
Capacity of Agreement with Finite Link Capacity
Guanfeng Liang and Nitin Vaidya

Department of Electrical and Computer Engineering, and
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Email: {gliang2,nhv}@illinois.edu

Abstract—In this paper, we consider the problem of maximiz-
ing the throughput of Byzantine agreement, when communication
links have finite capacity. Byzantine agreement is a classical
problem in distributed computing, with initial solutions presented
in the seminal work of Pease, Shostak and Lamport. In existing
literature, the communication links are implicitly assumed to
have infinite capacity. The problem changes significantly when
the capacity of links is finite. The notion of throughput here is
similar to that used in the networking/communications literature
on unicast or multicast traffic. We identify necessary conditions
of achievable agreement throughputs. We propose an algorithm
structure for achieving agreement capacity in general networks.
We also introduce capacity achieving algorithms for two classes
of networks: (i) symmetric networks with n ≥ 4 nodes and up to
t < n/3 failures; (ii) arbitrary four-node networks with at most
1 failure.

I. INTRODUCTION

We consider the problem of characterizing the capacity
of Byzantine agreement, given finite-capacity links between
nodes in the system. Byzantine agreement is a classical prob-
lem in distributed computing, with initial solutions presented
in the seminal work of Pease, Shostak and Lamport [1], [2].
Many variations on the Byzantine agreement problem have
been introduced in the past, with some of the variations also
called consensus. We will use the following definition of
Byzantine agreement (Byzantine general problem): Consider
a network with one node designated as the sender or source
(S), and the other nodes designated as the peers. The goal
of Byzantine agreement is for all the fault-free nodes to
“agree on” the value being sent by the sender, despite the
possibility that some of the nodes may be faulty (the faulty
nodes can collude). In particular, the following conditions must
be satisfied:

• Agreement: All fault-free peers must agree on an iden-
tical value.

• Validity: If the sender is fault-free, then the agreed value
must be identical to the sender’s value.

• Termination: Agreement between fault-free peers is
eventually achieved.

Our goal in this work is to design algorithms that can achieve
optimal throughput of agreement. When defining throughput,
the “value” referred in the above definition of agreement is
viewed as an infinite sequence of information bits. We assume
that the information bits have already been compressed, such
that for any subsequence of length l > 0, the 2l possible

sequences are sent by the sender with equal probability. Thus,
no set of information bits sent by the sender contains useful
information about other bits. This assumption comes from the
observation about “typical sequences” in Shannon’s work [3].

We also adopt the notion of channel capacity from the
information theory literature [3]: tightest upper bound on
the amount of information that can be reliably transmitted
over a communication channel/link. Basically, for a link with
capacity z bits/unit time, by definition of link capacity, at most
z information bits can be “sent” per unit time - independent
of how the bits are encoded (e.g. the bits could be encoded as
a specific waveform, or as silenced interval). In the existing
works on Byzantine agreement, the capacity of links between
the nodes are assumed to be infinite implicitly. To the best of
our knowledge, we are the first one to study the problem of
Byzantine agreement when the links in the network have finite
capacity.

At each peer, we view the agreed information as being
represented in an array of infinite length. Initially, none of
the bits in this array at a peer have been agreed upon. As
time progresses, the array is filled in with agreed bits. In
principle, the array may not necessarily be filled sequentially.
For instance, a peer may agree on bit number 3 before it is
able to agree on bit number 2. Once a peer agrees on any bit,
that agreed bit cannot be changed.

We assume that an agreement algorithm begins execution
at time 0. The system is assumed to be synchronous. In a
given execution of an agreement algorithm, suppose that by
time t all the fault-free peers have agreed upon bits 0 through
b(t)− 1, and at least one fault-free peer has not yet agreed on
bit number b(t). Then, the agreement throughput is defined
as1 limt→∞

b(t)
t .

Capacity of agreement in a given network, for a given sender
and a given set of peers, is defined as the supremum of all
achievable agreement throughputs.

In this paper, we consider networks consisting of n nodes,
connected by directed point-to-point links. Prior work [1], [2]
shows that, to achieve agreement despite t failures in such
networks, the number of nodes n must exceed 3t. For such
networks, the contributions of this paper are two-fold:

1As a technicality, we assume that the limit exists. The definitions here can
be modified suitably to take into account the possibility that the limit may
not exist.

2

• We identify necessary conditions that can be used to
obtain an upper bound on the agreement capacity of
arbitrary networks. This is the first work that investigates
the performance of Byzantine agreement algorithms
under the realistic assumption that point-to-point links
in the network are capacity-constrained.

• Although determining the capacity of general networks
is very difficult, we are able to solve the problem for two
classes of networks:

– For fully connected symmetric networks, in which all
directed links have the same capacity C, with number
of nodes n ≥ 4 and up to t < n/3 faulty nodes, we
show that the agreement capacity is (n−t−1)C. As
seen later, this is at least n− t− 1 times higher than
the throughput achievable with traditional agreement
algorithms.

– Due to the requirement that n > 3t, the smallest
network wherein the agreement problem is mean-
ingful consists of n = 4 nodes, with the requirement
of tolerating at most 1 failure. For such networks,
we fully characterize the agreement capacity. The
different four-node networks may differ in the ca-
pacity of different links in the network. For arbitrary
link capacity distribution, we present an optimal
agreement algorithm for four-node networks. We
present throughput analysis for the algorithm, and
also a proof that it can achieve throughput arbitrarily
close to the capacity.

The rest of this paper is organized as follows: In section
II we first discuss symmetric networks briefly to provide a
simple but important example of the benefits of our approach
for achieving agreement. Necessary conditions for achieving a
desired agreement throughput are introduced in section III. A
general algorithm structure for capacity-achieving algorithms
is presented in section IV. Finally, the details of the capacity-
achieving algorithm for four-node networks are presented in
section V, followed by the related works and conclusion in
sections VI, VII.

II. SYMMETRIC NETWORKS

To illustrate the improvement achievable by using the pro-
posed approach, when compared to traditional algorithms, we
first briefly discuss symmetric networks.

Consider a symmetric network with n nodes and up to t <
n/3 faulty nodes, in which every link has capacity C bits/unit
time. Thus, each pair of nodes is connected by two directed
point-to-point links, each with capacity C. In the traditional
agreement algorithms, such as [2], to achieve agreement on 1
packet of data, the source sends the whole packet to every peer
using the direct link to that peer. As a result, the agreement
throughput achieved with these algorithms is upper bounded
by the link capacity of each out-going link from the source,
which in this case is C bits/unit time.

By comparison, using our approach, it is possible to achieve
a substantially higher throughput in the symmetric network. In
particular, it can be shown that:

Given per-link capacity C, agreement capacity of a sym-
metric network of size n and up to t < n/3 failures, is
(n− t− 1)C.

This capacity result is tight in the sense that our algorithm
can achieve throughput arbitrarily close to the capacity. For
brevity, we will just note that the structure of the algorithm for
the symmetric network is analogous to the algorithm presented
later in the paper, and the rest of the details of the algorithm
for the symmetric networks is included in Appendix A.

III. NECESSARY CONDITIONS FOR GENERAL NETWORKS

In this section, we introduce three necessary conditions for
agreement throughput at rate R bits/unit time to be achievable
in general networks. These necessary conditions together serve
as an upper bound on the agreement capacity.

It is known that a network must contain at least n = 3t+1
nodes for agreement to be achievable with t Byzantine failures.
Consider a synchronous network of n ≥ 4 nodes, and at most
t < n/3 of these nodes may be faulty. The network is viewed
as a directed graph, formed by directed links between the
nodes in the network, with the capacity of each link being
finite. The capacity of some links may be 0, which implies that
these links do not exist. We identify the following necessary
conditions for achieving agreement throughput of R bits/unit
time in general networks.

• Necessary condition NC1: If any t peers are removed
from the network, the min-cut from the source to each
remaining peer must be ≥ R.

• Necessary condition NC2: The max-flow to each of the
peers from the other peers, with the source and any t−1
peers removed from the network, must be ≥ R.

• Necessary condition NC3: If any t nodes are removed
from the network, the sum capacity of all links in both
directions on any cut must be ≥ R.

The proofs for these conditions can be found in our technical
report [4]. The necessary conditions above together serve as an
upper bound on the agreement capacity of general networks.
However, whether this bound is tight or not remains an open
problem in general. In fact, even characterizing the capacity of
multicast with node failures, which is an degraded version of
the Byzantine agreement problem with the source node being
always fault-free, is an open problem in general, and have
been solved only for a few small networks [5], [6].

Despite the difficulty in solving the agreement capacity
problem in general, we are able to characterize the agreement
capacity for: (i) symmetric networks with arbitrary size n
(Section II and Appendix A); and (ii) four-node networks with
n = 4, t = 1 and arbitrary link capacity (Section V).

IV. THE ALGORITHM STRUCTURE IN A NUTSHELL

In this section we present the main idea and the structure
of our algorithms. Any Byzantine agreement algorithm can

3

be viewed as an error correction network code (possibly with
loops and feedback), which encodes the data with sufficient
redundancy such that all peers will be able to correct any
inconsistency of the data, introduced by up to t faulty nodes,
including the data source (in multicast, only the intermediate
nodes can introduce inconsistency). It is to be noted that any
error correction code can be used for error detection at the
same rate. As a result, if agreement throughput of R bits/unit
time is achievable in a network, there must exist an error de-
tection network code at rate R for the same network. Based on
this observation, we propose the following capacity achieving
algorithm structure for Byzantine agreement. The information
bits are divided into generations, and the following stages are
performed for every generation.

A. Error Detecting Stage

In this stage, the data of the current generation is encoded
and transmitted using an error detection network code that
can detect any misbehavior/failure by no more than t nodes at
rate R. If no failure is detected, every fault-free peer agrees on
the data of this generation. Then a new generation is carried
out using the same error detection network code. If any peer
detects a failure, the full broadcast stage is performed.

B. Full Broadcast Stage

In the full broadcast stage, every node (including the source)
broadcasts to all other nodes everything it has sent and
received in the error detecting stage. This broadcast is made
reliable using a traditional Byzantine agreement algorithm (for
example, the one proposed by Pease, Shostak and Lamport
[2]. From the broadcast content, the fault-free nodes learn
some information about the location of the faulty nodes. In
particular, some links adjacent to the faulty nodes will be
identified. Then a new error detection network code of rate
at R, according to which no information is transmitted on the
identified links is found. This network code can always be
found because one of the two nodes attached to a identified
link must be faulty, and a faulty node can always misbehave
by sending nothing on its out-going links and pretend not
receiving anything on its incoming links. Thus, agreement at
rate R is achievable even if no data is transmitted on these
links. Hence the desired network code must exist. Then a new
generation of data is transmitted using this code.

As we will see later, in a network with at most t failures,
a faulty node is identified once more than t links adjacent to
it is identified. Once a faulty node is located, it is isolated
by removing all links attached to it. As a result, after at most
t(t + 1) failures have been detected, all faulty nodes will be
removed from the network. Then we only need to perform a
traditional multicast at rate R, or terminate the algorithm if
the source is identified as faulty.

V. BYZANTINE AGREEMENT IN FOUR-NODE NETWORKS

Consider the network of 4 nodes, named S, A, B, C, with
node S acting as the source, and nodes A, B, C being the

(a) Every directed link has capacity
1. Source node S sends packets
a, b, a ⊕ b to A, B and C, respec-
tively.

(b) Labels denote some link capac-
ities.

Fig. 1. Four-node network

peers. For four-node networks, the following two conditions
are also necessary.

• Necessary condition NC4: All incoming links to the
peers must exist (capacity > 0).

• Necessary condition NC5: The capacity of every out-
going link from S must be ≥ R, if links AS, BS and CS
do not exist (capacity = 0).

The proofs of these two conditions are included in our tech-
nical report [4]. Necessary conditions NC1 to NC5, together
with the algorithm we are presenting in this section prove that:

Agreement capacity of a four-node network is the supremum
over all throughputs R that satisfy necessary conditions NC1,
NC2, NC3, NC4 and NC5.

It is worth pointing out that, according to NC5, the existence
of the uplinks (links AS, BS, CS) changes the capacity
dramatically: even if there is only one non-zero uplink and
it has very low capacity ϵ → 0, the agreement capacity is
significantly higher than the one of the same network with the
ϵ uplink removed. For example, in the four-node network in
Figure 1(a), even if links AS and BS are removed and link CS
has ϵ capacity, the agreement capacity is 2. But once link CS
is also removed, the capacity becomes 1.

The proposed algorithms achieve throughput arbitrarily
close to R, for any R that satisfies NC1 to NC5. The algorithm
for the complete four-node networks with all point-to-point
links having non-zero capacity (although capacity of some
links may be arbitrarily close to 0) is slightly different from
the ones for incomplete four-node networks with < 3 uplinks,
and is easier to describe. Due to the limit of space, we only
present the algorithm for the complete networks here. Details
of the other algorithms can be found in [4].

Figure 1(b) shows a complete four-node network. The labels
near the various links denote the link capacities. With this
notation, condition NC1 implies, for instance, that l+m ≥ R
and t+m ≥ R; and NC2 implies that t+ u ≥ R.

The proposed Byzantine agreement algorithm for complete
four-node networks has four modes of operation, numbered I,
II, III, IV. As seen later, repeated (and pipelined) execution of
our algorithm can be used to achieve throughput approaching
the capacity. At time 0, the network starts in mode I. The mode
number may change as the algorithm is executed repeatedly

4

over time, but it never decreases.2

In each mode, starting with the error detecting stage, the
information sent by S is coded and scheduled such that
misbehavior by any one node is either detected, or the fault-
free peers correctly agree without detecting the misbehavior.
In the event that a misbehavior is detected, the full broadcast
stage is performed. After this, each fault-free peer is able to
narrow down the failure to a subset that contains one or two
of the other nodes. The union of these subsets at the fault-
free peers satisfies one of the following three properties: (i)
the union contains two peers, or (ii) the union contains one
peer and the source node S, or (iii) the union contains just
one node. In these three cases, the fault-free peers change the
mode of operation to, respectively, modes II, III and IV (using
a new error detection code).

A. Operation in Mode I

The proposed algorithm proceeds in rounds, and achieves
throughput arbitrarily close to R, provided that conditions NC1
and NC2 are satisfied. In this section, the units for rate R and
the various link capacities are assumed to be bits/time unit,
for a convenient choice of the time unit. We assume that by a
suitable choice of the time unit, the number R and the various
link capacities (such as k and l in Figure 1(b)) can be turned
into integers. This algorithm is motivated by Reed-Solomon
codes and the prior work on network coding [7]. In particular,
for a suitable value of parameter c (as elaborated below), each
“packet” sent by the algorithm consists of 1 symbol from
Galois field GF(2c). One execution of the algorithm, which
takes multiple rounds, allows the nodes to agree on R symbols
from GF(2c) that are sent by S.

The algorithm executes in multiple rounds, with the duration
of each round being approximately c time units (as elaborated
in Section V-E). Note that in c time units, a link with capacity
z bits/time unit can carry z symbols (or packets) from GF(2c).
Computation is assumed to require 0 time.3 As an exception,
an “extended round” requires longer duration, but as we will
elaborate later, such extended rounds occur at most twice over
infinite time interval. Now we present the different rounds for
mode I.

a) Round 1: Node S encodes R packets of data, each
packet being a symbol from GF(2c), into k + l +m packets,
each of which is obtained as a linear combination of the R
packets of data. Let us denote the R data packets as the data
vector

x̃ = [x1, x2, . . . , xR]

and the k + l +m encoded symbols as y1, y2, ... , yk+l+m.
For the correctness of the algorithm, these k+l+m packets

need to be computed such that any subset of R encoded
packets constitutes independent linear combinations of the R

2If the algorithm is modified to allow for the possibility of node repair, the
mode number may indeed decrease. We ignore node repair in this paper. So
at most one node fails for the entire time duration.

3As seen later, we use the agreement algorithm in a pipelined manner. Com-
putation delay can be incorporated by adding pipeline stages for computation,
in addition to communication stages.

data packets. As we know from the design of Reed-Solomon
codes, if c is chosen large enough, this linear independence
requirement can be satisfied. The weights or coefficients used
to compute the linear combinations is part of the algorithm
specification, and is assumed to be correctly known to all
nodes a priori. Due to the above independence property, any
R of the k+ l+m symbols – if they are not tampered – can
be used to (uniquely) solve for the R data packets.

In round 1, node S transmits k symbols y1, · · · , yk to node
A, l symbols yk+1, · · · , yk+l to B, and yk+l+1, · · · , yk+l+m

to node C, on links SA, SB and SC, respectively. The peers
do not transmit. (Please see notation in Figure 1(b).)

Figure 1(a) shows a simple example wherein node S has
unit capacity outgoing links (that is, k = l = m = 1). In
this illustration, as shown in the figure, for some values a and
b, x1 = a, x2 = b, and y1 = x1 = a, y2 = x2 = b, and
y3 = x1 ⊕ x2 = a⊕ b.

b) Round 2: For packet (or symbol) yj , we refer to j as
its index. From the packets received in round 1 from node S,
each peer node transmits as many distinct packets as possible
to the other two peers, with the packets being selected in
increasing order of their index. For instance, the number of
packets transmitted by node B to node C is minimum(l, t)
(please refer to Figure 1(b) for the notation for link capacities).
Thus, node B sends the min(l, t) packets with the smallest
index to C, that is, yk+1, · · · , yk+min(l,t).

c) Round 3: Each fault-free peer finds the solution for
each subset of R packets from among the packets received
from the other three nodes in rounds 1 and 2. If the solutions
to the various subsets are not unique, then the fault-free peer
has detected faulty behavior by some node in the network. In
round 3, each peer broadcasts to the remaining 3 nodes a 1-bit
notification in indicating whether it has detected a failure or
not – to ensure reliability of this broadcast of 1-bit indicators
by the three peers a traditional Byzantine agreement algorithm,
in particular the algorithm by Pease, Shostak and Lamport
[2], is used. Since at most one node is faulty, using this
traditional algorithm, all fault-free nodes obtain identical 1-
bit notifications from all the peers. If none of the notifications
indicates a failure detected, then each fault-free peer agrees
on the unique solution obtained above, and the execution of
the current instance of the algorithm is completed. However,
if failure detection is indicated by any peer, then an “extended
round 3” is added to the execution, as elaborated soon.

The following theorem states the correctness of the coding
scheme we just described. Its proof is in Appendix B.

Theorem 1: In mode I, misbehavior by a faulty node will
either be detected by at least one fault-free peer, or all the
fault-free peers will reach agreement correctly.

d) Extended Round 3 (full broadcast stage): As seen
in round 3, an extended round is added subsequent to a
failure detection. As seen below, the broadcast stage is quite
expensive, but it is performed at most twice over time interval
[0,∞). In round 3, the fault-free peers learn that some node
has behaved incorrectly. The purpose of the extended round

5

is to allow the nodes to narrow down the failure to a subset
of the nodes. For this purpose, during the broadcast stage,
every node (including the source) broadcasts all the packets it
has sent to other nodes, or received from other nodes, during
rounds 1 and 2 – as with the failure notifications in round
3, these broadcasts are also performed using the traditional
Byzantine agreement algorithm. Since all links in our network
have non-zero capacity, it is possible to use the traditional
Byzantine agreement algorithm as desired here. However,
since the capacity of some of the links may be very small, the
time required for performing the broadcast stage in extended
round 3 may be very large compared to the time required for
performing the other rounds.

The fault-free nodes use the information received during the
broadcast stage to narrow down the failure to a subset of nodes
(as explained below), and enter mode II, III, or IV, depending
on the outcome of this assessment.
Narrowing down the set of potentially faulty nodes: Each
node forms a diagnosis graph after the broadcast stage in
extended round 3, as elaborated next. The diagnosis graph
contains four vertices S, A, B and C, corresponding to the four
nodes in our network; there is an undirected edge between
each pair of vertices, with each edge being labeled as g at
time 0 (with g denoting “good”). The labels may change
to f during extended round 3. Once a label changes to f
(denoting “faulty”), it is never changed back to g. Without
loss of generality, consider the edge between vertices X and
Y in the diagnosis graph. The label for this edge may be set
to f in two ways:

• After the broadcast stage, all nodes obtain identical
information about what every node “claims” to have sent
and received during rounds 1 and 2. Then, for each packet
in rounds 1 and 2 (sent by any node), each fault-free node
will compare the claims by nodes X and Y about packets
sent and received on links XY and YX. If the two claims
mismatch, then the label for edge XY in the diagnosis
graph is set to f .

• If node X is a peer and claims to have detected a
misbehavior in round 3, but the packets it claims to have
received in rounds 1 and 2 are inconsistent with this
claim, then edge XY in diagnosis graph is set to f . In
this case, all edges associated with X are set to f .

Similar actions are taken for each of the 6 undirected edges
in the diagnosis graph. An example diagnosis graph thus
obtained is illustrated in Figure 2(a). Due to the use of
Byzantine agreement for the broadcast stage, all nodes will
form identical diagnosis graphs. The notions of diagnosis
and conflict graphs here are borrowed from past literature
on system-level diagnosis [8], and continuous consensus [9],
respectively.

It should not be difficult to see that the edge between
vertices corresponding to fault-free nodes will remain g. For
instance, if nodes A and B are fault-free, then edge AB in
the diagnosis graph will remain g. So, if a link is marked as
f , the faulty node must be one of the two nodes associated

with this link. Additionally, we have the following theorem:
Theorem 2: When a failure is detected, at least one edge
associated with the faulty node will be marked as f in the
diagnosis graph after the broadcast stage.

The proof of this theorem can be found in Appendix C

According to Theorem 2, at least one edge will be marked
as f . Since the faulty node must be one of the two nodes
associated with an f -edge in the diagnosis graph, if there is
only one f -edge, we can narrow down the faulty node to be
one of the two nodes corresponding to the two endpoints of
that edge – the set of these two nodes is called the “fault set”.
If there is more than one f -edge, then they must share a vertex
in common, and the node corresponding to the common vertex
must be the faulty node (recall that edge between vertices for
two fault-free nodes can never become f). For instance, the
diagnosis graph in Figure 2(a) implies that node S must be
faulty. Depending on the outcome of this “diagnosis” using
the diagnosis graph, the system enters mode II, III, or IV. In
particular, when the “fault set” is narrowed down to two peers,
the system enters mode II; if the fault set contains a peer and
node S, the system enters mode III; and if the fault set contains
only one node (the faulty node is known exactly to all other
nodes), the system enters mode IV.

How much additional time is required for the extended
round 3? Since we assume that the capacity of all links is
> 0, it follows that the broadcast stage in extended round
3 will require a finite amount of time, although the duration
would be large when link capacities are small. In particular,
the number of bits that needs to be transmitted on each link
during extended round 3 is O(Rc), and with non-zero capacity
on each link, the time required would be O(Rc) as well. As
we will see later, the broadcast stage occurs only once for
each mode change, and mode change occurs at most twice.
Thus, as we will also see later, in a pipelined execution,
the negative impact (on the throughput) of extended round
3 becomes negligible as time progresses.

B. Operation in Mode II

Mode II is entered when the fault set is narrowed down to
two peers. Without loss of generality, assume that the location
of the faulty node is narrowed down to the set {A,B}, and
node A is actually the faulty node. Recall that the fault set is
{A,B} when only edge AB in the diagnosis graph is f . This
also implies that node C does not know the exact identity of
the faulty node, but knows that node S is definitely fault-free.
Fault-free node B knows that nodes C and S are both fault-
free. Round 1 in mode II is the same as that in mode I. The
schedule in round 2 in mode II is similar to round 2 in mode
I, with the only change being that no packets are scheduled on
links AB and BA (packets received on these links are ignored).

Since node B knows that nodes S and C are fault-free, and
since it received at least R packets from S and C together
(this follows from condition NC1), node B can use the packets
received from S and C to recover the correct data sent by node
S.

6

(a) An example of the
diagnosis graph

(b) Example of pipelining: In generation 3, node A detects a mismatch and the system enters mode III. Generations
4 and 5 are then dropped and retransmitted after entering mode III.

Fig. 2. Examples of diagnosis graph and pipelining of the complete four-node network

In round 3, node C attempts to find an unique solution that
is consistent will all the packets it receives from nodes S,
A and B. (Recall that each packet is supposed to be a linear
combination of the data that the sender wants to send, and any
set of R of these linear combinations should be independent
provided that no node has misbehaved.) If node C finds a
unique solution, it must be identical to x̃ sent by node S (since
node C receives at least R correct packets from S and the fault-
free peer) – in this case, node C agrees on the unique solution.
If there is no such unique solution, node C has detected
tampering of packets, although it does not yet know that node
A is the faulty node. Similar to mode I, the failure detection
is disseminated to other nodes using the traditional Byzantine
agreement algorithm. If and only if node C has detected a
failure, extended round 3 is performed similar to extended
round 3 in mode I (that is, broadcast stage is performed to
reliably broadcast all packets sent/received in rounds 1 and 2).

Similar to Theorem 2, we can show that after the broadcast
stage, at least one more edge associated with the faulty node
will be labeled f . Then all fault-free nodes learn the identity
of the faulty node as the one associated with both f -edges. At
this point, the system has transitioned to mode IV from mode
II. The detailed discussion is in [4].

C. Operation in Mode III

Mode III is entered when the fault set is narrowed down to a
set containing node S and one peer. Without loss of generality,
assume that the location of the faulty node is narrowed down
to the set {S,B}. Recall that the fault set is {S,B} when only
edge SB in the diagnosis graph is f . In this case, nodes A and
C know that they are both fault-free.

In mode III, the schedule in rounds 1 and 2 is the similar
to that in mode I, with the only difference being that no
transmissions are scheduled on links SB, BA, and BC. The
schedule in round 3 needs to modified slightly.

Node B receives AB+CB > R coded packets from nodes
A and C in round 2. In round 3, if node B is actually fault-free,
it first tries to find the unique solution of the received packets.
If the unique solution cannot be found, it detects an attack.
Otherwise, node B computes packets yk+1, . . . , yk+l from the
unique solution. Then, node B sends its own y-packets to
nodes A and C in the same way as in round 2 of mode I.
Then nodes A and C try to find the unique solution for the
packets they have received, and appropriate 1-bit notifications
are reliably broadcast at the end of round 3. Similar to theorem

1, it can be shown that nodes A and C will either reach
an agreement correctly, or detect an attack. Moreover, in the
case that node B is fault-free (which implies the sender S is
faulty), it will also agree with node A and C correctly if no
failure is detected. If a failure is indicated, extended round 3
is performed similar to mode I. An slightly different algorithm
that does not “mix” packets in mode III is discussed in our
technical report [4].

Since the fault set is {S,B}, either node S or node B must
have tampered some packets. Similar to mode II, in this case as
well, after the broadcast stage, one more edge in the diagnosis
graph will become f . The common vertex to the two f -
edges in the diagnosis graph will indicate the faulty node (also
similar to mode II), and the system will transition to mode IV.

D. Operation in Mode IV

When the network is in mode IV, the identity of the faulty
node is correctly known to all other nodes. In the event that
node S is known to be faulty, the fault-free peers can decide
to agree on some default value, and terminate the algorithm.
In the event that a peer is known to be faulty, the fault-free
nodes ignore all packets received from the faulty peer. In this
case, in rounds 1 and 2, the schedule remains the same as in
rounds 1 and 2 of mode I. Each fault-free peer can recover x̃
using the packets receives from the fault-free source and the
other fault-free peer (by condition NC1).

E. Throughput Analysis

With the exception of the extended round 3, each round in
our algorithm uses identical time, which is slightly longer than
c time units (why the round length is slightly longer than c
will be clear soon). Observe that with the exception of the
dissemination of 1-bit notification and the broadcast stage (in
extended round 3), the usage of each link is within the link
capacity in each mode. In particular, a link with capacity z
carries at most z data packets combined over all rounds in
each mode (ignoring the extended rounds). In achieving rate R,
it will be necessary to have multiple “generations” of packets
in the network, with the algorithm operating in a pipelined
manner (one round per pipeline stage). Agreement algorithm
for one new generation of data of size Rc bits (or R symbols
from GF(2c)) starts per “clock cycle”, as shown in Figure 2(b).
Each generation consists of three rounds and the packets are
scheduled according to the schedules we discussed above. By
the end of the round 3 of every generation, the peers exchange
1-bit notifications indicating whether they detected an attack.

7

Subsequently, if necessary, an extended round 3 is performed.
By the end of the extended round 3, if any, all nodes decide
on the same new mode.

Figure 2(b) shows an example execution of the pipelining.
The system starts in mode I and enters mode III after an failure
detected in round 3 of generation 3. Note that, at the time the
system enters mode III, two generations of packets are in the
system using the old schedule for mode I (in this example:
generations 4 and 5). To allow a transition to the new schedule
in mode III, the packets belonging to generations 4 and 5 are
dropped, and retransmitted using the algorithm/schedule for
mode III. Thus, agreement for the dropped generations is re-
initiated in subsequent clock cycles.

Recall that there are at most two mode transitions through-
out the execution of the algorithm (mode I to II to IV, or mode
I to III to IV), thus requiring at most two extended rounds. The
time overhead of an extended round 3 is O(Rc) – during the
extended round, no new generations make progress. Since the
extended round occurs at most twice, the average overhead per
cycle of extended round 3 decreases to zero as time increases.
In particular, the overhead per cycle becomes O(1

Rc) after
R2c2 cycles. The dissemination of 1-bit notifications (in round
3) requires a fixed number of bits per link, independent of
R and c. Thus, the total time overhead for this operation is
O(1). Thus, we can make the duration of each round to be
equal to c + O(1). Since a new generation of Rc bits worth
of information is initiated in each round, it follows that the
agreement throughput is R−O(1/c). Thus, by using a suitably
large c, the throughput can be made arbitrarily close to R.

Thus, we have shown that given conditions NC1 and NC2
are satisfied, our algorithm achieves agreement throughput
approaching R bits/unit time in a complete four-node network.

VI. RELATED WORK

Prior work on agreement or consensus: There has been
significant research on agreement in presence of Byzantine or
crash failures, theory (e.g., [2], [10], [11]) and practice (e.g.,
[12], [13]) both. Perhaps closest to our context is the work
on continuous consensus [14], [15] and multi-Paxos [16], [12]
that considers agreement on a long sequence of values. For our
analysis of throughput as well, we will consider such a long
sequence of values. However, to the best of our knowledge, the
past work on multi-Paxos and continuous consensus has not
addressed the problem of optimizing throughput of agreement
while considering the capacities of the network links. Some of
the past work has analyzed number of bits needed to achieve
agreement. While this is related to the notion of capacity or
throughput, such prior work disregards the capacity of the
links over which the data is being carried. Link capacity con-
straints intimately affect capacity of agreement. Past work has
explored the use of error-correcting codes for asynchronous
consensus (e.g., [17]). Our algorithms also use error detecting
codes, but somewhat differently. Some of the structure of our
algorithm has similarities to the work on failure detection [18],
[19], [20].

Prior work on multicast using network coding: While the
early work on fault tolerance typically relied on replication
[21]or source coding [22] as mechanisms for tolerating packet
tampering, network coding has been recently used with signifi-
cant success as a mechanism for tolerating attacks or failures.
In traditional routing protocols, a node serving as a router,
simply forwards packets on their way to a destination. With
network coding, a node may “mix” (or code) packets from
different neighbors [23], and forward the coded packets. This
approach has been demonstrated to improve throughput, being
of particular benefit in multicast scenarios [23], [24], [25]. The
problem of multicast is related to agreement. There has been
much research on multicast with network coding in presence
of a Byzantine attacker (e.g., [26], [7], [27]). The significant
difference between Byzantine agreement and multicasting is
that the multicast problem formulation assumes that the source
of the data is always fault-free.

VII. CONCLUSION

In this paper, we studied the capacity of Byzantine agree-
ment under the constraints of a finite capacity of point-to-
point links in the network. We are the first to consider the
Byzantine agreement problem under the capacity constraints
of the underlying network. We identified necessary conditions
of the achievable throughputs in general networks. Then we
introduced a structure for the capacity achieving agreement
algorithm in general networks. In addition, we presented
capacity achieving algorithms for two classes of networks:
symmetric networks with arbitrary size n and no more than
t < n/3 faulty nodes; and four-node networks with arbitrary
link capacity.

ACKNOWLEDGMENT

This research is supported in part by Army Research Office
grant W-911-NF-0710287. Any opinions, findings, and con-
clusions or recommendations expressed here are those of the
authors and do not necessarily reflect the views of the funding
agencies or the U.S. government. We thank Pramod Viswanath
and Jennifer Welch for their feedback.

REFERENCES

[1] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” JOURNAL OF THE ACM, 1980.

[2] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. on Programming Languages and Systems, 1982.

[3] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[4] G. Liang and N. Vaidya, “Capacity of byzantine agreement: Complete
characterization of the four node network,” Technical Report, CSL,
UIUC, April 2010.

[5] O. Kosut and L. Tong, “Nonlinear network coding is necessary to
combat general byzantine attacks,” in 47th Annual Allerton Conference
on Communication, Control, and Computing, October 2009.

[6] G. Liang, R. Agarwal, and N. Vaidya, “Secure capacity of wireless
broadcast networks,” Technical Report, CSL, UIUC, September 2009.

[7] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,
“Byzantine modification detection in multicast networks using random-
ized network coding,” 2004.

[8] F. P. Preparata, G. Metze, and R. T. Chien, “On the connection assign-
ment problem of diagnosable systems,” IEEE Trans. Electr. Comput.,
vol. EC-16, no. 6, pp. 848–854, Dec. 1967.

8

[9] T. Mizrahi and Y. Moses, “Continuous consensus with ambiguous
failures,” Distributed Computing and Networking (Lecture Notes in
Computer Science), vol. 4904/2008, pp. 73–85, 2008.

[10] N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1995.
[11] H. Attiya and J. Welch, Distributed Computing. McGraw-Hill, 1998.
[12] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an

engineering perspective,” in PODC ’07. New York, NY, USA: ACM,
2007, pp. 398–407.

[13] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems, 2002.

[14] T. Mizrahi and Y. Moses, “Continuous consensus with failures and
recoveries,” in DISC ’08, 2008.

[15] ——, “Continuous consensus via common knowledge,” in TARK’05,
2005.

[16] L. Lamport and K. Marzullo, “The part-time parliament,” ACM Trans-
actions on Computer Systems, vol. 16, pp. 133–169, 1998.

[17] R. Friedman, A. Mostefaoui, S. Rajsbaum, and M. Raynal, “Distributed
agreement and its relation with error-correcting codes,” in Proc. 16th
Int. Conf. Distributed Computing, 2002.

[18] E. S. Amdur, S. M. Weber, and V. Hadzilacos, “On the message com-
plexity of binary byzantine agreement under crash failures,” Distributed
Computing, 1992.

[19] V. Hadzilacos and J. Y. Halpern, “The failure discovery problem,” in
Mathematical Systems Theory, 1996.

[20] ——, “Message optimal protocols for byzantine agreement,” in Mathe-
matical Systems Theory, 1996.

[21] E. C. Cooper, “Replicated distributed programs,” in SOSP’85, 1985.
[22] M. O. Rabin, “Efficient dispersal of information for security, load

balancing, and fault tolerance,” J. ACM, vol. 36, no. 2, pp. 335–348,
1989.

[23] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” Information
Theory, IEEE Transactions on, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[24] R. Koetter and M. Medard, “An algebraic approach to network coding,”
in ISIT’01, 2001.

[25] C. Fragouli, D. Lun, M. Medard, and P. Pakzad, “On feedback for
network coding,” in CISS’07, 2007.

[26] N. Cai and R. W. Yeung, “Network error correction, part ii: Lower
bounds,” Communications in Information and Systems, 2006.

[27] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
“Resilient network coding in the presence of byzantine adversaries,” in
INFOCOM’07, 2007.

APPENDIX A
BYZANTINE AGREEMENT IN SYMMETRIC NETWORKS

The discussion in this section uses some of the results and
notations from Section V. The readers are recommended to go
through Section V first before reading this part. The algorithm
in this section also proceeds in generation and rounds as the
one in section V. Since all links have the same capacity, we
will just consider that at most 1 packet can be sent on each
link per generation, excluding the broadcast stage.
When no failure is yet detected: Let us label the peers as
nodes 1, 2, . . . , n− 1. The source node first encodes n− t− 1
data packets in to n− 1 coded packets, namely y1, . . . , yn−1,
such that any subset of n − t − 1 coded packets constitutes
independent linear combination of the data packets. Then the
source sends yi to peer i (round 1). After receiving packet yi,
peer i forwards it to all other peers (round 2). Then every fault-
free peer checks the consistency of the packets by trying to find
the unique solution for each subset of n− t− 1 packets it has
received, and broadcast a 1-bit notification indicating whether
a failure is detected (round 3). Since there are at least n−t−1
fault-free peers in all circumstances, the fault-free peers must
share at least n−t−1 linear independent packets. Thus, similar
to Theorem 1, whenever some faulty nodes misbehave, the
fault-free peers either reach agreement correctly, or at least

one of them detects the failure. When a failure is detected,
the full broadcast stage is performed to computer the diagnosis
graph for the n-node symmetric network in a similar manner
as in the four-node networks. All the links corresponding to
the f -edges in the diagnosis graph are removed. If any node
is associated with more than t f -edges, it must be faulty and
is removed from the network (extended round 3).
After some failures have been detected: Let us say that two
nodes accuse/trust each other if they are connected with an
f/g edge in the diagnosis graph. If no peer is accused by the
source node, the algorithm operates the same as the previous
case, except that no packet is scheduled on links that have
been removed.

If some peers are accused by the source node, the operations
in rounds 2 and 3 are slightly different. Let us denote the set
of peers accused by the source as set I , the set of faulty peers
trusted by the source as set F , and the set of fault-free peers
trusted by the source as set G.

In round 2, every peer j ∈ F ∪G (trusted by source) sends
the packet yj to all other nodes trusted by the source, same
as before. In round 3, for each node i ∈ I , select a node
pi ∈ F ∪ G trusted by both the source and node i. Peer pi
mixes the packets it has received in rounds 1 and 2 into a new
coded packet zi. Then, every peer j ∈ F ∪G sends yj to its
trusted peers in I , with the exception that pi sends zi to node
i. After receiving these packets, each node i ∈ I then sends
zi to all peers it trusts (in I , F , and G). For the correctness
of the algorithm, any subset of n − t − 1 of the union of y
and z-packets must be linear independent. This is achievable
because every pi can first solve the data packets from the
|F ∪ G| ≥ n − t − 1 y-packets it exchanged with nodes in
F ∪ G in round 2, then generate zi in the same way as yi.
Now it is not hard to see that the fault-free peers will either
agree correctly or detect a failure.

The rest of the algorithm (broadcast stage and updating
diagnosis graph) is the same as before. Through pipelining, it
achieves throughput arbitrarily close to (n− t− 1)C. On the
other hand, according to NC1 - NC3, the agreement capacity
of the symmetric network is upper bounded by (n− t− 1)C.
Thus, we can conclude that the capacity of the symmetric
network is (n− t− 1)C.

APPENDIX B
PROOF OF THEOREM 1

Node S is said to misbehave only if it sends packets to A,
B and C that are inconsistent – that is, all of them are not
appropriate linear combinations of an identical data vector x̃.
A peer node is said to misbehave if it forwards tampered (or
incorrect) packets to the other peers.

Faulty peer: Without loss of generality, suppose that peer
A is faulty. Due to condition NC1, and the manner in which
packets are forwarded in rounds 1 and 2, each fault-free peer
(that is, B or C) receives R untampered packets, either directly
from S or via the other fault-free peer. The solution of these
R packets must be the correct R symbols from node S. Thus,
any tampered packets sent by node A to B or C cannot cause

9

the fault-free peer to agree on any data other than the correct
data x̃. It then follows that, either the fault-free peers agree
on the correct data, or detect the faulty behavior by node A
(although they will not yet be able to determine that the faulty
node is specifically node A) .

Faulty sender S: Now, let us consider the case when node
S is faulty. Thus, all the peers are fault-free. For convenience,
with an abuse of notation, we will denote the capacity of link
XY as XY (instead of using the notation in Figure 1(b)). From
condition NC2, it follows that BA+CA > R, AB+CB > R
and AC +BC > R. This implies that, (AB+BA)+ (BC +
CB)+(AC+CA) > 3R. Therefore, at least one of the terms
(AB +BA), (BC + CB), and (AC + CA) must exceed R.
Without loss of generality, suppose that AB +BA > R.

Now, let us consider the number of packets nodes A and B
exchange in round 2 on links AB and BA together. Observe
that A sends min{SA,AB} packets to B on AB, and B sends
min{SB,BA} to A on link BA. So the number of packets
they exchange on links AB and BA together is

min{SA,AB}+min{SB,BA}
= min{SA+ SB, SA+BA,AB + SB,AB +BA} (1)

≥ min{R,AB +BA} (2)

The reason for the ≥ in Equation 2 is that each of the first three
terms on the right hand side of Equation 1, namely SA+SB,
SA+BA, AB+SB, ≥ R, as per condition NC1. AB+BA >
R and 2 together imply that after round 2, nodes A and B share
at least R packets. That is, among the packets A and B have
received, there are R identical packets. Thus, A and B will not
agree on different data symbols (since the agreed data must
satisfy linear equations corresponding to all received packets),
even though S may be misbehaving.

Thus, either at least one of A and B will detect misbehavior
by node S, or all the packets they have received will be
consistent with an identical data vector (of R symbols). In
the former case, the misbehavior by S is already detected
(although the fault-free peers may not yet know that S is the
faulty node). In the latter case, neither A nor B detects the
misbehavior. In this case, we will now consider what happens
at node C. In particular, there are three possibilities:

• AC+CA > R: Similar to the above argument for nodes
A and B, we can argue that nodes A and C will have at
least R packets in common, and therefore, they will not
agree on two different data vectors. This, combined with
the fact that A and B will also not agree on two different
data vectors, implies that if none of the three fault-free
peers detects a misbehavior, then they will agree on an
identical data vector.

• BC+CB > R: This case is similar to the previous case.

• AC+CA < R and BC+CB < R: In this case, similar
to Equation 2, we can show that:

min{SA,AC}+min{SC,CA} ≥ min{R,AC +CA}

min{SB,BC}+min{SC,CB} ≥ min{R,BC+CB}.

This implies that these four links are all “saturated”
(that is, the number of packets sent on each of these
links in round 2 is equal to the link capacity). Since
AC + BC ≥ R (by condition NC2), it follows that
AC + CA + BC + CB > R, and that node C has at
least R packets in common with the union of packets
available to nodes A and B. Since nodes A and B have
not detected a misbehavior, these R packets must all be
consistent with the solution obtained at nodes A and B
both. Thus, node C cannot possibly agree on a data vector
that is different from that agreed upon by A and B. Thus,
it follows that, either at least one of the peers will detect
the misbehavior by node S, or they will all agree.

APPENDIX C
PROOF OF THEOREM 2

We will consider the cases when S is faulty and a peer is
faulty separately.
A peer is faulty: Without loss of generality, suppose that
node A is faulty. It misbehaves either by (i) raising a false
alarm (implicitly accusing another node of misbehavior) or
(ii) by sending some tampered packets to nodes B or C. Let
us consider each case. (i) If node A broadcasts only correct
packets in the broadcast stage, that will contradict with the
false alarm, and edges BA, CA and SA in the diagnosis graph
will all be labeled f . On the other hand, if node A broadcasts
incorrect packets, inconsistent with packets actually received
from node S/B/C, then edge SA/BA/CA will be labeled f
(note that when A is faulty, S, B and C are fault-free). (ii)
Now suppose that node A has misbehaved by sending incorrect
packets to another peer: In this case, if A broadcasts correct
packets in the broadcast stage, the edge between the recipient
of the tampered packets from A (in round 2) and node A will
be marked f . Otherwise, edge SA will be marked f similar
to case (i).
Node S is faulty: Node S can misbehave only by sending
k+ l+m packets in round 1 such that all subsets of R packets
do not have a unique solution. During the broadcast stage, if S
broadcasts packets such that subsets of R packets do not have a
unique solution, then it is clear that node S is misbehaving, and
edges SA, SB and SC in the diagnosis graph are all marked
f . On the other hand, if the packets broadcast by S in the
broadcast stage all have a unique solution, then the packets
received by at least one peer in round 1 will differ from packets
sent by S in the broadcast stage. Thus, the edge between that
peer and S in the diagnosis graph will be marked f .

