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Abstract— We consider the problem of reliable broadcast in an
infinite (or finite toroidal) radio network under Byzantine and
crash-stop failures. We present a simpler characterization and
proofs for results proved earlier in [1].

I. INTRODUCTION

This paper augments [1] by presenting a simpler characteri-
zation of a sufficient condition for achieving reliable broadcast.
We first state and justify the condition for a general graph.
Thereafter we focus on the grid network model for which re-
sults were presented in [1]. We present a simpler construction
for these results, based on the new characterization.

II. THE RADIO NETWORK MODEL

We assume a perfectly reliable wireless channel (and ab-
sence of address-spoofing or collisions) such that, if a node
transmits a value, all its neighbors hear the transmission, and
are certain of the identity of the sender. The transmitting node
is thus incapable of duplicity, because if it were to attempt
sending contradicting messages, they would be heard by all
its neighbors, and its duplicity would be detected. Thus any
protocol could stipulate that if the neighbors of a node hear
it transmitting multiple contradictory versions of a message,
they should accept only the first message, and ignore the rest.

III. NOTATION AND TERMINOLOGY

Nodes are identified by their grid location i.e. (x,y) denotes
the node at (x,y). The neighborhood of (x,y) comprises all
nodes within distance r of (x,y) and is denoted as nbd(x,y).
For succint description, we define a term pnbd(x,y) where
pnbd(x,y) = nbd(x − 1,y) ∪ nbd(x + 1,y) ∪ nbd(x,y − 1) ∪
nbd(x,y + 1). Intuitively pnbd(x,y) denotes the perturbed
neighborhood of (x,y) obtained by perturbing the center of
the neighborhood to one of the nodes immediately adjacent
to (x,y) on the grid. We shall occasionally refer to nbd(S)
where S is a set. In such cases, nbd(S) =

S

x∈S
nbd(x). Besides,

throughout this paper, a non-faulty node may be referred to as
an honest or correct node. A faulty node that exhibits byzantine
failure shall occasionally be referred to as a malicious node.
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IV. A GENERAL SUFFICIENT CONDITION

Consider a general graph G = (V,E). Designate a source
s ∈ V as the source of the broadcast. Then a s-cut is a
partition C = (S,V − S) such that s ∈ S. S can potentially
denote the set of nodes that have already had the opportunity
to correctly determine the broadcast value, and commit to
it (note that all correct nodes in S will thus indeed have
committed to the correct value, while the behavior of faulty
nodes is indeterminate). V − S can potentially denote the set
of nodes that are yet to do so.

Let us first consider the case where G is a finite graph.
Then any cut C may be considered as an envelope for the
advancing frontier of the broadcast at some instant. If the
cut C were indeed encountered during algorithm operation,
this holds trivially. However, even if the cut C = (S,V − S)
were not actually encountered during algorithm operation, the
following holds:

At any point of time t during algorithm operation, let
the actual frontier be denoted by the cut Cactual(t) =
(Sactual(t),V − Sactual(t)). Consider an algorithm step at
time t ′ such that at t < t ′, Sactual(t) ⊆ S, and Sactual(t ′) 6⊆ S.
Thus at time t ′, at least one node u ∈ V − S crossed over
from V − Sactual to Sactual . At time t < t ′, the frontier of the
broadcast (i.e. Cactual) lay strictly behind the frontier defined
by C = (S,V − S). Thus, if a node has sufficient information
flowing to it from Sactual to be able to cross-over, then it
must necessarily have at least as much information flowing
to it from S, and be able to cross the cut C = (S,V −S) were
it ever encountered. This is depicted in Fig. 1. Thus, the
following two statements are equivalent:

• Statement 1: For every s-cut (S,V −S) of the graph that
is actually encountered during algorithm execution, some
node u∈V −S possesses sufficient connectivity to be able
to cross-over to S from V −S.

• Statement 2: For every possible s-cut (S,V − S) of the
graph, assuming all nodes in S have had the opportunity to
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Fig. 1. Equivalence of Cut Conditions

make a correct determination (and correct nodes actually
have made it), some node u ∈V −S possesses sufficient
connectivity to be able to cross-over to S.

Thus we see that Statement 2 does not impose a more stringent
requirement than Statement 1 for a finite graph.

Lemma 1: Given a finite graph G, Statement 1 is a sufficient
condition for feasibility of broadcast, and Statement 2 is thus
an equivalent sufficient condition.

Proof: This may be seen as follows: since Statement
1 holds for every encountered cut, the set V − S will mono-
tonically decrease over time, and being finite will eventually
become empty. At that stage S =V , and the broadcast will have
successfully reached every node. Statement 2 is equivalent to
Statement 1, and is hence also a sufficient condition.

If G is instead an infinite graph, the equivalence does not
hold. Besides, Statement 1 ceases to be a sufficient condition.
However, the following still holds:

Lemma 2: Given an infinite graph G = (V,E), Statement 2
is a sufficient condition for feasibility of broadcast.

Proof: This may be established via contradiction: sup-
pose Statement 2 holds for graph G = (V,E), but some nodes
are incapable of determining the correct broadcast value.
Consider the set D comprising all such nodes (note that
D may be an infinite set). Consider the corresponding cut
((S = (V −D)),D). If Statement 2 holds, then ∃u ∈ D that
should be able to make a correct determination, and cross
over to S = (V −D). Since all nodes in V −D are capable
of determining the correct value, and those in D are not,
the broadcast status of the graph must asymptotically tend
to (V −D,D). However, when this cut is encountered, there
would be some node capable of crossing over from D to V −D.
That would violate the assumption that (V −D,D) represents
the asymptotic broadcast status. Thus Statement 2 is indeed a
sufficient condition.

Note that the cut (V −D,D) may never actually be encountered
during algorithm execution, as V − D may be infinite, and
thus the frontier could continue to expand forever without
ever encountering this cut. This explains why Statements 1
and 2 are not equivalent for infinite graphs.

It now remains to characterize what constitutes sufficient
connectivity to be able to cross-over to the source side of
the cut. The goal of any reliable broadcast algorithm is that
each node should be able to eventually decide on the correct
broadcast value. If at any instant, the frontier is represented
by cut C = (S,V − S), then by the assumption of Statement
2, all nodes in S have correctly determined the broadcast
value. Any communication of information across the cut must
happen through the nodes comprising the cut-vertices viz.
CS = {v ∈ S|∃(v,u) ∈ E ∧ u ∈ V − S}. Thus for the purpose
of analysis, it suffices to reduce the source side of the cut
S to S′ = ssup ∪CS ∪ (nbd(CS)∩ S), with ssup being a new
super-source node that acts as an abstract embodiment of the
original source, and is connected directly to each node in
CS (via the pseudo-edges). The neighbors of the cut-vertices
nodes on the source side are included to enforce the per-
neighborhood fault constraint amongst the cut-vertices nodes.
We refer to the corresponding graph induced by S′∪ (V −S),
with the pseudo-edges added, as the reduced graph G′.

For a given graph G = (V,E), it suffices to show that
for each s-cut C = (S,V − S) of G, some node u ∈ V − S
possesses sufficient connectivity to ssup be able to determine
the correct value and thus cross over to S. We state and prove
the following sufficient condition:

THEOREM 1: Given a graph G = (V,E) and designated
source s, with upto t byzantine faults in any neighborhood,
reliable broadcast is possible in G if every s-cut C = (S,V −S)
(with cut-vertices CS) satisfies the following:
∃u ∈ V − S such that either (s,u) ∈ E or ∃(2t +
1) node-disjoint (ssup,u) paths in the reduced graph G′,
such that all intermediate nodes on these paths lie within the
neighborhood of some single node v 6= ssup.

Proof: Since all nodes in S, and hence CS ⊆ S, have
had the opportunity to correctly determine the broadcast
value (by assumption), the addition of pseudo-edges with
ssup ensures this same property (since neighbors of the
source can trivially determine the value correctly), while
removing from consideration nodes that are no longer
relevant to the result we seek to prove. If a node is connected
to ssup via at least 2t + 1 node-disjoint paths that all lie
within some single neighborhood, then at most t of these
paths may be faulty (as no more than t faults may exist
in any single neighborhood). Thus, the node u will receive
the correct value over at least t + 1 paths, and will be in
a position to commit to it. The situation is illustrated in Fig. 2.

By Lemma 1, this is a sufficient condition for finite
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graphs. By Lemma 2, this is a sufficient condition for infinite
graphs.

Corollary 1: Given a graph G = (V,E) and designated
source s, with upto t crash-stop faults in any neighborhood,
reliable broadcast is possible in G if every s-cut C = (S,V −S)
(with cut-vertices CS) satisfies the following:
∃u ∈ V − S such that either (s,u) ∈ E or ∃(t +
1) node-disjoint (ssup,u) paths in the reduced graph G′,
such that all intermediate nodes on these paths lie within the
neighborhood of some node v 6= ssup.

Proof: When crash-stop failures are considered, reacha-
bility is synonymous with achievability of reliable broadcast.
If a node is connected to t + 1 nodes in S via one path each
such that all t + 1 paths are node-disjoint, and lie in a single
neighborhood, then at most t of these can be faulty. Thus there
will be at least one fault-free path through which the node may
be reached, and broadcast can propagate.

Corollary 2: Given a graph G = (V,E) and designated
source s, if the sufficient condition in Theorem 1 is satisfied
by G for t byzantine faults in any neighborhood, then 2t crash-
stop faults in any neighborhood can be tolerated.

Proof: Proceeds from Theorem 1 and Corollary 1.

V. GRID NETWORK MODEL

Nodes are located on an infinite grid (each grid unit is
a 1 × 1 square). Nodes can be uniquely identified by their
grid location (x,y). All nodes have a transmission radius r.
A message broadcast by a node (x,y) is heard by all nodes
within distance r from it (where distance is defined in terms
of the particular metric under consideration, and r is assumed
to be an integer). The set of these nodes is termed the
neighborhood of (x,y). Thus there is an assumption that the
channel is perfectly reliable, and a local broadcast is correctly
received by all neighbors. We call this the reliable local
broadcast assumption. In this paper, we consider two distance
metrics viz. L∞ and L2. The L∞ metric is essentially the metric
induced by the L∞ norm [2], such that the distance between
points (x1,y1) and (x2,y2) is given by max{|x1−x2|, |y1−y2|}
in the this metric. Thus nbd(a,b) comprises a square of

side 2r with its centroid at (a,b). The L2 metric is induced
by the L2 norm [2], and is the Euclidean distance metric.
The L2 distance between points (x1,y1) and (x2,y2) is given
by

√

(x1 − x2)2 +(y1 − y2)2, and nbd(a,b) comprises nodes
within a circle of radius r centered at (a,b).

As in [3], we assume that a node may not spoof another
node’s identity, and that no collisions are possible, i.e.,
there exists a pre-determined TDMA schedule that all nodes
follow. Such schedules are easily determined for the grid
network under consideration, e.g., the schedule in [3] (so long
as time-optimality is not a concern). A designated source
(assumed located at (0,0) w.l.o.g.) broadcasts a message with
a binary value.

VI. RELIABLE BROADCAST WITH BYZANTINE FAILURES

We prove the following:

THEOREM 2: If t <
1
2 r(2r + 1), reliable broadcast is

achievable in the L∞ metric.

This was earlier established in [1] using a stronger connec-
tivity condition. We now prove the same using a weaker
connectivity requirement that is essentially the same as the
general sufficient condition of Theorem 1. A brief comparative
discussion is presented in Section VI-A. We present a protocol
to achieve reliable broadcast, based on the weaker condition.
Without loss of generality we assume the message to comprise
a binary value (say 0 or 1). A non-faulty node that is not
the source is said to commit to a value when it becomes
certain that it is indeed the value originated by the source.
The protocol requires maintenance of state by each node
pertaining to messages received from nodes within its two-hop
neighborhood. This state may be reduced further by stipulating
exact messages that a node should lookout for, and shall be
evident from our constructive proof for the viability of reliable
broadcast with t <

1
2 r(2r + 1). However, at a basic level, the

protocol operates as follows:
• Initially, the source does a local broadcast of the message.
• Each neighbor i of the source commits to the first value it

heard from the source and does a one-time local broadcast
of a COMMIT T ED(i,v) message.

• Hereafter, the following protocol is followed by each
node j (including those involved in the previous two
steps):

On receipt of a COMMIT T ED(i,v) message from
neighbor i, record the message, and broadcast a
HEARD( j, i,v) message.

On receipt of a HEARD( j, i,v) message, record
the message, but do not re-propagate.

When a node j commits to a value v, it does a
one-time local broadcast of a COMMIT T ED( j,v)
message.



A node P commits to a value v when it is certain
about it. A node is said to be certain about a value v if it
receives v through COMMIT T ED or HEARD messages
over at least t + 1 node-disjoint paths that lie within a
single neighborhood. More precisely, a node P is certain
of a value v if ∃Q ∈V,C ⊆V such that C ⊆ nbd(Q), and
P received some t +1 messages m1,m2, ...,mt+1 such that
mi = COMMIT T ED(ai,v) or mi = HEARD(ai,ai′ ,v),
∀i,ai,ai′ ∈C and ∀i, j,ai 6= a j,ai 6= a j′ .

THEOREM 3: (Correctness) No node shall commit to a
wrong value by following the above rule.

Proof: The proof is by contradiction. Consider the first
node, say j, that makes a wrong decision to commit to
value v. This implies it received the value v from at least
t + 1 nodes through a single path (direct or two-hop) each,
such that all t + 1 paths were node-disjoint, and lay in some
single neighborhood. Since the number of faults in any single
neighborhood may be at most t, it implies that at most t of
these paths could have a faulty source (of a COMMIT T ED
message) or a faulty intermediate node (that sends a HEARD
message). Thus, all paths cannot have relayed the wrong value,
and so v must indeed be the correct value.

THEOREM 4: (Completeness) Each node is eventually able
to commit to the correct value.

Proof: We prove that each node will be able to meet
the conditions stipulated by the protocol for committing to
the correct value. The proof also clarifies the operation of
the protocol, and in fact would allow one to stipulate exactly
which messages each node should act upon (given that
the topology of the network is completely known), thereby
reducing the state maintained at each node. The essence of
the proof lies in showing that each node P (except the direct
neighbors of (0,0)) has (2t + 1) node-disjoint paths lying in
some single neighborhood into a part of the network that has
already committed to the correct value. This is akin to the
general sufficient condition of Theorem 1.

The proof proceeds by induction.

Base Case:

All honest nodes in nbd(0,0) are able to commit to the
correct value. This follows trivially since they hear the origin
directly, and we assume that address-spoofing is impossible.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b) i.e.
all honest nodes in nbd(a,b) are able to commit to the correct
value, then all honest nodes in pnbd(a,b) are able to commit
to the correct value.

Proof of Inductive Hypothesis:
We show that for each node P in pnbd(a,b) − nbd(a,b)
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Fig. 3. Existence of Sufficient Connectivity

there exists a set of 2t+1 paths {P1,P2, ...,P2t+1} of the form
Pi = (Ai,P) or Pi = (Ai,A′

i,P), such that all Ai,A′
i are distinct,

lie in some single neighborhood, and Ai ∈ nbd(a,b). Since no
more than t of the Ai,A′

i can be faulty, this guarantees that
the node will receive the correct value through at least (t +1)
paths, and will also commit to it.

Consider a node P belonging to nbd(a,b + 1). The analysis
for nodes in nbd(a,b − 1),nbd(a − 1,b),nbd(a + 1,b) is
similar.

Node P in nbd(a,b + 1) − nbd(a,b) may be considered
to be located at (a − r + p,b + r + 1) where {0 ≤ p ≤ 2r}
(Fig. 3). We show analysis of locations of P corresponding
to {0 ≤ p ≤ r}. A similar argument holds for the remaining
locations, by virtue of symmetry. We show the existence
of r(2r + 1) node-disjoint paths P1,P2, ...,Pr(2r+1), that
all lie within the same single neighborhood (centered
at (a,b + r + 1), and indicated by the square with dark
outline in Fig. 3). The region marked A comprises
{(x,y)|(a − r) ≤ x ≤ (a + p);(b + 1) ≤ y ≤ (b + r)}, and
nodes in this region lie in nbd(a,b), and are neighbors of P.
Thus, there are r(r + p + 1) paths of the form A → P. The
region B comprises {(x,y)|(a+ p+1) ≤ x ≤ (a+ r);(b+1) ≤
y ≤ (b + r)}, and falls in nbd(a,b). The region B′ comprises
{(x,y)|(a+ p+1− r) ≤ x ≤ a;(b+ r +1) ≤ y ≤ (b+2r +1)},
and falls in nbd(P). As may be seen, B′ is obtained by a
translation of B to the left by r units, and then up by r units.
Thus there is a one-to-one correpondence between a point
(x,y) in B and a point (x− r,y+ r) in B′, such that the points
in each pair are neighbors. This yields r(r− p) paths of the
form B → B′ → P.

Thus the r(2r +1) node-disjoint paths are obtained.

Observe that the inductive hypothesis along with the



base case suffice to show that every non-faulty node will
eventually commit to the correct message, since starting at
(0,0), one can cover the entire infinite grid by moving up,
down, left and right. Thus the neighborhood of every grid
point can be shown to have decided i.e. every non-faulty
node will have decided on the correct value.

We note that the connectivity condition proved above is
also sufficient to prove that upto 2t < r(2r + 1) crash-stop
failures are tolerable in L∞ metric. We shall elaborate further
in Section VII.

A. Comparison with Earlier Proof

The earlier proof for the possibility bound [1] was based
on the much stronger condition that every node in pnd(a,b)−
nbd(a,b) has 2t +1 node-disjoint paths, all lying within some
single neighborhood, to each of 2t + 1 nodes in nbd(a,b).
However, as discussed earlier, a much weaker condition suf-
fices to ensure reliable broadcast. The resultant protocol is also
more efficient in terms of greater localization of propagated
messages. The earlier proof is still of interest, as a general
statement about connectivity properties of the grid network
under consideration. The proved connectivity property may
also find use in distributed operations other than reliable
broadcast.

VII. CRASH-STOP FAILURES

When only crash-stop failures are admissible, no special
protocol is required. Each node that receives a value, commits
to it, re-broadcasts it once for the benefit of others, and then
may terminate local execution of the protocol. Thus the sole
criterion for achievability is reachability. In this failure mode,
we established an exact threshold for tolerable faults in L∞
metric [1]. The same may be proved using the connectivity
condition for byzantine failures described in the previous
section.

THEOREM 5: If t < r(2r + 1), it is possible to achieve
reliable broadcast in L∞ metric.

Proof: Consider the proof for the byzantine protocol.
Given that nbd(a,b) has decided, there exist r(2r + 1) node-
disjoint paths of the form described in Theorem 4 that lie in
one single neighborhood. Since t < r(2r+1), at least one path
will be fault-free, thereby enabling the broadcast to propagate
to pnbd(a,b). Thus, by inductive reasoning, all fault-free
nodes on the grid will receive the broadcast.

VIII. RELIABLE BROADCAST IN EUCLIDEAN METRIC

We now briefly consider the issue of reliable broadcast
in the L2 i.e. Euclidean metric. As in [1], we refrain from
establishing exact thresholds as it is difficult to precisely
determine lattice points falling in areas bounded by circular
arcs. We present informal arguments based on the new (and
simpler) characterization to suggest that reliable broadcast
in L2 is achievable if slightly less that one-fourth fraction
of nodes in any neighborhood exhibit Byzantine faults. We
work with the value t < 0.24πr2. The basis for the argument

d

(a, b) N

Q

Fig. 4. Illustrating an Approximate Argument for Euclidean Metric

is that for sufficiently large r, the number of nodes that lie
in various considered subregions (having area A) of a circle
of radius r (elaborated later) are approximately A ± O(r).
Thus, we expect the argument to hold well for large values
of r. The argument proceeds by induction, as in the previous
section.

Base Case:

All honest nodes in nbd(0,0) are able to commit to the correct
value. This follows trivially since they hear the origin directly.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b) are
able to commit to the correct value, then all honest nodes in
pnbd(a,b) are able to commit to the correct value.

Justification of Inductive Hypothesis:
We show that each node in pnbd(a,b)−nbd(a,b) is connected
to 2t + 1 nodes in nbd(a,b) via one path each, such that
all these 2t + 1 paths are node-disjoint and they all (the
endpoints, as well as any intermediate nodes) lie entirely in
one single neighborhood. Since no more than t of these can
be faulty, this would guarantee that the node will receive the
correct value through at least t +1 such paths, and commit to
it.

Consider the node at (a,b), as in Fig. 4. Let d be the
distance between the node at (a,b) (we call it node N) and
any node in (pnbd(a,b) − nbd(a,b)) (we call it node Q).
Then d ≤ r + 1 (by the triangle inequality). We consider
the situation in Fig. 5 with NQ from Fig. 4 rotated to
the horizontal axis. We attempt to construct node-disjoint
paths that all lie within the neighborhood centred at M (the
midpoint of NQ) or the grid location nearest to it. If M
is itself not a grid point, the resultant perturbation of the
neighborhood centre to the nearest grid location can only
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Fig. 5. Approximate Construction depicting Node-Disjoint Paths (NQ from
Fig. 4 rotated to x-axis)

affect the presented calculations by O(r). The set of nodes
marked A are common neighbors of P and Q and constitute
one-hop paths (A → Q). A set of two-hop paths B1 → B2 → Q
is also formed where each point (x,y) in region B1 has a
corresponding point in B2 (its image under reflection by axis
OO’). The number of paths is approximately equal to the sum
of the areas A and B1 which turns out to be approximately
1.538r2 = 0.49πr2 > (2(0.24πr2) + 1) (for sufficiently large
r). The details of the calculation are presented in the
appendix. Thus approximately 0.24πr2 Byzantine faults may
be tolerated.

Observe that the above argument also leads to the conclusion
that upto 2t = 0.48πr2 crash-stop failures may be tolerated.

APPENDIX

Calculation of Collective Area of regions A and B1 from
Section VIII.
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Fig. 6. Calculation of Collective Area of Regions A and B1 (from Fig. 5)

Consider Fig. 6. Then the collective area of regions A
and B1 = Area of nbd(N)∩nbd(M) - Area of Sector HMJ +
Area of 4HMJ. We show the calculations below. All angles
are in radians. Sector KMR (HMJ) or 4 KMR (HMJ) refers
to the sector/triangle subtending obtuse (and not reflex) angle
KMR (HMJ) at M.

Area of nbd(N)∩nbd(M) = 2 ( Sector KMR - 4 KMR).

Area of Sector KMR = πr2 6 KMR
2π = πr2 (2cos−1( r+1

4r )))
2π ≈

(r2(cos−1( 1
4 ))) ≈ 1.318r2.

Area of 4 KMR = 1
2 r2 sin( 6 KMR) ≈ 0.242r2. Thus Area

of nbd(N) ∩ nbd(M) = 2(1.318 − 0.242)r2 = 2(1.076)r2 =
2.152r2.

Area of 4HMJ = 1
2 r2sin( 6 HMJ) = 1

2 r2 sin(2cos−1( r+1
2r )) ≈

0.433r2.

Area of Sector HMJ = πr2·
6 HMJ

2π = 1.047r2.

Thus collective area of A and B1 is give by:

2.152r2 −1.047r2 +0.433r2 = 1.538r2 ≈ 0.49πr2.
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