn 2 loglogn 2 PR
3) Whenc is Q <n (%) ) a(n) =© ((%) > and the network capacity is
Q (%ggljzg”) bits/sec.

Using Lemma 2, the results for (@n, ¢)-network can be obtained by replacing every usage iof Theorem 8
by %. Therefore, we have:

Theorem 9:The achievable capacity of @, ¢)-random network under channel modeis as follows:

1) WhenX is O(logn), a(n) = © (1"5”), and the network capacity (W\/ %) bits/sec.

2) When =< is Q(logn) and alsoO (n (bglﬂ)z), a(n) = O (%), and the network capacity i3 (W1 /%)

logn
bits/sec.
; loglogn ) 2 log logn \ 2 [P
3) When 2 isQ(n (%) ) a(n) =0© ((%) ) and the network capacity is
Wmnloglogn ;
Q (70 Togn bits/sec.

The result for channel modél can be similarly derived, and is given by:

Theorem 10:The achievable capacity of @n, c)-random network under channel modeis as follows:

n

1) When% is O(logn), a(n) = © (1"”), and the network capacity (WC\/ %) bits/sec.

2) When=< is Q(logn) and alsoO (n (k’glﬂ)z), a(n) = © (%), and the network capacity 8 (W /nmc)

logn
bits/sec.
c lolon2 lolon2 FP
3) When< isQ(n (%) > a(n) =0© <(%) ) and the network capacity is
0 ( 7wm?olgilog") bits/sec.

The lower bound matches the upper bound implying that thentb®ware tight. Recall that the transmission

ranger(n) has been set tq/8a(n). Hence, theransmission range is largein case 2 and case 3 of Theorem 9
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as compared to case 1 (singén) increases). This implies that in multichannel networkshwérge number of
channels, higher transmission power is necessary for ngeetipacity bounds than is required in a single channel

network.

C. Capacity results with other traffic models

The multichannel network capacity under the random desimanodel was stated in Theorem 10. The construc-
tions and the results are applicable to some other trafficetsatiat have been proposed in the literature. Alternate
traffic models may result in different values bf(n) (recall thatD(n) is the maximum number of flows for which
a given node is the destination). The capacity results ptedebefore can be restated in termsidfn). However,
the results hold for those traffic models where it is equakgly for the destination node of any flow to be in any
cell (this is required for row-column routing to work). In ditlon, the results hold only ifD(n) is not too large.
Specifically, recall that(n) has been chosen such that it is at mé@t(%))Q, anda(n) should also be at least
1001%. This implies that a validi(n) can be chosen only iD(n) < \/%. Under these restrictions on traffic
models, the capacity of a multichannel network is:

Theorem 11:The capacity of am, c)-random network under channel modelas a function ofD(n) is as

follows:
1) When % is O(logn), a(n) = © (1"%) and the network capacity (W\/$> bits/sec.

2) When < is Q(logn) and alsoO (n (DL

(n))2>' a(n) = © (%), and the network capacity i@ (W %)

bits/sec.

3) When< is Q (n (ﬁf) a(n) =0 ((%)2) and the network capacity 8 (%%) bits/sec.

Gupta and Kumar [2] choose the destination for each sourde by first picking a random point, and then
selecting the node closest to this point as the destindfonthis model of selecting destinations, it has been shown
[30] that D(n) = ©(log n). This traffic model meets the requirements of Theorem 11 éatirthtions are randomly
located, andD(n) is small enough). Therefore, the capacity results for Gapih Kumar model can be obtained
by substitutingD(n) = ©(logn) in Theorem 11. The lower bound for multichannel networksarrttie Gupta and
Kumar traffic model can also be proved using an alternatangwpproach, called “straight-line routing” (which
we used in [1]), instead of using the row-column routing. t@er, straight-line routing may not hold under the
random traffic model used in this paper (where each node eso@mgandom node as the destination, instead of
picking a node closest to a random point). The straightdmging proof uses some results from [4] which have

not been proved for the version of random traffic model usethi report.

In another traffic model considered in literatufenodes are designated as sources, and the remajnmages

are designated as destinations. A random one-to-one n@pBet up between source and destination nodes. In
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Channel model 1 Channel model 2

Network Capacity (logscale)

Interfaces (m) =1 ——
Interfaces (m) = 2~

Interfaces (m) =1 ——
Interfaces (m) = 2~

Network Capacity (logscale)

Channels - ¢ - (logscale) Channels - ¢ - (logscale)

Fig. 7. Example plot of network capacity as the number of oleéis scaled. Capacity values are normalized to capacay i, 1)-network.

this model,D(n) = 1, and destinations are randomly located because nodesilapgasted uniformly at random
on the torus, and the mapping between sources and destigasicandom. Therefore, the capacity results under

this traffic model can be derived by replacifitn) = 1 in Theorem 11..

Permutation routing is yet another traffic model considéndderature. Under permutation routing, each node is
the source of exactly one flow and also the destination oftgxane flow. We discuss this traffic model further in
Section VII. Under permutation routind)(n) = 1 and destinations are randomly located. Therefore, resntier

permutation routing model can also be derived using Thedrgém

D. Implications

Figure 7 plots the network capacity as the number of channdle network is scaled, for a one interface and a
two interface network. The figure plots the scaling with sdired n, without accounting for constants, for the two
channel models. As we can see from the figure, under the charouel 1, the total bandwidth is fixed, and the
network capacity reduces when the number of channels isesedn contrast, under channel modebandwidth
is added when the number of channels increases, therel®asing network capacity (up to a point). Note that the
results under the two models are not contradictory, becdugseapacity always degrades with more channels when
compared to the capacity in(a, ¢)-network. Furthermore, when the number of interfaces ise@sed, there is no
improvement in capacity as long & is O(logn), but beyond that threshold, adding more interfaces imgrove
capacity. Since the curves in Figure 7 plot the number of ocalnon the X-axis, the thresholdl is achieved for

a larger value ot whenm is increased.

Figure 8 plots the network capacity as the ratio of chanmelsterfaces;, is increased for a one interface and
a two interface network. When the number of interfaces iseiased by some factor @f then for the any given
ratio of .=, this implies that the number of channels is also increased factor ofk. Since the total bandwidth

is fixed under channel modé| a k-fold increase in channels does not increase network cigp@oid therefore,
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Channel model 1 Channel model 2

Interfaces (m) =1 ——
Interfaces (m) = 2~

Interfaces (m) =1 ——
Interfaces (m) = 2~

Network Capacity (logscale)

Network Capacity (logscale)

Channel to Interface ratio - ¢/m - (logscale) Channel to Interface ratio - ¢/m - (logscale)

Fig. 8. Example plot of network capacity as the ratio betwelannels to interfaces is scaled.Capacity values are fiaedéao capacity

in a (1, 1)-network. The two curves under channel modeverlap.

the curves for different number of interfaces overlap inurigy8). However, since the bandwidth per channel is
fixed under channel modé&l, a k-fold increase in channels implieskafold increase in bandwidth, leading to a
k-fold increase in the network capacity. In addition, undathtbchannel models, the boundaries of the three capacity

regions depend off-.

The results imply that the capacity of multichannel randoghworks with total channel data rate @f is the
same as that of a single channel network with data Vétas long as the rati¢- is O(log n). When the number
of nodesn in the network increases, we can also scale the number ohelma(for example, by using additional
bandwidth, or by dividing available bandwidth into mulgptub-channels). Even then, as long as the channels are
scaled at a rate not more thig n, there is no loss in capacity even if a single interface islaie at each node.
In particular, if the number of channetsis a fixed constant, independent of the node density, theheasdade
density increases beyond some threshold density (at whiait p= O(logn)), there is no loss in capacity even
if just a single interface is available per node. Thus, tleisutt may be used to roughly estimate the number of

interfaces each node has to be equipped with for a given nedsitg and a given number of channels.

In a single channel random network, i.e.(l 1)-network, the capacity bottleneck arises out of the channel
becoming fully utilized, and not because interface at angenis fully utilized. On an average, the interface of a
node in a single channel network is busy only g]grfraction of the time, whereX is the average number of nodes
that interfere with a given node. In(@, 1)-random network withn nodes, each node on an average G@sg n)

neighbors to maintain connectivity [2]. This implies thata single channel network, each interface is busy for only

e ( 1 ) time. Our construction utilizes this slack time of inteacto support up t@(logn) channels without

logn

loss in capacity. In general, the loss in capacity in a randetwork is a function of the number of channels and
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the number of nodes in a neighborhdod

In earlier capacity results [2], [4], the transmission rangnd therefore the neighborhood size, is a function
of only the node density. However, for multichannel netvggrthe transmission range has to be chosen based on
ratio of channels to interfaces, in addition to the node ignSor example, with a given node density, when the
ratio of number of channels to number of interfaces is lagpe¢ifically,w(logn)), the number of interfaces in
a neighborhood will be smaller than the total number of cletriTherefore, even if all the interfaces are being
used continuously, it is not possible to fully saturate tkailable channels. This can result in significant capacity

degradation.

The capacity degradation can be reduced by increasing #eea$ia neighborhood, thereby ensuring that the
number of interfaces in a neighborhood is equal to the nurobehannels. Therefore, the lower bound construction
requires the cell size to be chosen such that the numberesfaces (or nodes, when each node has a single interface)
in each neighborhood is greater than or equal to the numbehasfnels. Hence, it turns out that the optimal strategy
for maximizing capacity when number of channels is large sufficiently increase the cell siz€n), which implies
that alarger transmission range(n) is neededo allow communication with neighboring cells. Howevererth
is still some capacity loss because larger transmissiogerdthan that is needed for connectivity alone) lowers
capacity by “consuming” more area. In summary, in a singlenciel random network, the transmission range is
chosen to be large enough to ensure connectivity. Howaveine case of multichannel networks, the transmission
range has to be chosen such that it is sufficiently large tarenthat all channels are utilized, in addition to

guaranteeing connectivity.

VI. IMPACT OF SWITCHING DELAY

The previous discussion on multichannel capacity has nosidered the impact of interface switching delay.
When the number of interfaces at each node is smaller thamuh#er of channels, interfaces may have to be
switched between channels. Switching an interface fromatvanel to another may incur a switching delay, say
S. For example, existing IEEE 802.11-based wireless intedarequire [23] between few tens to hundreds of
microseconds to switch from one channel to another. Howesvgitching delay is independent of the number of

nodes in the network.

We will show that if there are no end-to-end delay constsaistvitching delay will not affect network capacity.
For this, we use the end-to-end delay constraint definiiomf[4]. Each packet is assumed to have a dizand
L is scaled with respect to the throughput obtained for eachterend flow. If each flow can transpoxtbits/sec,
then each flow is assumed to send packets of gize ). In the lower bound construction provided before, if

packet sizes are set fobits, each packet traverses at least one hop in one secoackfdie, the end-to-end delay

®The neighborhood of a node consists of all other nodes thgtimtarfere with it.
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of a flow will be bounded by the number of hops on the flow, wheardhis no interface switching latency. Let us
assume that the minimum end-to-end delay in the absencéeofaoe switching latency iB,,:. A reasonable delay
constraint in the presence of switching latency is to regjtivat the end-to-end delay is at most a small constant
multiple of D,,,; otherwise applications may see a large increase in theeedd delay. This requirement may

be equivalently translated to allow a maximum packet sizé.of

A. Capacity in the absence of end-to-end delay constraints

In the case of arbitrary networks, capacity bounds are mttowt requiring interface switching at all (as was
shown in the construction used for lower bound). Hence,chivig delay will not impact the capacity of arbitrary
networks, even if there is an end-to-end delay constrainthé absence of any end-to-end delay constraints, we
show next that the capacity of random networks is indepemnaeswitching delay (the construction is described

next).

In the construction we use to establish lower bound for rama@tworks, interfaces may have to be switched
between channels (when receiving data). In the worst casieterface may have to be switched between channels
for every packet transmission. If there is no end-to-endyebnstraint, then we propose a simple “guard slot”

approach which ensures that capacity loss can be madeaathismall even in the presence of switching delay.

The “guard slot” approach is as follows. Suppose that eackgtas L bits long. This implies that the length of
each edge color slot i5 = % seconds (since each channel supports a data rd%é lots/sec under channel model
1). One simple way of hiding the interface switching delgys to insert a “guard” slot of duratiof between two
“edge-color” slots during which all channels are idle, ts@m that there is sufficient time for interface switching.
With this approach, the network capacity will be on},y% fraction of the capacity when there is no switching
delay. However, the capacity reduction can be made artremall by sending extremely large packefs $ )\)
resulting in7" > S, leading to large end-to-end delay. Therefore, in the atesef end-to-end delay constraints,

by using large data packets, the capacity degradation ilorametworks can be made arbitrarily small.

B. Capacity in the presence of end-to-end delay constraints

From prior discussions, even in the presence of delay ainsdf the capacity of arbitrary networks is not affected
by switching delay, since switching is not required to méet¢apacity bounds. In the case of random networks as
well, the upper bound proofs do not mandate interfaces towlitelsed, and therefore, even with switching delay,
there may be no change in the capacity. However, so far we iaivaddressed the question whether the capacity

of random networks is independent of the switching delaymthere are end-to-end delay constraints.

In the presence of end-to-end delay constraints, switctieglgy does reducéhe achievable network capacity in

the lower bound constructions proposed earlier. For exapgainsidering the guard-slot approach described above,
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when there is a restriction on the maximum packet size, edgk-eolor slot is bounded by some length and
the network capacity will be onIyﬁ—S of the capacity without switching delay, We next describeapproach that
shows using additional interfaces at each nodriiicientin many scenarios to hide the switching delay, even with

end-to-end delay constraints.

The new approach simulatesvatual interfacehaving zero switching delay using multiple physical indeds
that each have a switching deldy By this construction, the use of- 1 additional interfaces per node can hide the
switching delay, i.e., dv, c)-network using interfaces with switching del&ycan achieve the same capacity and
end-to-end delay bounds ag & c)-network using one interface with switching delay. This construction suggests
that multiple interfaces arsufficientto overcome the impact of switching delay, though multipiesifaces may

not benecessary

Lemma 6: Suppose that the time required for packet transmission (ih, &-network is7T = % and suppose
v = [%W + 1. Then a(v, ¢)-network built with interfaces having switching del&y can achieve the same capacity
and end-to-end delay as(&, ¢)-network built with interfaces having switching delay.

Proof: Let us assume that each node has [%W + 1 interfaces, each having a switching delslyWe build
avirtual interfacewith zero switching delay by using thephysical interfaces, as shown in Figure 9. We consider
any time interval of lengthvT. We divide this time intov slots of lengthT', and only allow thei** interface,

1 < < w, to transmit/receive in slat Thus, each physical interface is used for transmissioefron in one slot,
and is idle for the nextv — 1) slots of total duratior{v — 1)T" seconds. Since = [%W + 1, we have:

(v—1)T = {;—‘ T

>

Hence, between two successive operations of a physicafaogethere is at least a gap 6f which ensures
that switching delay is provisioned for. By this constroati the simulated virtual interface can continuously
transmit/receive, withD switching delay. Therefore, a network usingnterfaces having switching dela¥, can

mimic the behavior of g1, ¢)-network built with interfaces having switching delay ]

From the previous lemma, by increasing the number of intedaat each node by a factor @fswitching delay
is completely hidden. We next discuss the capacity impboat of usingv physical interfaces at each node to

construct a virtual interface, instead of directly using thinterfaces to send data in parallel.

From Theorem 9, we note that when the number of channdl¥lisgn) and there is no switching delay, the
capacity of a(v, c)-network is the same as that of(& c)-network. Using this observation along with Lemma 6,
we can conclude that by using the virtual interface techaidoe capacity of v, c)-network with each interface

having switching delay is the same as the capacity ofa c)-network with each interface having switching delay
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Fig. 9. Constructing one virtual interface with zero switghdelay by usingv physical interfaces with switching delay. Each packet

transmission require®’ seconds.

0. Hence, when the number of channellog n), which is a scenario of significant practical interakere is

no capacity loss even with switching delay, provided migltipterfaces are used.

Again, from Theorem 9, we note that when the number of chanedarger (2(logn)) and there is no switching
delay, the capacity of &l, c)-network islower than that of a(v, ¢)-network. Hence, using this observation along
with Lemma 6, we can conclude that using the virtual intexfeechnique when the number of channels is larger
(Q2(logn)), a (v, c)-network with each interface having switching deldywill have lower capacitythan a(v, ¢)-
network with each interface having switching delay 0. Usiiiieorem 9, we can show that for this scenario, the
capacity will be lower by a factor o% ~ \/% (sincev ~ %) when number of channels is betwe@flog n)
andO (n (%)2) and by a factor o% = TLJFS when number of channels {3 (n (1"1%)1%)2). In contrast, if
the guard slot approach is used, the capacity is lower bytarfai% in all cases, independent of the number of
channels. Therefore, although there is a capacity loss sviiching delay for certain scenarios using the virtual

interface technique, it is still significantly better thdre tguard slot approach when the number of channels is small.

C. Other constructions

The constructions used to establish lower bound on cappotgntially require interface switches at several hops
of a flow. Alternate constructions are possible [31] such #rainterface switch is required on at most one hop of
each flow. Such a construction may reduce the number of ss@tobquired in the network, and could be used to

reduce the impact of switching delay.

The capacity analysis has assumed that each node has onecfioey all the time. Typically, in deployed
networks, every node may not have an active flow all the timesuich a scenario, nodes without active flows could
still forward data for other nodes, and the interfaces ofitlaetive nodes may be viewed as “spare” interfaces that

are available in the network. Such spare interfaces coslol la¢ used to hide interface switching delay, instead of



30

requiring additional interfaces at each node to hide theckivig delay. We defer a formal study on hiding interface

switching delay by using spare interfaces to future work.

VII. CAPACITY WITH FIXED INTERFACES

In the previous section, we considered the capacity of shdtinel networks when switching interfaces incurs
a delay. In this section, we study the capacity of multiclehmetworks when interfaces do not switch at all. We
assume that each interface is fixed to some channel, and #mnehto which an interface is fixed can be set by
the network designer. It may be beneficial to keep interfdicesl when the interface switching delay is large. For
tractability, we study the capacity problem under a slighiifferent model for selecting source-destination pairs,
called the permutation traffic model. Under this model, wevsthat there is a degradation in capacity, proportional
to the number of channels, when there is a single interfacenpde, and interfaces are not allowed to switch.
However, the capacity degradation can be prevented if eadk is equipped with two interfaces (and interfaces

continue to be fixed on some channels).

A permutation is an one-to-one correspondence from &Is&, ..n} to itself. There arex! possible permutations,
and a random permutation is defined as a permutation cho#fenraly at random from all the possible permutations.
The permutation routing model assumes that the sourc@&dgsh pairs are chosen as a random permutation. This
implies that each node is the source of exactly one flow, awmth @@de is the destination of exactly one flow.
In contrast, the traffic model used earlier in this reporbva#éd nodes to be destinations of more than one flow.
Permutation routing model has been assumed by other worksymacity in the past (e.g. [7], [8]), and is simpler
to analyze.

Under the permutation traffic model, the maximum number oiidlper destinationD(n) = 1. Recall from
the discussions in Section V-C, that the capacity resultspfrmutation model can be obtained by substituting

D(n) =1 in Theorem 11. Therefore, the random network capacity updemutation routing model is given by,

Theorem 12:The capacity of g&m, c)-random network under channel modeland permutation traffic model,
is as follows:

1) When2 is O(log n), the network capacity i) (W\/%) bits/sec.

2) When = is Q(logn) and alsoO(n), the network capacity i€ (W\/@) bits/sec.

3) When= is (n), the network capacity i§ (@) bits/sec.

A. Capacity bound with a single fixed interface

When every node has a single fixed interface, nodes fixed omt@rcehannel cannot communicate with nodes
fixed on any other channel. Network capacity depends on thadlesh throughput obtained by any flow, and to
ensure that the network capacity is greater than zero, amyopaource-destination nodes must be fixed to a

common channel. This constraint precludes fixing nodes &mwéls arbitrarily.
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— > Source-Destination pair

Fig. 10. Example of a cycle formed by source-destinatiomspander the permutation traffic model.

Let us suppose that each node has been fixed on a channel,isrthannel assignment has been done while
ensuring that any source-destination pair uses the sammehd.et a channel, 1 < i < ¢, haven; nodes fixed
on it, and let)\; be the smallest flow throughput among the flows on chaan€lonsider some channél Now,
the n; nodes must still satisfy the connectivity constraint to ugasthat no nodes are disconnected from each
other. As before, we assume that all nhodes use a common tisgismrange. Therefore, the transmission range

on channel must be at least as large as the transmission range requiirexl al nodes share a common channel,

n

i.e., transmission range(n;) = Q< 10g">. Furthermore, the average distance between the sourteat&s
pairs on channel continues to bed(1) meters. Using upper bound results from Gupta and Kumar @flpw
throughput of a network having; nodes using transmission rangg:;), and channel bandwidtffg (we assume

channel modet) is upper-bounded as follows:

>\Z-:O<W ! > )

c n;r(n;)

AZ:O(E ”)
cn; \ logn

By definition, the network-wide per-flow throughpu, is defined to be the minimum throughput achieved by

Substituting forr(n;), we get

any flow, i.e.,A = min()\;). Therefore,\ is limited by the per-flow capacity in the channel having thaximum

number of nodes. Using this observation, the network capaci is given by,

Wn n
nA=0 (cmax(ni) \ log n) (10)

We now estimate the value afax(n;). Recall our requirement that if a source node S is assignedcttannel,
(2

then its corresponding destination D should be assignedgsame channel. In turn, the destination of node D,
say D1, should also be assigned the same channel. This progesnues till the destination of one of the nodes
is the first node S. Therefore, the source-destination asegts form a cycle as shown in Figure 10. Hence, the

value of max(n;) is equal to the size of the largest cycle in a random pernuutati
(2
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It is well-known [32] that the probability a random permugathas a cycle of lengtm, m > 3, is % Therefore,

the probability that a permutation has a cycle of length grethan? is given by [33],

Prob(cycle length greater thd}) = Z %
m=5+1

12

In(n) — In <g) (for large n
= In(2)

~ 0.69

Thereforemax(n;) is at least; with a non-zero probability exceeding a constant (independfr). This implies

that an upper bound on network capacity can be obtained dgaieg max(n;) by 4 in Equation 10 giving,

DA =0 (%@) (11)

This bound can be shown to be tight. A simple constructionoisagsign all nodes to a common channel,

independent of the total channels available. Then, the camahannel can support a data ratel’cléf and the
network can be operated using the Gupta and Kumar constnufiii a single channel network. This construction

yields the same capacity as specified by the upper bound iatBgull, proving the upper bound is tight.

Comparing Equation 11 with Theorem 12, we can see that kgeb@single interface at a node fixed results in a
capacity loss. The loss can be as Iargécas the first capacity region (when= O(log n)). Therefore, this clearly

suggests that if each node has a single interface, switdhiegfaces is necessary to avoid capacity degradation.

The random traffic model used earlier in the paper requirel aade to randomly select a destination. Consider
a graph built from the random traffic model, where verticesrazdes in the network, and two vertices are connected
by an undirected edge if their corresponding nodes form acsedestination pair. In this graph, each vertex has
an average degree of 2 (the graph hasdges, resulting in an average vertex degree of 2). A simitaph, called
the random graph [34], can be constructed by takingertices and choosing every edge between vertices with
a probability of%. The resultant graph also has an average vertex degree oft & hot identical to the graphs
formed by the random traffic model. It has been shown thataandraphs have a connected component of size
©(n) when their average degree is greater than 1. Thereforeuicealestination pairs where chosen using the
random graph approach, even then the network capacity wolllv Equation 11. We speculate that the bound
of Equation 11 also applies to the random traffic model careid earlier in the paper, though we do not have a

proof to support the conjecture.
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B. Lower bound with two fixed interfaces: permutation rogtmodel

In the previous section, we showed that if nodes have a sintgeface, and if channel assigned to the interface
is fixed, then there is a capacity degradation. In this secti@ show that if all nodes have two interfaces, and even
if channels assigned to the interfaces are fixed, there iss®ih capacity, under the permutation traffic model. We
designate the first interface at each node as the “primaeyfate”, and the channel assigned to the first interface
as the “primary channel”. Similarly, the second interfagalésignated as the “secondary interface”. The key idea
here is that different nodes in a cell are assigned the pyimmhannels such that in a cell, all channels have the
same number of primary interfaces fixed to them. The secgnntarface of a node is fixed to the primary channel
of the node’s destination. Data is sent from a source to ardeisin on the primary channel of the destination
(over all hops). In the rest of this section, we show that doisstruction is feasible and achieves the same capacity

as a network with one interface that can switch.

As before, the surface of the unit torus is divided into squeells each of area(n). We assume that is at
mostn. Since the destination bottleneck constraint is not preisethe random permutation model, we choose the
areaa(n) slightly differently from before. Specifically, we setn) = max(wm%, <). From Lemma 4, we know
that each cell ha®(na(n)) nodes with high probability. Therefore, every cell has aisté:2na(n) nodes, where
ko is a constant. Ifkana(n) < ¢, we increase the aregn) by a factor oszn—‘;(n), and this factor can always be
bounded by a constant (because ©(na(n))). The scaling ensures that every cell has at leagides. From now
on, we assume that we are considering the scaled cells.\\étGh (scaled) cell there are at mégta(n) nodes,
whereks is a constant. We number these nodes frbto ksna(n), and assign nodeto channel(i mod c) + 1.

na(n)

With this assignment there are. = © (—) nodes per channel in each cell.

C

We continue to use the row-column routing technique that wsed earlier in the paper. Figure 11 shows the
routing scheme. Recall that in row-column routing, packeesfirst sent east along the row containing the source
till it intersects with the column containing the destioati After that, packets are sent south along the column

containing the destination till the destination cell isaleed.

Let us consider the traffic going through some cell L on somanakli. There are—~—— cells per column, and
an

Valn)

therefore, each column will have\/% nodes on channél Since each node is the destination of exactly one flow
a\n

under the permutation routing model, cell L will forward absh—2=— flows that are headed along the column

Vva(n)

containing L toward their destinations.

The network ha% total destination nodes (there agéT) cells, and at most. nodes on a channel in each
cell) receiving data on channél We now want to bound the number of source nodes sending datdanneli
on any row. Since node locations are chosen independentyndbm, it is equally probable that the source node

corresponding to a destination node is in any given row. dioee, the number of source nodes in any given row
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Fig. 11. Routing through cells: Packets are routed firstaglamow till the destination column is reached, and then alihegcolumn to

the destination cell.

may be modeled as a “Balls and Bins” problem Wh% balls are thrown intoﬁ bins. Results from [25]

show that ifz balls are thrown intgy bins, andx > ylogy, then each bin ha® (%) balls w.h.p. Since in our

caser = ;5. y = ot andn. > 1, implying = > y*, each row will have® (\/@) source nodes. Therefore,

as each source node originates one flow, the number of flowsprclzannel that pass through a cell L while

traversing the row containing L (i.e., flows originate at osource node along the row containing L), is bounded

by © 1),
y (a(m)

Adding the flows along rows and columns, the total flows on angnoel: passing through any cell L is

@( Oe ) Since each cell has. nodes on channel, if the flows are carefully balanced across nodes, the

Va(n)

number of flows per node is given t@< L > Using the Gupta and Kumar [2] construction for a single

va(n)

channel, each node receives a fract@r(nl) of the channel time (as there a@(n.) nodes on any channel in

a neighborhood). Therefore, each flow receives a througbp@ (%—Vz(")) bits/sec. Substituting fon., and

multiplying by n, the network capacity i© (Wﬁ) bits/sec. Substituting fou(n), we have the following
theorem:
Theorem 13:The capacity of a random network with two fixed interfaces pede under channel modg| and

permutation traffic model, is as follows:

n logn

1) Whenc is O(logn), a(n) = O (log"), and the network capacity i8 ( L ) bits/sec.

2) Whenc is Q(logn) and alsoO(n), a(n) = © (£), and the network capacity i@ (W\/g) bits/sec.

The construction presented above could be easily genedalihen more than two interfaces are available (by
grouping interfaces using Lemma 2). Similarly, the corcitans can be extended to the scenario with Q(n)

channels (by applying the earlier construction, but usinly @ channels), for which the network capacity is given
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by (@) bits/sec. Comparing with Theorem 12, we see that there i98® ih capacity even if interfaces are

fixed, provided the number of interfaces is doubled.

C. Lower bound with two fixed interfaces: random routing mode

The lower bound construction used for the permutation nguthodel is also applicable under the random routing
model. Therefore, it can be shown that there is no loss in ertwapacity for up tad(logn) channels even under
the random traffic model.

The results for random traffic model can also be proved bygudie construction techniques from [31]. In this
approach, as before, the primary interfaces in each celtamefully assigned to channels to balance the interfaces
across all channels. The secondary interface at each nadddpendently assigned to a random channel, which
is the key difference from the earlier construction. Traffidnitially sent from the source to the destination on
the secondary channel, say(at each hop, a node with primary interface tuned to chasrmrelays the packet).
When the packet is withimlogn hops of the destinatidf then the packet enters a transition phase. During the
transition phase, if the packet is at a node that has its pyirmhannel ons and the secondary channel on the
destination’s primary channel, saly then the packet is sent out on chandelAfter the packet transitions to the
destination’s primary channel, it is relayed on that chatiiidt reaches the destination. This construction can be
shown to achieve the same network capacity as a network whiendaces can switch (see constructions in [31]
for more details). Hence, even under the random traffic madel fixed interfaces per node is sufficient to achieve

asymptotically optimal capacity.

VIII. DISCUSSIONS

The theoretical analysis has yielded the capacity of wéeleetworks with the number of channels varying across
a wide range. The region where the number of channels isdseal©(log n) seems to be of immediate practical
interest, since the number of channels provisioned for imecu wireless technologies is not too large. However,
there are many recent efforts aimed at utilizing frequenm@csum in higher frequency bands, where significantly
larger bandwidth is available for use. For example, thermrdsind 7 GHz of spectrum available for unlicensed use
in the 60 GHz band [35], whereas the total bandwidth used irentiwireless technologies, such as IEEE 802.11,
is less than 500 MHz. The bandwidth that may become availablégher frequency bands can be split up into
a large number of channels, and therefore the region withbeurof channels greater than(logn) may be of

practical interest in the near future.

The capacity analysis has shown that a single interface nfiiges for random networks with up t®(logn)

channels. The capacity-optimal lower bound constructieaduto support the above claim is based on certain

10t a route requires fewer thamlog n hops, then the route length is intentionally increased bggua detour [31].
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assumptions, all of which may not be satisfied in practice.dxample, we assume that interface switching delay
is zero, transmission range of interfaces can be carefulhtrolled, and there is a centralized mechanism for
co-ordinating route assignment and scheduling. In additioe theoretical analysis derives asymptotic resultd, an

capacity can be improved by constant factors in the lowentatonstructions by using multiple interfaces. From

Section VI, we note that when interface switching delay i$ nero, having more than one interface may be

beneficial. Furthermore, protocol design has identified yriz@nefits of using at least two interfaces at each node,
such as allowing full-duplex transfer, and simplifying tthevelopment of distributed protocols for utilizing mulép

channels, as seen in our other work.

Our simulation and testbed experiments [36] have shownhhaging more than one interface may be beneficial
in practice. However, these experiments do not prove nleltigerfaces are necessary for obtaining all the observed
performance improvement. In addition, our simulation hssalso show that it is not necessary to have one interface
per channel to utilize all the channels, and in fact even many., 12) channels can be fully utilized by using
only two interfaces, which validates the theoretical claitherefore, in practice, the theoretical claim that a singl
interface suffices wittO(logn) channels is reasonably accurate, with the caveat thatianigitinterfaces may be

useful in simplifying protocol design and hiding switchidglay.

In summary, in this report we have derived the lower and ufyoemds on the capacity of static multichannel
wireless networks. We have considered wireless networkin@pa: channels, andn < ¢ interfaces per node.
Each interface is capable of selecting appropriate tragsion power, and lower bound constructions require global
knowledge. Under this model, we have shown that in an arlimatwork, there is a loss in the network capacity
when the number of interfaces per node is smaller than thebauof channels. However, we have shown that in a
random network, a single interface may suffice for utilizimgltiple channels, as long as the number of channels
is scaled a®)(logn). We have then considered the impact of non-zero interfadéelsng delay on capacity, and
shown that in a random network with up @(log n) channels, interface switching delay has no impact on capaci
provided each node is provisioned with a few extra intea®e have also considered the scenario where after an
initial channel assignment, interfaces are not allowedwtiich channels. Under this model, we show that if each
node has only one interface, then there is a loss in netwqaity. However, the capacity loss can be eliminated
by providing an additional interface at each node, whichaghthat it may be possible to develop protocols which

do not require interface switching, albeit at the cost ohgsextra hardware.
APPENDIX |
MAXIMUM NUMBER OF FLOWS PASSING THROUGH A CELL

Recall that each cell (see Figure 5) has an aiteg. The unit square region is divided by the square grid into

L_ rows and columns. The proofs here use the following versar@hernoff bound:

2
2
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Lemma 7:(Chernoff Upper Tail Bound [37]) LefXy, ..., X,, be independent Poisson trials, whefe[X; =
1] =p;. Let X = ZXZ-. Then, for0 < 3 < 1:

i=1

PriXz(1+A)BX] < ex (—%E[X])

Lemma 8:(Chernoff Lower Tail Bound [37]) LetXy,..., X,, be independent Poisson trials, whefe|X; =
1] = p;. Let X = > X;. Then, for0 < g < 1:
i=1

PriX < (1-BEX]] < exp (—%E[X])

We next bound the maximum number of nodes in any row (or cojumn

Lemma 9:Whenn nodes are randomly placed on a unit torus that is divided¥hte: \/ﬁ rows (or columns)
with a(n) > 0, then Pr[ any row (or column) hag 2n+/a(n) nodes| < \/ﬁexp (%n\/W) for sufficiently
large n.

Proof: Recall that each node is placed uniformly at random on thetarus. Therefore, since there arg
rows of equal size, a node has a probabil;ﬁyof being placed in a particular row. Consider some riowet X;;
be an indicator variable that isif node j is placed in rowi. Let X; = iXij be the total number of nodes that
are placed in row. Then,E[X;] = v = ny/a(n). By applying the Ch?a:riloff bound from Lemma 7 (with= 1),

we have

Pr { row ¢ has> 2nm nodes] < exp <%1n\/@)

Since there aré&’. rows, applying the union bound, we have

Pr[ any row has> 2n\/@ nodes] < Y, exp (%n@)
1 -1
= o (?n\/@>

The bound for maximum number of nodes in a column can be sigitkerived. ]

Lemma 5:(restated here)

When the row-column routing is used, aath) > losn the maximum number of flows that pass through any

n

cell (including flows originating and terminating in the et O (n\/a(n)), with high probability.

Proof: Using the row-column routing technique, the flows that pdseugh any cell can be divided into

two groups; flows that are being routed along the row comgitine cell, from some source node till the desired
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destination column is reached, and flows that are being doalteng the column containing the cell toward some
destination node.
Each node is the originator of exactly one flow. From Lemma®,grobability any row has more than/a(n)

nodes is at mos\/{% exp (_Tln\/a(n)). Therefore, the probability of having more than./a(n) flows along

a row is at mostﬁ exp (_Tln\/a(n)). This probability is a decreasing function efn). Whena(n) > logn’

this probability (maximized for this range afn) whena(n) 57) is upper bounded b)éxp(%\/ﬁ\/@) Joan

and tends to 0 aa — oo. Therefore, this result implies that the number of flows gl@nrow is bounded by

O (nv/aln)) whp

Next, we bound the number of flows along a column. Consideresoalumni. Let N; be a random variable
representing the number of nodes in columhet X; be the number of flows along columinThen, conditioning

on the value ofV;,

Pr |:Xi 2471\/@] = i Pr {X,— 24n\/m!Ni an} Pr[N; = nj]

iny/a(n)
= Z Pr [XZ- > 4ny/a(n) | N; = nl} Pr[N; = n)
2n+/a(n)—1

+ Z Pr {XizélnmUVi:m} Pr[N; = n]

ni=iny/a(n)+1

n

+ Z Pr [Xi > 4ny/a(n) | N; = nl] PrN; = n
n;=2n+/a(n)

< Pr {Ni < %n a(n)}

+ Y P {XZ- > dnyfa(n) | N; = n} Pr[N; = ni]
+ Pr [NZ- > 2n\/@] (12)

The first and third terms in the above equation are simplifigahdting Pr[A|B = b|Pr[B = b] < Pr[B = b].

Using the Chernoff upper tail bound (Lemma 7) with= 1 (the proof technique is similar to Lemma 9), we have

Pr|N; > ZnW] < exp (%nm) (13)

Similarly, using the Chernoff lower tail bound (Lemma 8) kit = % we have

Pr[N; < %n\/@] < exp <%1n\/@) 14)

For a given topology, lefV; = n;. The number of flows along columiis equal to the number of source nodes

that have chosen a node in columms the destination. Since each source node chooses a testimaiformly
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at random, any source node has a probabfjityof choosing a node in columnas its destination. LekX;; be
n

an indicator variable that i$ if node j has picked a node in columhas its destination. ThenY; = ZXU.
j=1

Therefore,E[X;] = n;. Using the Chernoff bound from Lemma 7 with= 1, we have

-1
Pr(X; >2n;] < exp <?n,) (15)

In the rangeln/a(n) < N; < 2ny/a(n), for any N; = n;, Pr[X; > 4n\/a(n)] < Pr[X; > 2n;] (because when
a < b, Pr[X; > b] < Pr[X; > a]). Simplifying further using the same technique, for aNy = n; in this range,
Pr(X; > 2n;] < Pr[X; > ny/a(n)] (because the smallest valuerofin this range isjny/a(n)). Therefore, in the
rangein/a(n) < N; < 2n\/a(n) we have,

Pr [X,- > 4n\/m | %nm < N; < Zn\/m}

IN

Pr {X,- > 9N | %n\/@ <N < ZnW]

< PriX: > 2(zmfa(n)

BecausePr [X; > 2n,] is a decreasing function of;

-1 . .
< exp (?m/a(n)) (using Equation 15)
Therefore, we have
2ny/a(n)—1 2ny/a(n)—1 1
Z Pr [Xi > 4ny/a(n) | N; = n,] Pr[N;=n;] < Z exp (?m/a(n)) Pr[N; = ny)
ni=zny/a(n)+1 ni=zny/a(n)+1
1 2n+/a(n)—1
= exp (Fn a(n)) Z Pr[N; = ny)
ni=zny/a(n)+1

< exp (%n\/@) x1
= exp <%nm) (16)

Substituting the results from Equation 13, Equation 14, Bgdation 16 into Equation 12 we have,

Pr(X; > 4n\/m] < exp (%n@) + exp (%n@) + exp <%1n\/@)
< 3exp (%nm) sincen\/@ >1 a7

Applying the union bound (there are a total ?% columns) and using Equation 17, we can show that for
an
any column

Pr[ any column ha$> 4n4/a(n) flows|] < #3 exp <%1n a(n)) (18)

va(n)

The above probability is a decreasing functionagf,). Therefore, wheni(n) > 057

n !

the above probability

(maximized for this range ofi(n) when a(n) — %87 is upper bounded b)’&\/‘l/L exp (%\/nlogn). This
ogn

n

probability tends to 0 as — oo. Therefore, the number of flows routed along any column isnded by
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logn

O(n+/a(n)), with high probability. Combining the bounds for flows alorays and columns, wheam(n) > =22,
the total number of flows in any cell ©(n\/a(n)) whp.
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