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Abstract

Wireless Mesh Networks offer a quick, easy and cost efficient solution to providing network connectivity. Mesh

networks would be required to support high data rate in order to compete with other more conventional

Ethernet based network solutions. The usage of multiple frequency channels and multiple interfaces at each

wireless mesh node has been proposed earlier to increase the capacity of such networks. In this thesis we

evaluate such a mesh network implementation where each node in the network is equipped with two wireless

radio interfaces and uses multiple channels for transmission. The network employs a hybrid multichannel

protocol which provides connectivity between nodes with multiple interfaces using multiple channels. The

protocol is implemented on top of the Net-X system architecture. The Net-X framework provides support

for frequent channel switching on an interface which is required by the hybrid multichannel protocol, with

certain channel switching delay overheads added.

We look at the throughput improvements achieved for a single flow and for concurrent multiple flows in

the multi-channel network as opposed to using a single channel in the network. We identify problems arising

from the usage of multiple channels for concurrent transmissions in close range and discuss the effects of

channel switching delay on the network. We propose certain changes in the Multi-Channel Routing (MCR)

metric used by the hybrid multichannel protocol to address these problems. We then evaluate the throughput

performance improvements observed when using the new routing metric as compared to using the old MCR

metric. Finally, based on our observations and experience with the testbed, we discuss some ideas for

developing new multi-channel protocols and mesh networks in the future.
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Chapter 1

Introduction

The IEEE 802.11 [25] standard and related technologies have been successfully used to provide connectivity

between wireless devices. The 802.11 ad-hoc mode provides for setting up wireless network between a group

of nodes. Wireless mesh networks are such ad-hoc mode based networks which are easily deployable and

offer flexible and cost efficient solution to providing network connectivity.

Wireless mesh networks require high data rate support for good performance for which the mesh nodes

need to use the available communication bandwidth as efficiently as possible. The 802.11 wireless technol-

ogy standard divides the available bandwidth into multiple channels. Further, the commercially available

wireless radio interfaces can transmit and receive on one channel at a time. With the costs of wireless inter-

faces lowering day by day, it is becoming economically feasible to equip nodes with multiple wireless radio

interfaces. The use of multiple channels in the network with the help of multiple interfaces at a node offers

an opportunity to significantly improve the capacity of the network as opposed to using a single channel in

the network. In this thesis we look in detail at such a multi-channel multi-interface wireless mesh network

implementation. The mesh network employs a hybrid multi-channel protocol proposed by Kyasanur and

Vaidya [1, 2, 3], implemented on top of the Net-X system architecture [4, 5, 6]. By switching channels on

an interface, as proposed in the hybrid multi-channel protocol, a node in the network can access the entire

communication bandwidth.

We perform a complete system analysis of the various aspects of the multi-channel multi-interface network

testbed. We describe the various issues that come up during the analysis and draw attention to points related

to the usage of multiple channels in the network. The issues we report during our discussions are the ones we

believe would be faced by other similar multi-channel wireless networks. Some of these issues originate due

to frequent switching of channels on interfaces, while some of them relate to the usage of multiple channels

and concurrent transmissions.

Chapter 2 summarizes related work. We describe our network set up and the hybrid multi-channel

protocol including the multi-channel routing metric (MCR) [1, 2] employed on the testbed in Chapter 3.

We then take a look at some significant implementation issues for the mesh network in Chapter 4. Chapter 5
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looks at the effects of channel switching delay on the network. In Chapter 6 we take a look at the throughput

gains achieved for a single flow and multiple concurrent flows in our multi-channel multi-interface network

as opposed to using a single channel in the network. In Chapter 7 we propose certain changes to the MCR

routing metric to take into account cross-channel interference and channel reuse on routes. Chapter 8

concludes with our discussion and lists some ideas and areas for future work.
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Chapter 2

Related Work

Different attempts have been made to make use of multiple channels in wireless networks [8, 14, 17, 15].

Except for [15] the other schemes and implementations do not require frequent switching of channels on

interfaces. In these other schemes channel assignment for different interfaces is fixed for long durations of

time. The channel switching interface architecture developed in Multinet [15] is designed for nodes with a

single-interface. The aim for Multinet is to have a wireless node with one physical wireless interface connect

to an infrastructure network as well as an ad hoc network using two virtual interfaces.

The hybrid multi-channel protocol [1, 2, 3] proposed by Kyasanur and Vaidya aims to provide connec-

tivity between nodes using multiple interfaces and multiple channels. The hybrid multi-channel protocol

requires multiple wireless interfaces at each node and assumes that frequent channel switching is possible

on at least one of the interfaces. The wireless mesh network testbed we analyze runs an implementation of

this hybrid multi-channel protocol implemented on top of the Net-X system architecture [4, 5, 6]. Readings

from an early prototype of our system were reported in [1] and [4]. The early prototype of the system had

a very basic implementation of the routing protocol and lacked certain other key components. The read-

ings reported in [1, 4] constituted a proof of concept of the Net-X system architecture and the throughput

gains possible with the use of hybrid multi-channel protocol. In this thesis we build on the work done in

[1, 4] and discuss some key system issues not properly addressed in the early prototype. We also evaluate

different aspects of the system (routing, throughput for multiple concurrent flows etc.) and report different

performance numbers from the network.

In the past there have been evaluations of other wireless protocols and testbed implementations such as

MIT Roofnet [19, 21, 20], Uppsala University wireless network testbed [16] and others [22, 23, 24]. These

have all been single-channel single-interface network testbeds.

We also evaluate the MCR [1, 2] routing metric scheme in our multi-channel testbed and propose

modifications to the scheme to factor in the effects of cross channel interference and channel reuse on

routes. Several routing metric schemes have been proposed in the past [11, 9, 8, 2]. The WCETT [8]

routing metric scheme and MCR [2] routing metric scheme are the ones that are best applicable to our
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multi-channel network. None of these routing metric schemes account for cross-channel interference that

may be experienced by nodes in a route. Further, they do not differentiate between channel reuse on hops

close together in a route and channel reuse on hops spatially far apart. We observe that these two factors

can make a difference in throughput achievable on a route. We propose changes to the MCR metric to

account for cross-channel interference and channel reuse and set up experiments to observe UDP throughput

performance of routes chosen by the new routing metric scheme as compared to the old MCR metric scheme.

4



Chapter 3

Background

This chapter describes the multi-channel multi-interface wireless mesh network testbed developed in our

research lab. The mesh network runs the hybrid multi-channel protocol [1, 2] implemented on top of the

Net-X system architecture [4, 5, 6].

Decreasing cost of wireless hardware devices today presents an opportunity to equip wireless nodes with

multiple wireless radio interfaces. The presence of orthogonal channels in the spectrum defined by the

wireless technology standards (such as IEEE 802.11) enable the simultaneous usage of multiple interfaces at

a node.

The idea of using multiple wireless radio interfaces at a node raises new challenges and leaves several

questions to be answered. The commercially available 802.11 wireless radio interfaces at one time can

communicate on one channel. Assuming a distributed system without any central controller, the nodes using

multiple interfaces and multiple channels in a wireless network need to synchronize amongst themselves and

come up with a consensus for channel usage amongst them. Primarily, the wireless nodes need to come

up with a channel assignment schedule which would provide information about how to reach a particular

node. The schedule will specify at what time would a node be listening on what channel(s). A good channel

assignment schedule is important for better performance of the system. A good channel assignment coupled

with an intelligent routing protocol would provide for good quality, channel diverse routes in the network and

increase the possibility of having more concurrent transmissions in the network. The hybrid multichannel

protocol proposed by Kyasanur and Vaidya [1, 2] defines channel assignment and routing for multi-channel

multi-interface node wireless network.

The network stack in today’s systems is divided into separate layers with little inter-layer knowledge

and interaction. For example, the network layer (OSI model layer 3) responsible for routing and addressing

does not know the details of the underlying link layer (OSI model layer 2) which is responsible for link

level connections. The network layer thus has no notion of channels existing at the 802.11 link layer. For

implementation of multi-channel network protocols one would require network layer support for routing

and other functionalities. The Net-X system architecture provides a framework designed to support multi-
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channel multi-interface protocols. A prototype of the Net-X architecture has been developed in our lab

for the Linux Operating System (kernel 2.4.26). We have implemented the hybrid multi-channel protocol

mentioned earlier to run on top of the Net-X prototype for our testbed implementation.

We now provide details about the hybrid multichannel protocol, the Net-X system architecture and its

implementation in our wireless network testbed.

3.1 Hybrid Multichannel Protocol

Hybrid multichannel protocol, proposed by Kyasanur and Vaidya [1, 2], combines interface management

together with an on-demand routing protocol. The protocol assumes that each node has at least two wireless

interfaces, one of which can supports frequent channel switching. From now on we would refer to this hybrid

multichannel protocol as HMCP. The basic functions of the protocol are as follows:

1. Interface Management : This involves assigning channels to the different interfaces at a node and

exchanging this channel information between nodes such that nodes may be able to communicate with

each other.

2. Routing : The protocol proposes an on-demand routing protocol which uses the multi-channel routing

metric (MCR). The MCR metric is a modification of the channel-aware routing metric WCETT pro-

posed by Draves et. al [8]. The MCR metric apart from preferring a channel diverse route also takes

into account the channel switching costs involved at a node.

3.1.1 Channel Assignment

HMCP proposes a hybrid strategy for interface channel assignment. It assumes each node in the network has

some m interfaces ( m ≥ 2) which is less than the total number of channels usable at a node. Some 1 ≤ f < m

of those interfaces are assigned channels for long intervals of time. These interfaces are the ‘fixed’ interfaces,

the channels assigned to these interfaces are the fixed channels for the node. The channel assignment for

fixed interfaces at a node is based on balancing the fixed channel usage in the two-hop neighborhood of the

node. The remaining m−f interfaces are dynamically assigned channels from the remaining channels in the

spectrum. These are the switchable interfaces. Any communication with a node can only be done on one

of the fixed channels for the node since these are the only channels one can be sure that the node will be

listening on. Thus if node S wants to send a message to node D, first it checks if it shares a fixed channel

with node D. If so, node S may initiate the communication with node D by transmitting on the interface

on the fixed channel shared between S and D. If the two nodes do not share a fixed channel, node S would

6



be required to tune one of its switchable interfaces to one of the fixed channel of D and then initiate the

communication by transmitting on this interface. When neighbor D has multiple fixed channels, we can

potentially add intelligent algorithms for node S to decide which fixed channel to use for communication

with D.

Kyasanur and Vaidya’s hybrid multichannel protocol (HMCP) simplifies the coordination required be-

tween nodes to know in advance the channel switching schedule for the nodes. One only needs to know the

fixed channels for a node in order to communicate with the node. The hybrid channel assignment strategy

also has the advantage of a dynamic channel assignment strategy such that any node can access any channel

in the spectrum at any point of time. Also, the protocol does not loose out on the simplicity provided

by a fixed channel assignment strategies and does not require complex coordination protocols required for

exchanging channel switching schedules. One of the issues with this channel assignment strategy is that

broadcast implementation adds overheads. A broadcast message is transmitted on all the channels usable

at a node. This is done so that all the nodes in the vicinity of the transmitting node may be able to hear

the broadcast transmission irrespective of their fixed channels. Thus, when a node has to send a broadcast

message, it transmits a copy of the broadcast message on each of its fixed channels using the fixed inter-

faces. Also, it tunes its switchable interfaces one by one to all the remaining channels in the spectrum and

transmits a copy of the broadcast message in each of the switchable channel. This implementation adds

delay in transmission of the broadcast message. The routing protocol proposed by HMCP employs broadcast

messages for route discovery. We discuss the effects of delay in broadcast transmission on routing and other

aspects of the system in Chapter 5.

We have a 24 node testbed where each node is equipped with two wireless interfaces. One of the interfaces

for each node is the fixed channel interface while the other interface is the switchable interface. Thus, there

is one fixed channel for each node in our testbed.

3.1.2 Hello Message Mechanism

The nodes exchange their fixed channel information by broadcasting hello messages. Each node in its hello

message sends its own fixed channel information and also the fixed channel information of all the nodes

whose hello messages it can hear. These hello messages are how nodes come to know of their neighbors and

the fixed channel usage in their two-hop neighborhood. This information also helps a node figure out if its

current fixed channel assignment is good or whether it should change its fixed channel in order to balance

channel usage in its two-hop neighborhood.

Each node broadcasts a hello message every H (by default set to 5 for all nodes) seconds. These

7



broadcast hello messages also help in link quality estimation. Each node maintains a 64 bit bitmap for

each of its neighboring node, keeping tab of the successfully received hello messages in last 64×H seconds.

This helps in estimating transmission success probability of backward link from the neighbor to the node.

Similarly the estimate for the transmission success probability for forward link, from node to the neighbor,

exists with the neighbor. The forward link transmission success probability is received from the neighbor

who sends this information in each of its hello message. With the help of forward and backward transmission

success probabilities of a link, a node can have an overall estimate of the quality of the link. The link quality

estimation is required for routing purposes.

3.1.3 Routing Protocol

HMCP proposes the usage of MCR routing metric for choosing routes between nodes. The MCR metric is

a modification of the WCETT [8] routing metric with the addition of channel switching cost in the metric

cost calculation. The routing metric is implemented in the testbed on top of an AODV [10] style on-demand

reactive routing protocol. When a source node S has to start communication with a destination node D

(i.e., when the network layer at S detects a packet for D for which no route exists), the routing process is

initiated. Node S broadcasts a RREQ message with D as the destination. All the nodes that receive the

RREQ, forward (broadcast) the RREQ after appending their own routing details on the RREQ message.

These details include their IP address, fixed channel information, channel switching cost information and

ETT (Expected Transmission Time for a 1500 byte packet) on the last hop traversed by the RREQ. This

process continues till the RREQ finally reaches the destination node D. Each instance of the RREQ which

reaches destination node D discovers a possible path to reach from S to D. With the help of the routing

information included in the RREQ messages, the node D evaluates the metric cost associated with each

of the paths discovered. The destination node D then chooses the path with the least routing metric cost

and unicasts the RREP for this path to the previous hop in the path. The RREP includes the entire path

information and is unicasted hop by hop to the source. Along each hop when a node receives the RREP it

updates its routing tables to include the forward route towards destination D and a backward route towards

source S after reading the next hop and previous hop information from the RREP. After a RREP reaches

the source node S a route to the destination D exists and all the packets buffered for the destination can

now be sent along the route.
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3.1.4 User Space Daemon

The implementation of the HMCP for our testbed is done in the Linux user space as a user space daemon.

The daemon interacts with the Kernel Multi-Channel Routing (KMCR) module and Channel Abstraction

Layer (CAL) modules in the system and glues together the different components to make the whole system

work. The KMCR and CAL modules are described in detail in the next section.

3.2 Net-X System Architecture

The hybrid multi-channel protocol (HMCP) described in the last section requires support from the operating

system to work. As discussed earlier, the network stack in today’s systems is divided into separate layers

with little inter-layer knowledge and interaction. The network layer (OSI model layer 3) responsible for

routing and addressing does not know the details of the underlying 802.11 link layer (OSI model layer 2) and

frequency channels. The network layer only chooses the next hop neighbor to forward a packet in order for

it to reach its destination and the network interface to transmit the packet to the next-hop neighbor. The

network layer thus instructs the link layer to transmit the packet on a particular interface to the specified

next-hop neighbor. When a wireless node is equipped with multiple interfaces and is capable of transmitting

packets over multiple channels, the information passed by network layer as described above may not be

enough to reach the next-hop neighbor. The link layer at such a node must also know about which channel

to transmit the packet on so as to reach the next-hop neighbor. In the specific case where the number of

channels a node may use is equal to the number of interfaces it is equipped with, the choice of network

interface to transmit a packet on may be enough for the link layer. In such a case each interface may be

fixed on one particular channel over ‘long periods’ of time. The choice of interface to reach a particular

neighbor thus also specifies the channel on which the neighbor would receive the packet. Otherwise if the

intended next hop recipient of the packet has the capability to listen on all channels, the choice of channel

at the sender to transmit the packet may not remain critical for communication.

In the general case where the number of channels a node may use are (far) greater than the number of

interfaces at a node (more plausible case) the network stack architecture would not work in its current form.

The link layer would require the intelligence of the channel to transmit each packet in order for it to be

correctly received. Further the link layer may also be required to provide special services for multi-channel

protocols, for example, a broadcast messages may need to be required to be transmitted on all the channels

so that all the nodes in the vicinity of the transmitting node may be able to hear the message.

The Net-X project [6] aims to develop a system architecture, a framework, to seamlessly and efficiently
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utilize multi-channel, multi-interface capabilities in next generation wireless networks. The discussion above

highlights important points and issues due to which current system architecture will fail to fully utilize

the potential of multi-channel multi-interface capabilities in wireless nodes. Net-X provides for a generic

framework over which different multi-channel, multi-interface protocols may be implemented.

We now provide details of our prototype implementation of the Net-X architecture for Linux operating

system, kernel 2.4.26 . For more details about the implementation kindly refer to [4], [1] and [7].

3.2.1 Kernel Multi-Channel Routing Support

The Kernel Multi-Channel Routing (KMCR) module works at layer 3 (network layer) of the network stack.

With the help of Linux net filter hooks [31] , the KMCR module is able to see the different packets passing

through the Linux network stack. With this ability of inspecting packets in the network layer the KMCR

module provides the following functionalities to any user level multi-channel protocol implementation:

1. Initiate Route Discovery : Whenever the KMCR module detects a packet with destination IP of a

mesh node it checks for the existence of the route to the node. If no next hop information exists

with the network layer, it sends a message to the user level protocol implementation to initiate a route

discovery for the intended destination. The user level protocol implementation can later send a message

to KMCR providing information about the success or failure of the route discovery for the destination.

If the route discovery succeeded, the KMCR module can process the packets it had buffered for the

destination, otherwise it drops all the packets buffered.

2. Route Usage: KMCR module keeps tab of routes currently in use and keeps refreshing timeout values

for active routes. KMCR module updates route timers for all routes which it detects being active

(packets traversing the forward/reverse path). This is useful for the user level protocol implementation

which can ask the KMCR module if the routes it had set up earlier are still in use. If no packets have

been forwarded/sent on the route for an extended period of time, the user process can then remove

the route.

3.2.2 Channel Abstraction Layer

The Channel Abstraction Layer (CAL) is situated between layer 2 (link level layer) and layer 3 (network layer)

of network stack. The CAL provides the functionality to specify the channel information for neighboring

nodes in the mesh network. CAL layer is implemented as an extension of ‘Linux bonding module’ . All the

wireless interfaces usable by the multi-channel protocol are ‘bonded’ (abstracted) as one virtual interface.
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Network layer routes all packets to any node in the mesh network through this virtual interface. Thus, all

mesh network packets to be transmitted by a node are handed over to the CAL. A multi-channel protocol

implementation can specify to the CAL, the channel (or group of channels) to use when transmitting a

packet to a neighboring node. Therefore, whenever a route is established by the multi-channel protocol it

can instruct the CAL about what channel (maybe also the physical interface, power, data rate, etc.) to

use for transmitting packets for a destination IP. This channel will be the channel on which the next hop

node on the route to the destination will be listening. Thus, whenever the CAL layer receives a packet from

the network layer to transmit on the virtual interface it checks the next hop channel information for the

destination IP of the packet. If one of bonded interfaces with CAL is already tuned to the channel, the CAL

can hand over the packet to the device driver responsible for transmitting on the interface. Otherwise the

CAL needs to enqueue the packet till a switchable interface can be tuned to the channel required and then

give the packet for transmission to the device driver of the switchable interface.

Also, the CAL can provide special treatment to layer 2 (link layer) broadcast messages. For our HMCP

implementation the broadcast messages need to be transmitted on all the channels. The CAL thus provides

a copy of the broadcast message to each of the fixed channel interfaces for transmission. Also it tunes the

switchable interfaces one by one to the other remaining channels a node can access, to transmit the broadcast

message on all the remaining channels.

Figure 3.1 shows a diagrammatic representation of the Net-X system architecture implementation in the

testbed.

3.3 Wireless Mesh Network Testbed

We now describe the specific details about the setup of our wireless network testbed. The nodes in the testbed

comprise of Net4521 boxes from Soekris [27]. Each node is equipped with two wireless radio interfaces (one

connected through pcmcia interface and the other connected through mini-pci interface). The wireless cards

are based on Atheros chipset [28], and support IEEE 802.11a/b/g protocols. A slightly modified madwifi

device driver [30], [4] is used to access the wireless cards. The transmit power for the wireless cards is

fixed at 18 dbm. They are configured to use 802.11a spectrum and protocol. The 802.11a defines 12 non

overlapping channels, 4 each in the U-NII lower band (5.15 to 5.25 GHz), U-NII middle band (5.25 to 5.35

GHz), and U-NII upper band (5.725 to 5.825 GHz). Each of these channel is 20 MHz wide. The lower band

channels are numbered 36, 40, 44, and 48. The middle band channels are numbered 52, 56, 60, 64; and

the upper band channels are numbered 149, 153, 157, and 161. The cross-channel interference experiments

11



ChannelIP addr Interface
192.168.0.1 ath0 1

192.168.0.1 ath1 2

UNICAST TABLE BROADCAST TABLE

Channel Interface
1 ath0
2 ath1
3 ath1

Queues of ath0

1 2 3

Schedule

To interface ath0

Queues of ath1

1 2 3

Schedule

To interface ath1

ACTIVE ROUTES

192.168.0.1 792
IP addr Time left

Copies
Make
LookupPacket?

BroadcastLookup No Yes

Assign to
queues

Route
Available? Buffer

Packets

netlink messages

APPLICATIONS

USER

CHANNEL ABSTRACTION LAYER

USERPSACE DAEMON

LINUX TCP/IP STACK

LOCAL OUT hook

PRE−ROUTING hook

POST−ROUTING hook

KERNEL MULTICHANNEL
ROUTING SUPPORT

route foundre−inject packets

Yes No

Process
protocol packets

Process Handle
IOCTL calls

MULTICHANNEL INTERFACE
MANAGEMENT

PROTOCOL

Control path
Data packets

PROTOCOLROUTING

Figure 3.1: A high level overview of the ‘HMCP Net-X testbed’ system architecture, borrowed from [5]
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performed in [4] concluded that channels 36, 48, 64, 149 and 161 are usable for concurrent transmissions

with tolerance required for certain amount of cross-channel interference. We use these five channels in our

network. We will discuss cross-channel interference characteristics later in the thesis.

The two interfaces are made slaves of the bonding module and are visible as one virtual bonding interface

to higher layers. Further, as reported in [4], switching a channel on these interfaces causes certain amount

of delay which was measured to be 5 ms. Thus, every time a channel switch occurs on an interface there

is a 5 ms overhead when no packets can be sent or received on the interface. We discuss the effects of the

channel switching delay overheads in Chapter 5.

There are a total of 24 wireless nodes in our mesh network. The network is set up on the south section

of fourth floor at the Coordinated Science Laboratory (CSL) building here in the University of Illinois at

Urbana-Champaign. These nodes run a Linux 2.4.26 kernel with KMCR and CAL loaded as Linux modules.

The hybrid multichannel protocol (HMCP) is implemented as a user space daemon. In the rest of the thesis

we would use the term ‘HMCP Net-X testbed’ to refer to our wireless network testbed running the HMCP

protocol using five channels, and two wireless interfaces per node.
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Chapter 4

System Implementation Issues

In this chapter we discuss certain implementation issues concerning our wireless mesh network and the hybrid

multi-channel multi-interface protocol (HMCP). These are some interesting points which were not properly

addressed during implementation of the first prototype of the system. These are important issues we believe

would also occur in the implementation of other similar wireless networks.

4.1 Neighbor Discovery and Link Quality Estimation

Neighbor discovery and link quality estimation takes place with the help of the broadcast hello messages.

Each node in its hello message sends its own fixed channel information and also the fixed channel information

of all the nodes whose hello messages it can hear. These hello messages are how nodes come to know of

their neighbors and the fixed channel usage in their two-hop neighborhood which is used in fixed channel

assignment. A node A also finds out if a link to a neighbor N is “symmetric” , meaning the neighbor N

also considers the node A one-hop neighbor, by looking at N ’s hello message. If the one-hop neighbor list

in N ’s hello message contains information about A, it means node N is able to successfully receive A’s

hello messages. The link between A and N thus is ‘symmetric’ and is detected by both the nodes. Only

symmetric links are usable with the 802.11 protocol which requires two way communication for a packet to

be successfully transmitted.

Each node broadcasts a hello message every H (by default set to 5 on the testbed) seconds. These

broadcast hello messages also help in link quality estimation. Each node maintains a bitmap for each

symmetric neighbor node keeping tab of the successfully received hello messages in last 64 × H seconds.

This helps in estimating transmission success probability of backward link from the neighbor to the node.

The forward link transmission success probability is received from the neighbor who sends this information

in each of its hello message. With the help of the forward and backward transmission success probabilities

of a link, a node can have an overall estimate of the quality of the link. The link quality estimation is

required for routing purposes. To provide accurate link quality estimation, the procedure above would be
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useful only if the size of the hello packets reflects the size of data packets that may be sent on the link.

To provide an accurate estimate of link quality estimate, we set the size of hello packets to be 1470 bytes,

the maximum data size currently supported for transmission on a link. Another point to note is that the

forward and backward link quality estimates provided between a node A and its neighbor N are on two

separate channels and separate interfaces. This is because the two nodes may have different fixed channels.

In such a case, node A transmits hello message on its switchable interface, which is received by N on its fixed

channel interface. The hello message received by A is transmitted on N ’s switchable interface on A’s fixed

channel. Thus, the forward and backward transmission success rate provided by the link quality estimation

mechanism is on different channels with different interfaces. During a unicast transmission from A to N the

switchable interface from A will transmit on fixed channel of N and N ’s fixed channel interface will send

an 802.11 ACK to be received on the switchable interface of A. The link quality estimation mechanism

thus makes an assumption that transmission error rate between two nodes is not dependent on channel and

interface (as long as transmission power on the interfaces is the same).

4.1.1 Prioritization of Hello Messages

The hello messages being sent by a node need to have priority over the data packets being sent by the node.

This is necessary since the hello messages are management packets and the correct working of the network

would depend on them. We prioritize the hello messages by appropriately setting the TOS field of the IP

header of the hello packets. This provides them priority over normal data packets; they bypass any queues

at the network layer, CAL layer or the device driver layer at the node to be transmitted before other packets

at a node.

4.2 Routing Issues

We now list some of the issues we observed with the routing protocol implementation.

4.2.1 Route Discovery

The on-demand routing protocol implementation on the testbed is based on the AODV protocol. The routing

protocol uses the MCR routing metric.
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Multiple RREPs

The AODV style on-demand routing protocol we have implemented is based on the underlying broadcast

mechanism at a node. Broadcast is implemented by transmitting a copy of the broadcast packet on all

channels. Each node in the network is equipped with two interfaces and uses 5 channels, thus broadcast

involves channel switching on the switchable interface. Since channel switching delay is nontrivial (order of

5 ms), there is substantial variation in the time at which the broadcast message is transmitted on different

channels. All this means that a RREQ message traversing different routes may reach the destination node

at vastly different times. The destination node chooses from the routes discovered by the RREQ message.

The destination can wait for all the different routes to be discovered by the RREQ message and then choose

the best route and send the associated RREP. This may result in long route discovery latency (more on

route discovery delay in the next chapter). Otherwise, the destination can reply with a RREP as and

when it receives a route discovery message with a better route than the earlier discovered route. For our

implementation we chose this second option, the destination replies with a RREP whenever it receives a

RREQ (which is not stale) with a better route than the last chosen route. Thus, one can have multiple

RREPs sent for a single route discovery attempt by the source. This requires the RREPs to have sequence

numbers, such that any intermediate node or the source node does not accept a stale RREP (RREP with a

sequence number earlier than the last RREP seen from the destination for the source). The RREP with the

latest sequence number from the destination represents the last and the best route chosen by the destination

based on the MCR metric.

Suppressing RREQs

When a source node initiates route discovery for a destination node it broadcasts a RREQ message with

destination IP information and its own unique sequence number. The source-destination pair along with the

RREQ sequence number uniquely determines the source’s route discovery attempt. All nodes that hear the

RREQ message may further forward (broadcast) the message. Thus, for a single route discovery attempt

by a source, several different RREQ messages may be spawned by the different intermediate nodes in the

network in the attempt to reach the destination node. An intermediate node may receive multiple RREQ

messages from different nodes discovering different paths. To keep the management message overheads low,

the intermediate node may suppress (not act on) the RREQ message received later, if it estimates that

the latest received RREQ would not lead to a better route compared to the RREQ forwarded earlier. For

example, if the node detects presence of a routing loop in the path discovered so far by the RREQ message,

the node should just drop the RREQ. Also, if the RREQ sequence number is less than the last seen sequence
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number for route discovery by the source to the destination, then the intermediate node should drop the

RREQ. Otherwise, if the cost associated with the path discovered so far by the latest RREQ message is

far more than the cost associated with the path of the RREQ forwarded earlier, the node may choose to

drop the RREQ packet. Now, the MCR (multi-channel routing metric) is not isotonic, thus, it does not

follow the greedy optimal approach. That is, an intermediate node A can receive two RREQs (RREQ1 and

RREQ2, with same source sequence number for route discovery to the same destination), having traversed

two separate paths PATH1 and PATH2. The routing metric cost of PATH1 (COST1) can be less than

cost of PATH2 (COST2) and yet it may that forwarding RREQ2 by the node finally discovers a better path

between the source and destination. For example, PATH1, from source node S to the intermediate node

A, may consist of 2 hops, one each on channel 1 and channel 2. The other path, PATH2, may consist of

2 hops, both on channel 1. Assuming the ETT (Expected Transmission Time) for a packet is same for all

hops, the COST1 for PATH1 is less than COST2 for PATH2 because of channel reuse on consecutive hops

in PATH2. Let us say that the path from the intermediate node A to destination D consists of two hops

both on channel 2. In this case the route R1, from S to D, consisting of the sub-route PATH1, will have

total of four hops with three hops on channel 2. The route R2, consisting of PATH2 will also have total

of four hops with two hops on channel 1 and two hops on channel 2. Assuming the ETT is same for all

hops, the MCR cost for R1 will be higher than the cost of R2 because of higher channel reuse. Even though

the cost of the sub-route PATH1 was less than the cost of the sub-route PATH2, the cost of entire route

consisting of PATH1 was more than cost of route consisting of PATH2. In the example above, if node A

forwards RREQ1 and later receives RREQ2, with cost of PATH2 greater than cost of PATH1, and decides

to drop RREQ2, the better route R2 would not be discovered. Thus, we need to be careful while dropping

RREQ packets. Currently we drop a RREQi, received after forwarding i−1 other RREQs with same source

sequence number, for the same destination, if COSTi > Csuppress×COSTbest, where Csuppress > 1, COSTi

is the cost of the path discovered by RREQi so far and COSTbest represents the lowest cost from all the i−1

RREQs forwarded earlier by the node. By default we set the value of Csuppress to be 1.3. There is a trade off

for setting the value of the constant Csuppress. If the constant is set too low, the overheads related to route

discovery would be lower but one may not find the best route between a source and destination. Otherwise

setting the constant too high may just increase the routing overheads without providing any benefits in

regards to discovering better routes. While experimenting with different values for the constant we observed

that the value 1.3 worked reasonably well for our testbed.
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4.2.2 Separate Forward and Backward Route: Necessity or a Quirk?

When a forward route is established between a source and a destination, we currently automatically establish

a reverse route between the destination and source consisting of the same nodes as the forward route. This

is done keeping in mind that for most of the cases a reverse route would be required too (for example, with

TCP connections and sometimes with UDP connections too.). There are some points to keep in mind with

such an arrangement. First of all, according to MCR metric the best forward route between a source S and

destination D may not be the best reverse route between D and S. Furthermore there are other possibilities

which may modify the reverse route between the destination and the source to comprise of totally different

set of nodes. Let us say the source S establishes a route to destination D with A as an intermediate node.

Now let’s say another node B establishes a new route to S which passes through A but has a different next

hop to reach S compared to the reverse route between D and S. Since there can only be one next hop node

for route to S at node A, the new route established by node B takes precedence over the older established

reverse route from D to S passing through A. In such a case the forward route between S and D would

comprise of a different set of nodes as compared to the backward route between D and S. Such a possibility

may first seem unimportant but may have a significant impact on the throughput achieved over the route.

We discuss this in more detail in Chapter 6.

4.2.3 Detection of Route Failure

We observed route failures mostly in two cases:

1. Link between two nodes in the route fails. In this case one of the nodes (or both) will stop receiving

the other node’s hello messages. Thus, the link will either become “asymmetric” or cease to exist, in

either case both the nodes would come to know of the link failure. Whenever a node detects a link to

be broken it checks if the unreachable neighbor served as a next hop node for some route. For each

such route the node unicasts a RERR message to the source node of the route to inform the source of

the route failure. On receiving a RERR message the source node can initiate a route discovery again.

2. When a route is set up, a timeout is associated with it. Each node in the route refreshes the

route timeout whenever a packet on the route is forwarded. If no packet traverses the route for

ROUTE TIMEOUT duration the route is deemed stale and removed from the kernel routing table.

Since this procedure is followed distributedly (all nodes timeout the route in an independent distributed

manner) the routing information among the nodes may become inconsistent. Thus, route failure may

occur when the routing information at an intermediate node in the route has timed out while the route
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entry is still fresh at the source. A routing error mechanism is required to instruct the source of any

such route failures. Detection of such route failures is implemented with the help of KMCR module.

When the KMCR module receives a packet on one of the fixed channel interfaces to be forwarded to

a remote destination, it checks if a route to the destination exists. If no next hop information for

the destination node exists in the kernel routing table, the packet is dropped and the KMCR module

sends a message to the user space daemon informing it about the source and destination of the packet

dropped at the kernel network layer. Such an event means a route failure has occurred. The user

space daemon is informed of the event, now the protocol implementation at the user space can handle

it accordingly. In our current implementation when such a route failure is detected at a node, the

node checks if a route to the source exists. If route to the source exists, it unicasts a RERR message

to the source to inform about the route failure. If no route to the source exists at the node the node

broadcasts the RERR message such that the previous hop on the route may receive the RERR and

can then unicast it to the source. On receiving the RERR message the source node can initiate a route

discovery again.

4.2.4 Route Refresh and Route Flapping

After a route has been setup between two nodes and a flow has been established one needs to regularly monitor

the state of the chosen route. The quality of the established route may degrade over time or a new better route

between the source and destination node may become available. To handle such situations we implement

a route refresh mechanism for the testbed. A route discovery is initiated every RRFRESH TIMEOUT (by

default set to 30 seconds) interval for all active routes for which the source node broadcasts a ‘RRFRESH’

packet. The RRFRESH packets behave almost like RREQ packets except, to avoid route flapping or any

frequent route changes, the costs of the new routes discovered by RRFRESH messages is multiplied by a

constant Crfresh(> 1) before being compared to the cost of route from last route discovery cycle. Thus only

if the new routes are significantly better than the current route being used would the new route be chosen

and a RREP for the new route be generated by the destination. If the route discovered by the RRFRESH

packet is same as the route currently in use, the latest cost of the route (being reported by the RRFRESH

message) is compared with the route cost when last the route was chosen. If the latest cost is lower (better)

than the last cost, we update the cost of the route currently being used as the new cost. Otherwise, if the

latest cost for the route is higher than the cost of the route when it was last chosen, we update the cost

value only if the latest cost is significantly higher than the previously stored cost for the route. That is only

if Latest Metric Cost > C ′rfresh×Last Metric Cost , where C ′refresh > 1, do we update the routes metric
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cost. We do this to avoid frequent route changes or route flapping.

4.2.5 ICMP Redirects

We disable ICMP redirects [26] on the wireless interfaces on the nodes. ICMP redirects interfere with

the routing set up on the network. The ICMP redirect messages are used by routers to notify hosts of

availability of a better route to the destination nodes. If a mesh node (router) receives a packet from a host

H on interface i, to be forwarded to destination D; and if the node forwards the packet on the same interface

i on which it received the packet from the host, then the node may send an ICMP redirect message to host

H notifying the host that the destination D may be reached directly from the host. If host H accepts the

ICMP redirect message, it would try to reach destination D directly bypassing the router node. This may

work well for Ethernet based networks, but for wireless networks (and that too multi-channel networks) the

ICMP redirect messages could play havoc with the routing set up in the wireless networks. We, thus, disable

sending and receiving of ICMP redirect messages on the wireless interfaces.
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Chapter 5

Channel Switching Delay

The hybrid multi-channel protocol (HMCP) assumes that frequent channel switching on a wireless interface

is feasible without significant overheads. To enable efficient channel switching on a 802.11 compliant wireless

interface, a few modifications to the link layer is required. The details of the modification performed to the

802.11 link layer implementation in madwifi device driver can be found in [4]. With these modifications in

place the channel switching delay for Atheros chipset based wireless card used in our network was reported

to be 5 ms [4]. The delay of 5 ms is substantial enough to affect system performance. In this chapter we

will discuss how switching delay affects the different aspects of the system.

5.1 Lowering Channel Switching Overheads

We would like to minimize the number of channel switches occurring at a wireless interface to keep the

channel switching overheads low. When the number of interfaces at a node is less than the number of

channels usable at a node, channel switching becomes necessary in order to use all channels. In our testbed

we have two wireless interfaces at each node and five channels that may be used. One interface at each node

is fixed on one channel while the other switchable interface can tune to the other four remaining channels as

and when required. When the Channel Abstraction Layer (CAL) for a node receives a packet to transmit,

it checks on which channel the packet needs to be transmitted. If the packet is to be transmitted on the

fixed channel it is handed over to the device driver (madwifi [30]) handling the fixed channel interface for

transmission. Otherwise if the packet needs to be transmitted on one of the other four remaining channels,

the CAL needs to tune the switchable interface to the intended channel for the packet. CAL then has to

make an important decision as to when does it tune the switchable interface to the intended channel for the

packet. There is a trade off involved here, if the CAL keeps switching the interface to different channels as

and when it receives packets to transmit for different channels, the switching overheads may become very

high. This would be true when the node is involved in transmitting packets for multiple flows with different

next hop channel specifications. Otherwise if the CAL, after buffering a packet for a channel, waits too long
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to tune the switchable interface to the channel, the high delay in transmitting packets on the particular

channel could result in lower performance.

We adopt the policy to not switch channel on an interface for a constant amount of time after a switch

has just been made on the interface. This constant represented by CHAN MIN TIME is by default set to

20 ms. We also try to bound the maximum delay a packet may experience at CAL in a channel queue. The

details of the policy and its implementation follow below.

As proposed in [4] once we tune an interface on a channel we stay on the channel for at least CHAN MIN TIME

(by default set to 20 ms). In our implementation whenever the bonding module (CAL) receives a frame to

transmit on the switchable interface it checks for the channel the frame is to be transmitted on. Two cases

may occur now

1. If the current channel of the switchable interface is the same as the destination channel for the frame,

the frame is given to the device driver (madwifi [30]) for transmission. This is done provided there are

no frames waiting to be transmitted on the switchable interface over other channels or the time spent

on the current channel does not exceed the maximum time allowed on a channel (CHAN MAX TIME

by default set to 60 ms). The CHAN MAX TIME bounds the time a frame would have to spend in a

channel queue waiting to be transmitted on the switchable interface.

2. Otherwise if the current channel of the switchable interface is not same as the intended channel for the

frame, the frame is buffered in a queue and a timer is started (provided a timer isn’t already active).

The timer runs for CHAN MIN TIME after which the channel switching on the switchable interface

may occur and the frames waiting in the queue of other channels may be processed.

To lower channel switching overheads, a switchable interface should spend maximum possible time trans-

mitting frames on different channels and minimize idle time and channel switching time. To keep chan-

nel switching overheads low we enforce the policy not to switch a channel on an interface before at least

CHAN MIN TIME after the last switch on the interface. This is an optimistic approach hoping that we

would get more packets to transmit for the current channel . This would be true in a system with high load.

For a system lightly loaded on one channel and heavily loaded on the other channel this policy can backfire.

We will come back to this point while discussing the TCP throughput for a flow in Chapter 6.

5.2 Round Trip Time

Round trip time (RTT) for a route between two nodes is affected by channel switching delay. The mesh

network we have set up is a fairly dense node deployment, the propagation time between the nodes is
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negligible. The RTT for different routes is not dominated by propagation delay but the packet processing

and transmission time at different hops on the route.

We measure the RTT for different multi-hop routes with the ping utility which employs the ICMP echo

packets [26]. We compare the RTT observed for multi-hop routes in our HMCP Net-X testbed with RTT

observed for multi-hop routes when a single channel is used in the testbed. For the latter case there would

be no channel switching involved. Comparing the two cases would help us observe the effects of channel

switching delay on RTT for multi-hop routes.

For a single-channel single-interface system we observe the RTT for different routes to be in the order of

few milliseconds. For our HMCP Net-X testbed, channel switching delay dominates the RTT of a route.

We establish a single path between source and destination node for the forward and reverse route. What

that means is that the reverse route from the destination to source consists of the same set of nodes as the

forward route only in the reverse order. In such a scenario whenever the route is channel diverse (consecutive

hops on the route are on different channel) channel switching delay at each intermediate hop on the route

will dominate the RTT. For our hybrid multichannel protocol (HMCP) a channel diverse route implies that

the consecutive nodes on the route listen on different fixed channels. For such a route, an intermediate node

on the route forwards data towards destination on a different channel (fixed channel of next hop) and the

reply towards source on a different channel (fixed channel of previous hop on the route). Currently we have

only one switchable transmitting interface per node, thus, each intermediate node in a multi-hop channel

diverse route will have to switch between transmitting data towards the destination and replies towards the

source. As discussed earlier, every time an interface switches channel it stays on the channel for at least

CHAN MIN TIME (currently set to 20 ms). The CHAN MIN TIME timer is started only when a frame for

another channel is received. Thus, the RTT for a multi-hop path will increase by CHAN MIN TIME ×2

for each hop added. This is because each intermediate node will wait CHAN MIN TIME before it tunes its

switchable interface to the next hop neighbor’s receiving channel for forwarding data towards destination.

Then later the intermediate hop will again wait for CHAN MIN TIME to tune channel to previous hop’s

receiving channel for forwarding the reply sent by the destination to the source. Thus, each hop will add

2× CHAN MIN TIME (= 40 ms) delay to RTT. Our experiment results for RTT support our observations

above. Table 5.1 shows the RTT for single-channel case and multiple channel case. The minimum RTT

observed for multi-hop routes in the HMCP Net-X testbed follows the trend we discussed above, average

RTT ≈ CHAN MIN TIME ×2× (NUMBER OF HOPS - 1), where NUMBER OF HOPS > 1.

The maximum RTT observed for multi-hop routes in our HMCP Net-X testbed is a little on the higher

side. This is due to the hello message broadcasts taking place in the network. Each node broadcasts
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Hops on the Route RTT in Milli seconds
Single-Channel Network HMCP:Multi-Channel Network

Min. RTT Avg. RTT Max. RTT Min. RTT Avg. RTT Max. RTT
1 hop 2.1 2.1 2.8 2.1 15.9 68.5
2 hops 3.2 3.3 3.5 45.8 66.7 289.2
3 hops 4.6 4.6 4.8 59.1 105.2 280.9
4 hops 5.9 6.0 6.8 105.4 147.6 482.1

Table 5.1: Round Trip Time for Multi-Channel Multi-Interface HMCP routes and Single-Channel routes as
measured by 50 ping packets

a hello message to report its fixed-channel and neighbor information. These messages are sent every

HELLO TIME INTERVAL (currently fixed to 5 seconds, for more info see Chapter 3). Thus every node

every five seconds has a broadcast message to send. According to the hybrid multichannel protocol (HMCP)

(Chapter 3) the broadcast message must be sent on all the channels. Currently each node uses five channels,

for broadcasts the fixed interface transmits packets on fixed channel and the switchable interface transmits

the packets for other four channels. Every HELLO TIME INTERVAL a node will require 3 channel switches

on the switchable interface to send the broadcast hello packet. Thus if a data packet is received to be sent

on some channel at the time the broadcast message is being sent, the data packet may have to wait for 3

channel switches before it can be transmitted. Thus a packet may observe a delay of 3 × 20 = 60 ms at

a node if it is processed just after a broadcast packet is scheduled to be sent. This probably is the reason

behind the maximum RTT time observed. The ping ICMP echo or the associated ICMP reply message

may get delayed due to multiple hello message broadcasts that may occur at different nodes in the route.

The ping packets are sent once every second and hello messages once every 5 seconds. Thus, on average

every 5th ping packet got affected by hello message mechanism. We observe the RTT of other four ping

packets remains close to the equation, RTT ≈ CHAN MIN TIME ×2× (NUMBER OF HOPS - 1), where

NUMBER OF HOPS > 1.

The minimum RTT values observed are lower than the equation above. These minimum RTT values

observed for the multi-hop routes are also due to the hello message mechanism. Since nodes in the route

switch channels on their switchable interface to broadcast hello messages, it may so happen that the last

channel tuned on the switchable interface at a node for hello broadcast could be the next hop channel for

the route. In this case, when the node receives ICMP echo packet, after its hello broadcast is over, the node

would not need to switch channels to forward the ICMPecho packet to the next hop node in the route.
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5.3 Delay in Broadcast

Broadcast mechanism is important for implementing various protocols. Many protocols (ARP, etc.) at

different layers of networking stack assume an efficient broadcast mechanism implementation and rely on it

for their correct working.

For the hybrid multi-channel protocol (HMCP) [1] employed in our testbed, a node must transmit a

broadcast message over all channels. Each node has two interfaces, the fixed channel interface and the

switchable interface. The fixed channel interface transmits packet on one of the channels (fixed channel)

while the switchable interface handles transmission of packets on all other channels. We currently use five

channels in our testbed. Upon receiving a broadcast packet, the bonding module (CAL) makes five copies of

the packet, one each for the five channels. The interface on the fixed channel broadcasts the packet for fixed

channel while the switchable interface transmits the other four packets one by one on each channel. Thus,

the broadcast message gets transmitted at different times on different channels. This delaying of broadcast

transmission on different channels at a node can add further complication to a protocol which relies on

broadcast messages.

Let us try to quantify the delay a broadcast message may observe at a node. Interface on the fixed

channel does not have to switch, thus, the broadcast packet for fixed channel does not deal with any

switching delays. The broadcast packets for other channels would have to wait in the respective channel

queues until the switchable interface switches to the respective channel. The switchable interface stays

on a channel for at least CHAN MIN TIME (20 ms) and a maximum of CHAN MAX TIME (by default

set to 60 ms) if there are other packets being transmitted. For lightly loaded nodes, when transmitting

broadcast packets, there would not be packets to fill more than 20 ms worth of transmitting time for each

channel. Thus, the maximum delay for a broadcast packet to be transmitted on a channel at a node would

be CHAN MIN TIME ×3 (= 60 ms). Four channels require three channel switches between them.

All broadcast based protocols (ARP, etc.) will experience this delay.

5.3.1 Routing Delay

We employ an AODV style reactive routing protocol [10, 2]. The routing protocol relies on the underlying

broadcast mechanism at each node to discover routes. Since channel switching causes delay in broadcast

transmission it also delays route discovery.

In our next experiment we observe the delay experienced in establishing a route between different pairs of

nodes. As discussed in Section 4.2.1 we can have multiple routes discovered (chosen one at a time) between

a pair of nodes for a single route discovery attempt by the source. As and when the destination receives a
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Figure 5.1: Delay in discovering a route between different pairs of nodes

RREQ with a better route discovered than the previous RREQ instance, a RREP is sent and the new route

chosen. For our experiments, we report the delay in establishing the first route and the best route (last route

chosen) between 39 different source-destination pairs of nodes. For each source-destination pair we repeat

our experiment three times (three different route discovery attempts by the source). We report the median

of the three route discovery delay readings between the source destination pair.

Figures 5.1 and 5.2 show the delay in setting up the first and best route between the 39 different source

destination pairs. The routing delay for our HMCP Net-X network, we observe, can be as much as couple of

hundred milliseconds. To reduce routing delay one may use a proactive routing protocol such as link state

routing . But such protocols would involve other overheads in spreading routing updates in the network.

The other way to lower the routing delay would be to lower CHAN MIN TIME. This would lower the delay

observed in sending a broadcast message on different channels. Figures 5.1 and 5.2 show the delay observed

in finding routes between different pairs of nodes for three different values of CHAN MIN TIME 10 ms, 20ms

and 30ms.
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Chapter 6

Throughput and Performance
Improvements

In this chapter we evaluate the performance improvements achievable in our HMCP Net-X wireless testbed

as compared to using a single channel. We report observations for UDP and TCP traffic sent over multi-hop

routes in the network. Routes in the network are established using the AODV style reactive routing protocol

which employs the MCR routing metric, for more details please see Section 3.1.3.

We first report the performance improvements achievable for a single flow in the mesh network and then

later set up experiments to observe throughput improvements for concurrent multiple flows. In the discussion

that follows we refer to a flow in our multi-channel multi-interface wireless testbed as ‘HMCP Net-X flow’

and a flow in the network employing a single channel as ‘single-channel flow’.

6.1 Single Flow Dynamics

As first step in evaluating performance improvements with HMCP and Net-X, we analyze the throughput

obtained for a single data flow in our HMCP Net-X network. We try to find the best UDP and TCP

throughput achievable for a multi-hop flow in the multi-channel mesh network and the factors which govern

the results.

For our experiments we set up a chain topology of mesh nodes in the network and set up a single flow

between the nodes. The source node for the flow is chosen at one end of the chain topology created. Each of

the other nodes in the chain topology is chosen as the destination of the flow one by one in order to measure

throughput as a function of hops in the route.

Measuring performance metrics in a wireless mesh network testbed can be non-trivial because of the

different system and environment variables that can affect the results. Transmission power, data rate,

interference and channel assignment are system level variables which influence performance. Noise and path

loss are examples of environment variables which influence data rate achievable, error rate, etc.

Power and rate control are complementary to the hybrid multi-channel protocol (HMCP) being evaluated

here. We statically fix the transmit power and data rate for our experiments. (For information on power and
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DB CA E

Figure 6.1: Five node chain topology. Different colors represent different fixed channel each node listens on.

rate control with Net-X see [7]). Only a single flow is established in the network so as to reduce interference

from any other source.

For all the experiments done in this thesis, unless otherwise specified we fix the transmit power of wireless

interfaces to 18 dbm and the data rate is set to be 6 Mbps (base rate for 802.11a). The nodes in the testbed

are based on Intel 486 microprocessor with 100 MHz clock speed. We use the base rate of 6Mbps to avoid

the microprocessor becoming the bottleneck in the experiments.

Further, we use 5 different channels in 802.11a spectrum namely channels 36, 48, 64, 149, 161. The

fixed channel assignment of the nodes is accomplished through the two-hop channel balancing algorithm as

discussed in [1].

6.1.1 Best Throughput Achievable

The chain topology set up consists of five nodes. A single flow set up amongst the nodes can thus have a

maximum of four hops to traverse. Since we use five channels from the 802.11a spectrum, all four hops can

be on a separate channel. This is important so that one may have non-interfering concurrent transmissions

on all the hops.

Figure 6.1 represents the topology set up. The different colors of the nodes represent the different fixed

channels each node listens on. The transmission on each of the four hops between the different nodes is on a

different channel. Each node being equipped with two interfaces can thus listen and transmit concurrently.

The flow measurements are done with the traffic generator utility iperf [29]. The data packet size is set

to 1470 bytes. We establish the flows for 50 seconds and here report the average of three experiments done

one after the other. The routes are established with the AODV [10] style reactive routing protocol proposed

in [1, 2]. The route establishment is done before the measurements are started so as not to include any

routing delay while measuring the performance. The delay in routing is discussed in more detail in Section

5.3.1.

We wish to quantify the best achievable throughput for a flow. All hops in the routes set up are of very

good quality with low error rate. Ensuring that all hops in a route are of very good quality is a job for the

routing protocol. The routing protocol may not find a route with all good quality hops, or such a route may

not exist between the source and the destination. Here we ensure that all the hops in the chain topology are

29



of good quality and the route discovered by the routing protocol thus is also good. The results obtained here

thus represent the best possible throughput achievable for multi-hop paths. There is always the possibility

of a node in the chain topology detecting a ‘far away’ node as a one-hop neighbor in which case the chain

topology might break. For example, node A in figure 6.1 may detect node C or node D as one-hop neighbor

and the routing protocol may chose a route with this ‘far’ link as one of the hops. The hop from node A to C

or A to D may not be good enough for best throughput in which case route with these long hops should be

avoided. Routing protocol may or may not avoid such a route (more detailed discussion about the routing

protocol follows in Chapter 7). The chain topology here was set up carefully such that all the hops between

the consecutive nodes in the topology were of very good quality yet none of the longer hops between other

nodes were good enough to be chosen by the routing protocol.

We measure the UDP and TCP throughput achieved for a single flow for the multi-hop routes established

on the chain topology. We compare the results obtained with single-channel single-interface case. For the

single-channel single-interface network, the routes are statically set up and we turn off all hybrid protocol

hello messages. Thus, the single-channel case does not have any protocol overheads associated with it.

We analyze the throughput results obtained for HMCP Net-X flow and list some interesting points and

observations that came out of the experiments performed.

6.1.2 UDP Throughput

For single-channel single-interface network we observe the maximum UDP throughput achieved over a one-

hop link to be 5.38 Mbps. There being no protocol overheads for the single-channel case, this throughput

represent the maximum achievable UDP throughput between two nodes (with data rate fixed at 6Mbps). For

multi-hop routes, we observe the throughput for single-channel case falls drastically due to self-interference

from the flow.

For our HMCP Net-X testbed, we measure the maximum UDP throughput achieved for a one-hop link to

be 5.21 Mbps. The difference between the one-hop UDP throughput for the single-channel case and HMCP

case represents the protocol overheads with our implementation. As part of the hybrid multi-channel protocol

(HMCP), each node sends a hello message every HELLO TIME INTERVAL (currently set to 5 seconds).

The broadcast message needs to be transmitted on every channel being used in the system, for which the

switchable transmitting interface needs to switch channels. Currently we use five channels in the 802.11a

spectrum, the broadcast hello message (1500 bytes including IP header) eats up about 83 ms of time (more

details about broadcast overheads may be found in Section 5.3). Thus, the overhead experienced should be

about 83 ms every 5 seconds, or about 1.7%. The overheads calculated here are only for one node. Other
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Figure 6.2: UDP Throughput achieved by a single-channel flow compared to a multi-channel multi-interface
Net-X flow

Hops on the Route Throughput in Mbps
Single-Channel Flow HMCP Net-X Flow

1 5.38 5.21
2 2.68 5.17
3 1.77 5.04
4 1.61 4.63

Table 6.1: UDP Throughput Achieved for a single-channel flow and HMCP flow

nodes transmit their broadcast packet every five seconds and eat up transmission time, which also adds to

the transmission overhead.

The overheads observed with the one-hop UDP throughput experiments here are ((5.38− 5.21)/5.38)×
100 = 3.15%,

For multi-hop paths we observe the real gains achieved by our HMCP Net-X network over the single-

channel network. HMCP Net-X network allows the throughput achievable over a single hop to be sustained

over multiple hops for a flow. With the use of orthogonal channels for different hops in a route and the use

of multiple interfaces at each node, our network is able to maintain the single hop UDP throughput over

multiple hops. The concurrent transmissions by nodes in the multi-hop route do not interfere with each

other. The single-channel wireless network flow suffers from self-interference and thus can not sustain the

throughput of a one-hop route over a multi-hop route. Figure 6.2 and table 6.1 show throughput measured
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for multi-hop routes using single channel in the network as compared to multi-hop routes in the HMCP

Net-X testbed.

The overhead added by our system is measured to be around 3.5% for a one-hop flow. Also since our

system implementation is able to sustain one-hop UDP throughput over multiple hops, we argue that the

system does not add any other considerable overheads for multi-hop flows.

The results obtained above represent the upper-bound on the achievable throughput for a single flow(with

data rate fixed at 6 Mbps) in our system. All the hops in the multi-hop route established above were of very

good quality with very low error rate. Further all the transmissions on the hops were on orthogonal channels.

There was no interference from any other nodes/flows except the nodes involved in the experiment. The

throughput achieved for a flow in general case would be less than or equal to the results obtained above.

6.1.3 How to Attain Best Throughput for a UDP Flow?

The experiment above highlighted some interesting points. We observe that the throughput achievable for

one-hop wireless flow can be sustained over multiple hops if the transmissions on the hops are on orthogonal

channels. The concurrent transmissions over different channels with low error rate are thus sustainable. This

remains true only when the links involved are of very good quality. We observe that a wireless mesh node

transmitting on one interface while concurrently receiving on another interface must deal with cross-channel

interference. This was also reported with the early experiments on the testbed in [4]

Since the transmitting antenna and receiving antenna are very close to each other (on the same node)

even a small amount of cross-channel energy leakage on the transmitting antenna may lead to sufficient

interference via the receiving antenna. We observe that if the signal strength on the receiving antenna is

not of good quality to start with, the concurrent transmission on the transmitting antenna may cause high

packet drop rate at the receiving antenna. Thus, if even one of the intermediate links on the multi-hop route

is not of the best quality, the error rate on that link can severely affect the throughput for the flow.

The error rate experienced on an intermediate receiving link in a multi-hop route for a flow can be far

worse than the estimation provided by link quality estimation mechanism. This would be true if the link

quality estimation mechanism does not take into account cross-channel interference that may be experienced

at a node. Thus, it is important to choose routes with good quality links to get the best throughput results.

Cross-channel interference may be improved with better hardware. Still, since the receiving and transmit-

ting antennas are physically very close to each other (on the same node), some cross-channel interference may

remain. Another way to tackle the problem would be to have the multichannel protocols be cross-channel

interference-aware. For example, routing could be done so as to prefer routes where receiving channel at a
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node is far away in the frequency spectrum from the transmit channel at the node. Also it may be worthwhile

to choose longer routes, with all the intermediate links to be of very good quality, than a shorter route with

average link quality hops. We discuss these ideas in more detail in Chapter 7

6.1.4 TCP Throughput

TCP throughput for a connection is dependent on its round trip time, error rate and the connection band-

width. As we observed for UDP traffic, if the individual hops in a route are of good quality, the HMCP

Net-X network can maintain the data rate available on a single hop for the entire multi-hop route with

low error rate. Thus one might expect the TCP throughput for a connection to be similar to the UDP

throughput for the route. This unfortunately was not what we observed. We measured the one-hop TCP

throughput to be similar to the UDP throughput, but for multi-hop routes the TCP throughput was far

less than UDP throughput. The HMCP Net-X network though still attained better performance than the

single-channel case but the improvements for TCP were not as substantial as for UDP. Figure 6.3 shows

the TCP throughput achieved by a HMCP Net-X flow as compared to a single-channel flow. The figure also

shows the HMCP Net-X UDP throughput for comparison.

The results we observe here are similar to those reported earlier by Kyasanur in his thesis [1] by

experimentation on the early prototype of the system. We observe the one-hop TCP throughput for HMCP

Net-X flow (5.1 Mbps) to be better than the throughput of one-hop single-channel flow (4.8 Mbps). This

is different from what we observed for UDP, where one-hop UDP throughput of HMCP Net-X flow was

worse by about 3% from the single-channel case due to protocol overheads. With TCP, HMCP Net-X flow

achieves better results due to the duplex nature of the connection between the two nodes. The source and

destination nodes have two interfaces each, with different fixed channels, thus, they can talk to each other

concurrently. For one-hop route, the TCP data and TCP ACKs are transmitted on different channels and

do not compete for channel transmission time as they do for single-channel case. This helps the one-hop

HMCP Net-X flow to outperform one-hop single-channel TCP flow.

From figure 6.3 we observe that the TCP throughput achieved by HMCP Net-X flow on a multi-hop

route is a lot worse than its UDP throughput for the same route. The reason for lower TCP throughput

is the two way nature of data flow for the TCP connection. While establishing a route from source to

destination, our routing protocol implementation implicitly sets up the reverse route to consist of the same

nodes as the forward route. Thus the TCP data packets and TCP ACKs are being sent along the same set

of nodes. Now there are only two interfaces at each node and only one switchable transmitting interface, the

TCP ACKs thus eat up some of the transmission time from the data packets on the switchable transmitting
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Figure 6.3: TCP Throughput achieved by a multi-channel multi-interface Net-X flow as compared to a
single-channel flow

interface. But more importantly, for a channel diverse route, there needs to be frequent switching of channels

on the switchable interface at each node for forwarding TCP data and TCP ACKs. For a channel diverse

route, consecutive nodes in the route listen on different fixed channels. For such a route the transmitting

interface for each intermediate node in the route has to switch channels between forwarding TCP data

towards destination and forwarding TCP ACK towards the source. Channel switching delay is nontrivial

and adds overhead. For The TCP rate control algorithm RTT of the route, specifically the delay in receiving

of TCP ACKs determines the data rate.

The channel switching delay on the interface was measured to be 5 ms. Since the channel switching delay

is substantial, one must avoid frequent channel switching. As discussed in Section 5.1 once we switch a

channel we stay on the channel for at least CHAN MIN TIME (by default set to 20 ms). The policy decision

not to switch a channel for at least CHAN MIN TIME after the last switch is an optimistic choice. We hope

that once we switch to a channel we would get enough packets to transmit for the channel to fill much of the

CHAN MIN TIME window. This would be true in a system with high load. For a lightly loaded system our

policy can backfire. For TCP connections when an intermediate node in a route switches channel to forward

an ACK towards the source it stays on that channel for at least 20 ms irrespective of the fact that there

exists data to be sent on some other channel. During this time the TCP data would be buffered to be sent

out later. TCP ACKs being small in size would take far less time to transmit than the data packets (each set
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Hops Throughput in Mbps
on the Single-Channel HMCP HMCP:Multi-Channel Flow
Route Flow Multi-Channel Flow without channel switching overheads

1 4.88 5.1 5.1
2 2.42 2.99 4.85
3 1.59 2.03 4.47
4 1.29 1.88 4.05

Table 6.2: TCP Throughput Achieved for a single-channel flow and HMCP flow

around 1500 bytes for our experiments). Forwarding of TCP ACKs towards the source by an intermediate

node in the route takes little of the 20 ms window. The remaining time in the 20 ms window for the channel

on the switchable interface is spent idle. The TCP data to be forwarded towards the destination is till then

buffered in the other channel queue and waits for the switchable interface to be tuned to the fixed channel

of next hop node.

The channel switching overheads and idle time while transmitting TCP ACKs degrades the TCP through-

put as compared to UDP throughput where there are no ACKs and no channel switching for ACKs occurs.

6.1.5 Improving TCP Throughput

To improve the TCP performance one must improve on the channel switching overheads. One could choose

less channel diverse routes such that channel switching may not be required. But this would increase self-

interference of the flow and degrade performance, as seen for single-channel case. A better solution could

be to choose the reverse route from the destination to the source of the TCP connection independent of the

forward route. The best case would be to have none of the intermediate nodes in the forward route appear

in the reverse route. Otherwise, if the intermediate nodes appear in the reverse route, the reverse route

may be such that the intermediate nodes don’t have to switch channels for transmitting data in forward

and reverse route. We experiment with setting up independent forward and reverse routes such that none

of the intermediate nodes of the two routes are common. Our twenty four node test bed is fairly dense and

the routing protocol can find two such good quality routes between most of the node pairs. We observe a

substantial improvements in the TCP throughput when the reverse route is chosen to be different from the

forward route. The TCP throughput observed now is closer to the UDP throughput we saw earlier. Figure

6.4 and table 6.2 show the throughput observed for TCP flows in the HMCP Net-X network with separate

forward and reverse routes as compared to the throughput achieved with channel switching overheads.

Choosing different forward and reverse route between two nodes has its own disadvantages. In sparse

networks two good quality independent routes may not exist between two nodes. Further, for a reactive
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Figure 6.4: Throughput achieved by a TCP flow without channel switching overheads

routing protocol it will take double the time to establish two paths between a pair of nodes compared to a

single path.

A better, cleaner solution to mask the channel switching delay at a node would be to add more hardware,

an extra wireless interface, at each node. The third interface at the node can mask the channel switching

delay. With the third interface added to our system we would have two switchable transmitting interfaces

per node. Whenever channel switching is required and one transmitting interface is busy transmitting

data on one channel, the other switchable interface can switch and transmit packet on the other channel.

One would need more experimentation to see if two interfaces could transmit concurrently while the third

interface receives data. If two concurrent transmissions originating from a node add too much cross-channel

interference, one may decide to use only one switchable transmitting interface at a time. In this case we can

use the two switchable interfaces as one virtual interface with negligible channel switching overheads. This

virtual interface would be able to transmit on any two channels without any switching delay. We leave the

implementation for adding the third interface on the nodes as future work.

Finally, the best solution for the channel switching delay problem would be to have specially designed

hardware that has very little channel switching delay.

Currently we have not implemented any of the solutions for improving TCP throughput in the testbed.

The TCP throughput is affected by channel switching delay and the gains achieved by enabling concurrent
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Figure 6.5: Set up of two one-hop UDP flows with one source node. Node A is the source of two UDP flows
to B and C. All three nodes have different fixed channels.

transmissions with the use of multiple channels is offset by the channel switching overheads. Due to this

reason, from now on we do not use TCP flows for our experiments on the testbed. We leave TCP flow

experiments for future work when solutions to mask channel switching delay are implemented.

6.1.6 Channel Switching Delay and UDP Throughput

As we observed, channel switching delays substantially affected the TCP performance. In the next experi-

ment we observe the effects of channel switching on UDP throughput. We set up two one-hop UDP flows

originating from the same node as the source. The destination of the two flows are two different nodes lis-

tening on separate fixed channels. Figure 6.5 shows the source node A listening on channel 48 and the two

destination nodes listening on channels 64 and 161 respectively. We observe that each of the flows achieves a

throughput of about 2.25 Mbps, cumulatively the total throughput achieved by source node A is 4.5 Mbps.

The one-hop UDP throughput for Net-X flow was measured to be 5.2 Mbps earlier. Thus we observe a 13%

decrease in the achievable throughput. This figure of 13% can be explained as follows:

The channel switching on an interface causes a delay of 5 ms. To keep the channel switching overheads

low one should spend as much time possible transmitting data in between two channel switches. The flip side

of spending too much time transmitting data between two channel switches would be the delay experienced

by packets waiting in transmit queues of other channels. To bound the delay a packet may experience in

a channel queue at a node we enforce a bound on the maximum time the switchable interface can spend

transmitting data on a channel when there are packets waiting in transmission queue of other channels.

When CAL receive a packet to transmit on the switchable interface, it checks if the current channel of the

switchable interface is same as the destination channel for the packet. If so, the packet is given to the

device driver to be transmitted provided no packets are waiting for the interface in other channel queues or

if the time spent on the current channel is less than CHAN MAX TIME. Otherwise, the packet is put in

its channel queue and a timer bound is established on the transmitting interface. The switchable interface
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cannot stay on a channel for more than CHAN MAX TIME (currently set to 60 ms) if there are packets

buffered to be sent on other channels.

In the two flow UDP experiment (figure 6.5), the fixed channels of destination nodes B and C are

different and there exists only one switchable interface at the source node A. The switchable interface at A

needs to switch channels regularly between transmitting data for the two flows. This is similar to the case

of TCP flows (Section 6.1.4) where the intermediate nodes in multi-hop route required channel switching

to forward TCP data and TCP ACKs. But unlike the TCP flow case, where the TCP ACKs were of small

size and we spent idle time when switching channel for TCP ACKs, here we have enough data from the two

UDP flows to fill the CHAN MAX TIME window (60 ms). The switching overheads thus remain lower than

the TCP case where the throughput dropped significantly. Calculating the switching overheads, we switch

after every 60 ms which wastes 5 ms of interface time. Thus, the overheads we should experience should be

about 8% ((5/65)× 100). In our experiments we observed a 13% drop with cumulative throughput from the

two flows coming out to be 4.5 Mbps.

We may reduce the overheads by increasing CHAN MAX TIME, we observe the cumulative UDP through-

put for the two flows increases to 4.72 Mbps when CHAN MAX TIME is increased to 100 ms. The ob-

served overheads are about 9% ((4.72/5.2)× 100) whereas theoretically the overheads should be around 5%

((5/105) × 100). Increasing CHAN MAX TIME also increases the bound on the time a packet may spend

in a channel queue waiting for the switchable interface to be available.

6.2 Throughput for Multiple Flows

We now look at throughput improvements in the HMCP Net-X testbed when multiple concurrent flows

exist. We perform two types of multiple flow experiments. As part of the first experiment we observe how

throughput differs when we have multiple one-hop flows concurrently transmitting data in our HMCP Net-X

testbed as opposed to when a single channel is used in the network. For the second experiment we observe

throughput variations when multiple multi-hop flows concurrently transmit data.

6.2.1 One-Hop Flows

As part of the first experiment we set up 10 one-hop routes in the network. Each one-hop route is of good

quality and when used in isolation can support UDP data rate of more than 5 Mbps. Figure 6.6, from our

Net-X visualization tool, shows the 10 one-hop routes set up in our HMCP Net-X testbed. We set up a

UDP flow on each of the 10 routes to transmit data concurrently for 10 seconds at 4 Mbps. We conduct five
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Figure 6.6: Route set up for 10 one-hop HMCP Net-X flows. Color of a node represents its fixed channel
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Figure 6.7: UDP throughput for 10 concurrent one-hop flows

such experiments and report the average UDP throughput observed for each of the flows. The whole setup

is repeated using a single channel in the network. Table 6.3 and figure 6.7 compare the average throughput

obtained for each of the HMCP flows and single-channel flows.

We observe that there is a significant difference in throughput achieved for HMCP one-hop flows and

single-channel one-hop flows. The cumulative throughput achieved for the ten flows in HMCP Net-X network

is more than twice the cumulative throughput achieved for the ten single-channel flows.

6.2.2 Multi-Hop Flows

For our next experiment we choose 20 sets of different node pairs in our testbed. Each set has different

number of node pairs. Sets numbered 1 - 5 have two node pairs, sets numbered 6 - 11 have three node pairs,

sets numbered 12 - 17 have four node pairs and sets numbered 18 - 20 have five node pairs. For each of

these sets we will set up concurrent flows between each of its node pairs and measure the UDP throughput

achieved. Each UDP flow will send data at 2.2 Mbps. Our experiment would measure the throughput

achieved for each flow in the set. The routes between the node pairs can be multi-hop, we let the MCR

routing metric choose the routes between the node pairs. After a flow is set up between a pair of nodes in
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Flow Throughput in Mbps
Identifier Single-Channel Network HMCP Net-X Testbed

1 3.218 3.64
2 0.536 3.96
3 1.13 3.94
4 0.563 1.71
5 1.072 2.9
6 1.63 3.46
7 2.536 3.68
8 3.51 3.99
9 0.62 3.39
10 1.18 2.67

Cumulative 15.995 33.34

Table 6.3: UDP Throughput for 10 concurrent one-hop flows
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Flow Set Number of Throughput in Mbps
Identifier Flows Single-Channel Flows HMCP Net-X Flows

Per Flow Cumulative Per Flow Cumulative
1 2 0.8 1.6 1.71 3.42
2 2 0.94 1.88 1.76 3.52
3 2 0.92 1.84 1.95 3.9
4 2 1.06 2.12 2.0 4
5 2 0.825 1.65 1.63 3.26
6 3 0.77 2.31 1.57 4.71
7 3 0.903 2.709 1.56 4.68
8 3 1.32 3.96 1.46 4.38
9 3 0.81 2.43 1.52 4.56
10 3 1.68 5.04 2 6
11 3 1.02 3.06 1.81 5.43
12 4 1.14 4.56 1.2 4.8
13 4 0.6 2.4 1.33 5.32
14 4 0.48 1.92 1.25 5
15 4 0.65 2.6 1.37 5.48
16 4 0.97 3.88 1.48 5.92
17 4 0.8 3.2 1.5 6
18 5 1.04 5.2 1.99 9.95
19 5 0.751 3.755 1.53 7.65
20 5 0.917 4.585 1.51 7.55

Table 6.4: UDP Throughput for multi-hop concurrent flows

the set we give a gap of four seconds before setting up the flow for the next pair of nodes in the set. This is

necessary since the MCR routing metric needs the channel switching statistics at different nodes to correctly

calculate metric cost for different routes. Thus, one should not perform route discovery for all pairs of nodes

in the set together. We start the UDP flows one by one for each node pair in the set. We give enough time in

between starting of two flows such that the nodes who are involved in forwarding data for the first flow may

be able evaluate their channel switching statistics from forwarding data for the flow. Finally, data flows will

be established between each pair of nodes in a set. The experiment for a set finishes four seconds after the

last flow for the set is established. Thus, for last four seconds in the experiment there would be concurrent

data flow between each of the node pairs of the set. For each set we repeat our experiment three times and

report the average throughput achieved per flow for each set from the three experiments.

Table 6.4 and figure 6.8 show the variation in throughput achieved per flow for the different sets in our

HMCP Net-X testbed and when using single channel in the testbed. We observe that for most of the sets,

the HMCP Net-X network achieves twice the throughput achieved when using single channel in the network.

We do not observe performance gains of 500% when using five channels in the network as opposed to one.

We list some possible reasons why the gains achieved were not as substantial as one might expect:
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1. Channel Reuse on Routes: The routes set up for the different flows have the same channels used in

them. We only use five channels in the HMCP Net-X network while we set up multiple multi-hop

flows for our experiments. All the different links (hops) for the different flows can not be on separate

channels. This limits the number of concurrent transmissions we can have for the flows in the network.

Thus, even though links for each individual flow may be on separate channels, i.e., routes for each

flow may be channel diverse, yet different routes would have links on the same channels. If the nodes

forming these links are spatially close to each other, the throughput achievable for the flows with these

links would be affected. Thus, when setting routes in the network, not only should one try to have the

links for each of the route be on separate channels but the links on different routes which are spatially

close should also be on separate channels. This would require the routing mechanism to have a global

picture of the network and flows and then make routing decisions. We discuss this idea in more detail

in Section 8.1.2.

2. Fixed Data Rate: We use UDP flows to measure throughput for the concurrent flows. We fix the data

rate used for each flow. By fixing the data rate we bound the throughput obtainable for each flow.

Thus, even if one can attain better throughput for a flow, our experiments above would not be able

to detect it. Using TCP throughput for concurrent flows, with flexible data rate, may give different

results (provided channel switching delay overheads are somehow masked).

3. Cross-Channel Interference: The different channels used in the HMCP Net-X testbed, in practice, are

not entirely orthogonal. Transmission on one channel by a node produces some interference on other

channels. The effects of cross-channel interference on flows increase with the number and proximity of

concurrent transmissions taking place in the network.

The throughput gains achieved by the HMCP Net-X network for multiple flows is due to its ability

to successfully sustain concurrent transmissions close together using different channels. The single-channel

network suffers from self-interference when multiple flows are established. With single-channel usage, trans-

missions from different flows interfere with each other degrading the throughput achievable. The HMCP

protocol with the use of an extra interface at each node is able to leverage channel diversity and in our

experiemnts was able to, in most cases, almost double the UDP throughput for flows.
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Chapter 7

Routing Metric

In the previous chapter we saw that channel diverse routes can help improve throughput as compared to

using single-channel routes. Channel diverse routes thus should be preferred over routes where a same

channel is reused on multiple hops. The WCETT routing metric [8], building on top of the ETX [9]

routing metric, provided for preference of channel diverse routes. The MCR [2, 1] routing metric modified

the WCETT metric and added the notion of channel switching cost. Apart from expected transmission

time (ETT), channel diversity and channel switching costs we observed other factors which affected the

throughput achievable for a route. While setting up throughput experiments in our testbed we observed

that cross-channel interference can degrade flow throughput significantly for a route. We also observed that

channel reuse on a route may not lower throughput compared to throughput for a channel diverse route

provided the hops on the same channel are spatially far apart. In this chapter we discuss these observations

in detail and propose certain changes to the MCR routing metric which take into account these observations.

These modifications constitute the new routing metric, which for now, we call MMCR (Modified MCR). We

set up experiments on our testbed to compare the difference in the throughput achieved on the routes chosen

by the MCR metric and the new MMCR routing metric we propose.

7.1 Modifications to Multi-Channel Routing Metric

While setting up throughput experiments on the HMCP Net-X testbed, we observed that throughput for

routes sometimes got affected by factors not taken into account by the multi-channel routing metrics in

use (MCR, WCETT, etc.). We discuss these observations in detail and propose modifications to the MCR

routing metric to take in consideration these factors that affect route throughput. We use words ‘path’ and

‘route’ interchangeably to represent route between two mesh nodes, and use ‘link’ and ‘hop’ interchangeably

to represent link between two nodes in a route.
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7.1.1 Cross Channel Interference

We had earlier pointed out in Section 6.1.3, that when a flow is established on a channel diverse route, the

nodes in the route must deal with some cross-channel interference. For our multi-channel multi-interface

testbed the intermediate nodes in a flow deal with self cross-channel interference the most. These are the

nodes that concurrently receive and forward data on separate channels. Since the transmitting antenna

and receiving antenna on the node are physically close to each other, even a small amount of cross-channel

energy leakage on the transmitting antenna may lead to sufficient interference via the receiving antenna.

We observe that if the signal strength on the receiving antenna is not of good quality to start with, the

concurrent transmission on the transmitting antenna causes high packet drop rate at the receiving antenna.

Further if the receiving channel and the transmitting channel for the node are close to each other (adjacent)

in the frequency band spectrum the cross-channel interference observed is usually higher than when the

channels are farther apart. Thus, if the intermediate receiving link on a multi-hop route is not of the best

quality or otherwise if the receiving channel and transmitting channel for an intermediate node in the route

are adjacent in the frequency band spectrum the transmission error rate on the receiving link for the node

will increase. In other words, the error rate experienced on an intermediate receiving link in a multi-hop

route for a flow could be far worse than the estimate provided by a link quality estimation mechanism. This

would be true if the link quality estimation mechanism does not take into account cross-channel interference

that may be experienced at a node.

Cross-channel interference may be lowered with better hardware. Still, since the receiving and transmit-

ting antennas are physically very close to each other (on the same node), some cross-channel interference

may remain.

Routing metrics such as ETX, WCETT, MCR require accurate link error/success rate estimates for

calculating the ETT for a hop. These schemes assume a robust link quality estimation mechanism to help

them choose a good route. The different link quality estimation mechanisms in use [18, 9, 8] do not

take into account the degradation in wireless link’s transmission success rate in the face of cross-channel

interference. As discussed above, cross-channel interference can substantially degrade the quality of a wireless

link. One requires an intelligent link quality estimation mechanism which takes into account the effects of

concurrent transmissions and cross-channel interference. Such a link quality estimation mechanism would

be more complex to construct; also it may add further overheads to the system (it may require concurrent

transmissions to be set up in order to measure cross-channel interference effects).

Another way to get around the problem would be to make the routing metric cross-channel interference-

aware. While choosing routes, we can artificially lower the estimated link quality of an intermediate hop on
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a route if we consider it to be highly susceptible to cross-channel interference. The question then is how to

figure out which links in a route are susceptible to cross-channel interference and then how much should the

link quality estimates for such links be degraded. To answer these questions we apply certain heuristics. In

our observations we found that the transmission success rate for an intermediate link in a path degraded in

two cases:

1. Adjacent channels: If the channel on which an intermediate node in a path listens is ‘adjacent’ (close)

in the frequency band spectrum to the channel on which the node concurrently transmits then the

receiving link observed higher cross-channel interference. If the transmission success rate for the

receiving link (as determined by the link quality estimation) is very good then the link may still be

able to handle the interference, otherwise the throughput achievable on the link will degrade. We

model this case in our new routing metric MMCR as follows: if the transmission success probability

‘p’ for a receiving link is greater than a constant Pconsec(< 1) (by default set to 0.9) we do not change

the link quality estimates for the link. Otherwise if the receiving channel and the transmitting channel

for an intermediate node in a route are ‘adjacent’ on the frequency band spectrum and the success

rate for the receiving link p is less than Pconsec, we lower the link quality estimate for the receiving

link as pnew = p × p. Again this is heuristically done, we lower the link quality as square of the old

success probability such that probability degrades, proportional to how poor it is to begin with. If the

original success probability is poor the new success probability for the link would be worse. We use

five 802.11a channels in our testbed namely channels 36, 48, 64, 149, 161. For our experiments with

the new routing metric we consider the following channel combinations to constitute adjacent channel

pairs: 36-48, 48-64 and 149-161.

2. Poor receiving link : If the quality of the receiving link for the intermediate node is poor to begin with,

then concurrent transmission on any channel by the node will further degrade the success rate on the

receiving link. That is, even a small amount of cross-channel interference from the transmission would

be enough to make the receiving link with average link quality worse. To model this case whenever

the transmission success probability p for the receiving link is less than a constant Pbad (by default set

to 0.7 < Pconsec) we lower the success probability p of the receiving link as pnew = p× p.

If both of the above cases apply for a link, we lower the estimated link quality once and not twice.

That is, if an intermediate receiving link in a path is of poor quality (p < Pbad) and also the next

hop on the path is on adjacent channel, we lower the transmission success probability for the link as

pnew = p× p and this is done once and not twice.
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The new routing metric MMCR lowers the estimated quality of certain links in a route which are consid-

ered susceptible to cross-channel interference. The lowering of transmission success probability of such links

in a path is done while calculating the routing metric cost for the path. This lowering of success probability

for a link in a path increases the ETT for transmission of a packet on the link, which in turn increases

the cost associated with the path. The values of the probability constants Pconsec, Pbad defined above are

specific to our network and were heuristically determined after observations and experiments on the testbed.

In general, for good performance, the values for these constants may differ from network to network and will

depend on factors such as the transmission power, hardware deployed, data rate, etc. For Pconsec = 0 and

Pbad = 0, MMCR will behave similar to MCR as far as cross-channel interference is concerned.

7.1.2 Channel Reuse

The MCR metric combines two components in calculating the metric cost for a path. The first part adds

the ETT for all the hops in the path and any switching costs for the hops. The second component adds the

ETT costs for the hops on the bottleneck channel in the path. The MCR metric is weighted combination of

these two components. The second component of the metric represents the channel diversity of the path and

will be small for channel diverse routes. This second component for a path is calculated as the maximum

of sum of ETT of all hops on the same channel. The MCR and WCETT metrics do not differentiate

between channel reuse on hops that are spatially close versus channel reuse on hops that are farther apart.

Thus, a path which has channel reuse on consecutive hops and another path which has channel reuse with

a gap of three hops are put in the same category in terms of channel diversity. This we observe is a little

pessimistic. Concurrent transmission may be possible on hops spatially far apart even when using the same

channel. The 802.11 MAC CSMA/CA protocols would most probably not allow for concurrent transmission

on consecutive or alternate hops on a path using the same channel. For links with a gap of two hops between

them in a path, one may or may not be able to have concurrent transmissions. For links which have a gap

of three or more hops between them in a path, the possibility of having concurrent transmissions with low

error rate improves. In any case, treating channel reuse on consecutive or alternate hops in a path same

as channel reuse after a gap of three or four hops in most cases will not be justifiable. Then again things

would depend a lot on the transmission power, data rate used, different environment variables (path loss,

noise, obstructions) in whether one is able to sustain concurrent transmissions on links spatially separated

using the same channel. Still, we believe one should have a provision in the routing metric to be able to

tweak the metric associated with paths depending on the network characteristics. We relax channel reuse

constraints in our new routing metric. We do not impose any metric cost penalty for paths which have
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channel reuse on hops separated by CHAN REUSE CONST (>= 3, by default set to 3) links or more

between them. For paths with channel reuse on links separated by less than MIN HOP (> 1) hops, the

metric cost penalty remains the same as in MCR. The path where the same channel is used on links separated

by h (MIN HOP ≤ h < CHAN REUSE CONST ) hops between them we impose only fraction of the

penalty cost imposed for channel reuse on consecutive hops or alternate hops in the path. The routing metric

calculation for MMCR route is given by :

MMCR = (1− β)×
n∑

i=1

(ETTi + SC(ci)) + β × max
1≤j≤K

Xj

where n is the total number of hops on the route, ci is the channel switching cost for the transmitting

node on the ith hop, Xj is defined as the sum of ETT of links in the jth channel reuse hop list and K is

the total number of channel reuse hop lists in the path. The links in a channel reuse hop list are assumed

to interfere with each other’s transmission. Links in a path not part of the same channel reuse hop list are

considered non-interfering. We choose the maximum of all Xj ’s to represent the bottleneck portion for the

route.

To define channel reuse hop list for a path more formally: it is as an ordered set of links in the path

which use the same channel for transmission. A link, linksuc, is successor of a link, linkpred, in a channel

reuse hop list for path P , if and only if:

1. linkpred and linksuc are on same channel.

2. linkpred comes before linksuc in path P (when going from source to destination) and the two links

are separated by less than MIN HOP (1 < MIN HOP < CHAN REUSE CONST ) links in

path P . There is one exception to this rule, the last link in the channel reuse hop list may have h

(MIN HOP ≤ h < CHAN REUSE CONST ) hops between itself and its predecessor in the list.

That is, if linksuc is the last link in the channel reuse hop list then linkpred and linksuc may be

separated by h hops in the path, where MIN HOP ≤ h < CHAN REUSE CONST . For such a

case we add only a fraction of the ETT (ETTlast link × αh , where αh < 1) of the last link while

calculating the bottleneck ETT sum for the channel reuse list.

The idea here is to divide a path into different channel reuse hop lists. All links in a channel reuse hop

list would be considered interfering. Also, we try and differentiate between channel reuse occurring close

by on a path and channel reuse occurring on links farther apart. Whenever there is channel reuse on links

in the path where the two links have CHAN REUSE CONST or more hops in between, the two links

are considered non-interfering and are part of different channel reuse hop lists. If the two links, using the
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Figure 7.1: A six-hop path with channel reuse.

same channel, have less than MIN HOP (> 1) links between them in the path, the two links are considered

interfering and are considered part of the same channel reuse hop list. Border case is a link which has h

(MIN HOP ≤ h < CHAN REUSE CONST ) hops separating it from the last link on the path which

used the same channel. Such a border case link is the last link for the channel reuse hop list continuing from

its predecessor link, h hops before it in the path. Also a border case link will be part of two channel reuse

hop lists: as the last link of the list continuing from h hops before, and the first link of the hop list starting

at it. Apart from the border links all other links on a path are part of only one channel reuse hop list.

The sum of ETT (for a packet) for each link in a channel reuse hop list represents the bottleneck factor for

that channel reuse list. If the last link of the list is a border case link, i.e., the last link in the list is separated

from it’s predecessor in the list by h hops in the path, where MIN HOP ≤ h < CHAN REUSE CONST ,

then we add only a fraction of the ETT (for the packet) for this last link in the bottleneck ETT sum for

the list. The fraction is given as: ETTlast link × αh, αh < 1. The bottleneck portion for the entire path

is defined as the maximum of the ETT bottleneck sums for all the channel reuse hop lists. An important

point to note is that the series αh needs to be a non increasing series, with α0 = α1 = 1 and αm = 0,

∀ m ≥ CHAN REUSE CONST .

We now provide an example to show calculation of the new routing metric cost for a path in our testbed.

We set MIN HOP = 2 and CHAN REUSE CONST = 3 with α2 to 0.5 as the default values for the

constants. Figure 7.1 shows a six-hop path from node A to node G. For each of the links, the figure shows

the transmission channel (36, 64 or 161) for the link and the ETT in microseconds for transmission of a

1500 byte frame on the link (with etx of 1 the ETT for transmitting 1500 byte frame with 6 Mbps bit rate

= 2000 µs). There are a total of 5 channel reuse hop lists for the path.

1. List 1 : (A → B) ⇒ (D → E) . Links A-B and D-E are separated by 2 hops (B-C, C-D) in the path

and use channel 64. Since the links are separated by MIN HOPS (=2), we add only fraction of ETT

of link D-E for bottleneck calculation for this channel reuse hop list. Bottleneck ETT component for

this list will be X1 = ETTA−B + α2 × ETTD−E = 2100 + 0.5× 2300 = 3250µs

2. List 2 : (B → C). Though links B-C and F-G use the same channel but since they are separated
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by CHAN REUSE CONST (=3) hops in the path they are in different channel reuse hop list.

X2 = ETTB−C = 2200µs

3. List 3 : (C → D) ⇒ (E → F ). Links C-D and E-F use channel 36 and are separated by 1 hop (

< MIN HOP ) in the path. They are part of the same channel reuse hop list. X3 = ETTC−D +

ETTE−F = 2050 + 2090 = 4140µs

4. List 4 : (D → E) . Link D-E is a border case link and thus is a part of two channel reuse hop lists,

List 1 and List 4. X4 = ETTD−E = 2300µs

5. List 5 : (F → G). X5 = ETTF−G = 2400µs

Maximum ETT for all channel reuse hop list = X3 = 4140µs

The MMCR routing metric cost for path A → B → C → D → E → F → G , for β = 0.5, assuming all

switching costs are 0, will be:

MMCR = (1− β)×
h∑

i=1

(ETTi + SC(ci)) + β × max
1≤j≤K

Xj

= 0.5× (2100 + 2200 + 2050 + 2300 + 2090 + 2400) + 0.5×X3

= 0.5× 13140 + 0.5× 4140

MMCR = 6570 + 2070 = 8640

The MCR, WCETT routing metrics added the ETT for all hops using the same channel on a path to

represent the bottleneck component of the metric cost. Thus, both of these routing metric schemes defined

a channel reuse hop list to consist of all links on the path using the same channel. In our new routing metric

we do not consider links on a path which have CHAN REUSE CONST or more hops in between them

to be interfering. The value for CHAN REUSE CONST is subjective, the number of hops between two

links in a path to be considered safe enough for non-interfering transmissions can be changed depending

on the network characteristics. Further, we believe the border cases where channel reuse occurs before

CHAN REUSE CONST hops but after a certain number of minimum hops (MIN HOP ) should not be

considered in the same category as channel reuse on consecutive or alternate hops in a path. For such cases

the channel reuse hop list containing the two links in question will stop at this last link and only fraction

of the ETT of this last link will be added to the bottleneck ETT sum for the channel reuse hop list during

metric cost calculation.

Another interesting question to ask is whether having CHAN REUSE CONST or more hops between

two links on a path implies that the two links are spatially far apart ? The answer is no. Using a reactive
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routing protocol, a path discovered between a source and a destination can be rather circuitous such that

the first hop and the hop at position CHAN REUSE CONST + 2 on the path are actually spatially close

to each other. In this case the transmissions on these hops will interfere with each other and our strategy to

consider these transmissions non-interfering would fail. The next question to consider then is how to deal

with such cases.

The routing metric cost for a path with our new metric consists of two components, the first component

adds the ETT (and any switching costs) of all the hops on the route. This component is a measure of

the network resources being used by the path. We count on this component to come to our rescue when

circuitous paths may escape the channel reuse penalty as described above. For fairly dense network in most

cases whenever a circuitous path is discovered between a source and a destination, with high probability a

short straight path will be discovered too. Our assumption is that the first component of the routing metric

cost will give a preference to the short path instead of the circuitous path which may have escaped a channel

reuse penalty. This assumption has been confirmed by the experiments we performed on our testbed. Most of

the time when circuitous routes escaped channel reuse penalty, the shorter routes still had lower metric costs

due to lesser number of hops. One can make a more intelligent guess as to whether two links are interfering

or not if one knows about the neighbor information of the nodes forming the links. If the receiving node of

one link can hear the hello packets being sent by the transmitting node of the other link, the two links can be

considered as interfering. This neighbor information may or may not be available when the routing metric

cost calculation for a path takes place. For proactive routing protocols such as link state routing all neighbor

information may be available at the source for the flow itself. For reactive routing protocol implementations

could be possible such that neighbor information is available at the node which decides on the interference

properties of two links when calculating the routing cost for the path. Currently we have not implemented

such intelligent guessing for link interference in our reactive routing protocol. We leave this for future work

and currently statically decide to term two links with gap of CHAN REUSE CONST (set to 3) or more

hops between them in a path to be non-interfering.

7.2 Performance Analysis

We now test the performance of the new routing metric MMCR as compared to the performance of the MCR

metric. We perform our experiments on the HMCP Net-X testbed we have set up. For the new routing

metric MMCR we chose CHAN REUSE CONST = 3 , MIN HOP = 2 and α2 = 0.5. Different source

and destination node pairs are chosen and routes are set up between them one at a time first using the MCR
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metric and then using our new routing metric. For each route set up we use UDP traffic between the nodes

to figure out the throughput achievable for the route. We do not use TCP traffic to compare throughput due

to the extra channel switching overheads involved with TCP flows (as discussed in Section 6.1.5). Both the

old routing metric, MCR, and the new routing metric, MMCR, have the variable β associated with them. β

plays a pivotal role in route determination as it indicates the importance given to the bottleneck portion of

the route. We conduct our experiments with two different values of β, 0.5 and 0.7. Thus in total we compare

the performance of four routing metric schemes. First two are the MCR metric schemes with β equaling 0.5

and 0.7 and the next two are the MMCR routing metric schemes with β values of 0.5 and 0.7. We call these

metric schemes by the names MCRB5,MCRB7, MMCRB5 and MMCRB7 respectively.

For each pair of nodes in our experiment, first a route is established using one of the metric schemes. We

then set up three UDP flows one at a time for five seconds each with the data rate of 2.5 Mbps, 3.5 Mbps and

4.4 Mbps respectively. Since UDP protocol does not perform rate control, to figure out the best throughput

sustainable for a route we test the route with three different data rates. We choose the best throughput

achieved from these three flow experiments. We employ an AODV style reactive routing protocol where

RREQs are transmitted as broadcast messages. Due to the broadcast nature of RREQ message, the best

route as dictated by a routing metric scheme may not get discovered. This is because the 802.11 broadcast

mechanism is not reliable, the RREQ message may not be successfully delivered on the ‘best route’. To

counter this, the whole procedure, discovering a new route and testing the route with different data flow

rates, is done twice. For each pair of nodes and routing metric we perform our throughput experiment twice

(thus have two attempts at route discovery) to increase the possibility of the ‘best route’ as dictated by the

routing metric to be discovered and also to give more reliability to our readings.

Also, for each route chosen by a routing metric scheme between a pair of nodes we note down the

complete details for the choice. We note down the link details (ETT, channel specification) and the metric

cost calculation performed for the route. We also note down the details of all the other routes discovered

by the RREQ message but rejected due to higher routing metric costs associated with them. Thus for each

routing metric scheme we have complete details of all the routes chosen and all the routes rejected between

a pair of nodes with complete channel and link cost details. All these details would help us to compare and

contrast the routes chosen by the MCR metric schemes with those chosen by our new MMCR routing metric

scheme.
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7.2.1 Results

We note that for most pairs of nodes the routes chosen by the MCR metric scheme and the MMCR metric

schemes are the same. This is expected since the new routing metric scheme differs from MCR in specific

cases where cross-channel interference or channel reuse come into picture. Sometimes one of the metric

schemes might miss the ‘best route’ it should have chosen but did not since the route was not discovered

owing to the unreliability of the RREQ messages. In such cases the throughput for the ‘sub optimal’ path

chosen by the routing scheme is usually observed to be less than the throughput observed on the ‘optimal

path’ which other routing schemes were able to chose. In our analysis we do not include such cases in which

a routing scheme would have chosen the same route as the other routing scheme based on the ETT, channel

characteristics of the links involved yet it could not since the ‘optimal path’ was not discovered. In our

analysis we also do not include cases where the routing metric schemes choose different routes and reject

routes chosen by the other routing scheme yet the throughput observed on the different routes is almost the

same (5 % of each other). The most interesting cases in this category come from the MMCRB7 metric case.

Couple of times we observed that the MMCRB7 routing scheme chose longer circuitous routes between

pairs of nodes to avoid the channel reuse penalty while the other routing schemes chose the shorter routes.

The short and the long routes both have channel reuse on the same links but the longer route escapes the

channel reuse penalty in its routing metric cost calculation due to gap of three or more hops between the

channel reuse links. In such cases almost all the time we observed that the throughput achievable by both

the short routes and the longer routes between their respective pairs of nodes to be similar. Thus in our

experiment the new routing metric scheme MMCR with higher β value sometimes used longer routes, though

without taking any visible throughput hits. Again such cases may be amended in the future by having a

more intelligent routing protocol implementation.

The cases we include in our analysis are those where the routing metric schemes chose different routes

between a pair of nodes, rejecting the route chosen by other routing schemes to be sub optimal, and further

we observe substantial difference in the throughput for the different routes chosen. We report 13 such cases

where we were clearly able to distinguish the difference between the routing schemes and observe difference

in the throughput for the routes chosen. We observe that in most cases MMCRB7 performs better than

the other three routing schemes. MMCRB5 performance can be termed as a little better than MCRB7 and

MCRB5. There are a couple of exceptions where MCRB7 and MCRB5 outperform the MMCR schemes,

but the performance difference in such cases is not substantial. Figure 7.2 shows the throughput differences

for the 13 cases, also table 7.1 explains the reason why the routing schemes chose routes differently for each

case. In table 7.1, we use the abbreviation CCI to mean Cross Channel Interference.
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Figure 7.2: Throughput obtained for routes chosen by the different routing metric schemes. We only show
results for node pairs for which there is significant difference in the throughput for the routes chosen by the
different schemes.
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Node Achievable Throughput in Mbps Reason for choosing
Pair MCRB5 MCRB7 MMCRB5 MMCRB7 different route
1 1.2 1.3 2.99 0.97 CCI. MMCRB7 chose

a long circuitous route
2 2.48 4.33 2.54 4.45 β = 0.7 helps chose a 3 hop route with a

lower bottleneck over a 2 hop path
3 2.5 4.45 2.53 4.43 β = 0.7 helps chose a 2 hop route with

lower bottleneck over a 1 hop path
4 3.54 3.53 2.59 2.93 CCI susceptible route

performed better than MMCR route
5 1.27 0.54 2.53 1.44 CCI. MMCRB5 chose 2 hop path, MMCRB7

chose 3 hop path with lower bottleneck
6 0.294 0.2 0.294 4.42 CCI
7 2.59 1.41 2.56 4.42 Channel Reuse
8 1.74 2.38 1.6 2.62 CCI
9 3.46 3.07 2.37 2.48 CCI susceptible 3 hop route performs

better than MMCR chosen 4 hop route.
10 1.74 1.83 2.6 2.56 Channel reuse and CCI
11 2.69 0.699 2.43 2.42 MMCRB7 chose 6 hop route to

avoid channel reuse penalty
12 2.63 2.56 4.2 4.23 CCI
13 1.89 1.68 2.05 4.46 Channel reuse

Table 7.1: Throughput performance difference for routes chosen by the different routing metric schemes. We
use the abbreviation CCI to mean Cross Channel Interference

The MMCR metric schemes differ from the MCR metric schemes in how the bottleneck portion of the

routing metric cost is calculated. Now the value of β dictates as to how much effect this second component of

the routing metric, the bottleneck portion, has on determining the route. We observe that when cross-channel

interference susceptible links have been discovered by MMCR metric, or possible channel reuse opportunity

is spotted, and thus, the bottleneck portion of metric cost of routes changes from those calculated by MCR,

smaller value of β may offset these differences by making a preference for the first component of the routing

metric. This is the reason why MMCRB5 a lot of times accepts the same route as MCR metric even when

the bottleneck portion of the routing cost for the routes in question come out to be different in MMCR

case as compared to the MCR case. The MMCRB7 routing scheme with its higher value of β gives more

preference to the bottleneck portion of the route and thus is more sensitive to the cross-channel interference

and channel reuse components of the MMCR metric. It therefore readily chooses different routes than those

chosen by MCR metric when it finds cross-channel interference susceptible links or when it spots a case for

channel reuse on links far apart in a path.

With increasing β values the point to keep in mind is the chance that long, sometimes circuitous routes,

may be preferred between a pair of nodes even though short paths between the nodes give the same or better

performance. There is thus a trade off in choosing the value for β, it should not be too high and neither
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should it be too low. For our network and the MMCR metric setup, β = 0.7 works good.
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Chapter 8

Conclusions and Future Work

We performed an evaluation of a multi-channel multi-interface wireless mesh network. The network employs

the hybrid multi-channel protocol (HMCP) [1] implemented over the Net-X system architecture [4, 5].

We analyzed the working of the entire network and nodes forming the network. During the discussion we

highlighted several important implementation issues. We also looked at the effects of channel switching delay

on the network. The channel switching delay increases the route discovery latency and adversely affects TCP

throughput for multi-hop routes. Results from throughput experiments on the HMCP Net-X network were

very promising. We noted that the multi-channel network was able to sustain throughput observed for a

one-hop UDP flow over multi-hop (channel diverse) routes. With data rate fixed at 6 Mbps, a UDP flow on

a multi-hop route was able to attain throughput of around 5 Mbps. For single-channel network a multi-hop

flow is affected with self-interference. We observed a UDP throughput of 1.77 Mbps for a three hop route

when using a single channel. Similar throughput gains were observed when multiple concurrent flows are

established in the network, the HMCP Net-X network was able to support twice the UDP throughput for

the multiple flows compared to when a single channel was used in the network. Throughput gains observed

for multi-hop TCP flows were not as substantial as for UDP flows. Channel switching delay in the HMCP

Net-X network adversely affects TCP throughput on multi-hop routes due to which the gains observed when

using multiple channels as compared to a single channel are not as significant for TCP flows.

While setting up the throughput experiments on the HMCP Net-X testbed, we observed that cross-

channel interference and efficient channel reuse on routes can affect the throughput achievable for a route.

Keeping these observations in mind we proposed certain changes to the MCR routing metric to come up

with the new routing metric MMCR. We set up experiments in the testbed to compare and contrast the

MMCR metric scheme with MCR metric scheme. We observed several different cases in which the UDP

throughput for the route chosen by MMCR scheme was better than the UDP throughput for route chosen

by the MCR scheme.
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8.1 Future Work

We now discuss some ideas for future work in multi-channel networks.

8.1.1 Link Quality Estimation

Multi-channel multi-interface networks such as ours require intelligent link quality estimation mechanisms.

Currently the link quality estimation mechanisms employed in our testbed and other past schemes [8, 9, 18]

look at broadcast packet reception rate to estimate quality of links. Such a mechanism is not cross-channel

interference-aware. It does not offer any insight in the degradation of link quality in the wake of cross-

channel interference from concurrent transmissions. We try to offset this by having the routing metric be

cross-channel interference-aware. A more intelligent link quality estimation mechanism is required which

could give good estimate of link quality degradation when concurrent transmissions on different channels

occur.

The cross-channel interference is experienced most at the receiving interface of a node which is concur-

rently transmitting on another channel on the other interface. We observed, for our network, the broadcast

hello packets were not being successfully received at the receiving interface of a node when it continuously

transmits on the second interface. Since there are no transmission retries with broadcast messages, as with

unicast messages, the effects of cross-channel interference become easily visible with broadcast messages.

Thus, when a flow is established in the network, the intermediate nodes (nodes which listen and transmit

concurrently) in the route can start to miss hello packets being sent by their neighboring nodes including the

next-hop node in the route. This can effect the link quality estimate of the link between the intermediate

node and the next-hop node on the route and may deem the link as unusable even though the transmission

on the link for the flow may be error free. The link quality estimation mechanism needs to be smart enough

to know this can happen and should get the link quality estimates from the number of retries being done

to transmit a packet to the next hop at the MAC layer and not by the broadcast hello message mechanism.

Similar approach is proposed in [18].

8.1.2 Intelligent Routing

We now discuss some ideas for improvements in routing protocol in future multichannel wireless networks.
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Dynamic Fixed Channel Assignment

In HMCP, the fixed channel assignment for a node is done keeping in mind the channel usage in the two-hop

neighborhood of the node. This is done to balance fixed channel usage in different neighborhoods in the

network. This fixed channel assignment is performed when the network boots up and the nodes discover

their neighbors. While setting up flows in the network we noticed that sometimes one could not find good

channel diverse paths between a source and destination pair. If one could possibly instruct some of the

nodes to change their fixed channels, it may then be possible for a good channel diverse route to be set up

between the pair of nodes. Thus, a new channel assignment mechanism is required that may dynamically

assign ‘fixed’ channels to nodes based on the flow requirements in the network. The objective would be to

have good channel diverse routes set up between the different source and destination pairs in the network

and satisfy the throughput demands for the flows. Such a channel assignment mechanism would need to

be closely tied to the routing mechanism in the network and may require global network information. Also

the routing mechanism can avoid same channel being used on two hops (on different routes ) which are

spatially close to each other (nodes forming the hops are spatially close to each other). That is, not only can

the routing mechanism prefer channel diversity on a single route but can also help avoid situations where

transmission on different links for different flows interfere with each other.

Load-Aware Routing

The routing metric schemes discussed ETT, WCETT, MCR, MMCR are not traffic load aware. This could

be another direction that may be taken up for future work. One can have some notion of traffic load in the

routing metric schemes. Routes having nodes who are already involved in transmission from different flows

should be differentiated from routes with nodes which are not involved in any transmissions. This could

help balance traffic flows across the network.

8.1.3 Mask Channel Switching Delay

We observed that channel switching delay adversely affected network performance. Channel switching delay

for a switchable interface may be masked by using another switchable interface. This idea is discussed in

more detail in Section 6.1.5.
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