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Abstract— This paper argues for the need to address the
issue of multi-channel network performance under constraints on
channel switching. We present examples from emergent directions
in wireless networking to motivate the need for such a study,and
introduce some models to capture channel switching constraints.
For some of these models, we study connectivity and capacity
of a wireless network comprising n randomly deployed nodes,
equipped with a single interface each, when there arec= O(logn)
channels of equal bandwidth W

c available. We consider an
adjacent (c, f ) channel assignment where a node may switch
between f adjacent channels, but the adjacent channel block
is randomly assigned. We show that theper-flow capacity for
this channel assignment model isΘ(W

√

f
cnlogn). We then show

how the adjacent (c,2) assignment maps to the case of untuned
radios. We also consider a random(c, f ) assignment where each
node may switch between a pre-assigned random subset off
channels. For this model, we prove thatper-flow capacity is
O(W

√

prnd
nlogn) (where prnd = 1−(1− f

c )(1− f
c−1)...(1− f

c− f+1)) and

Ω(W
√

f
cnlogn).

Index Terms— Multi-channel, switching constraints, connectiv-
ity, capacity, adjacent (c, f ) assignment, random (c, f ) assign-
ment, detour-routing.

I. I NTRODUCTION

Earlier work on protocols for multi-channel wireless net-
works [1] has assumed that each node is capable of switching
on all channels. This assumption may be challenged by emerg-
ing paradigms in wireless networking, such as envisioned
large-scale deployment of extremely inexpensive wirelessde-
vices embedded in the environment, and dynamic spectrum
access via cognitive radio. We briefly summarize some such
scenarios:

• The need for low-cost, low-power radio transceivers to
be used in inexpensive sensor nodes can give rise to
many situations involving constrained switching. Hard-
ware complexity (and hence cost), and/or power con-
sumption may be significantly reduced if each node oper-
ates only in a small spectral range, and switches between
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a small subset of adjacent channels (e.g., if the transceiver
uses an oscillator with limited tunability). However, if
more spectrum is available than a single device can
utilize, it may be possible at time of manufacture to lock
different devices on to different frequency ranges. Also,
potentially a transceiver may have an RF channel selector
comprising a bank of switchable filters [2], from which
it may select one to use for transmission/reception.

• In cognitive radio networks, given a multi-hop network
of secondary users attempting to utilize unused spectrum,
some channels may be locally unusable due to the pres-
ence of an active primary user in the vicinity.

Thus, there is need to address the issue of multi-channel net-
work performance in the presence of constraints on channel-
switching, both in terms of determining how asymptotic trans-
port capacity is affected by the constraints, and designing
protocols for efficient channel-coordination, and data-transfer.

It has been proposed in [3] that extremely inexpensive
wireless devices can be manufactured if it is possible to handle
untuned radios whose operating frequency may lie randomly
within some band. Also considered in [3] is the possibility that
each device may have a small number of such untuned radios,
and a random network coding based approach is proposed
to relay information between a single source-destination pair.
Some work on cognitive radio has addressed the issue of
coordination in the face of restricted and variable channel
availability at individual nodes due to active primary users
[4], [5].

However, no formal theoretical models have been developed
for the various types of switching constraints encounteredin
these previous works, and in other anticipated scenarios, and
the impact of the constraints on network performance in a
general multi-hop setting has not been quantified.

In this paper we present an initial foundation for this
domain by introducing some models for constrained channel
assignment, and exploring issues of connectivity and transport
capacity for some of these models.

We consider an adjacent(c, f ) channel assignment model,
and show that theper-flow capacity for this case is



Θ(W
√

f
cnlogn). We then use the results for this model to obtain

asymptotic capacity results for untuned radios with random
source-destination pairs. We also consider a random(c, f )
assignment model. For this model, we prove thatper-flow
capacity isO(W

√

prnd
nlogn) (prnd is defined in Section XI) and

Ω(W
√

f
cnlogn). 1 We also briefly discuss a spatially correlated

channel assignment model.
Due to paucity of space, we are only able to provide high-

level proof sketches in this paper, and most lemmas/theorems
are stated without proof. Please see [7] for detailed proofs.

II. SOME MODELS FORCONSTRAINED CHANNEL

ASSIGNMENT

In this section we elaborate on some of the models for
constrained channel assignment that we propose. These models
assume that nodes possess only one interface each, there arec
channels available, and all channels are orthogonal. However,
they may potentially be extended to the case where multiple
interfaces are available at each node2.

A. Adjacent(c, f ) Assignment

We introduce an assignment model wherein a node can
switch between a set off contiguous channels(2 ≤ f ≤
c). Thus, if the frequency band is divided intoc channels
numbered 1, 2, ..., c in order of increasing frequency, then,
at manufacture/pre-deployment time, each node is assigneda
block locationi uniformly at random from{1, ...,c− f + 1}
and thereafter it can switch between the set{i, ..., i + f −1}.
This model is relevant when each individual node has a
tranceiver with limited tunability, and thus may only switch
between a small set of contiguous channels. It is also possible
to establish a mapping between specific instances of this
model, and the case of untuned radios (see Section X).

B. Random(c, f ) Assignment

In this assignment model, a node is assigned a subset of
f channels(2≤ f ≤ c) uniformly at random from the set of
all possible channel subsets of sizef . This model can capture
situations where tiny low-cost sensor nodes may be equipped
with a transceiver having a bank off filters (e.g., such a design
has been proposed in [2]). One can envisage scenarios where
each filter operates on some random channel determined at
time of manufacture.

C. Spatially Correlated Channel Assignment

In this model, a set ofN pseudo-nodes is placed randomly
in the network, in addition to the regular network nodes.
Each pseudo-node is assigned a randomly chosen channel.
All network nodes within a distanceR of a pseudonode with
assigned channeli are blocked from using channeli. This

1We have recently obtained new results showing that capacitywith random
(c, f ) assignment isΘ(W

√

prnd
nlogn), for c = O(logn). Please see [6].

2In these models, we assume thatc≥ 2, asc= 1 is the single channel case
in which f = c= 1 is the only possibility. In Section VI, we explain why we
do not allow f = 1 for c≥ 2.

model captures channel unavailability due to an active primary
user in the vicinity in cognitive radio networks, as well as
situations where an external source of noise leads to poor
channel quality in a certain region.

III. N ETWORK MODEL

In the assumed network model,n nodes are located uni-
formly at random in a unit area toroidal region. Nodes use
a common transmission ranger(n). Interference is modeled
using the Protocol Model [8]. There arec available channels
of bandwidthW

c each. We focus on the case where the total
number of available channelsc = O(logn). This is justifiable
because in large scale deployments, the number of nodes will
typically be much larger than the number of available channels.
Besides, whenc = ω(logn), there is a large capacity degra-
dation even with unconstrained channel switching (as shown
in [1]), thus making channelization an increasing liability, and
constrained switching may lead to additional degradation,and
potentially unacceptable performance. As in [8], each nodeis
source of exactly one flow. It chooses a point uniformly at
random (we shall refer to these points aspseudo-destinations
throughout this paper), and selects the node (other than itself)
lying closest to that point as its destination.

IV. N OTATION AND TERMINOLOGY

We use standard asymptotic notation [9]. Whenf (n) =
O(g(n)), any functionh(n) = O( f (n)) is also O(g(n)). We
often refer to such a situation ash(n) = O( f (n)) =⇒ O(g(n)).
We often refer to results as holdingwith high probability
(w.h.p.), by which we mean with probability 1 asn→ ∞. As
in [8], we say that the per flow network throughput isλ(n) if
each flow in the network can be guaranteed a throughput of at
leastλ(n) with probability 1 asn→ ∞. Whenever we use log
without explicitly specifying the base, we imply thenatural
logarithm.

V. RELATED WORK

It was shown by Gupta and Kumar [8] that for a single-
channel single-interface scenario, in an arbitrary network, the
per flow capacity scales asΘ( W√

n) bit-m/s per flow, while in

a random network, it scales asΘ( W√
nlogn

) bits/s. It was also
shown in [8] that if the available bandwidthW is split into
c channels, with each node having a dedicated interface per
channel, the results remain the same.

The throughput-delay trade-off was studied in [10], and
it was shown that the optimal trade-off is given byD(n) =
Θ(nT(n)) whereD(n) is delay, andT(n) is throughput. The
capacity of ultra-wideband (UWB) networks was studied in
[11], and [12].

In the multi-channel context, an interesting scenario arises
when the number of interfacesm at each node may be smaller
than the number of available channelsc. This issue was
analyzed in [1] and it was shown that the capacity results
are a function of the channel-to-interface ratioc

m. It was also
shown that in the random network case, there are three distinct
capacity regions: whencm = O(logn), the per-flow capacity is



W√
nlogn

, when c
m = Ω(logn) and alsoO

(

n
(

loglogn
logn

)2
)

, the per

flow capacity isΘ(W
√ m

nc), and whenc
m = Ω

(

n
(

log logn
logn

)2
)

,

the per-flow capacity isΘ(Wmloglogn
logn ).

Another relevant body of work is that on bond percolation
in wireless networks, e.g. [13]. The constrained assignments
considered by us also lead to nodes within range being able to
communicate only with a certain probability. However, unlike
percolation, in our case the probabilities are not independent
for all nodes pairs.

A multi-channel multi-hop network architecture has been
considered in [14] in which each node has a single transceiver,
and nodes have aquiescentchannel to which they tune when
not transmitting. A node wishing to communicate with a
destination tunes to its quiescent channel, and transmits the
packet to a neighbor whose quiescent channel is the same
as that of the destination. Thereafter, the packet proceeds
towards the destination on the quiescent channel. This has
some similarity to our model and constructions in that a flow
seeks to transition to a target destination channel (see Sections
IX and XIII for our constructions). However, in their case, the
transition can happen trivially at the very first hop, since the
source node is always capable of tuning to the destination’s
quiescent channel. In our models nodes can only switch on
some channels, and this needs to be taken into account.

VI. U PPERBOUNDS ONCAPACITY

Some general constraints on the capacity of the network (for
any channel assignment model) are as follows:

a) Source-Destination Constraint for f= 1: If f = 1,
but c > 1, then a source and its destination should have the
same channel for communication between them to be possible.
This may not always happen if the channels are assigned ran-
domly. To illustrate, consider the class of assignment models
where the assignment to individual nodes is i.i.d. Suppose,
Pr[i and dst(i) share a channel] ≤ p. If the traffic model is
such that any single node can be the destination of only upto
D(n) flows, then we argue thus:

We can obtain at least⌊ n
2D(n)⌋ pairs with distinct nodes

(thus leading to independent probabilities). The probability
that at least one of then source-destination pairs have different
channels can be lower bounded by the probability that at least
one of these distinct pairs do not share a common channel,
and this is at least 1− p

⌊ n
2D(n)

⌋
. When log

(

1
p

)

= ω(2D(n)
n ), it

grows to 1, asn→ ∞. Thus, the network capacity would be 0.
For the adjacent(c, f ) and random(c, f ) assignments studied
in this paper, this condition holds whenc > 1, and sof = 1
when c > 1 yields zero capacity. Whenf > 1, as in the rest
of this paper, this constraint does not apply.

b) Connectivity Constraint:Suppose the necesary condi-
tion for connectivity is thatr(n) = Ω(g(n)). Thus, the spatial
re-use in the network is limited toO( 1

(g(n))2) concurrent
transmissions on any single channel. Besides, each source-
destination is separated by averageΘ(1) distance (see [8]

for details) and hence averageΘ( 1
r(n) ) hops. Thus per flow

throughput is limited toO( W
nr(n)).

c) Interference and Destination Bottleneck Constraint:
In [1], it was established that the per flow capacity is con-

strained toO(W
√

1
cn), when single-interface nodes can switch

to any channel. It was also shown that if some node can be
the destination of uptoD(n) flows, the per-flow throughput is
constrained to beO( W

D(n)
). These upper bounds also apply to

the adjacent(c, f )-assignment case, since whatever is achiev-
able with adjacent(c, f ) assignment, is also achievable when
nodes can switch to any channel.

Note that since we are only interested in the regionc =
O(logn), the connectivity constraint is asymptotically domi-
nant.

VII. A DJACENT (c, f ) CHANNEL ASSIGNMENT

Recall that in this model, the frequency band is divided
into c channels numbered 1, 2, ..., c in order of increasing
frequency, but an individual node can only usef channels
(where 2≤ f ≤ c). At deployment time, each node is assigned
a block locationi uniformly at random from 1, ...,c− f +1 and
thereafter it can switch between the seti, ..., i + f −1 . Thus,
the probability that a node is capable of switching to channel
i is given by pad j

s (i) = min{i,c−i+1, f ,c− f+1}
c− f+1 , since channeli

occurs in min{i,c− i +1, f ,c− f +1} blocks, and each block
is randomly chosen with probability 1

c− f+1 .

Let us call channels withpad j
s (i) ≥ f

2c the preferredchan-
nels. Then, one can see that, for any set off contiguous
channels, at least⌈ f

2⌉ of the channels havepad j
s (i) ≥ f

2c.
Hence, each node can switch onx ≥ ⌈ f

2⌉ ≥ f
2 preferred

channels. Also note that non-preferred channels only occur
at the fringes of the frequency band.

The probability that a node with block locationi shares
a channel with another randomly chosen node is given by
pad j(i) =

(1+min{i−1, f−1}+min{c− f+1−i, f−1})
c− f+1 . Since block loca-

tions are chosen uniformly at random from 1, ...,c− f +1, the
probability that two randomly chosen nodes share at least one
channel is given by:

pad j =
1

c− f +1

c− f+1

∑
i=1

pad j(i) (1)

It can be seen thatmin{ f ,c− f+1}
c− f+1 ≤ pad j(i)≤ min{2 f−1,c− f+1}

c− f+1 .

Thus, min{ f ,c− f+1}
c− f+1 ≤ pad j ≤ min{2 f−1,c− f+1}

c− f+1 .

A. Necessary Condition for Connectivity

An adaptation of the proof techniques used to obtain the
necessary condition for connectivity in [15], enables one to
handle connectivity with adjacent(c, f ) assignment.

Theorem 1:With an adjacent(c, f ) channel assignment
(when c = O(logn)), if p = min{ 2 f−1

c− f+1,1} , and πr2(n) =
(logn+b(n))

pn , whereb = lim
n→∞

b(n) < +∞ then:

lim
n→∞

infPr[ disconnection] ≥ e−b(1−e−b) > 0



where by disconnectionwe imply the event that there is a
partition of the network.
The proof is omitted due to space constraints. Please see [7].

B. Sufficient Condition for Connectivity

It can be shown that settingr(n) = a1

√

clogn
f n , for some

suitable constanta1, suffices for connectivity. This will be
evident from our lower bound construction for capacity, and
the proof is hence not presented separately.

VIII. A DJACENT (c, f ) ASSIGNMENT: CAPACITY UPPER

BOUND

We proved that the necessary condition for connectivity

impliesr(n)= Ω(
√

clogn
f n ). Then by the connectivity constraint

mentioned in Section VI, the per flow throughput is limited to

O(W
√

f
cnlogn) (recall that, as in [15], the disconnection events

considered involved individual nodes getting isolated, and thus
some source node would be unable to communicate with its
destination).

IX. A DJACENT (c, f ) ASSIGNMENT: CAPACITY LOWER

BOUND

We present a constructive proof that achieves

Ω(W
√

f
cnlogn). This construction has similarity to the

constructions in [8], [10], and [1], but must now handle the
constraint that a node may not switch on all channels. The
surface of the unit torus is divided into square cells of area
a(n) each. The transmission ranger(n) is set to

√

8a(n),
thereby ensuring that any node in a given cell is within range
of any other node in any adjoining cell. Since we utilize
the Protocol Model [8], a node C can potentially interfere
with an ongoing transmission from node A to node B, only
if BC≤ (1+ ∆)r(n). Thus, a transmission by A in a given
cell can only be affected by transmissions in cells with some
point within a distance(2+∆)r(n) from it, and all such cells
must lie within a circle of radiusO((1+ ∆)r(n)). Since∆ is
independent ofn, the number of cells that interfere with a
given cell is only some constant (sayβ).

We choosea(n) = 100clogn
f n (i.e. r(n) =

√

800clogn
f n ).

Lemma 1:Suppose we are given a unit toroidal region
with n points located uniformly at random, and the region
is sub-divided into axis-parallel square cells of areaa(n)

each. Ifa(n) = 100α(n) logn
n ,1≤ α(n) ≤ n

100 logn, then each cell
has at least 100α(n) logn−50logn≥ 50α(n) logn points and
at most 100α(n) logn+ 50logn ≤ 150α(n) logn points, with
probability at least 1− 50 logn

n .
Thus, by Lemma 1, the number of nodes in any cell

lies between50clogn
f and 150clogn

f with probability at least

1− 50 logn
n .

Lemma 2: If there are at least50clogn
f nodes in every cell

D, then there are at least 12 logn nodes in each cell on each of
the preferredchannels, with probability at least 1−q1, where
q1 = O( 1

n2 ).

Lemma 3: If there are at least50clogn
f nodes in every cell

D, then, for all adjacentpreferredchannelsi and i +1, there
are at least 12 logn nodes in the cell having both channelsi
and i +1, with probability at least 1−q2, whereq2 = O( 1

n2 ).

Lemma 4: If there are at least50clogn
f nodes in every cell,

and if i and i +x are bothpreferredchannels, wherex≤ ⌊ f
2⌋,

then there are at least 12 logn nodes in the cell having both
channelsi and i + x, with probability at least 1− q3, where
q3 = O( 1

n2 ).

A. Routing

Let us denote the source of a flow as S, the pseudo-
destination as D’, and the actual destination as D. If there
were no constraints on switching, we could have used a routing
strategy similar to that in [8], in which a flow traverses the
cells intersected by the straight line SD’, and thereafter needs
to take at most one extra-hop to reach the actual destination
D, which must necessarily lie either in the same cell as D’ or
in one of the 8 adjacent cells. If that were the case, it can be
claimed that:

Lemma 5:The number of SD’D routes that traverse any
cell is O(n

√

a(n)).
We shall hereafter refer to this routing as straight-line routing,
as it basically comprises a straight-line except for the last hop.

Lemma 6:No node is the destination of more than
O(logn) =⇒ O(na(n)) flows.

For adjacent(c, f ) assignment, we cannot stipulate thatall
flows be routed along the (almost) straight-line path SD’D.
This is because the flow is required to traverse a minimum
number of hops to be able to guarantee that it can switch
from source channel to destination channel w.h.p. We elaborate
further on this issue.

Channel Selection and Transition Strategy:Initially, after
each source has chosen a random destination, the flows are
processed in turn and each is assigned an initial source
channel, as well as a target destination channel.

Suppose the source S of a flow is assigned channel set
(i, ..., i + f −1), while the destination D has( j, ..., j + f −1).
The flow chooses one of thex≥ f

c preferredchannels available
at the source uniformly at random. Let us denote it byl . It
also chooses one of they≥ f

2 preferredchannels available at
the destination (let us call itr) as the channel on which the
flow reaches the destination. The destination channel choice
may be made in any manner, e.g. we may make an i.i.d. choice
amongst all channels available at the destination. We assume,
without loss of generality, thatl ≤ r. Supposer − l = k′⌊ f

2⌋+

m(0≤ m< ⌊ f
2⌋). Thusk′ = r−l−m

⌊ f
2 ⌋

≤ c−1
f−1
2

= 2(c−1)
f−1 ≤ 4c

f . Note

that given two preferred channelsl andr all channelsl ≤ i ≤ r
must also necessarily be preferred. Then, from Lemma 4,
it is always possible to transition froml to r in at most
k′+1≤ steps:l → l +⌊ f

2⌋, l +⌊ f
2⌋→ l +2⌊ f

2⌋, ..., l +k′⌊ f
2⌋→

l +k′⌊ f
2⌋+m= r. Thus, the route passes through a sequence

of nodesx1,x2, ...xk such thatx1 andx2 share channell , x2 and



S

P

D’

Fig. 1. Illustration of detour routing

x3 share channell +⌊ f
2⌋ and so on. Whenl ≥ r, the transitions

are of the forml → l −⌊ f
2⌋, ..., r.

Thus, we stipulate that the straight-line path be followed
if either the chosen source and destination channels are the
same, or if the straight-line segment SD’ comprisesh ≥ 4c

f
intermediatehops. If S and D’ (hence also D) lie close to
each other, the hop-length of the straight line cell-to-cell path
can be much smaller. In this case, adetour path is chosen.
Consider a circle of radius4c

f r(n) centered at S. Choose a point
on this circle, say P. In the consideredc= O(logn) regime, P
can be any point on the circle. Then the route is obtained by
traversing cells along SP and then PD’D. This ensures that the
route has at least the minimum required hop-length (provided
by segment SP). This situation is illustrated in Fig. 1.

A non-detour-routed flow is initially in aprogress-on-
source-channelmode, and keeps to the source channel till there
are only 4c

f intermediate hops left to the destination. At this
point, it enterstransition mode, and starts making channel
transitions along the remaining hops, till it has transitioned
into its chosen destination channel. Thereafter, it remains
on that channel. When a flow enters a cell inprogress-on-
source-channelmode, amongst all nodes in that cell capable
of switching on that channel, it is assigned to the node which
has the least number of flows assigned to it on that channel
so far.

A detour-routed flow is always intransition mode.

Lemma 7:Given that the high probability event in Lemma
4 holds, suppose a flow is onpreferredsource channeli and
needs to finally be onpreferreddestination channelj. Then
after having traversedh≥ 4c

f +1 cells (recall that 2≤ f ≤ c)
, it is guaranteed to have made the transition.

Lemma 8:The length of any route increases by only
O( c

f ) =⇒ O(logn) hops due to detour routing. The average
route length increases byO(logn) hops.

Lemma 9: If the number of distinct flows traversing any cell
is x with pure straight-line routing, it isx+O(nc2

f 2 r2(n)) =⇒
x+O(log4n) even with detour routing.

Lemma 10:The number of distinct flows traversing any cell
is O(n

√

a(n)) w.h.p. even with detour routing.

Lemma 11:The number of flows traversing any cell in
transition mode isO(log4n) w.h.p.

B. Balancing Load within a Cell

Per-Channel Load:Recall that each cell hasO(na(n))
nodes w.h.p., andO(n

√

a(n)) flows traversing it w.h.p.

Lemma 12:The number of flows that enter any cell on any

single channel isO(
n
√

a(n)

c ) w.h.p.

Lemma 13:The number of flows that leave any given cell

on any single channel isO(
n
√

a(n)

c ) w.h.p.

Per-Node Load:
Lemma 14:The number of flows that are assigned to any

one node in any cell isO(
n
√

a(n)

c ) w.h.p.

C. Transmission Schedule

As noted earlier, each cell can face interference from at most
a constant numberβ of nearby cells. Thus, if we consider the
resultant cell-interference graph, it has a chromatic number
at most 1+ β. We can hence construct a global schedule
having 1+ β unit time slots in each round. In any slot, if
a cell is active, then all interfering cells are inactive. The
next issue is that of intra-cell scheduling. We need to schedule
transmissions during the cell’s slot, so as to ensure that atany
time instant, there is at most one transmission on any given
channel in the cell. Besides, we also need to ensure that no
node is expected to transmit or receive more than one packet
at any time instant. We use the following procedure to obtain
an intra-cell schedule:

We construct a conflict graph based on the nodes in the
active cell, and its adjacent cells (note that the hop-sender
of each flow shall lie in the active cell, and the hop-receiver
shall lie in one of the adjacent cells), as follows: we createa
separate vertex for each flow that requires a hop-transmission
in the cell (note that we counted possible repeat traversalsby
detour-routed flows separately in Lemma 11, and now a twice-
traversal can be treated like two distinct flows for scheduling
purposes). Since the flow has an assigned channel on which
it operates in that particular hop, each vertex in the graph has
an implicit associated channel. Besides, each flow (and hence
its vertex) has an associated pair of nodes corresponding to
the hop-endpoints. Two vertices are connected by an edge if
(1) they have the same associated channel, or (2) at least one
of their associated nodes is the same. The scheduling problem
thus reduces to obtaining a vertex-coloring of this graph. If we
have a vertex coloring, then it ensures that (1) a node is never
simultaneously sending/receiving for more than one flow (2)
no two flows on the same channel are active simultaneously.
The number of neighbors of a graph vertex is upper bounded
by the number of flows entering/leaving the active cell on that
channel, and the number of flows assigned to the flow’s two
hop endpoints (both hop-sender and hop-receiver). Thus, itcan
be seen from Lemmas 12, 13 and 14 that the degree of the

conflict graph isO(
n
√

a(n)

c ). Since any graph with maximum
degreed is vertex-colorable in at mostd+1 colors, the conlict

graph can be colored inO(
n
√

a(n)

c ) colors.



Thus the cell-slot is divided intoO(
n
√

a(n)

c ) = O(

√

cnlogn
f

c )
equal length subslots, and all flows in the cell get a slot for

transmission. This yields that each flow will getΩ(W
√

f
cnlogn)

throughput.
We thus obtain the following theorem:

Theorem 2:With an adjacent(c, f )-channel assignment, the

network capacity isΘ(W
√

f
cnlogn) per flow.

X. THE CASE OFUNTUNED RADIOS

The untuned channel model is as follows: each node pos-
sesses a transceiver with carrier frequency uniformly dis-
tributed in the range(F1,F2), and admits a spectral bandwidth
B. Let c= ⌊F2−F1

B ⌋. Thenc is the maximum number of disjoint
channels that could be possible. However the channels are
untuned and hence partially ovelapping, rather than disjoint.
As per the assumption in [3], two nodes can communicate
directly if the carrier frequency of one is admitted by the other,
i.e., if there is at least 50% overlap between two channels,
communication is possible. We consider the issue of capacity
of a randomly deployed network ofn nodes, where each node
has an untuned radio, and each node is the source of one flow,
with a randomly chosen destination.

Even though each node only possesses a single radio and
stays on a single sub-band, due to the partial overlap between
sub-bands, it is still possible to ensure that any pair of nodes
will be connected via some path. Contrast this to the case of
orthogonal channels, where we argued in Section VI that when
f = 1, andc > 1, some pairs of nodes are disconnected from
each other because they do not share a channel. It is possibleto
map the partial overlap feature of the untuned channel case to
adjacent(2c+2,3) and(4c+1,2) assignment. Note thatf = 2
allows for all nodes to be connected, even with orthogonal
channels.

We map the untuned radio scenario to a scenario having
(2c+2,3) adjacent channel assignment.

We perform a virtual channelization of the band(F1,F2)
into 2c orthogonal sub-bands. We add an additional (virtual)
sub-band of the same width at each end of the band, to get
2c+2 orthogonal channels, numbered 1, ...,2c+2. Thus 1 and
2c+ 2 are the artificially added channels. If a radio’s carrier
frequency lies within virtual channeli, it is associated with
virtual channel block(i − 1, i, i + 1), and i − 1 is called its
primary virtual channel. Thus the primary channel can only
be one of 1,2, ...,2c (since the carrier frequency can only
fall in 2, ..,2c+ 1). If a node’s primary channel isi, it is
capable of communicating with all nodes with primary virtual
channel i − 2 ≤ j ≤ i + 2 in the virtual channelization. In
the actual situation, the node with the untuned radio would
be able to communicate with some subset of those nodes.
Thus, if a pair of nodes cannot communicate directly in
the virtual channelization, they cannot do so in the actual
situation either, and disconnection events in the former are
preserved in the latter. The probability that a node has virtual
channel block( j, j + 1, j + 2) is 1

2c, i.e., the same as for

adjacent(2c+ 2,3) assignment, and the necessary condition
for the (virtual) (2c+ 2,3) assignment continues to hold for
the corresponding untuned radio case. This yields an upper
bound on capacity ofO(W

√

1
cnlogn).

It can be shown that a schedule constructed for an adjacent
(4c+1,2) assignment can be used almost as-is with untuned
radios (except that the number of subslots in the cell-slot must
increase by a factor of 11 to avoid interference due to overlap).

We perform a virtual channelization of the band(F1,F2)
into 4c+1 orthogonal sub-bands. If a radio’s carrier frequency
lies within virtual channeli, it is associated with virtual
channel block(i, i + 1), and i is called its primary virtual
channel. Note that if a node’s primary channel isi, it is always
capable of communicating with all nodes with primary virtual
channel i − 1 ≤ j ≤ i + 1, but we will pretend that it can
only communicate with those havingi or i + 1. Thus, if a
pair of nodes share a channel in the virtual channelization,
then they are always capable of direct communication in the
actual untuned radio situation. The probability that a radio
has virtual channel block(i, i +1) is 1

4c, same as for adjacent
(4c+1,2) assignment. In the adjacent(4c+1,2) assignment,
all channel are orthogonal and can operate concurrently. With
untuned radios, we assume two nodes can interfere if there
is some spectral overlap. Thus, a transmission by a node
on carrier frequencyF can interfere with transmissions by
nodes with carrier frequency in the range(F − B,F + B).
Hence, the transmission schedule for untuned radios is made
to follow the additional constraint that if a node with primary
virtual channeli is active then no node with primary channel
i −5≤ j ≤ i +5 should be active simultaneously. This would
decrease capacity by a factor of 11, but would not affect the
order of the asymptotic results. Also, in the actual network
involving untuned radios, a transceiver can use uptoB= F2−F1

c
spectral bandwidth, while in the adjacent(4c+ 1,2) case, it
would be F2−F1

4c+1 , leading to the possibility of having a higher
data-rate in the former, given the same transmission power,
modulation, etc. However this can only affect capacity by a
small constant factor, which does not affect the order of the
results.

In the adjacent(4c+ 1,2) case, our construction performs
transitions to ensure that a source on channels(i, i + 1) and
a destination on channels(i + j, i + j + 1) can communicate.
In the untuned radio case, transitioning is done through nodes
that provide the required virtual channel pair, and the same
transition strategy as for(4c+ 1,2) assignment continues to

work. Hence the capacity isΩ(W
√

1
cnlogn) per flow.

We re-emphasize that even thoughf = 1, the untuned nature
of the radios allows for a progressive shift in the frequency
over which the packet gets transmitted, thereby allowing a
step-by-step transition from the source’s carrier frequency to
a frequency admitted by the destination. The adjacent(c, f )
model captures this progressive frequency-shift characteristic,
and is thus able to model the untuned radio situation.

From the upper and lower bounds proved in this section, it
follows that the capacity of the untuned radio network, when



c = O(logn), is Θ(W
√

1
cnlogn) per flow.

XI. RANDOM (c, f ) ASSIGNMENT

In this assignment model, a node is assigned a subset of
f channels uniformly at random from the set of all possible
channel subsets of sizef . Thus the probability that a node is
capable of switching on a given channeli is prnd

s (i) = f
c =

prnd
s ,∀i, and the probability that two nodes share at least one

channel is given byprnd = 1− (1− f
c )(1− f

c−1)...(1− f
c− f+1).

A. Necessary Condition for Connectivity

Theorem 3:With a random (c, f ) channel assignment
(whenc= O(logn)), if πr2(n) = (logn+b(n))

pn , wherep= prnd =

1− (1− f
c )(1− f

c−1)...(1− f
c− f+1), and c = O(logn), and

b = lim
n→∞

b(n) < +∞ then:

lim
n→∞

infPr[ disconnection] ≥ e−b(1−e−b) > 0

where by disconnectionwe imply the event that there is a
partition of the network.

B. Sufficient Condition for Connectivity

Theorem 4:With random (c, f ) assignment (whenc =
O(logn)), if πr2(n) = 800π logn

prndn , then:

Pr[ network is connected] → 1
Proof: We present a construction based on a notion of

per-node backbones. Consider a subdivision of the toroidal
unit area into square cells of areaa(n) = 100 logn

prndn . Then by

settingα(n) = 1
prnd

in Lemma 1 there are at least50 logn
prnd

nodes

in each cell with high probability. Setr(n) =
√

8a(n). Then a
node in any given cell has all nodes in adjacent cells within
its range. Within each cell, choose2 logn

prnd
nodes uniformly

at random, and set them apart astransition facilitators (the
meaning of this term shall become clear later). This leaves
at least 48 logn

prnd
nodes in each cell that can act asbackbone

candidates.
Consider any node in any given cell. The probability that

it can communicate to any other random node in its range
is prnd. Then the probability that in an adjacent cell, there is
no backbone candidate node with which it can communicate
is less than(1− prnd)

48 logn
prnd ≤ 1

e48 logn = 1
n48 . The probability

that a given node cannot communicate with any node in
some adjacent cell is thus at most8

n48 (as there are upto 8
adjacent cells per node). By applying the union bound over
all n nodes, the probability that at least one node is unable
to communicate with any backbone candidate node in at least
one of its adjacent cells is at most8

n47 .
We associate with each nodex a set of nodesB(x) called

the primary backbone forx. B(x) is constituted as follows.
Throughout the procedure, cells that are already covered by
the under-construction backbone are referred to asfilled cells.
x is by default a member ofB(x), and its cell is the firstfilled
cell. From each adjacent cell, amongst all backbone candidate
nodes sharing at least one common channel withx, one is
chosen uniformly at random is added toB(x). Thereafter, from

each cell bordering a filled cell, of all nodes sharing at least
one common channel with some node already inB(x), one is
chosen uniformly at random, and is added toB(x); the cell
gets added to the set of filled cells. This process continues
iteratively, till there is one node from every cell inB(x). From
our earlier observations, for all nodesx, B(x) eventually covers
all cells with probability at least 1− 8

n47 .
Now consider any pair of nodesx andy. If B(x)∩B(y) 6= φ,

i.e., the two backbones have a common node, thenx and y
are obviously connected, as one can proceed fromx on B(x)
towards one of the intersection nodes, and thence toy onB(y),
and vice-versa.

Suppose, the two backbones are disjoint. Thenx andy are
still connected if there is some cell such that the member of
B(x) in that cell (let us call itqx) can communicate with the
member ofB(y) in that cell (let us call itqy), either directly,
or through a third node.qx and qy can communicate directly
with probability 1 if they share a common channel. Thus the
case of interest is one in which no cell hasqx andqy sharing a
channel. If they do not share a common channel, we consider
the event that there exists a third nodez amongst thetransition
facilitators in the cell through whom they can communicate.

Note that, for two given backbonesB(x) and B(y), the
probability that in a network cell, givenqx andqy that do not
share a channel, they can both communicate with a third node
z that did not participate in backbone formation and is known
to lie in the same cell, is independent across cells. Therefore,
the overall probability can be lower-bounded by obtaining for
one cell the probability ofqx andqy communicating via a third
nodez, given they have no common channel, considering that
each cell has at least2 logn

prnd
possibilities forz, and treating it

as independent across cells. We elaborate this further.
Let qx have the set of channelsC(qx) = {cx1, ...,cxf }, and

qy have the set of channelsC(qy) = {cy1, ...,cyf }, such that
C(qx) ∩C(qy) = φ. Consider a third nodez amongst the
transition facilitators in the same cell asqx andqy. We desire
z to have at least one channel common with bothC(qx)
and C(qy). Then let us merely consider the possibility that
z enumerates itsf channels in some order, and then inspects
the first two channels, checking the first one for membership
in C(qx), and checking the second one for membership in

C(qy). This probability is
(

f
c

)(

f
c−1

)

>
f 2

c2 . Thusqx andqy can

communicate throughz with probability pz >
f 2

c2 = Ω( 1
log2 n

).

There are2 logn
prnd

possibilities forz within that cell, and all the
possiblez nodes have i.i.d channel assignments. Thus, the
probability thatqx and qy cannot communicate through any

z in the cell is at most(1− pz)
2 logn
prnd , and the probability they

can indeed do so ispxy > 1− (1− pz)
2 logn
prnd .

Thus, the probability that this happens in none of the1
a(n)

=

prndn
100 logn cells is at most(1− pxy)

prndn
100 logn < (1− pz)

2 logn
prnd

prndn
100 logn <

(1− 1
c2 )

2 logn
prnd

prndn
100 logn → e

−Ω( n
log2 n

)
(recall that c = O(logn)).

Applying union bound over all
(n

2

)

<
n2

2 node pairs, the
probability that some pair of nodes are not connected is at



most n2e
−Ω( n

log2 n
)

2 <
1
2e

−Ω( n
log2 n

)+2 logn → 0. Thus the probability
of a connected network converges to 1.

XII. RANDOM (c, f ) ASSIGNMENT: CAPACITY UPPER

BOUND

Since the necessary condition for connectivity requires that
r(n) = Ω( logn

prndn), the per flow capacity isO(W
√

prnd
nlogn) from

the discussion on the connectivity upper bound in Section VI.

XIII. R ANDOM (c, f ) ASSIGNMENT: CAPACITY LOWER

BOUND

We present a constructive proof that achieves

Ω(W
√

f
cnlogn). This construction is quite similar to that

for adjacent(c, f ) assignment. The surface of the unit torus is
divided into square cells of areaa(n) each. The transmission
range is set to

√

8a(n), thereby ensuring that any node
in a given cell is within range of any other node in any
adjoining cell. As discussed for the adjacent assignment case,
the number of cells that interfere with a given cell is only
some constant (sayβ). We choosea(n) = 100clogn

f n (resultantly

r(n) =
√

800clogn
f n ). Thus, Lemma 1 applies for this case too.

Lemma 15:If there are 50clogn
f nodes in every cell, then

there are at least 25 logn nodes in each cell on each of thec
channels, with probability at least 1−q, whereq = O( 1

n4 ).

A. Routing

Observe that Lemmas 5 and 6 stated in Section IX for SD’D
routing are applicable here too.

In case of random(c, f ) assignment, as with adjacent
assignment, we cannot stipulate thatall flows be routed along
the straight-line path SD’D. A flow may be required to traverse
a minimum number of hops to be able to ensure that it will
find an opportunity to make the switch from source channel
to destination channel.

Channel Selection and Transition Strategy:Initially, after
each source has chosen a random destination, the flows are
processed in turn and each is assigned an initial source
channel, as well as a target destination channel. The source
channel for a flow originating at nodeS is chosen according
to the uniform distribution from thef channels available at
S. The destination channel may be chosen from amongst the
f channels available at destinationD in any manner, e.g., it
may be the one with the smallest number of incoming flows
assigned to it so far.

We stipulate that a non-detour-routed flow is initially in
a progress-on-source-channelmode, and keeps to the source
channel till there are only⌈ 4c

25f ⌉ intermediate hops left to the
destination. At this point, it enters aready-for-transitionmode,
and actively seeks opportunities to make a channel transition
along the remaining hops. It makes use of the first opportunity
that presents itself, i.e., if a node in a on-route cell provides
the source-destination channel pair, the flow is assigned tothat
node for relaying (the node received it on the source channel,
and forwards it on the destination channel). Once it has made
the transition, it remains on the destination channel.

During theprogress-on-source-channelphase, the next hop
node is chosen to be the node in the next cell which has
the smallest number of flows assigned so far on that channel,
amongst all nodes that can switch on the source channel.
In the ready-for-transitionphase, it may be assigned toany
eligible nodethat provides either the transition opportunity, or
the source channel (for flows yet to find a transition), or the
destination channel (for flows that have already transitioned
into their destination channel).

A detour-routed flow is always inready-for-transitionmode.

Lemma 16:Suppose a flow is on source channeli and
needs to finally be on destination channelj. Then after having
traversedh≥ ⌈2(c−1)

( f−1) ⌉ distinct cells (recall that 2≤ f ≤ c, an
henceh= O(logn)), it will have found an opportunity to make
the transition w.h.p.

Note that 2(c−1)
25( f−1) ≤ 4c

25f . Thus, the (almost) straight-line
SD’D path is followed if either source and destination channels
are the same, or if the straight-line segment SD’ provides
h≥ ⌈ 4c

25f ⌉ intermediatehops. If S and D’ (hence also D) lie
close to each other, the hop-length of the straight line cell-to-
cell path can be much smaller. In this case, adetourpath is
chosen. Consider a circle of radius⌈ 4c

25f ⌉r(n) centered at S.
Choose any point on this circle, say P, so long as P does not lie
in the same cell as D (this guarantees at least one intermediate
hop even if 4c

25f ≤ 1). Then the route is obtained by traversing
cells along SP and then PD. This ensures that the route has
at least the minimum required hop-length (since the segment
SP always provides at heast⌈ 4c

25f ⌉ distinct hops(cells). This
situation is illustrated in Fig. 1.

Lemma 17:The number of distinct flows traversing any cell
is O(n

√

a(n)) even with detour routing.

Lemma 18:The number of flows traversing any cell in
ready-for-transitionmode isO(log4n) w.h.p.

B. Balancing Load within a Cell

Per-Channel Load:Recall that each cell hasO(na(n))
nodes w.h.p., andO(n

√

a(n)) flows traversing it w.h.p.
Lemma 19:The number of flows that enter any cell on any

single channel isO(
n
√

a(n)

c ) w.h.p.
Lemma 20:The number of flows that leave any given cell

on any single channel isO(
n
√

a(n)

c ) w.h.p.
Per-Node Load:

Lemma 21:The number of flows that are assigned to any

one node in any cell isO(
n
√

a(n)

c ) w.h.p.

C. Transmission Schedule

The transmission schedule is obtained in a manner similar
to Section IX-C. First, we obtain a global inter-cell schedule,
and then construct a conflict graph for intra-cell scheduling.
Thus, it can be seen from Lemmas 19, 20 and 21 that the

degree of the conflict graph isO(
n
√

a(n)

c ). Thus the graph can

be colored inO(
n
√

a(n)

c ) colors. Thus the cell-slot is divided



into O(
n
√

a(n)

c ) = O(

√

cnlogn
f

c ) equal length subslots, and all
traversing flows get a slot for transmission. This yields that

each flow will getΩ(
√

f
cnlognW) throughput. We thus obtain

the following theorem:

Theorem 5:With a random(c, f ) channel assignment, the

described construction achieves throughput ofΩ(W
√

f
cnlogn)

per flow.

XIV. D ISCUSSION

The lower bound constructions for the two assignment mod-
els yield interesting insights. As is intuitive, when all nodes
cannot switch on all channels, the transmission range needs
to be larger to preserve network connectivity, leading to a
capacity degradation. Also, it may no longer be possible to use
the shortest route towards the destination, and a flow may need
to take a circuitous path (detour routing) in order to ensure that
the destination is reached. However, when the number of chan-
nels is much smaller than the number of nodes, the increase
in the length of the routes is not asymptotically significant.
Taking all factors into account, whenc = O(logn), given a
sufficiently dense network, it is beneficial to attempt to use
all channels by assigning different channel subsets to different
nodes, rather than follow the naive approach of using the same
f channels at all nodes. In the latter case, the per-flow capacity
would be reduced toΘ(W f

c
√

nlogn
). Thus theuse-all-channels

approach outperforms thef-common-channelsapproach by a
factor of

√

c
f . As an example, even whenf = 2, utilizing all

channels yields a capacity of the order of
√

c channels. As
mentioned earlier, we have recently obtained new results [6]
showing that random(c, f ) capacity isΘ(W

√

prnd
nlogn), which

converges much faster to the unconstrained capacity.
It is also to be noted that whenf = c, our models reduce

to the unconstrained switching model in [1] with a single
interface per node. For this case, our per-flow capacity results
yield Θ(

√

W
nlogn), as also obtained in [1] forcm = O(logn).

However, we are able to achieve the optimal capacity by using
a much simpler random flow-channel mapping. We also note
that the techniques using random flow-channel assignment and
detour routing, which were devised for the models in this
paper, can be applied to other situations, e.g., the deterministic
fixed assignment considered in [16].

Another interesting insight is yielded by the results for
random(c, f ) assignment. Note that a transmission range of

Θ(
√

logn
prndn) is both necessary and sufficient for connectivity.

However, at this transmission range, it is possible that some
cells may have some channels missing. Thus, the subgraph
induced by a certain channel (obtained by retaining only nodes
capable of switching on that channel, and assuming this is the
only channel they can use) may not necessarily be connected,
but the overall network graph is always connected at this trans-
mission range. This may perhaps at times make it necessary
(due to connectivity concerns) to schedule different linksof a
flow on different channels, even if the source and destination

share a channel. Note that if we setr(n) = Θ(
√

clogn
f n ), then

a source-destination pair that share a channel always have
a route with all links using that channel (though it is not
capacity-optimal to use it with random(c, f ) assignment),
since each channel is available on some nodes in each cell.

XV. CONCLUSION

In this paper we have presented a case for the study of
multi-channel networks with channel switching constraints.
We introduced some models for channel switching constraints,
and presented connectivity and capacity results for two such
models, viz. adjacent(c, f ) assignment, and random(c, f )-
assignment, whenc = O(logn). While originally derived for
channelization in the frequency domain, our results can also
be interpreted in the time domain, and provide insights about
energy-capacity trade-offs in networks with low-duty-cycle
nodes. Furthermore, we believe that there is significant po-
tential for extension of the current models, as well as studyof
a wider range of switching constraints.
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