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ABSTRACT
The performance of a multichannel, multi-radio wireless network
is often limited by interference due to concurrent transmissions on
the same and adjacent channels. These interference effects may
be either due to simultaneous traffic activity by the multiple radios
within a node or due to transmission by neighboring nodes. In this
paper, we discuss simple local-balancing and interference-aware
channel allocation algorithms for reducing the overall interference
in the network. We evaluate the relative performance of our algo-
rithms using actual implementations on a multichannel, multi-radio
testbed. Using overall network throughput as a metric, we show
through experiments that the channel allocation that is aware of the
node’s transmission activity performs better than the simple local-
balancing algorithm, irrespective of the number of channels used
for allocation. Additionally, we show that the performance bene-
fit of a interference-aware allocation over the local-balancing allo-
cation improves as the number of flows in the network increases.
However, our experiments also reveal that the benefit of using a
interference-aware algorithm over the simple local-balancing algo-
rithm reduces when we have more number of channels available for
allocation when compared to the number of flows in the network.

1. INTRODUCTION
Due to the broadcast nature of the wireless medium, the capac-
ity scaling of a wireless network is mainly limited by interference
due to simultaneous transmissions on any given channel [1]. Ap-
proaches for improving system performance by reducing the in-
terference effect in a multihop wireless network include orthog-
onalizing nearby transmissions across different frequencies, time,
or code. Multichannel wireless networks, which has been gaining
popularity more recently, provide a practical means for orthogo-
nalizing transmissions on different frequencies. Several existing
technologies support the notion of multiple channels. For instance,
IEEE 802.11a specifies twelve non-overlapping channels in the 5
GHz band for communication [2]. Additionally, many practical
protocols have been proposed recently in the literature for utilizing
multiple channels simultaneously [3, 4, 5, 6, 7]. Because the wire-
less radios that are currently available can tune to only one channel
at a time, most of the multichannel protocols propose to use multi-
ple radios in a wireless host [8, 4, 9].

In [10], the authors have studied the capacity scaling of a multi-
channel, multi-radio wireless network. They show that the capac-
ity of a multichannel wireless network with n randomly distributed
nodes scales linearly with the number of channels when the ratio
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of the number of channels to the number of radios is of the order
of O(logn). For practical networks, this would mean that we can
achieve higher throughputs by utilizing many channels, but with
only few interfaces1 (when compared to the number of channels
used) per node.

One of the important issues that need to be considered while de-
signing a multichannel, multi-radio wireless network is the cochan-
nel and adjacent channel interference effects due to the close prox-
imity of the radios in a node. Additionally, there can be cochannel
and adjacent channel interference due to transmissions from neigh-
boring nodes. It has been shown in the literature that these inter-
ference effects can cause a significant throughput loss in the net-
work [11, 12, 13, 14]. While the cochannel interference restricts
the number of times a channel can be re-used within a neighbor-
hood, the adjacent channel interference effects impose a restriction
on the number of channels that can be used in the network [11].
Some of the past works, such as [15, 16] have shown that adjacent
channel interference effects are common in technologies, such as
IEEE 802.11b and 802.11a due to channel overlaps.

Several approaches have been proposed in the literature for mini-
mizing the adjacent channel interference effects ranging from coor-
dinating the multiple radios in the wireless node [17], and adjusting
the antenna parameters and the filter characteristics [12] to using
the channel overlaps for routing data across devices operating on
non-overlapping channels [15, 18]. One of the popular approaches
for mitigating the interference effects is to choose the transmission
channels carefully by making sure that nearby links are on chan-
nels that do not interfere sufficiently. However, due to the dynamic
nature of the links in a wireless network, the interference charac-
teristics may vary [14], and therefore the channel allocation should
be adaptable to these variations. A simple channel allocation that
reduces the overall interference in the network will be to use only
non-contiguous channels that do not overlap with each other (such
as, channels 1, 6, and 11 in 802.11b or channels 36, 44, 52, etc. in
802.11a). However, as we show later, because we use fewer chan-
nels this technique may reduce the overall network throughput. It
is, therefore, desirable to design a channel allocation algorithm that
can use all of the available channels efficiently.

In this paper, we propose two channel allocation algorithms that
can utilize all the available channels effectively, and show that we
achieve a significant improvement in the network throughput by
reducing both the cochannel and adjacent channel interference ef-

1The terms interfaces and radios are used interchangeably in this
paper and mean the same.



fects. We evaluate our algorithms using experiments conducted us-
ing actual implementations on a multichannel, multi-radio testbed.

The remainder of the paper is organized as follows. In Section 2,
we provide a background on the multichannel testbed that is used
for our experiments. In Section 4, we present our local-balancing
and interference-aware channel allocation algorithms, and compare
their relative performance benefits in Section 5. In Section 6, we
present a survey of existing literature on the various channel alloca-
tion algorithms for mitigating interference in multichannel, multi-
radio wireless networks, and conclude our paper in Section 7.

2. TESTBED SETUP
There has been several mesh networks testbeds built as a part of
academic projects, such as UCSB MeshNet [19], Net-X [4], and
iMesh [20]. We found the architecture used in Net-X testbed [4,
5] appropriate for our experiments. In this section, we present a
brief overview of the testbed. The multichannel, multi-interface,
multi-hop wireless testbed consists of about 20 Soekris net4521
(www.soekris.com) boxes distributed across various offices in our
lab. Each of the testbed node has a 133MHz microprocessor, a
compact flash (CF) card slot, two PCMCIA slots, and one mini-PCI
slot. We run Linux kernel 2.4.26-based operating system on each of
these boards. For our experiments, we equip the test nodes with one
mini-PCI and one PCMCIA wireless card. These wireless cards
are based on Atheros chipsets and are driven by madwifi drivers.
The cards are operated in the IEEE 802.11a mode and are capable
of operating on all the twelve channels of 802.11a. The mini-PCI
cards make use of a pair of external antennas, and the PCMCIA
card has its own internal antenna for communication.

Among the two wireless cards, one is used for transmitting data
and the other is used for receiving data. The channel on which a
node receives data is assigned based on a channel allocation al-
gorithm (which is discussed in this paper) and is fixed for dura-
tions that are larger than a packet transmission time. The chan-
nel on which a node transmits depends on the receive channel
of the intended neighboring node. The transmit interface is ca-
pable of switching across channels for this purpose. When two
neighboring nodes have the same receive channel, then their receive
interface is also used for transmission between them (instead of the
transmit interface). The channel on which a node receives data is
communicated to the neighboring nodes using periodic broadcast
messages. For the purposes of our experiments, we make sure that
every node is aware of the receive channels of the nodes that are up
to two hops away.

A modified AODV routing protocol is used for routing packets
across the network. The modifications to the original AODV proto-
col involves finding a channel diverse route that avoids bottlenecks
and reduces the expected transmission time. These modifications
are incorporated in to the route metric, called MCETT (multichan-
nel expected transmission time) [21].

2.1 System Architecture
In this section, we briefly describe the important aspects of the Net-
X system architecture. Details are available in [4] and [5].

The system architecture has three major components:

1. Channel abstraction layer: This kernel component manages
multiple channels and interfaces, and provides support for

fast interface switching. This component is generic enough
to support other multichannel protocols, and other interface
capabilities, such as data rates and transmission powers. The
channel abstraction layer abstracts the details of multiple chan-
nels and interfaces from the higher layers, and is controlled
by “IOCTL” commands from the userspace daemon.

2. Kernel multichannel routing support: This component is used
to provide kernel support for on-demand routing. The com-
ponent informs the userspace daemon when a route discovery
has to be initiated, and buffers data packets while the route
discovery is pending.

3. Userspace daemon: The userspace daemon implements the
less time-critical components of higher layer protocols (cur-
rently this is a multi-channel routing/channel assignment pro-
tocol). Most of the higher layer protocol functionality is im-
plemented in this component.

The kernel components interact with the Linux TCP/IP implemen-
tation and the interface device drivers, while the userspace daemon
is built using standard userspace networking libraries.

2.2 Channel abstraction layer
The channel abstraction layer (CAL) is implemented as a part of
the bonding driver present in the Linux kernel. Its key components
include:

1. Unicast component: Enables specifying the channel to use to
reach a neighbor.

2. Broadcast component: Provides support for sending broad-
cast packets over multiple channels.

3. Scheduling and queuing component: Supports interface switch-
ing by buffering packets when necessary, and scheduling switch-
ing across channels. The CAL maintains a per-channel queue
for this purpose. The packets are queued in the appropriate
channel queue depending on the channel in which a packet
has to be sent in the next hop. Additionally, the CAL also
maintains some statistics such as, the channel usage, the cur-
rent channel used by the transmit interface, number of pack-
ets and bytes transmitted, the number of switches performed
by the transmit interface, and the few other metrics that are
useful for routing.

In addition, the madwifi driver for Atheros-based NICs (which are
used by the wireless nodes) has been modified to support faster
channel switching.

3. PROBLEM MOTIVATION
To motivate our channel allocation problem, we present two exper-
iments for characterizing the interference effects in a multichannel
wireless network. Because the interference effects in a multichan-
nel wireless network are well studied in the literature (See [11, 12,
13, 14, 15]), we discuss only a small set of results to identify the
possible interference effects in our testbed.

We define the following notation for our experiments.

1. The term ‘hop’ is defined as follows: If two nodes can have a
direct communication link between them, then they are said to be

www.soekris.com


Figure 1. Four node network topology showing four adjacent flows. Figure 2. Throughput results for four flows in the form of ring.

Figure 3. Four node network topology showing two non-adjacent flows. Figure 4. Throughput results for two non-adjacent flows.

within one hop from each other. If a transmission from one node to
another requires k one hop transmissions, then the nodes are said to
be k hops away from each other. For the two experiments in this
section, we use four nodes A, B, C, and D all of which are one
hop from each other.

2. Two single hop flows are said to be ‘adjacent’ if they share a
node (either sending or receiving node).

3. IEEE 802.11a channels are numbered as 36, 40, 44, 48, 52, 56,
60, 64, 149, 153, 157, and 161. Let {c0,c1, . . . ,c11} denote the
12 channels listed above (so that, c0 corresponds to channel 36, c1
corresponds to channel 40, and so on) from which a receive chan-
nel is chosen for a node. Suppose the nodes A, B, C, and D are
all assigned the same receive channel (say c1), then any data
flow between the four nodes are considered to be separated by
0 channels. Suppose A, B, C, and D are assigned the chan-
nels ci,ci+1,ci+2,ci+3, respectively where i∈ {0,1, . . . ,8}, then a
flows AB and BC are separated by 1 channel. Similarly, flows
from BC and CD are separated by 1 channel. Note that flows CD
and DA are separated by more than one channel. Because three out
of four flows are separated by one channel, we refer to this chan-
nel allocation to be the case where adjacent flows are separated by
one channel. In general, suppose the nodes A, B, C, and D are
assigned the channels {ci,ci+m,ci+2m,ci+3m}, respectively (where
0 <= m <= 3 in our experiments), then the flows from AB-BC and
BC-CD are separated by m channels (ignoring the flows CD-DA).

In the first experiment, we generate four 6 Mbps unicast flows be-
tween the four nodes (A to B, B to C, C to D, and D to A) in the
form of a ring, as shown by the dashed arrows (indicating the di-
rection of flow) in Figure 1. This setup ensures that every node
is both a source and a destination of a flow. We used the iperf
utility, available in Linux, for generating the UDP traffic between
the nodes. The physical transmission rate of the wireless cards are
fixed at 6 Mbps and the UDP traffic is sent for a duration of 100
seconds. We choose the receive channels for the nodes so that any
two adjacent flows are separated by 0 channels, and measure the
throughputs achieved by the four nodes in each case. We then re-
peat this experiment by varying the receive channels of the nodes to
separate the flows by 1, 2, or 3 channels (as measured previously),
and measure the total throughput achieved by the four flows in each
case. Figure 2 shows the total throughput values of the four flows
(vertical bars) for the four different receive channel assignment,
averaged over 30 runs. Additionally, we also measure the through-
put of each of the flows separately (without transmitting the other
flows) and plot their sum (shown as the horizontal line in Figure 2),
again averaged over 30 runs (the receive channels allocated to the
nodes do not matter in this case). We consider this as the maximum
achievable throughput with this setup, and use this as a benchmark
for comparing the throughputs when all the four flows are trans-
mitted simultaneously. We observe from the plot that the to-
tal throughput increases as the channel separation between the
flows increases and there is no throughput loss compared to the
maximum achievable throughput when the flows are separated
by three channels.



Next, we generate two non-adjacent 6 Mbps unicast UDP flows for
100 seconds as shown by the dotted arrows in Figure 3. One flow is
directed from node D to node A, and the other from node B to node
C. We then choose the receive channels for separating any two ad-
jacent flows by 0, 1, 2 or 3 channels, as before and measure the total
throughput achieved by the two transmissions. The throughput val-
ues averaged over 30 runs are shown in Figure 4. We also plot the
sum of the throughputs achieved by the two flows when they are
transmitted individially (horizontal line). We observe from the
plot that the trend is similar to the one observed in the previous
case - the throughput improves as the channel separation be-
tween the flows increases. Furthermore, there is no significant
throughput loss (when compared to the horizontal line) when
the flows are separated by at least two channels.

We have the following two observations from our experiments,

Observation 1: A simultaneous transmission and reception in a
wireless node can interfere with each other if they are on channels
separated by fewer than three.

Observation 2: Interference can also be due to transmission by
a neighboring node, which is on a channel that is fewer than two
channels away.

Based on these observations we impose the following constraints
for a channel allocation to the nodes:

Constraint 1: No two interfaces (transmit or receive) on the same
wireless node should operate simultaneously on channels that are
separated by two or less. In our system, the channel on which a
wireless node transmits depends on the receive channel of a neigh-
boring node. Therefore, if a node is assigned the receive channel
ci, then the channels ci+1, ci−1, ci+2 or ci−2 should not be allocated
to any of the one hop neighbors.

Constraint 2: None of the one hop neighbors of a node should
transmit on the same or an immediately adjacent channel. Again,
based on the fact that the channel on which a one hop node trans-
mits depends on the receive channel of its immediate neighbors, we
try to reduce the possibility of two hop neighbors of a node being
allocated the same or an adjacent channel as the one allocated to
the node under consideration. In other words, if a node is assigned
the receive channel ci, then the channels ci+1 and ci−1 should not
be allocated to any of the two hop neighbors.

In the next section, we propose two channel allocation strategies
for reducing the interference in the network with the objective of
improving the overall network throughput. One of them does not
use the constraints listed above and the other tries to implement the
above constraints. We will later compare the relative performance
of the two algorithms.

4. CHANNEL ALLOCATION ALGORITHM
Among the two algorithms proposed in this section, the first one,
called LOCBAL is a simple local-balancing algorithm that balances
the number of times a particular channel is used within a two hop
neighborhood. A similar algorithm has been proposed by Kyasanur
and Vaidya in [21]. The second algorithm proposes an interference-
aware channel allocation mechanism, called INTAWARE in which
the receive channel of a node is changed dynamically based on the
traffic activity of the nodes and the constraints listed in Section 3.

4.1 The Local-Balancing Algorithm
According to this algorithm, every node first obtains the informa-
tion on the receive channel assigned to all its one and two hop
neighbors, neighList. The nodes can obtain this information by
exchanging periodic broadcast messages as described in Section 2.
Each node then counts the number of one and two hop neighbors,
chanCount[i] that are assigned a particular channel, i and calculates
the average, mean(chanCount) and the minimum, min(chanCount)
utilization (number of nodes) of each of the channels. If currChan
denotes the current receive channel of a node and chanList is the
list of channels available for allocation, the local-balancing algo-
rithm as executed periodically (every 5 seconds in our implemen-
tation) by every node, is as follows:

LOCBAL(currChan, chanList, neighList):
1. for i in chanList
2. chanCount[i]← 0
3. for neigh in neighList
4. chanCount[neigh→ channel]++
5. if(chanCount[currChan] > mean(chanCount)) AND

(chanCount[currChan] > min(chanCount)+1)
6. With probability p = 1

chanCount[currChan]
7. currChan← minChan
8. return currChan

According to line 5 of the above algorithm, a node checks if the
number of neighboring nodes that are on its current receive chan-
nel, chanCount[currChan] is more than the average utilization and
at least one more than the minimum utilization over all channels in
the network. If it is, then we probabilistically (with some probabil-
ity p = 1

chanCount[currChan] ) change the current receive channel of
the node to the minChan, which is the channel with the minimum
utilization. The reasoning for the condition in line 5 of the above al-
gorithm is as follows: if chanCount[currChan] is less than or equal
to the average utilization in the network, then there is no point in
switching the receive channel to another channel as that will not
balance utilization of all the channels in the network. On the other
hand, if chanCount[currChan] is exactly equal to one more than
the utilization of minChan, then the node will end-up switching its
channel between currChan and minChan, which is not desirable.
Finally, the probability p = 1

chanCount[currChan] , provides sufficient
damping for the algorithm to converge.

Because LOCBAL balances the number of times any channel is
used in the neighborhood, it reduces the cochannel interference
in the network. However, this algorithm is agnostic to the adja-
cent channel interference effects. A naive approach for reducing
the adjacent channel interference effects, as proposed by [21] is to
use only five (non-contiguous) channels out of the 12 channels in
IEEE 802.11a. However, we show through experiments that higher
throughputs can be achieved if we use more contiguous channels
than restricting the allocation to just the five non-contiguous chan-
nels.

For this experiment, we use a ten node network topology shown in
Figure 5. We generate ten 6 Mbps one hop, unicast UDP flows in a
ring fashion similar to the first experiment discussed in Section 3,
so that every node is both a source and destination of one flow.
This setup will ensure that every node undergoes the worst pos-
sible interference as both their radios are involved in some traffic
activity (either reception or transmission). We compare the overall



Figure 5. A ten node network topology- circles indicate nodes and
their colors indicate their receive channels (10 different channels are
shown); dotted arrows indicate a data flow directed from sender to re-
ceiver; links between nodes not shown for clarity.

Figure 6. Throughput comparison for LOCBAL executed with
5 non-contiguous (nc) channels and 8, 10, 12 contiguous (c)
channels.

network throughput (sum of individual throughputs of all the ten
flows) achieved using the simple local-balancing allocation algo-
rithm naively with just five non-contiguous channels (namely, 36,
48, 60, 149, and 161) with that of the same algorithm using 8, 10,
and 12 contiguous channels. Thus, for the 8 channel case we use
all the eight channels in the lower and middle UNII bands (namely
channels 36, 40, 44, 48 ,52, 56, 60, and 64), for the 10 channel case
we use two of the four channels (namely 153 and 157) in the upper
UNII band in addition to the eight channels in the lower and middle
UNII bands, and 12 channel case uses all the channels allowed in
802.11a.

Figure 6 shows the comparison plots of the network throughputs
averaged over 30 runs. We let the auto rate functionality of 802.11
select the best possible physical transmission rates for the wireless
cards. From the plots, we observe that the performance for the case
where we use just 5 non-contiguous channels is worse than the case
where we use 8, 10 or 12 contiguous channels. Furthermore, the
throughput achieved is highest when we use all the twelve channels,
as more channels ensure more concurrent, reliable transmissions in
the network. From now on whenever we refer to LOCBAL, we
mean to use contiguous channels, unless mentioned otherwise.

We wish to explore if a further improvement in throughput can be
achieved over LOCBAL if adjacent channel interference effects are
also taken care. Our interference-aware algorithm discussed in the
next section adapts LOCBAL to address this point.

4.2 The Interference-Aware Algorithm
The interference-aware algorithm, in addition to reducing the cochan-
nel interference effects by locally balancing the channels allocated,
also reduces the adjacent channel interference effects both within a
node and across the node by following the constraints in Section 3
as follows:

1. The adjacent channel interference within a node is reduced by
ensuring that the transmit channel and the receive channel are sepa-
rated by more than two. For this, we change the receive channel of
a node when its transmit interface sends data on any of the channels
that are within two channels away from the receive channel.

2. The adjacent channel interference across nodes is reduced by

using a channel selection algorithm that allocates channels that are
as spectrally farthest as possible. This reduces the possibility of two
neighboring nodes being on channels that are separated by fewer
than two channels. To determine the spectrally farthest channel
from a channel i, we use the following distance factor,

distancei = ∑
j∈neighChannels,

j 6=i

|i− j| ∀i ∈ K (1)

where neighChannels is the set of channels assigned to the one and
two hop neighbors of a node and K is the set of all channels that
are considered for allocation. The spectrally farthest channel i is
then given by argmax

i
{distancei}. In other words, for a given node

we select a receive channel that is the farthest from all the channels
allocated to its neighbors.

If currChan is the current receive channel of a node, and chanList
and neighList contains the list of channels available for allocation
and the list of one and two-hop neighbors of a node (along with
their receive channels), then the interference-aware channel alloca-
tion and the channel selection algorithms, as executed periodically
(every 5 seconds) by every node, is as follows:



INTAWARE(currChan, chanList, neighList):
1. M← 100000 //some large number
2. for i in chanList
3. chanCount[i]← 0
4. for neigh in neighList
5. chanCount[neigh→ channel]++
6. currT xChanList← GetInterfaceStats
7. for chan in currT xChanList
8. chanCount[chan±1]←M
9. chanCount[chan±2]←M
10. minChanList← minChannels(chanList,chanCount)
11. if(chanCount[currChan] = M)
12. currChan← CHANSELECT(minChanList, neighList)
13. else if(chanCount[currChan]≥ mean(chanCount)+1) AND

(chanCount[currChan] > min(chanCount)+1)
14. With probability p = 1

chanCount[currChan]
15. // create list of channels that have
16. // the least channel count
17. currChan← CHANSELECT(minChanList, neighList)
18. return currChan

CHANSELECT(minchanList, neighList):
1. for i in minchanList
2. for neigh in neighList
3. distance[i]← distance[i]+ |i− (neigh→ channel)|
4. return maxDistChan

In interference-aware algorithm, in addition to counting the uti-
lization of each of the channels based on the broadcast messages
from the neighbors, every node also maintains a list of channels,
currT xChanList on which it is currently transmitting or has a packet
queued up for a future transmission. For this, we use a function,
namely GetInterfaceStats, which obtains the information about
the channels on which packets are currently transmitted or waiting
to be transmitted from the wireless drivers. More information on
the technique used for acquiring this information from the drivers
is presented in Section 4.3. If the list is non-empty then the utiliza-
tion of all the channels that are separated by fewer than three chan-
nels from any channel in currT xChanList is inflated artificially by a
large number M. If currT xChanlList contains a channel separated
by less than three from currChan, then currChan is immediately
changed to a different channel as chosen by ChanSelect algorithm.
Otherwise, the algorithm will behave similar to LOCBAL except for
choosing the receive channel using the CHANSELECT algorithm.

To make sure that we do not select a channel whose chanCount
is set as M, we form a potential list of channels that has the least
utilization, namely minChanList using the function minChannels
(see lines 10 and 11 in the INTAWARE algorithm). CHANSELECT
then finds the channel that is spectrally farthest from all the chan-
nels in the neighborhood by evaluating the metric in Equation (1).

The INTAWARE algorithm, along with CHANSELECT algorithm,
helps in reducing the adjacent channel interference effects form
both within a node and from a neighboring node. Furthermore, be-
cause we also keep track of channels for which packets are awaiting
to be sent in the near future, we reduce the possibility of switching
to a channel that may be adjacent to the channel on which a fu-
ture transmission may happen. This, in turn, reduces the number of
times the receive channel is changed for a node thereby reducing
the overhead involved in switching the receive channels. Though
the interference awareness of this algorithm is restricted to traffic
activity within a node, we show in the next section that the overall

throughput achieved by the interference-aware algorithm is higher
than the local-balancing algorithm.

4.3 Getting the Interface Statistics
The information on the channels on which the packets are cur-
rently transmitted or waiting to be transmitted is obtained from the
channel abstraction layer (see Section 2.1). Because we need to
communicate with a kernel module from a user-space program, we
made use of a private IOCTL (input-output control) call to the ker-
nel module from the user-space program. The relevant interface
statistics information is obtained in the form of the estimated trans-
mission time (ETT), which gives an estimate of the time taken by
the packets to get transmitted on a link. In our testbed, we compute
the ETT values for every channel queue maintained by the chan-
nel abstraction layer. The ETT for a channel queue is given by the
following expression:

ET T = ET X ∗ S
B

where, ET X is the expected number of transmission attempts (in-
cluding re-transmissions) required to transmit a packet, S is the av-
erage packet size and B is the data rate of the link. The expected
number of transmissions is estimated based on the loss in the link.
A higher ETT value readily indicates that there is a packet waiting
to be transmitted in the corresponding channel queue.

Whenever the INTAWARE channel allocation algorithm is executed,
the algorithm sends an IOCTL query to the channel abstraction
module requesting the ETT information of all the channel queues.
The algorithm then checks if the ETT value of the channels ad-
jacent to the current receive channel is above a certain threshold.
If it is, then the algorithm searches for a lightly loaded channel
that is spectrally farther from the other neighboring channels and
switches to that channel. The channel is not switched if the ETT
value is above the threshold in the current channel or in a channel
other than the neighboring channels.

5. PERFORMANCE RESULTS

Figure 7. Comparison between the LOCBAL and INTAWARE algo-
rithms - one transmission and one reception at each node.

We conduct two sets of experiments for evaluating the performance
of our algorithms. The first set of experiments is for a deterministic



Table 1. Throughput (in Mbps) comparison between the LOCBAL and INTAWARE algorithms - one reception and one transmission at each
node.

# Manual LOCBAL INTAWARE % Improvement
Contiguous Channels Allocation Algorithm Algorithm INTAWARE

(Mbps) (Mbps) (Mbps) over LOCBAL

4 20.15 16.53 18.77 13.56%
6 35.32 30.11 34.85 15.76%
8 44.86 38.62 44.99 16.52%

10 49.23 42.21 48.60 15.15%
12 48.17 42.98 49.06 14.14%

traffic pattern where the source and the destination nodes are deter-
mined a priori. Furthermore, we just generate one hop flows for the
first set of experiments. Additionally, because of the deterministic
nature of the traffic patterns generated, we also determine a man-
ual channel allocation that is perceived to be good and use this as a
benchmark for comparing our algorithms. We discuss more on the
manual channel allocation in a follow-up section. For the second
set of experiments, on the other hand, we choose the source and
the destination nodes uniformly at random from the set of nodes
and initiate multihop traffic between them. While the first set of
experiments is useful in obtaining some interesting tradeoffs be-
tween our algorithms, the second set of experiments are intended
to demonstrate the performance of our algorithms in a more realis-
tic multi-hop scenario. Before we proceed to a discussion on our
experimental results, we wish to explain more the manual channel
allocation that were used as a benchmark for comparing our algo-
rithms in the deterministic traffic pattern case..

Manual channel allocation used in our experiments

We obtain a channel allocation for the nodes manually by trying out
many possible combinations of channel allocations to the nodes.
Because the number of possible combinations of channel alloca-
tions is large, we tried out only those allocations that allocates non-
adjacent channels to a one hop neighbor. In other words, having
allocated a channel say, c, to a node, we ignore allocations that al-
locates channel (c+1) or (c−1) to any of the one hop neighbors of
this node. For every allocation we averaged the overall throughput
over 30 runs. We then choose the allocation that resulted in the
maximum overall throughput as a benchmark.

Because of the processing constraint of the Soekris boxes, we only
use UDP traffic at a fixed rate of 6 Mbps, for all our experiments
discussed in this section. However, we let the auto rate function-
ality of the madwifi drivers to determine the best possible physical
transmission rates.

5.1 Experiment Set 1 - Single-hop Determin-
istic Traffic Flows

5.1.1 One transmission and one reception per node:
We first discuss the experiments for a simple case where we have
one transmission and one reception at each node. For this experi-
ment, we use the same ten node network discussed in Section 4.1,
shown in Figure 5. As shown in the figure, we generate ten 6 Mbps
UDP flows such that every node is both a source and a destina-
tion of exactly one UDP flow. This ensures that both the radios are
active in a node and therefore, creates the worst possible interfer-
ence within a node. The transmission rate of the wireless cards is

determined based on the auto rate functionality built in the drivers.
We vary the number of contiguous channels available for allocation
from 4 to 12, in steps of 2. When the number of channels is 4, we
use the channels 40, 44, 48, and 52, for 6 channels we use the
channels 40 through 60. Similarly, for the case of 8 channels,
we use channels 36 through 64. and for the 12 channel case we
use all the 12 IEEE 802.11a channels allowed in the US.

We repeated our experiment for five different traffic patterns by
varying the source-destination pairs, and for each topology we mea-
sured the overall network throughput obtained using both the sim-
ple local-balancing and the interference-aware channel allocations.
For each traffic pattern, we repeated our experiments for 30 runs.
Note that Figure 5 shows only one of the five traffic patterns used in
our experiments. The measured network throughput, averaged over
all the traffic patterns and all the runs are shown in Figure 7. Fig-
ure 7 also shows the throughput obtained using the manual channel
allocation. We have also plotted the 95% confidence interval bars
for our throughput values. Table 1 tabulates the throughput values
and the percentage improvement of interference-aware algorithm
over the simple local-balancing algorithm.

From our figure, we first observe that the throughput achieved by
our interference-aware algorithm is close to that achieved by a good
channel allocation obtained manually. Additionally, we observe
from the plots that the throughput obtained using INTAWARE is al-
ways better than that obtained using the LOCBAL algorithm. For
instance, we can observe from Table 1 that using the interference-
aware algorithm, a throughput improvement of up to 16.52% (cor-
responding to 8 channels) can be obtained over the local-balancing
algorithm. However, we also observe that the throughput improve-
ment obtained using the INTAWARE algorithm diminishes when we
have fewer channels to allocate. In particular, when we use 4 chan-
nels, the throughput improvement reduces to 13.56%. This is due
to the increased adjacent channel interference from the neighbor-
ing nodes when fewer channels are used for allocation. Addition-
aly, we can also observe that the throughput improvement achieved
by INTAWARE is reduced when we have more number of channels
when compared to the number of flows in the network. For in-
stance, from Table 1, we observe that the throughput corresponding
to the case of 12 channels is 14.14%. The reason for this is because,
when we have more channels to allocate, even a local-balancing al-
gorithm can achieve a channel allocation, such that the neighboring
transmissions are on farther channels, which is good enough to re-
duce the interference in the network. This suggests that LOCBAL
can be a simple alternative to the INTAWARE, when the number of
channels available for allocation is larger than the expected num-
ber of flows in the network. However, as we can observe from
the confidence interval bars, the variation in the throughput val-



Figure 8. A twenty node network topology with 10 of the 20 nodes
nodes having two outgoing flows (Please see Figure 5 for an explana-
tion on the figure).

Figure 9. Comparison between the LOCBAL and INTAWARE al-
gorithms - two transmissions and one reception at each node.

Table 2. Throughput (in Mbps) comparison between the LOCBAL and INTAWARE algorithms - two transmissions and one reception at each
node.

# Manual LOCBAL INTAWARE % Improvement
Contiguous Channels Allocation Algorithm Algorithm INTAWARE

(Mbps) (Mbps) (Mbps) over LOCBAL

4 3.72 2.89 3.35 16.05%
6 7.67 6.03 7.24 20.09%
8 11.56 9.41 11.49 22.12%

10 15.73 12.86 15.47 20.34%
12 16.92 14.33 16.76 16.97%

Figure 10. A twenty node network topology with each node involved in
only one flow (Please see Figure 5 for an explanation on the figure).

Figure 11. Comparison between the LOCBAL and INTAWARE
algorithms - either one transmission or one reception at each
node.

ues is higher for the local-balancing algorithm when compared to
our trafic-aware algorithm. Moreover, the lower end of the confi-
dence interval bar of the INTAWARE throughputs is above the upper
end of the confidence interval bars of the LOCBAL throughputs in
most cases. This shows that INTAWARE algorithm can consistently
achieve higher throughputs when compared to INTAWARE.

5.1.2 More than one transmission and one reception
at each node:

Next, we present the results for a scenario where a node is a source
for more than one flow. In particular, in this experiment every node
is a source for two flows, but is destination for exactly one flow. In
this case, choosing a receive channel that does not interfere with
both the transmissions from a node can be challenging. However,
we show that the INTAWARE algorithm offers better throughputs



Table 3. Throughput (in Mbps) comparison between the LOCBAL and INTAWARE algorithms - either one transmission or one reception at each
node.

# Manual LOCBAL INTAWARE % Improvement
Contiguous Channels Allocation Algorithm Algorithm INTAWARE

(Mbps) (Mbps) (Mbps) over LOCBAL

4 23.16 19.51 22.00 12.77%
6 31.92 27.47 31.33 14.07%
8 42.22 37.92 43.42 14.5%

10 41.67 38.76 42.34 9.24%
12 47.66 44.47 48.03 8.02%

even in this scenario. For this, we use the twenty node network
shown in Figure 8 and generate five different traffic scenarios by
choosing different source and destinations each time. One of the
five different traffic patterns used for this experiment is also shown
in Figure 8. According to this topology, ten out of twenty nodes
have two outgoing flows and one incoming flow, each of which is
a 6 Mbps UDP traffic, while the remaining ten nodes only have
incoming flows. Because we are only interested in the perfor-
mance of the nodes that has both outgoing flows and incoming
flows, we only measure the sum of the throughputs achieved by
the nodes that send traffic, averaged over the five traffic patterns,
each repeated for 30 runs. The throughput values are shown in Fig-
ure 9, and are tabulated in Table 2. Note that we are not accounting
for the throughputs at the nodes that do not have outgoing traffic
from them as that may skew the observations. We once again ob-
serve from the figure that the INTAWARE algorithm always has a
higher throughput than the LOCBAL algorithm. Additionally, the
throughput values obtained using INTAWARE is closer to those ob-
tained by the manual allocation. Furthermore, as we see from the
tabulated throughput values that, though the actual throughput val-
ues are small owing to the increased interference in the network,
the improvement in throughput obtained by INTAWARE over the
LOCBAL algorithm is substantial than that in the previous experi-
ment (where every node just had one outgoing flow). For instance,
the improvement obtained using INTAWARE algorithm with 8 chan-
nels in this experiment is 22.12%, whereas that for the previous ex-
periment with the same 8 channels is only 16.52%. This is because,
when there are more flows in the network there is an higher chance
for the flows to interfere with each other. The INTAWARE algo-
rithm can successfully reduce the interference effects in the net-
work in this case by choosing the best possible channel allocation.
As in the previous experiment, we observe that the throughput im-
provement achieved using INTAWARE reduces when we have more
number of channels available for allocation (compared to the ten
flows whose throughput values are measured), suggesting that the
INTAWARE algorithm can be used when we have more channels.
Additionally, as in the previous experiment, we observe that the
95% confidence interval bars for the INTAWARE throughputs lie
above the confidence intervals of LOCBAL throughputs suggesting
consistent behavior of the INTAWARE algorithm.

5.1.3 Either one transmission or one reception at each
node:

The previous two experiments showed that the interference-aware
channel allocation is effective in reducing the interference due to
simultaneous reception and transmission within a node that are on
adjacent channels. When a node is not involved in a simultaneous
reception and transmission, the overall interference in the network
may be low. We wish to study the performance of the LOCBAL

and INTAWARE algorithms for this scenario. For this case, we
generate one hop UDP flows at a rate of 6 Mbps from each node
to one of their immediate neighbor in a twenty node network as
shown in Figure 10. Note that every node is involved either in a
transmission or a reception, but not both. We then measure the
total network throughput for five different combinations of source-
destination pairs and plot the values after averaging them over 30
runs for each of the five combinations. Figure 11 shows the corre-
sponding throughput values along with the 95% confidence inter-
vals, and Table 3 tabulates the throughput values.

From the figure and the table, we observe that the throughputs
achieved using INTAWARE algorithm is only slightly above those
values achieved using the LOCBAL algorithm. This is because,
the interference-awareness in INTAWARE algorithm is effective in
reducing only the interference effects within a node, which is ab-
sent in this experiment. However, the improvement in throughput
values of INTAWARE over LOCBAL in this case is due to the chan-
nel selection algorithm. The channel selection algorithm always
chooses channels, within a neighborhood of nodes, that are spec-
trally farther apart thereby reducing the overall interference in the
network. This shows that interference from neighboring nodes can
be reduced by selecting as spectrally farther channel as possible.
However, we observe from Figure 10 that the confidence intervals
of the INTAWARE throughputs overlap with those of the LOCBAL
throughputs in most of the cases. This suggests that further im-
provements can be made to the INTAWARE algorithm to provide
better performance in this scenario. We wish to explore more on
these aspects for our future work. One possibility for improving
the throughput in this case will be to exchange the traffic informa-
tion across nodes, as suggested in [22]. However, this might incur
additional overhead in the network.

5.2 Experiment Set 2 - Multihop Random Traf-
fic Flows

We now demonstrate the performance of our algorithms for a more
realistic multihop network scenario. For this experiment, we use
the same set of 20 nodes as before and choose 10 different source-
destination pairs uniformly at random. The pairs of nodes can be
situated anywhere in our network and therefore, are not necessar-
ily one hop neighbors. We then generate 10 constant rate UDP
traffic at 6 Mbps each from a source-destination pair and measure
the overall end-to-end network throughput. We repeat this exper-
iment for about 50 different realizations, each time choosing 10
different source-destination pairs. The end-to-end throughput val-
ues averaged over all realizations are plotted in Figure 12 and tab-
ulated in Table 4. We can observe from the figure and the table that
INTAWARE algorithm performs consistently better (as evident from
the confidence intervals) than the LOCBAL algorithm, as in the first



two experiments of experiment set 1. Furthermore, we observe that
the improvement achieved using the INTAWARE algorithm is much
higher than those achieved in the single hop experiments. In partic-
ular, the maximum improvement achieved is 32.18% (correspond-
ing to 8 channels). This is because, when we have multihop flows,
the flows experience interference at every hop between the source
and the destination. A channel allocation algorithm that is agnostic
of the adjacent channel interference effects, such as LOCBAL will
perform poorly in this scenarios. However, the INTAWARE chan-
nel allocation algorithm can dynamically change the channel allo-
cation at every hop reducing the overall interference experienced
by a traffic flow, resulting in a better end-to-end throughput. This
suggests that a interference-aware algorithm is more suitable for
a multihop traffic scenario. Again, as in the earlier experiments,
we observe from the throughput values that the improvement from
INTAWARE decreases as the number of channels available for allo-
cation increases, though the reduction is not substantial.

Figure 12. Comparison between the LOCBAL and INTAWARE algo-
rithms for random multihop traffic.

6. RELATED WORK
Intelligent channel allocation is often viewed as a method for miti-
gating the interference effects in multichannel, multi-radio wireless
networks. However, most of the channel allocation algorithms pro-
posed in the literature address only the cochannel interference ef-
fects, and therefore often ignore the adjacent channel interference
effects. For instance, in [23], the authors have proposed a static
channel allocation scheme for multi-radio wireless mesh networks
where the objective is to minimize the average size and maximum
size of the cochannel interference set. Another work [24], pro-
poses a minimum interference channel assignment in multi-radio
networks where the goal is to minimize the number of neighbor-
ing nodes operating on any single channel subject to interface con-
straints. Both the above problems are formulated as NP-hard max-
k-cut problems and the authors have provided heuristics for chan-
nel allocation. One of the pioneering work in the centralized chan-
nel allocation approaches, [25], proposes a neighbor partitioning-
based algorithm and a load-aware algorithm for allocating channels
in multichannel networks. The goal of the neighbor-partitioning
algorithm is to reduce the interference in the network, while the
load-aware algorithm is formulated as a network-flow problem.

The channel allocation proposed in [26] and [27], addresses the
problem of partial overlap between the channels. However, in-
stead of minimizing the interference effects, the authors propose

to use the channel overlaps to improve network connectivity. An
interference-aware channel allocation algorithm is proposed in [28]
in which the routers switch to a default channel whenever the cur-
rent channel is perceived to be poor. However, the interference met-
ric used considers only the cochannel interference effects. In [29],
the authors have extended their work in [12] and have quantified
various forms of radio interference in multi-radio networks. They
then compare three different forms of channel allocations, namely
ad-hoc, TDM, and FDM. A genetic algorithm-based channel allo-
cation algorithm is proposed in [30]. Bertossi, et al, have proposed
minimum number coloring algorithms, such as L(2,1) and L(2,1,1)
for various model graphs, where the goal is to find a minimum set
of colors for performing a conflict-free coloring of a graph. Within
the context of this paper, our goal instead is to find a minimum-
conflict coloring given a fixed set of colors. All the works discussed
so far are centralized algorithms, which may be easy to implement
when there is a centralized server. In ad-hoc and mesh networks,
however, a centralized server may not be available and therefore,
distributed channel allocation algorithms are required.

Raniwala and Chiueh, have proposed a tree-based distributed chan-
nel allocation protocol, where the allocation is based on the total
number of links using a channel within the interference range of a
node, and the aggregate traffic load on a channel within the inter-
ference range [31]. A fully distributed channel allocation protocol
for multi-radio mesh networks is proposed in [32] where the ob-
jective of this paper was to maximize the utilization of the wireless
spectrum over a large network subject to minimizing the cochannel
interference over the neighborhood of a node. A randomized dis-
tributed algorithm is proposed in [33]. However, the authors have
used a delay metric to evaluate their channel allocation. A more
relevant channel allocation algorithm for our work are those pro-
posed in [22] and [21]. In [22], the authors propose a distributed
channel allocation algorithm in which the hosts make use of the
feedback present in the 802.11 networks for estimating the inter-
ference. However, unlike the case in our algorithm, a wireless node
relies on the traffic information from other nodes, which either may
not be always possible in large networks or may not be reliable due
to problems such as hidden terminals. In [21], the authors discuss a
channel allocation algorithm similar to the naive form of our local-
balancing channel allocation algorithm. However, the channel al-
location only minimizes the cochannel interference effects in the
network. Joint channel allocation and routing algorithms for mul-
tichannel mesh networks are proposed in [34, 35], and [36]. The
algorithm proposed in [34] is centralized, while [35] and [36] pro-
pose a distributed channel allocation and routing algorithm. We do
not concentrate on routing algorithms in our work.

7. CONCLUSION
In this work, we have empirically motivated a channel allocation
algorithm for a multichannel, multi-radio wireless network that in-
corporates considerations to the adjacent channel interference ef-
fects. We first showed through experiments that interference in a
wireless network is mainly due to simultaneous transmissions on
the same or adjacent channels, both within a node and from neigh-
boring nodes. We then discussed a simple local balancing channel
allocation algorithm, LOCBAL that can reduce the cochannel inter-
ference effects by balancing the number of channels used within
a two hop neighborhood. We showed that a naive form of this
algorithm that uses only a subset of non-contiguous channels (in
particular, five out of twelve channels) does not improve the over-
all performance in the network as this will reduce the total num-
ber of simultaneous transmissions in the network (spatial reuse).



Table 4. Throughput (in Mbps) comparison between the LOCBAL and INTAWARE algorithms for random multihop traffic.

# LOCBAL INTAWARE % Improvement
Contiguous Channels Algorithm Algorithm INTAWARE

(Mbps) (Mbps) over LOCBAL

4 5.85 7.24 23.89%
6 6.80 8.62 26.86%
8 7.2 9.52 32.18%

10 8.64 10.80 25.07%
12 9.02 10.90 20.80%

We then showed that by using more contiguous channels, a better
throughput can be achieved compared to the naive approach. We
also argued that a further improvement in throughput is possible
when additional intelligence by means of interference awareness
is built into the algorithm. This motivated our interference-aware
algorithm INTAWARE, which makes use of the information on the
current transmission channel from the wireless drivers to perform
an interference-free channel allocation. We showed through ex-
periments on a real testbed that INTAWARE achieves up to 32%
improvement over the LOCBAL algorithm in a real multihop net-
work scenario. Furthermore, we also showed that INTAWARE per-
forms better than LOCBAL for single-hop traffic scenarios. We also
demonstrated that by carefully selecting the channels, even the in-
terference due to a transmission from a neighboring node can be
avoided. However, we wish to explore improved channel alloca-
tion strategies for reducing interference from neighboring nodes as
a future work.
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