From O(n?) to O(n): An Efficient Deterministic
Algorithm for Byzantine Agreement

Guanfeng Liang and Nitin Vaidya
Department of Electrical and Computer Engineering, and
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Email: {gliang2,nhv} @illinois.edu

Abstract—In this paper, we introduce an efficient deterministic
agreement algorithm that solves the multi-valued Byzantine
agreement problem deterministically for networks of arbitrary
size n > 4 and up to ¢t < n/3 failures. This paper considers
the “broadcast” version of the agreement problem, wherein the
goal is for the nodes in the network to agree on the values that
a certain source node wants to broadcast to them. The per-bit
communication complexity of an agreement algorithm is defined
as the worst case communication complexity for achieving agree-
ment for [bits divided by the message length /. Our algorithm
achieves per-bit complexity arbitrarily close to n(n—1)/(n—t) for
large value of /. For large [, by using a multi-valued approach,
it not only breaks the quadratic lower bound Q(n?) for per-
bit complexity from the prior work, it is also the most efficient
among the known Byzantine agreement algorithms, including the
ones that achieve agreement just probabilistically. Moreover, we
believe that, besides being order-optimal, the proposed algorithm
is in fact also optimal in the sense of minimizing the per-bit cost.

I. INTRODUCTION

Distributed applications often require cooperation between
multiple nodes in a network. In many environments, the
distributed applications need to continue to operate correctly
despite failures (such as link or node failures) or active
attacks (such as a node compromise). Implementing such
distributed applications is a difficult task. To simplify the
task, distributed primitives for commonly used distributed
operations are often developed as building blocks using which
distributed applications can be built [1], [2]. Some examples of
such primitives include ordered message delivery, consensus
or agreement, clock synchronization, mutual exclusion, and
leader election. Indeed, such distributed primitives have proved
to be of great utility. For instance, the ISIS toolkit [3] has
been used in several critical applications, including the New
York Stock Exchange, and the French Air Traffic Control
System. Similarly, the Paxos and multi-Paxos approaches,
introduced by Lamport, and the Spread toolkit [4] have also
found interesting applications.

Byzantine agreement (BA) is among the most important
primitives in fault-tolerant distributed computing. Since initial
solutions were presented in the seminal work of Pease, Shostak
and Lamport [5], [6], many variations on the Byzantine
agreement problem have been introduced in the past, with

some of the variations also called consensus. We will use
the following definition of Byzantine agreement (Byzantine
generals problem [5]): Consider a network with one node
designated as the sender or source, and the other nodes
designated as the peers. The goal of Byzantine agreement is
for all the fault-free peers to “agree on” the value being sent
by the sender, despite the possibility that some of the nodes
may be faulty. In particular, the following conditions must be
satisfied:

o Agreement: All fault-free peers must agree on an iden-
tical value.

« Validity: If the sender is fault-free, then the agreed value
must be identical to the sender’s value.

o Termination: Agreement between fault-free peers is
eventually achieved.

This version of the agreement problem is sometimes called the
“broadcast” problem in related literature. We say that a specific
algorithm solves the BA problem deterministically with up
to ¢ failures when the above requirements are always satisfied
even in presence of up to ¢ faulty nodes. An algorithm solves
the BA problem probabilistically if, even with a vanishingly
small probability, in some cases at least one of the first two
requirements is unsatisfied when it terminates.

The Byzantine agreement (BA) problem was originally
introduced for binary values (1 bit). However, in practice,
agreement is usually required for long messages rather than on
single bits. For example, in a fault-tolerant distributed storage
system, the replicas must agree on the files updated at the
master, which can be megabytes or even gigabytes of data.

Our goal in this work is to design algorithms that can
achieve optimal communication complexity of agreement.
When defining complexity, the “value” referred in the above
definition of agreement is viewed as a sequence of [informa-
tion bits, with every combination of these [bits representing
one of the 2! possible values. The communication complexity
of an algorithm C/(I) is defined as the maximum of the total
number of bits transmitted by all the nodes according to the
algorithm until agreement is reached correctly, considering all
2! possible values and all possible misbehaviors of the faulty
nodes. This measure of complexity was first introduced by Yao

Lit. Complexity Authentication | Probabilistic
required? agreement?
[y | e®?) No Deterministic
[9] Q(n?l + nk) Yes Probabilistic
[10] | Q(n2%l + n’k) Yes Probabilistic
[8] 2nl+O(n3(n + k)) | No Probabilistic
Ours | < %nl +11/26(n*) | No Deterministic

TABLE I
COMPLEXITY OF EXISTING BA ALGORITHMS. THE COMPLEXITY OF
ALGORITHMS FROM[9], [10] ARE CITED FROM [8].

[7], and is then widely used by the distributed computing com-
munity [8], [9], [10]. The per-bit communication complexity
of an algorithm is then defined as

a(l) = C)/1. (D

II. RESULTS

All our results are about achieving agreement deterministi-
cally, which means that under our algorithm, it is impossible
for the fault-free nodes to decide on different values. We make
the following contributions

o We propose an algorithm which solves the BA problem
deterministically for [bits in any network with n
nodes and at most ¢ < n/3 faulty nodes, and uses
c) = %l + 1Y/20(n*) bits of communication for
large [. Hence, for large [, this algorithm achieves per-bit
complexity «(l) approaching %, which is linear

in n. It was believed that it is impossible to achieve

agreement deterministically with per-bit communication
complexity of o(n?) [12], [11], [13], [8]. Our algorithm
not only breaks the quadratic bound for deterministic
algorithms, but for large [, also it is more efficient than

previous probabilistic BA algorithms (see Table I).

e We develop a lower bound on the communication com-
plexity of the BA problem as a function of the lower
bound on the communication complexity of the multi-
party equality function under the point-to-point commu-
nication model. Based on this lower bound, we develop

a conjecture that "(:7__151) is a lower bound on the per-bit

communication complexity of the BA problem.

III. RELATED WORK

Prior work on agreement or consensus: In the seminal work
of Pease et al. [5], [6], it is proved that it is impossible to
achieve agreement if no fewer than one third of nodes are
faulty (¢t > n/3), even just for 1 bit. An algorithm that solves
BA for 1 bit for all ¢ < n/3 is also presented. However, this is
a very inefficient algorithm since its complexity is exponential
in the number of nodes n. Since then, a lot of work has
been done on the BA problem [10], [12], [9], [14], [15], [16],
[8]. In 1985, Dolev and Reischuk [12] proved that, without
authentication, @(nz) bits are necessary to be communicated,
in order to achieve agreement on 1 bit, which results to a lower
bound on the per-bit communication complexity of agreement
Q(n?). Algorithms have been derived to achieve this quadratic
lower bound [11], [13] for 1-bit agreement.

A lot of efforts have been dedicated into tolerating more
than (n — 1)/3 failures and overcoming the quadratic lower
bound, by relaxing the requirements of agreement. For exam-
ple, the agreement and validity requirements can be relaxed
to be satisfied with high probability, rather than satisfied in
all possible cases. The adversary model can also be relaxed.
If a public-key infrastructure (PKI) is available, making it
very unlikely that the faulty nodes can forge false messages
without being detected, it is possible to tolerate more failures.
In the model with an information-theoretic PKI, agreement
on [bits is possible for t < n/2 with Q(n%l + n°k) bits of
communication [9], where « denotes the security parameter
(i.e., the error probability ¢ < 27%[). In the model with a
cryptographic PKI, agreement is possible for ¢ < n with
Q(n%l + n3k) bits of communication [10] (here x denotes
the length of a signature). However, the per-bit complexity of
all these algorithms is still the order of (n?). Moreover, all
these algorithms only solve BA probabilistically.

The quadratic lower bound on the per-bit communication
complexity of agreement remained unbroken until 2006. In [8],
a multi-valued probabilistic BA algorithm is introduced, which
achieves agreement for [bits with communication complexity
O(2nl +n3(n + k)). The quadratic lower bound is overcome
by reducing a BA problem with a long message of [bits to
a BA problem with much shorter messages, using a universal
hash function and allowing a small probability of error, which
makes the solution in [8] probabilistic. In addition, the authors
proved that their algorithm is order-optimal in the sense that,
for large I, & = 2n = O(n) is linear in n. This is order-
optimal since at least (n — 1)l bits are necessary just for the
n — 1 peers to learn the value, which leads to the result that
the per-bit complexity of any BA algorithm must be at least
Q(n). In contrast with this, our algorithm not only solves the
BA problem deterministically, but also is more efficient since
% < 3n/2. So even our algorithm sticks to the original
requirements of the BA problem, it is still at least 25% more
efficient than the algorithm that solves the relaxed problem.

Some of the structure of our algorithm has similarities to the
work on failure detection [15], [16], [14] and dispute control
(171, [18]

Prior work on multicast using network coding: While the
early work on fault tolerance typically relied on replication
[19] or source coding [20] as mechanisms for tolerating
packet tampering, network coding has been recently used with
significant success as a mechanism for tolerating attacks or
failures. In traditional routing algorithms, a node serving as a
router, simply forwards packets on their way to a destination.
With network coding, a node may “mix” (or code) packets
from different neighbors [21], and forward the coded packets.
This approach has been demonstrated to improve throughput,
being of particular benefit in multicast scenarios [21], [22],
[23]. The problem of multicast is related to agreement. There
has been much research on multicast with network coding in
presence of a Byzantine attacker (e.g., [24], [25], [26], [27]).

The significant difference between Byzantine agreement and
multicasting is that the multicast problem formulation assumes

that the source of the data is always fault-free. In addition,
most of the existing work on fault-tolerant network coding
assume a link-failure model, while Byzantine agreement con-
siders the nodes to be faulty. In fact, the unicast/multicast
problem with node-failure is an open problem in general, and
only a few small networks have been solved [28], [29].

IV. MODELS
A. Network model

We assume a synchronous fully connected network of n
nodes, the node IDs (identifiers) are common knowledge. Ev-
ery pair of nodes is connected with a pair of directed point-to-
point links. We assume that all communication links are private
and that whenever a node sends a message directly to another
node, the identity of the sender is known to the recipient, but
we otherwise make no cryptographic assumptions.

We impose no constraint on the capacity of each individual
link. In other words, arbitrary number of bits can be trans-
mitted on a link. However, our goal is to minimize the fotal
number of bits communicated over all links in the network.
This can be viewed as a wired network in which the cost is
the sum traffic.

B. Adversary model

We assume a strong adversary. That is, the adversary has
complete knowledge on the BA algorithm, the [-bit value the
source wants to send, and the packets being sent by every
node. The adversary can take over up to ¢ < n/3 nodes over
the whole execution of the algorithm, possibly including the
source. These nodes are said to be faulty or compromised.
The faulty nodes can engage in any kind of deviations from
the algorithm, including sending false messages, collusion, and
crash failures.

V. THE PROPOSED BYZANTINE AGREEMENT ALGORITHM

The Byzantine agreement algorithm we are going to de-
scribe in this section distinguishes itself from the existing
algorithms in two ways:

« Instead of trying to reach agreement for [bits all at once,
our algorithm reaches agreement incrementally: The [
bits value is divided into generations each of which has
(n — t)c bits (the choice of integer ¢ will be elaborated
later). To simplify the discussion, here we assume that
[is an integer multiple! of (n — t)c on the number of
generations, and the proof and results are still correct.
A “basic” algorithm is run to achieve agreement for
every generation. If the faulty nodes misbehave in a
particular generation, the misbehavior will be detected
and some information of the locations of the faulty
nodes will be learned by all fault-free nodes. Then the
algorithm will be updated and made more efficient for
the following generations. If the faulty nodes repeatedly
keep misbehaving in multiple generations, they will be

!Otherwise, we only need to apply the ceiling function ([-]) on the number
of generations in determining the complexity in Section V-C.

all identified eventually and removed from the network.

o In each generation, instead of sending the (n — ¢)c bits
of raw data to every peer individually, a linear network
coding inspired strategy is used. Essentially, the (n —t)c
bits of each generation is encoded and transmitted such
that any misbehavior by the faulty nodes will be detected
by at least one fault-free peer.

Normally, if no failure is detected, the algorithm completes
in 3 steps and achieves agreement for (n — t)c bits in every
generation. On the other hand, if failure is detected during
the execution, one more step is added. The algorithm starts
assuming no failure is yet detected.

A. Algorithm when no failure is yet detected

Without loss of generality, let us label the n nodes as
0,1,2,...,n—1, and let node 0 be the source. Since no failure
is yet detected initially, nothing is known about the locations
of the faulty-nodes. Our algorithm specifies what each node
should send to every other node. So if a node ¢ transmits
nothing to node j when it should, node j detects a failure
immediately. This can be considered as node ¢ sending a all-
zero message to j, and the following discussion is still valid.

a) Step 1: The source node O divides the (n — t)c bits
of the current generation into m — ¢ packets of c¢ bits, each
packet being a symbol from Galois field GF(2¢). Then node 0
encodes the n —t packets of data into 2(n — 1) coded packets,
each of which is obtained as a linear combination of the n —¢
packets of data. Let us denote the n — ¢ data packets as the
data vector

T = [37171'2,...7-'1:”715] (2)
and the 2(n — 1) coded packets as
Y1,925 - - -5 Y2(n—1)- (3)

For the correctness of the algorithm, these 2(n — 1) coded
packets (or symbols) need to be computed such that any subset
of n—t encoded packets constitutes independent linear combi-
nations of the n —t¢ data packets. As we know from the design
of Reed-Solomon codes, if ¢ is chosen large enough, this linear
independence requirement can be satisfied. The weights or
coefficients used to compute the linear combinations is part
of the algorithm specification, and is assumed to be correctly
known to all nodes a priori. Due to the above independence
property, any n — ¢ of the 2(n — 1) symbols, if they are not
tampered, can be used to (uniquely) solve for the data vector
z, i.e., the n — t data packets.

Source node O transmits 2 packets y; and ¥, _14; to each
peer node ¢, where 7 = 1,...,n—1. The peers do not transmit
in step 1.

b) Step 2: Each peer node ¢ sends packet y; to all other
peer nodes. So by the end of step 2, every peer node ¢ has
received n coded packets in total: y1,...,yn—1 and y,—14; (2
packets directly from the source and n — 2 packets from the
other peers).

¢) Step 3: Each fault-free peer finds the solution for each
subset of n — t packets from among the n packets received
from source and the other peers in steps 1 and 2. If the solution
to all these subsets is not unique, then the fault-free peer has
detected faulty behavior by some node in the network. We are
going to show below that the following two properties hold:
e Property 1: If source is faulty, among the packets
all fault-free peers have received, there are at least
n — t common packets. In other words, the size of the
intersection of the sets of packets the fault-free peers
have received is at least n — ¢.

o Property 2: If source is fault-free, the packets sent by
source are said to be “correct”. Every fault-free peer
receives at least n—t¢ correct packets, either directly from
the source or via other fault-free peers.

The proof of the following theorem shows that our algorithm

has the two properties described above.

Theorem 1: Misbehavior by up to ¢ faulty nodes will either
be detected by at least one fault-free peer, or all the fault-free
peers will reach agreement correctly.

Proof: Node 0 is said to misbehave only if it sends
packets to the peers that are inconsistent — that is, all of them
are not appropriate linear combinations of an identical data
vector . A peer node ¢ is said to misbehave if it forwards
tampered (incorrect) packets other than y; to (some of) the
fault-free peers.

e Source is faulty: Since the source node O is faulty, there
are at least n — ¢ fault-free peers. Let G be the set of the
fault-free peers. In this case, |G| > n—t. According to the
way the peers relay their packets in step 2, each fault-free
peer sends the same y; packet to all other peers in G. As a
result, all the peers in set G will have at least |G| > n—t
coded packets that are all identical (as Property 1 above).
Consider any fault-free peer, if these |G| packets have a
unique solution and it is consistent with the other packets
received by this fault-free peer, then the fault-free peer
will agree on the unique solution. If these |G| packets
do not have a unique solution, or the unique solution
is not consistent with some other packets received by
the fault-free peer, it will detect a failure. It follows that
either all fault-free peers agree on the same solution, or
at least one fault-free peer detects a failure.

o Source is fault-free: When the source is fault-free, there
are at least n —t — 1 fault-free peers, i.e. |G| > n—t—1.
Similar to the previous case, among the packets a fault-
free peer has received, at least |G| — 1 > n —t — 2
are received from the other fault-free peers and must be
correct. In addition, every peer has also received 2 correct
packets from source node 0. Together, every fault-free
peers has received at least |G|+1 > n—t correct packets
(as Property 2 above).

Thus every fault-free peer has received at least n — ¢
correct packets, which have the unique solution z. Thus,

Fig. 1. An example of the diagnosis graph for n = 4 and ¢ = 1. In this
case, node 0 must be faulty.

a fault-free peer will agree on Z correctly if it is consistent
with the other received packets. Otherwise, it will detect
the failure. It follows that either all fault-free peers agree
on Z correctly, or at least one detects a failure.

|

In step 3, each peer broadcasts to the remaining n — 1
nodes a 1-bit notification indicating whether it has detected
a failure or not — the agreement among all n nodes on these
1-bit indicators is achieved by using an efficient traditional
Byzantine agreement algorithm (e.g. the algorithms from [11],
[13]). Since less than 1/3 of the nodes can be faulty, using this
traditional algorithm, all fault-free nodes obtain identical 1-bit
notifications from all the peers. If none of the notifications
indicates a detected failure, then each fault-free peer agrees on
the unique solution obtained above, and the current generation
is completed. However, if failure detection is indicated by any
peer, then one more step is added to the execution.

d) Step 4: When failure detection is indicated by any
peer in step 3, the fault-free peers may find different solutions
from their received packets. In order to reach an agreement for
the current generation and learn some information about the
location of the faulty nodes, an extra step is added subsequent
to the failure detection.

During step 4, every node (including the source) broadcasts
all the packets it has sent to other nodes, or received from
other nodes, during steps 1 and 2 — as with the failure
notifications in step 3, agreements on these broadcast packets
are achieved using the same traditional Byzantine agreement
algorithm. Using the information, all fault-free nodes form
identical “diagnosis graphs” as follows.

The diagnosis graph contains n vertices O, 1, ..., n — 1,
corresponding to the n nodes in our network; there is an
undirected edge between each pair of vertices, with each edge
being labeled as g at time O (with g denoting “good”). The
labels may change to f (denoting “faulty”) during step 4. Once
a label changes to f, it is never changed back to g. Without
loss of generality, consider the edge between vertices X and
Y in the diagnosis graph. At each node, the label for this edge
may be set to f in four ways:

e (i) After the broadcast, all nodes obtain identical infor-
mation about what every node “claims” to have sent and
received during steps 1 and 2. Then, each fault-free peer
will compare the claims by nodes X and Y about packets
sent and received on links XY and YX in steps 1 and 2.
If the two claims mismatch, then the label for edge XY
in the diagnosis graph is set to f.

e (i) When X=0 (that is, X is the source), if the packets
it claims (in step 4) to have sent (in step 1) do not have
a unique solution, then edge 0Y in the diagnosis graph
is set to f for all Y#O0.

e (iii) If node X is a peer, and what it claims to have
received from the source is inconsistent with any one of
the packets it claims to have sent to other peers, then
edge XY in diagnosis graph is set to f for all Y##X.

e (iv) If node X is a peer, and claims to have detected a
misbehavior in step 3, but the packets it claims to have
received in steps 1 and 2 are inconsistent with this claim,
then edge XY in diagnosis graph is set to f for all Y#X.

In the last three cases, all edges associated with X are set to
f. Since the broadcast content is guaranteed to be received
identically at all fault-free nodes by the traditional Byzantine
agreement algorithm, the diagnosis graph is the same at all
fault-free nodes. An example diagnosis graph for n = 4 and
t = 1 thus obtained is illustrated in Fig.1.

The following theorem states that every time a failure is
detected, the fault-free nodes will learn some new information
about the locations of the faulty nodes. In particular, every
time a failure is detected, at least one new edge attached to
the faulty nodes will be set to f after step 4.

Theorem 2: At least one edge will be marked as f after step
4 is performed. Every edge marked as f is associated with
at least one faulty node.

Proof: Presented in Appendix A.]

Let us say that nodes ¢ and j accuse(trust) each other if
edge ¢j is marked f(g) in the diagnosis graph. According to
Theorem 2, a fault-free node can only be accused by the faulty
nodes. This implies that, in a network with at most ¢ failures,
if a node is accused by more than ¢ other nodes, this node is
identified as faulty.

As a result, if the source node O is identified as faulty, the
fault-free peers can terminate the algorithm and all agree on
some default value. On the other hand, if the source node
is not identified as faulty, the packets it broadcast in step 4
must have a unique solution. So the fault-free peers agree
on this unique solution as the data packets. Then the current
generation completes.

B. Modified algorithm after failure detected

After a failure is detected, and step 4 is finished, a new
generation of (n — t)c bits of new data begins if the source
node is accused by no more than ¢ peers. The algorithm is
modified such that no packet is scheduled between any pair
of nodes that accuse each other. So if a peer is identified as
faulty, it is isolated from the network, and no transmission is
scheduled on the links attached to it. The following description
of the modified algorithm considers only the nodes that have
not been isolated.

e) Step 1: Without loss of generality, assume that node
0 is accused by m < t < n/3 peers. If node 0 is indeed fault-

free, it encodes the n — ¢ packets of data into 2(n —1 —m) >
n — t coded packetsz, each of which is obtained as a linear
combination of the n — ¢ packets of data. Similar to the case
when no failure is yet detected, every subset of n — ¢ encoded
packets consists linear independent combinations of the n — ¢
data packets. For convenience, we will index the two packets
node 0 sends to node ¢ as y; and y,—144, the same as before.
For a node i that is accused by the source, y; and y,,—14; do
not exist.

f) Step 2: Every fault-free peer ¢ that is trusted by the
source forwards y; to every peer j that it trusts.

g) Step 3: Every fault-free peer ¢ that is accused by
the source node O only receives packets from the peers that
nodes 0 and ¢ both trust in step 2. If node ¢ receives at least
n —t packets, it first checks these packets for consistency, by
trying to find the unique solution of every subset of n — ¢
received packets in the same way as before. If these packets
are inconsistent, node ¢ detects a failure. Otherwise node 7
generates one packet z; as a linear combination of the packets
it receives from its trusted peers.

It is possible that peer ¢ receives fewer than n —¢ packets in
step 2. If this is the case, the algorithm will schedule some of
the peers trusted by nodes 0 and ¢ both to send a second packet
(namely ¥,—14;) to node ¢, until node 7 receives n —t packets
in total. There are always enough packets from the peers both
nodes 0 and ¢ trust for this requirement to be satisfied, as
shown next. Since we are only considering the nodes that are
not isolated (accused by no more than t other nodes), node
0 is accused by at most ¢ peers, and 7 is accused by node O
and at most ¢ — 1 peers. Thus there are at least n — 2t peers
that are trusted by both node O and ¢, and there are at least
2(n —2t) = (n —t) 4+ (n — 3t) > n — t packets that these
peers can send to node ¢ (including the packet sent in step 2).
Then node ¢ generates a packet z; as a linear combination of
the n — ¢ packets it has received, similar to the previous case.

An example for the latter case in a 7-node network with 2
faulty nodes is shown in Fig.2. In this example, nodes 0 and
1 are faulty, and they both accuse nodes 2 and 3. As a result,
nodes 2 and 3 only receives 3 packets (y4,ys,ys) in step 2,
from nodes 4, 5 and 6. In step 3, the algorithm schedules nodes
4 and 5 to send the second packets (y19,¥11) to nodes 2 and
3. Then nodes 2 and 3 generate 2z, z3 from y4, ¥s, Y6, Y10, Y11,
and send them to their trusted nodes. By the end of step 3, all
fault-free peers share n — ¢ = 5 packets: za, 23, Y4, Y5, Y6-

For the correctness of the algorithm, any subset of n —t of
the union of the y and z packets must be linearly independent.
Similar to the case of generating y packets, if c is chosen large
enough, this requirement can be satisfied. Since every peer @
accused by the source receives at least n—t packets, it can first
solve for the unique solution of these packets. If the unique
solution exists, then node 7 generates z; in the same way as
packet y; is generated from Z. Otherwise, peer i detects a
failure.

2Since m < t,2(n—1—m) >2(n—1—1t) =n—t+(n—t—2). From
t>1landn >3t+1, wehaven —t—2 >0, then 2(n —1—m) > n—t.

ys’yn

(a) Transmissions by nodes 4, 5 and 6 to nodes
2 and 3. Transmissions among nodes 4, 5 and
6 are not shown.

Fig. 2.

YoYsYeZpZsYipYis Yo¥sYe

Z2’Za’y1u

Y, Yoo

. Zz’za‘yﬂ
Yo YsYe

Yo YsYerZpZsY Y. : A

47576779730V 100 11 @ 2,2,y

(b) Transmissions by nodes 2 and 3 in step 3.
By the end of step 3, all fault-free peers have
packets Y4, ys, Y6, 22, 23.

Examples of some peers accused by the source with n = 7 and ¢t = 2. Nodes 0 and 1 are faulty. The dotted lines indicates pairs of nodes that

accuse each other. The boxes near the fault-free peers indicate the coded packets available at the peers by the end of step 1 and step 3, respectively.

After z; is generated, every node ¢ accused by the source
sends z; to all the peers it trusts. Then every fault-free peer
finds the solution for each subset of n —¢ packets from among
the packets received from the other nodes in steps 1, 2 and 3,
and detects a failure if no unique solution is found. Then a
1-bit notification is broadcast as before. Similar to Theorem 1,
the following theorem shows that the modified algorithm here
also has the two properties described in section V-A. Hence
any further misbehavior by the faulty nodes will be detected.

Theorem 3: In the modified algorithm, further misbehavior
by the faulty nodes will either be detected by at least one
fault-free peer, or all the fault-free peers will reach agreement
correctly.

Proof: Here we also consider the cases when source node
0 is fault-free and faulty separately.

e Source is faulty: Denote T' and A as the set of fault-free

peers that are trusted by the source and accused by the
source, respectively. Since source is faulty, there are at
least n — ¢ fault-free peers, i.e. |T| + |A| > n —t. As
stated in Theorem 2, an edge is set to f only if at least
one node associated with this edge is faulty. This implies
that all edges connecting two fault-free nodes are always
marked as g, and two fault-free nodes will never accuse
each other. Thus, every peer 7 € T" sends y; to all peers
in T'|J A during step 2. Similarly, every peer i € A sends
z; to all peers in T'|J A during step 3. As a result, the
fault-free peers T'|J A share at least |[T'| + |A| > n —t¢
identical packets (as Property 1).
Similar to the argument of the first part in the proof of
Theorem 1, the fault-free peers will either all agree on
the unique solution of these |T'| 4 | A| packets, or at least
one fault-free peer will detect a failure.

o Source is fault-free: Remember that two fault-free nodes
will never accuse each other. Thus every fault-free peer
receives 2 correct packets from source node O in step 1.
Then in step 2, since all fault-free peers trust each other,
every fault-free peer ¢ sends the correct packet y; to all
other fault-free peers. Then the rest of this proof is the
same as the second part of the proof of Theorem 1.

h) Step 4: If a failure is detected by a node that accuses
no more than ¢ other nodes (otherwise this node must be faulty
and must have been isolated as stated before), step 4 is entered
and carried out as before. Similar to Theorem 2, at least one
new edge adjacent to a faulty node will be set to f in the
diagnosis graph.

If by the end of step 4 the source node O is accused by
more than ¢ peers, it is identified as faulty, and the fault-
free peers can terminate the algorithm and all agree on some
default value. On the other hand, if the source node is not
identified as faulty, the packets it broadcast in step 4 must
have a unique solution. So the fault-free peers agree on this
unique solution as the data packets as before. Then the current
generation completes.

C. Complexity of the proposed algorithm

We have finished describing the proposed Byzantine agree-
ment algorithm above. Now let us study the communication
complexity of this algorithm.

1) When no failure is yet detected, excluding step 4:

o Every peer receives n packets (2 from source and
n — 2 from the other peers), so n(n — 1) packets
are transmitted in steps 1 and 2, which is n(n—1)c
bits in total.

o Each peer broadcasts 1 bit notification. Let us de-
note B as the bit-complexity of achieving agreement
on 1 bit. So in step 3, totally (n — 1)B bits are
transmitted.

So when no failure is yet detected, the number of
communicated bits per generation (excluding step 4) is

n(n — 1)c+ (n — 1)B bits. 4)

2) After failure detected, excluding step 4:

o Every peer trusted by source node O receives 2
packets from source and 1 packet from every peer
it trusted. So it receives no more than n packets in
steps 1, 2 and 3, which is no more than the number
of packets it receives when no failure is yet detected.

o For every peer i accused by source node 0, let b
and p be the number of peers that both source and

node i trust and that only node ¢ trusts, respectively.
Node i receives max(b,n — t) packets from the
peers trusted by the source and ¢ both, and p
packets from peers trusted only by node ¢ (but
accused by the source), respectively. Observe that
b+p <n-—2and p < t, thus node 7 receives at
most max(b,n —t) + p < n packets in total, which
is no more than the number of packets it receives
when no failure is yet detected.

¢ Only nodes accused by no more than ¢ nodes need
to achieve agreement on the 1-bit notifications,
which results in no more than (n — 1) B bits being
communicated.
Now it should not be hard to see that after failures
are detected, the number of bits communicated per
generation is at most the same as the case when no
failure is yet detected, excluding step 4. So in the normal
operation (Steps 1 to 3), at most n(n —1)c+ (n —1)B
bits are communicated in every generation.

3) Step 4: Every time step 4 is executed, every packet
transmitted in Steps 1 through 3 is broadcast by two
nodes: the node that sends this packet and the node that
receives this packet. According to the analysis above, no
more than n(n — 1) packets are transmitted throughout
steps 1 to 3. So in every step 4, no more than 2n(n— 1)
packets are broadcast, which results in 2n(n — 1)cB bits
being communicated.

Now we can compute an upper bound of C(l). Notice that
(n — t)c bits are being agreed on in every generation, so
there are I/(n — t)c generations in total®. Thus in steps 1
to 3 in all generations, no more than "g?:tl)l + (7(:_12)3 L bits
are communicated. Meanwhile, according to Theorem 2, ever
time step 4 is performed, at least one new edge associated
with a faulty node will be set to f in the diagnosis graph.
Since it takes ¢ + 1 f-edges to identify a faulty node, at most
(t+ 1)t step 4’s will be performed before all faulty nodes are
identified. So the total number of bits communicated in step
4’s in all generations is at most 2n(n — 1)(t + 1)tcB bits. An
upper bound on the communication complexity C(I) of the
proposed algorithm is then computed as

~1 —1)BI
n(:;,t)l (n—1) E+2n(n_1)(t+1)tcB. &)

n—t
Complexity for large [: For a large enough value of [
(compared to n), with a suitable choice of ¢ = m
in Equation 5, we have

C([) < Ml + 2311/2\/2n(n - 1)2(t+ 1)t ©)
n—t n—t

— —1)2
_nln tl)l+2Bl1/2\/n(n 12 (n+3)

)

3To simplify the presentation, we assume that [is an integer multiple of
(n — t)c here. For other values of [, the analysis and results are still valid by
applying the ceiling function [-] to the number of generations.

-1

_nn-1) g i+ B 20y, ®
The “<” in Equation 7 is due to the fact that the second term
in Equation 6 is an increasing function of ¢ and ¢ < n/3.

Notice that deterministic BA algorithms of complexity
©(n?) are known [11], so we assume B = ©(n?). Then the
complexity of our algorithm for all ¢ < n/3 upper bounded
by

c) <

nln=1), +11%20(n*) < 3l + 1120(n%). (9

n—t 2
Table I lists the communication complexities for agreeing on
[bits, both for the most efficient algorithms in the literature
and for the algorithm presented in this paper. In particular,
compared with the best known algorithm in [8], our algorithm
has strictly lower complexity when [> wnS for some constant
w > 0. Moreover, the low complexity in [8] is achieved by
allowing a positive probability of error (fault-free nodes may
decide on different values), while our algorithm is guaranteed
to achieve agreement deterministically such that all fault-free
nodes always agree on the same (correct) value.

For a given network with size n, the per-bit communication
complexity of our algorithm is upper bounded by
n(n—1) O(n%)

n—t 11/2
Thus, in the worst case, when [— oo, the per-bit communi-
cation complexity of our algorithm, referred below as gy,
becomes py,r = % Note that for finite [, a(l) would
exceed . However, a(l) will approach a,, as I becomes
large.

n(n —1)

a(l) <

, as l— o0o. (10)

n —

VI. OPTIMALITY OF OUR ALGORITHM

Authors of [8] proved that any algorithm that achieves
Byzantine agreement for [bits requires at least (n — 1) bits to
be communicated, which implies a lower bound of the per-bit
complexity of all BA algorithms: « > n — 1. Their algorithm
has communication complexity of 2nl + ©(n?(n + x)) bits,
which results in per-bit communication complexity of 2n.
We will refer to this as « 8] (thus, g = 2n). Hence, the
algorithm in [8] is order-optimal.

On the other hand, according to Equation 10, our algorithm
is more efficient since its worst-case per-bit complexity when
l = 00 1S Qoyr = ”(:7;1) <3(n-1)/2< 0.75a[8]. Thus our
algorithm is at least 25% more efficient than the best known
algorithm. Moreover, since o > n — 1 for any BA algorithms,
our algorithm is within a factor of 1.5 of the optimal. In fact,
we believe that our algorithm is really optimal in the sense
of minimizing a, i.e. ”(::tl) is a lower bound on the per-bit
communication complexity of the BA problem. This claim is
stated formally as the following conjecture:

Conjecture 1: In order to achieve Byzantine agreement on
[bits, at least "(("__s)l bits need to be communicated in the

network.

To argue this conjecture, we first prove the following
theorem

Theorem 4: The communication complexity of the any BA
algorithm for n nodes and up to t faulty nodes is lower
bounded by %El(n —t), where E;(k) is a lower
bound of the communication complexity of the following
k-party equality function under the point-to-point communi-
cation model: Given k£ nodes each of which is assigned an
arbitrary initial value of [bits, if the k initial values are not
identical, as least one node will detect a mismatch; otherwise

none of the nodes detects mismatch.

Proof: We prove that in a network with n nodes and up
to ¢ failures, when no failure is yet detected initially, at least
E;(n—t) bits need to be communicated on links among every
subset of n — ¢ nodes, according to the following reduction

Remember that our goal is to achieve agreement with up
to t faults (any subset of < ¢ nodes). Consider one subset
F = {fo,..., ft—1} of t nodes containing the source node
0 (fo) that may be faulty. The other n — ¢ nodes are known
to be fault-free and denote the set of these nodes as G =
{gla' .. agnft}'

Given any algorithm that achieve agreement on [bits, we
construct the state machine illustrated in Fig.3. In this state
machine, for node g¢;, F; = {fio,...,fit—1} is the set of
virtual nodes corresponding to F' and run the same correct
code as nodes in F' should run, and g; ; is the virtual node
corresponding to g; and runs the same code as node g;. The
good node g; sends identical messages to node g; and g; ;.
Each virtual source node f; ¢ is given an initial value v; of
[bits. In the real network, node f; behaves to node g; as
node f;; in the state machine. It should be easy to see that
if v = v9 = .-+ = v,_; the nodes in F' are actually not
misbehaving.

Let us assume that all the nodes in G know that nodes
in F' behave in the way described above. Observe that the
behavior F; and g; ; is fully determined by v; and the messages
node g; sends. So if g; knows the value of v;, it can emulate
the behavior of F; and g; ;. Now we can use any Byzantine
agreement algorithm for n node and up to ¢ failures to solve
the multiparty equality function problem of n — ¢ nodes:

Let each node ¢ = 1,...,n — ¢ run the same code as node
gi, and emulate F; with the initial value v;. If vy = vy =

- = Up_y, it is as if F' is not misbehaving in the original
n-node network. Then the agreed value v must equal to v;
for all 7, and none of the n — ¢ nodes detects a mismatch. On
the other hand, if the n — t initial values are not identical,
the agreed value v must be different from at least one initial
value v;. Then node ¢ will detect the mismatch. Now, by the
definition of Ej(n — t), it is impossible to check whether all
initial values are identical with fewer than FE;(n —t) bits being
communicated. This means that any BA algorithm must have
at least E;(n — t) bits communicated on links between nodes
in G.

Since the location of the faulty peers are unknown a priori,
so at least Ej(n —t) bits must be assigned for every subset of
n —t peers. For the subsets containing the source and n—t—1
peers, a similar reduction can be applied and leads to the same
result.

Fig. 3.

State machine for |G| = 3.

Now we have shown that E;(n — t) bits are necessary for
every subset of n—t nodes in the network in order to solve the
BA problem. If we sum over all (n’i t) subsets of n —¢ nodes,
the summation is (,",)(n — ¢ — 1)l bits, while each links
is counted (J:EQ) times. Then we compute the following
lower bound on the communication complexity for any BA
algorithm:

(,") Ei(n—t)

ci) = 2 (11
(n7t72)

n(n —1)
= Ei(n—t). 12
m—nm_t—nom=Y (12)
|

So what is E;(k)? We conjecture that

Conjecture 2: Under the point-to-point communication

model, E;(k) > (k— 1)I.

Argument of Conjecture 2: It is easily shown to be true
when [= 1. Since we assume 1 bit as the smallest unit of
data, if two nodes communicate with each other, at least 1
bit is transmitted on one of the two links connecting the two
nodes. We call such a pair of nodes connected. It should not be
hard to see that just to check if all & initial bits are identical,
the network must be connected. And it is well-known from
graph theory, that to connect k nodes, at least £ — 1 links are
needed. Thus, at least £ — 1 bits are necessary just to check
initial values of 1 bit among £ nodes. Intuitively, every bit of
the [-bit initial value is independent. So the checking result of
a particular bit is independent of the results of the other bits.
This implies that every bit needs to be checked individually.
For each bit, we need to form a connected graph using at least
k — 1 bits. Thus, to check bits, (k — 1)I bits are needed.

Although the above intuition sounds reasonable, the formal
proof is much more intriguing (consider that the bits a nodes
sends can be any arbitrary function of its own initial value and
the bits it receives). It is actually a multiparty communication
complexity problem [7], [30]. By the fooling-set argument
from [7], it is easy to show that every nodes must commu-
nicates (send and receive) at least [bits. This gives us a lower
bound of ki/2 bits. However, this lower bound is obviously
not tight for £ > 3 since we have shown that for [= 1, it
requires at least k — 1 > k/2 bits.

We are unaware of a past tight lower bound for the commu-
nication complexity of the multiparty equality function under
the point-to-point communication model.

If Conjecture 2 is proved to be true, then according to
Theorem 4, Conjecture 1 is true too. Then for a network of
size n with up to ¢ faults, the communication complexity of
any Byzantine agreement algorithm is at least n;:l) I, which

results in «(l) > % Thus, our algorithm is optimal in
the sense of approaching the lower bound of o with large [.

VII. CONCLUSION

In this work, we have proposed a highly efficient algorithm
that solves the Byzantine agreement problem deterministically
on values of length [> 1 bits. This algorithm uses error
detecting network codes to ensure that fault-free nodes will
never disagree, and routing scheme that is adaptive to the
result of error detection. Our algorithm has communication
complexity of %l + 1'/20(n*), which leads to a linear
cost % per-bit agreed upon for large enough value of
I, and overcomes the quadratic lower bound Q(n?) in [12].
Such linear per-bit complexity has only been achieved in the
literature by allowing a positive probability of error. Our algo-
rithm achieves the linear per-bit complexity while achieving
agreement correctly deterministically in all possible cases. In
addition, our algorithm has the lowest per-bit communication
complexity among all known BA algorithms, including those
that reaches agreement probabilistically. In fact, we believe
that our algorithm achieves the lowest per-bit communication
complexity among all algorithms that solves the BA problem.

ACKNOWLEDGMENT

This research is supported in part by Army Research Office
grant W-911-NF-0710287. Any opinions, findings, and con-
clusions or recommendations expressed here are those of the
authors and do not necessarily reflect the views of the funding
agencies or the U.S. government. We thank Martin Hirt and
Valerie King for their feedback.

REFERENCES

[11 N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1995.

[2] K. Birman, Reliable Distributed Systems: Technologies, Web Services,
and Applications. Springer, 2005.

[3] ——, “A history of the virtual synchrony replication model,” 1994.

[4] Y. Amir and J. Stanton, “The spread wide area group communication
system,” 1998.

[5] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” JOURNAL OF THE ACM, 1980.

[6] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. on Programming Languages and Systems, 1982.

[71 A. C.-C. Yao, “Some complexity questions related to distributive com-
puting(preliminary report),” in STOC ’79, 1979.

[8] M. Fitzi and M. Hirt, “Optimally efficient multi-valued byzantine
agreement,” in PODC ’06, 2006.

[9]1 B. Pfitzmann and M. Waidner, “Information-theoretic pseudosignatures

and byzantine agreement for ¢ > n/3,” Technical Report, IBM Research,

1996.

D. Dolev and H. R. Strong, “Authenticated algorithms for byzantine

agreement,” SIAM Journal on Computing, vol. 12(4), pp. 656666, 1983.

P. Berman, J. A. Garay, and K. J. Perry, “Bit optimal distributed

consensus,” Computer science: research and applications, 1992.

[10]

(11]

[12] D. Dolev and R. Reischuk, “Bounds on information exchange for
byzantine agreement,” J. ACM, vol. 32, no. 1, pp. 191-204, 1985.

B. A. Coan and J. L. Welch, “Modular construction of a byzantine
agreement protocol with optimal message bit complexity,” Inf. Comput.,
vol. 97, no. 1, pp. 61-85, 1992.

E. S. Amdur, S. M. Weber, and V. Hadzilacos, “On the message com-
plexity of binary byzantine agreement under crash failures,” Distributed
Computing, 1992.

V. Hadzilacos and J. Y. Halpern, “The failure discovery problem,” in
Mathematical Systems Theory, 1996.

——, “Message optimal protocols for byzantine agreement,” in Mathe-
matical Systems Theory, 1996.

M. Hirt, U. Maurer, and B. Przydatek, “Efficient secure multi-party
computation,” in ASIACRYPT 2000, 2000.

Z. Beerliova-Trubiniova and M. Hirt, “Efficient multi-party computation
with dispute control,” in TCC, 2006.

E. C. Cooper, “Replicated distributed programs,” in SOSP’85, 1985.
M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” J. ACM, vol. 36, no. 2, pp. 335-348,
1989.

S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” Information
Theory, IEEE Transactions on, vol. 49, no. 2, pp. 371-381, Feb. 2003.
R. Koetter and M. Medard, “An algebraic approach to network coding,”
in ISIT’01, 2001.

C. Fragouli, D. Lun, M. Medard, and P. Pakzad, “On feedback for
network coding,” in CISS’07, 2007.

N. Cai and R. W. Yeung, “Network error correction, part ii: Lower
bounds,” Communications in Information and Systems, 2006.

T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,
“Byzantine modification detection in multicast networks using random-
ized network coding,” 2004.

S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
“Resilient network coding in the presence of byzantine adversaries,” in
INFOCOM’07, 2007.

S. Kim, T. Ho, M. Effros, and S. Avestimehr, “New results on network
error correction: capacities and upper bounds,” in ITA’10, 2010.

O. Kosut and L. Tong, “Nonlinear network coding is necessary to
combat general byzantine attacks,” in 47th Annual Allerton Conference
on Communication, Control, and Computing, October 2009.

G. Liang, R. Agarwal, and N. Vaidya, “Secure capacity of wireless
broadcast networks,” Technical Report, CSL, UIUC, September 2009.
D. Dolev and T. Feder, “Multiparty communication complexity,” Foun-
dations of Computer Science, Annual IEEE Symposium on, 1989.

[13]
[14]

[15]
[16]
(17]
[18]

[19]
[20]

[21]
[22]
(23]
[24]

[25]
[26]

[27]

[28]

[29]

[30]

APPENDIX
PROOF OF THEOREM 2

Proof: Suppose to the contrary that after step 4, no edge
is marked as f. This implies that the packets the source
node broadcasts in step 4 have an unique solution. Moreover,
these packets are also consistent with the packets each peer
broadcasts in step 4. As a result, the packets each peer
broadcasts must have the same unique solution.

Recall that the broadcast in step 4 is performed only after
some peer claims to have detected a failure. As a result, if
the peer that claims to have detected a failure is fault-free, the
packets it broadcasts in step 4 cannot have an unique solution;
on the other hand, if this peer is faulty, what it broadcasts in
step 4 contradicts with the 1-bit notification it issues in step
3. In either way, it leads to a contradiction. So at least one
edge will be marked as f after step 4.

In addition, it is easy to see that an edge between two fault-
free nodes will never be marked as f, since the packets broad-
cast by two fault-free nodes in step 4 will never mismatch. This
completes the proof of Theorem 2. []

