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Abstract

The goal of Byzantine Broadcast (BB) is to allow a set of fault-free nodes to agree on
information that a source node wants to broadcast to them, in the presence of Byzantine faulty
nodes. We consider design of efficient algorithms for BB in point-to-point networks where the
rate of transmission over each communication link is limited by its ”link capacity”. Given an
algorithm A to solve BB in a network G, let us denote by t(G, L,A) the worst-case execution
time of A without violating link capacity constraints in G, when L is the size of the input at the
source node. Then, we define the capacity of BB in network G as the supremum of L/t(G, L,A)
over all L and all possible BB algorithms A.

We prove upper bounds on the capacity of Byzantine broadcast over arbitrary point-to-point
networks. An algorithm is then given that solves BB at a rate of at least 1/2 or 1/3 of the capacity,
depending on different conditions the underlying network satisfies. This Byzantine Broadcast
algorithm tolerates up to f faulty nodes as long as the the total number of nodes is at least 3 f +1
and the connectivity is at least 2 f + 1.

To the best of our knowledge, ours is the first algorithm that achieves a constant fraction of
capacity of BB in general point-to-point networks.
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1 Introduction
The problem of Byzantine Broadcast – also known as the Byzantine Generals problem [14] –

was introduced by Pease, Shostak and Lamport in their 1980 paper [23]. Since the first paper on
this topic, Byzantine Broadcast has been the subject of intense research activity, due to its many
potential practical applications, including replicated fault-tolerant state machines [5], and fault-
tolerant distributed file storage [25]. Informally, Byzantine Broadcast (BB) can be described as
follows (we will define the problem more formally later). There is a source node that needs to
broadcast a message (also called its input) to all the other nodes such that even if some of the nodes
are Byzantine faulty, all the fault-free nodes will still be able to agree on an identical message; the
agreed message is identical to the source’s input if the source is fault-free.

We consider the problem of maximizing the throughput of Byzantine Broadcast (BB) in net-
works of point-to-point links, wherein each directed communication link is subject to a ”capacity”
constraint. Informally speaking, throughput of BB is the number of bits of Byzantine Broadcast that
can be achieved per unit time (on average), under the worst-case behavior by the faulty nodes.
Despite the large body of work on BB [9, 6, 3, 13, 2, 22], performance of BB in general point-to-
point work has not been investigated previously. In reality, link capacities may differ significantly.
Existing algorithms often do not perform well under such realistic conditions. In fact, one can
easily construct example networks in which previously proposed algorithms achieve throughput
that is arbitrarily worse than the optimal. In our prior work, we have developed an algorithm that
optimizes the throughput in 4-node point-to-point networks [18], and also an optimal algorithm
when total communication overhead is the cost metric [19]. In contrast, this paper presents a BB
algorithm for arbitrary point-to-point networks. The paper makes two main contributions:

1. We prove upper bounds on the capacity of BB in point-to-point networks wherein each
directed communication link is subject to a capacity constraint.

2. We present the first BB algorithm that achieves a constant fraction (1/2 or 1/3) of the capacity
in arbitrary point-to-point networks.

2 Preliminaries

2.1 The Byzantine Broadcast (BB) Problem

Byzantine Broadcast is an example of a class of problems known as Byzantine Agreement. The
BB problem considers a network of n nodes, named 1, 2, · · · , n, with one node designated as the
sender or source, and the other nodes designated as the peers. In our discussion, we will assume
that node 1 is the source node. Source node 1 is given an input value x containing L bits, and the
goal here is for the source to broadcast its input to all the other nodes. The fault-free nodes must
“agree on” the input value being broadcast by the source, despite the possibility that some of the
nodes may be faulty (possibly including the source). In particular, the following conditions must
be satisfied when the input value at the source node is x:

• Termination: Every fault-free node i must eventually decide on an output value; let us
denote the output value of fault-free node i as x′

i
.

• Agreement: All fault-free nodes must agree on an identical output value, i.e., there exists x′

such that x′
i
= x′ for each fault-free node i.

• Validity: If the source node is fault-free, then the agreed value must be identical to the input
value of the source, i.e., x′ = x.
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Adversary Model: The faulty nodes are controlled by an adversary that has a complete knowl-
edge of the network topology, the algorithm, and the information the source is trying to send. No
secret is hidden from the adversary. The adversary can take over up to f nodes at any point during
execution of the algorithm, where f < n/3. These nodes are said to be faulty. The faulty nodes can
engage in any kind of deviations from the algorithm, including sending false messages, collusion,
and crash failures.

2.2 Network Model

We assume a synchronous point-to-point network modeled as a directed simple graph G(V,E),
where the set of vertices V = {1, 2, · · · , n} represents the nodes in the point-to-point network, and
the set of edges E represents the links in the network. With a slight abuse of terminology, we
will use the terms edge and link interchangeably. We assume that n ≥ 3 f + 1 and that the network
connectivity is at least 2 f + 1 (these two conditions are necessary for existence of a correct BB
algorithm [9]).

In the given network, links may not exist between all node pairs. Each directed link is asso-
ciated with a fixed link capacity, which specifies the maximum amount of information that can be
transmitted on that link per unit time. Specifically, over a directed link (i, j) with capacity z bits/unit
time, we assume that up to zτ bits can be reliably sent from node i to node j over time duration
τ (for any non-negative τ). This is a deterministic model of channel capacity that has been widely
used in the network coding literature [15, 4, 11, 12]. All link capacities are assumed to be integers.
Rational link capacities can be turned into integers by choosing a suitable time unit. Irrational
link capacities can be approximated by integers with arbitrary accuracy by choosing a suitably
time unit. Propagation delays on the links are assumed to be zero (relaxing this assumption does
not impact the correctness of results shown for large input sizes). We also assume that each node
correctly knows the identity of the nodes at the other end of its links.

2.3 Multigraph Representations and MinCuts

In our discussion below, we will find it convenient to interpret a point-to-point network
G as a directed multigraph with unit capacity edges. Thus, an edge e = (i, j) of capacity z
will now be modeled using z directed unit-capacity edges from node i to node j. Additionally,
by ignoring the directions of edges in this multigraph, we obtain an undirected multigraph

representation of the network, denoted as G. Figures 1(a) to 1(c) illustrate examples of different
representations of a graph. Define MINCUT(G, i, j) as the directed mincut in directed graph G

from node i to node j. Similarly, for the undirected representation, define MINCUT(G, i, j) as

the undirected mincut in undirected graph G between node i and node j. Note that, while we

always have MINCUT(G, i, j) = MINCUT(G, j, i), in general MINCUT(G, i, j) may not be equal to
MINCUT(G, j, i). We also define the following notations for later use:

• D(G, i) = min j∈V, j,i MINCUT(G, i, j): the minimum directed cut from node i to any of the
other nodes in G. It is well-known that D(G, i) is the broadcast capacity from node i in G [7]
– broadcast capacity from node i characterizes the maximum rate at which node i can deliver
information to all the other nodes in the network (in the absence of any failures).

• U(G) = mini, j∈V,i, j MINCUT(G, i, j): the minimum undirected cut between any pair of nodes

in the undirected multigraph representation G of graph G.

In the example of Figure 1, MINCUT(G, 1, 4) = 1, MINCUT(G, 1, 4) = 3, D(G, 1) = 1, and U(G) = 2.
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(a) Directed Simple Graph G (b) Directed Multigraph representation of G, ev-
ery directed edge has capacity 1

(c) Undirected Multigraph G, every undirected
edge has capacity 1

(d) Undirected unit-capacity spanning trees in

G

Figure 1: Graph representations of the network



2.4 Capacity of Byzantine Broadcast

We first define the throughput of a given algorithm in a given network. For any algorithm A
that solves BB with an L-bit input at the source in network G, t(G, L,P) is defined as the duration of
time required, in the worst case, from the initiation of the algorithm until its termination, without
violating the capacity constraints of the links in G. Throughput of algorithm A is then defined as

L
t(G,L,P) . We define capacity of BB as follows.

Capacity CBB of Byzantine Broadcast in graph G is defined as the supremum of the throughput of
all algorithms that solve the BB problem. That is,

CBB(G) , sup
A solves BB in G

L

t(G, L,A)
. (1)

3 Algorithm Overview
The goal of the proposed BB algorithm is to perform Byzantine Broadcast of an L-bit input.

The algorithm is designed to perform efficiently for large L. We first briefly describe the salient
features of the BB algorithm.

Execution in Multiple Generations: To improve throughput, BB of an L-bit value is performed
“in parts”. In particular, for a certain integer B, the L-bit value is divided into L/B parts, each
consisting of B bits. For convenience, we assume that L/B is an integer. A sub-algorithm (called
Algorithm 1 below) is used to perform BB on each of these B-bit parts. We refer to each execution
of the Algorithm 1 as a “generation”. Algorithm 1 for each generation has the following structure:

Algorithm 1 Structure of the BB algorithm for generation g

1. Broadcast with failure detection: This phase of the algorithm allows the source node
1 to broadcast B bits of generation g. This phase also performs failure detection, while
satisfying the following conditions: (i) each fault-free nodes agrees on whether a failure has
been detected or not; (ii) if a failure is not detected, then the the broadcast values received
by the fault-free nodes in generation g satisfy the agreement and validity conditions stated
in Section 2.1, and (iii) if a failure is detected, then at least one faulty node has adversely
affected the execution of generation g.

2. Fault Diagnosis: Whenever a failure is detected above, additional steps are taken to learn
(possibly partial) information regarding the identity of the faulty node(s). This technique
is also known as “dispute control” [1], and has been used in our previous work [18, 19].
The Fault Diagnosis phase identifies a pair of adjacent nodes, of which at least one node is
guaranteed to be faulty. The directed links between these two nodes are not used in the future
generations of Algorithm 1 (this is how the algorithm adapts to past failure detections). It
can be shown that [18, 19], if a certain node is identified as potentially faulty in at least f + 1
generations, then that node must necessarily be faulty (and, therefore, excluded from the
execution of future generations). Thus, the total number of generations during which faulty
behavior is detected is limited by f ( f + 1).

Long-Term Throughput: Due to the bounded number of generations in which the faulty nodes
can misbehave, it turns out that the throughput of the Byzantine Broadcast algorithm (which
tolerates up to f Byzantine faults) can be made arbitrarily close to the throughput at which we
can perform Broadcast with failure detection of Algorithm 1 above. For lack of space, we
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omit the proof of this claim. The proof follows from our prior work on throughput of Byzantine
Broadcast [18].

Due to the above reason, we will now focus our attention on the problem of performing
Broadcast with Failure Detection and propose an algorithm for this. Our algorithm will make use
of a new solution to the Multi-Party Equality (MEQ) problem as a sub-algorithm. In Section 4 we
discuss our algorithm for MEQ, and later describe how that can be used to solve the broadcast with
failure detection problem.

4 The Multiparty Equality (MEQ) Problem
Let us consider the MEQ problem for the m nodes in a network G(V,E). Thus,V is the set of

nodes in the network, and E is the set of directed edges in G. As we will see later, our algorithm
for BB in network G will apply the MEQ algorithm to various sub-graphs of G.

For the MEQ problem, each of the nodes in V starts with an input, and the objective of MEQ
is for the nodes to determine whether they all share the same input. The MEQ problem does not

consider faulty behavior. Formally, requirements of our version of MEQ are as follows:

• Each node i is given an input xi consisting of B bits.

• Each node sets an output bit to be 0 or 1.

• If x1 = · · · xm, then all the nodes set output to 0; otherwise, at least one node outputs 1.

We can define throughput, and capacity CMEQ, of MEQ on network G analogous to throughput and
capacity CBB of Byzantine Broadcast. For lack of space, we do not repeat these definitions here.

Theorem 1 In point-to-point network G(V,E), the capacity of the MEQ problem is upper bounded by the
minimum undirected cut, that is, CMEQ(G) ≤ U(G).

Theorem 1 is a natural extension of the well-known result on the communication complexity
of the two-party equality problem [26]. The proof is included in Appendix A. In the rest of this
section, we discuss our algorithm that solves MEQ with throughput at least U(G)/2 using random
linear coding. While the MEQ problem may potentially be solved using other algorithms, the
structure of our MEQ algorithm is designed to help solve the BB problem, as seen later.

We refer to the strategy used in the algorithms below as “local coding” to contrast it with
traditional network coding strategies [11, 12]. Specifically, in our algorithms, as will be seen later,
the coding scheme does not combine packets from different sources.

4.1 Solving the MEQ Problem along Spanning Trees

We first present an algorithm that solves MEQ using a set of edge-disjoint spanning trees in

G. Given the undirected multigraph G, define R as the “spanning tree packing number” of G,
which is the maximum number of edge-disjoint undirected unit-capacity spanning trees that can

be “packed” in G [21]. Figure 1(d) shows two spanning trees packed in the graph in Figure 1(c). It
is well-known [16] that

U(G)/2 ≤ R ≤ U(G).

The unit-capacity edges included in the R disjoint spanning trees ofGwill be used in Algorithm
2 below for solving MEQ in G. The direction in which each such edge is used is the same as the
direction of the corresponding edge in the directed multigraph representation of G. For instance,
in Figure 1(d), edge e1 is used to in the direction from node 1 to node 4, because the corresponding
unit-capacity directed edge in Figure 1(b) is in that direction. Similarly, edge e2 in Figure 1(d) is
used to send packets from node 4 to node 1, because the corresponding edge in Figure 1(b) is in
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Algorithm 2 MEQ along R Spanning Trees

1. For each unit-capacity edge e = (i, j) that is in one of the R trees in G, chooses a row vector
ce = [ ce(1), ce(2), · · · , ce(R) ] (called a coefficient vector) containing R symbols, each chosen
uniformly randomly from GF(2B/R). Node i transmits to node j symbol ye = cex

T
i

, which is a
random linear combination of the symbols in xi. ye is said to be a “coded symbol”.

2. At each node j, for each unit-capacity link e = (i, j) that belongs to one of the R trees, node j
checks whether ye equals cex

T
j
. The check is said to fail if ye , cex

T
j
. (Recall that ye is cex

T
i

.)

3. At each node j, if any of the received symbols fails the check in step 2, then node j sets its
output bit to 1; otherwise node j sets its the output to 0.

that direction. In the algorithm below, we will denote the links (or edges) by the corresponding
node pair listed in the order in which the edge can be used. For instance, e1 = (1, 4) and e2 = (4, 1).

We assume that B/R is an integer, and represent the B-bit input xi at each node i as a row vector
of R symbols from Galois Field GF(2B/R): [xi(1), · · · , xi(R)].

Suppose thatG is identical to graph G in Figure 1. In this case, assuming that the two undirected
spanning trees showed in Figure 1(d) are used, node 1 sends one random linear combination of its
input symbols to node 4 using the directed unit-capacity edge from node 1 to node 4, as specified by
the spanning tree showed in dotted lines. Similarly node 4 sends one random linear combination
of its R/B input symbols to node 1, using the edge specified by the spanning tree showed in solid
line. The coefficients in steps 1 and 2, although randomly chosen, can be viewed as a part of the
algorithm specification, and assumed to be known to all the nodes (i.e., the coefficients are chosen
at algorithm design time, not at runtime).

4.2 Correctness of Algorithm 2

Recall that m is the number of nodes in G. Let us define di(r) = xi(r) − xm(r) as the difference
between xi and xm at the r-th symbol. Step 2 of Algorithm 2 determines, for link e = (i, j), whether
cex

T
i
= cex

T
j
, which is equivalent to checking whether ce(1)(di(1)−d j(1))+ · · ·+ce(R)(di(R)−d j(R)) = 0.

Such a check is performed for each of the (m − 1) edges in each of the R-trees, resulting in (m− 1)R
checks. These (m − 1)R checks together can be represented in a matrix form as

MR dT = 0, (2)

where MR is a (m− 1)R-by-(m− 1)R square matrix defined by the elements of ce vectors for all links
e in the R spanning trees, and d = [d1(1), · · · , dm−1(1), d1(2), · · · , dm−1(2), · · · , d1(R), · · · , dm−1(R)].

In Algorithm 2, all m output bits are set to 0 if and only if MRdT = 0. According to the definition
of the MEQ problem, all the output bits should be 0 if and only if x1 = · · · = xm. Also, x1 = · · · = xm

if and only if d = 0. Finally, if MR is invertible, then the only solution of MR dT = 0 is d = 0. It then
follows that Algorithm 2 is correct if MR is invertible.

Theorem 2 When the coefficients in step 1 of Algorithm 2 are chosen independently and uniformly at

random from GF(2B/R), matrix MR is invertible with probability at least 1−
(m−1)R

2B/R . Thus, for large enough
B, Algorithm 2 is correct with a non-zero probability.

Proof Sketch: Let us label the R undirected spanning trees as T1, · · · ,TR. We can order the rows
of MR such that rows (k − 1)(m − 1) + 1 to k(m − 1) correspond to the m − 1 edges on spanning tree
Tk. For each spanning tree Tk, assign a unique index from 1 to m − 1 to its m − 1 edges. Denote
by ck,l(r) the randomly chosen coefficient for the r-th input symbol used for generating the coded
symbol sent on the l-th edge of tree Tk.
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Define Ck,r = diag(ck,1(r), · · · , ck,m−1(r)) as the diagonal matrix with the diagonal elements filled
with the r-th coefficient used on the m − 1 edges on tree Tk. Also, define (m − 1)-by-(m − 1) matrix
Ak to represent the m − 1 edges on tree Tk as follows: (1) if the l-th directed edge on Tk is pointing
from node i to node j, then the l-th row of Ak has the i-th element as −1 and the j-th element as 1,
the remaining entries in the l-th row being 0; (2) if i = m then j-th element of the l-th row is set to
1, the remaining elements of that row being 0; (3) if j = m then i-th element of the l-th row is set
to −1, the remaining elements of that row being 0. As an example, the spanning tree marked by
dotted lines in Figure 1(d) contains three edges (m = 4). Suppose that we index the edges from 1

to 3 in the following order: (1,2), (1,4), (4,3). The resulting A matrix for this tree is



















−1 1 0
−1 0 0
0 0 1



















.

Now MR can be written in the following form:

MR =































C1,1A1 C1,2A1 · · · C1,RA1

C2,1A2 C2,2A2 · · · C2,RA2
...

. . .
...

CR,1AR CR,2AR · · · CR,RAR































. (3)

Define Mk =





















C1,1A1 · · · C1,kA1
...

. . .
...

Ck,1Ak · · · Ck,kAk





















for 1 ≤ k ≤ R. Note that Mk1 is a sub-matrix of Mk2 when

k1 < k2. We can show by induction that, with probability at least
(

1 − m−1
2B/R

)k
, determinant of Mk is

non-zero. Then the theorem follows by setting k = R. The detailed proof is in Appendix B. �

Theorem 2 implies that, for sufficiently large B, there exist a set of coefficient vectors that make
MR invertible. Then Algorithm 2 deterministically solves the MEQ problem in G with this set of
coefficient vectors.

Observe that Algorithm 2 requires only one round of communication, the length of a round
being equal to the transmission time of B/R bits (one symbol from GF(2B/R)) along a unit-capacity
edge. Without loss of generality, assume that the unit of capacity is 1 bit/time unit. Then it takes
B/R time units for Algorithm 2 to terminate, and its throughput is B

B/R = R bits/unit time. Recall
that R ≥ U(G)/2 and CMEQ(G) ≤ U(G). Thus, the throughput of Algorithm 2 is at least CMEQ(G)/2.

4.3 Solving the MEQ Problem without Knowing the Spanning Trees

In Algorithm 2, we have assumed that the R undirected unit-capacity spanning trees are known
a priori. It turns out that knowing the actual trees is not necessary – knowing the value R suffices.
Here we present Algorithm 3 that solves the MEQ problem with parameter ρ ≤ R, which achieves
throughput ρ without knowing any spanning tree. For this algorithm, the input value at each
node i is represented as a row vector of ρ symbols from GF(2B/ρ), similar as in Algorithm 2.

Since ρ ≤ R, there exists a set of ρ undirected spanning trees in G, which represents a subgraph
of the network G, all the tree edges will also carry randomly coded symbols (without explicit
knowledge of the trees). As a result, Theorem 2 continues to hold for Algorithm 3 by substituting
R with any ρ ≤ R.

5 Byzantine Broadcast (BB) with Local Linear Coding
In this section, we present an algorithm for Byzantine Broadcast in G(V,E), with node 1 as the

source, tolerating up to f Byzantine faults, when the network connectivity is at least 2 f + 1, and
n ≥ 3 f + 1. Connectivity ≥ 2 f + 1 implies that for every pair of nodes i and j in G, after removing
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Algorithm 3 MEQ with parameter ρ

1. For every unit-capacity edge e = (i, j) in G, chooses a coefficient vector ce =

[ ce(1), ce(2), · · · , ce(ρ) ] containing ρ symbols, each chosen uniformly randomly from GF(2B/ρ).
Node i transmits to node j symbol ye = cex

T
i

, which is a random linear combination of the
symbols in xi. ye is said to be a “coded symbol”.

2. At each node j, for each unit-capacity link e = (i, j) in G, node j checks whether ye equals
cex

T
j
. The check is said to fail if ye , cex

T
j
. (Recall that ye is cex

T
i

.)

3. At each node j, if any of the received symbols fails the check in step 2, then node j sets its
output bit to 1; otherwise node j sets its the output to 0.

any subset of 2 f nodes, there is still a positive directed mincut from i to j.

5.1 Upper Bounds of the Capacity CBB(G) of BB

We first prove upper bounds on the capacity of the Byzantine Broadcast in network G(V,E) as
functions of cut sets in the following two classes of its subgraphs:

1.
( n
n− f

)

subgraphs of G(V,E), each containing n − f nodes. These subgraphs are named

G1, · · · ,G( n
n− f)

. For each Gk, let Rk be the spanning tree packing number of Gk. Define

R∗ = min
Gk

Rk.

Then, at least R∗ undirected spanning trees can be packed in each Gk.
2. A subgraph in the second class is obtained as follows: We will say that edges in F ⊂ E are

“explainable” if there exists a set W ⊂ V such that (i) W contains at most f nodes, and (ii)
each edge in F is incident on at least one node in W. Set W is then said to “explain set F”.
Consider each explainable set of edges Fi. Suppose that W1, · · · ,WK are all the subsets of V
that explain edge set Fi. Subgraph Hi is obtained by removing edges in Fi from E, and nodes

in
⋂K

k=1 Wk from V. 1 In general, Hi above may or may not contain the source node 1. We
only need to focus on those Hi’s that do contain node 1. We rename the subgraphs Hi’s that
contain source node 1 as G′

1
,G′

2
, · · · ,G′

k
, · · · .

Theorem 3 In a point-to-point network G(V,E), the capacity of the BB (CBB) with node 1 as the source
satisfies the following upper bounds, using subgraphs Gk and G′

k
defined above.

1. CBB is upper bounded by the capacity of MEQ in any subgraph Gk , that is, CBB(G) ≤ minGk
CMEQ(Gk);

2. CBB is upper bounded by the capacity of broadcast from node 1 in any subgraph G′
k

in the absence of
failures, that is, CBB(G) ≤ minG′

k
D(G′

k
, 1).

Please see Section 2.3 for definition of broadcast capacity D used above, and U used later below.
The proof of Theorem 3 is included in Appendix E. The intuition behind the first condition above
is that, given any BB algorithm A in network G with throughput R, algorithm A can also be used
to solve the MEQ problem in any subgraph Gk with throughput R; hence R ≤ CMEQ(Gk).

The intuition for the second condition is as follows: Suppose that subgraph G′
k

was constructed
using an explainable edge set Fi (see above). Due to the manner in which subgraph G′

k
is defined,

for any node j in G′
k
, there must exist a set of nodes W j that explains Fi such that j <W j. Consider

a scenario in which the nodes in W j are faulty, and all other nodes are fault-free. Also suppose

1It is possible that Hi for different i may be identical. This does not affect the correctness of our algorithm.
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that these faulty nodes misbehave by refusing to communicate with neighbors over the links
in Fi (essentially pretending that the corresponding neighbors are faulty), but behave correctly
otherwise. Despite such misbehavior, as Appendix E elaborates, node j must still be able to
learn the value that source node 1 (possibly faulty) is broadcasting. So CBB(G) cannot exceed the
broadcast capacity from node 1 to the nodes in G′

k
, that is, D(G′

k
, 1).

Let U∗ = minGk
U(Gk) and D∗ = minG′

k
D(G′

k
, 1). We have the following from Theorems 1 and 3:

Corollary 1 The capacity of the BB problem in arbitrary network G satisfies:

CBB(G) ≤ min(U∗,D∗).

5.2 BB with Local Linear Coding

Using Algorithm 3 presented in the previous section, we construct a BB algorithm that achieves
at least 1/2 or 1/3 of the upper bound in Corollary 1, hence at least 1/2 or 1/3 of CBB(G), depending
on the relationship between certain cuts of graph G.

Suppose that the source node (node 1) wants to broadcast an L-bit value x using our BB
algorithm. This L-bit input value x is divided into L/B parts of size B bits each, as discussed in
Sections:overview. These parts are denoted as x(1), · · · , x(L/B). Algorithm for L-bit BB consists of
L/B sequential executions (generations) of Algorithm 4 presented below – note that Algorithm 4
is a more detailed version of Algorithm 1 in Section 3. For the g-th generation (1 ≤ g ≤ L/B), the
source node 1 uses x(g) as its input in Algorithm 4. Each generation of the algorithm results in all
nodes deciding on the g-th part (namely x′

i
(g)) of its final decision value x′

i
.

For the subsequent discussion in this section, it will be helpful if the reader has read Algorithm 4
first. The proof of the correctness of Algorithm 3 includes proving the following three claims. We
will argue the correctness of the claims later.

• Claim 1: In the absence of misbehavior by nodes in G′, broadcast in G′ in step 1 will deliver
data from node 1 to other peers in G′ at rate D∗. If some nodes in G′ misbehave, then
broadcast may be received incorrectly.

• Claim 2: Performing Algorithm 3 with parameter R∗ over graph G = G′ in step 2 guarantees
that

(a) If no failure is detected, then all fault-free nodes must have identical xi’s, and hence BB
for the current generation is correct; or

(b) If failure is detected, some faulty node must have misbehaved. In this case fault diagnosis
is performed.

• Claim 3: During fault diagnosis in step 3, at least one edge and/or one node will be identified
as faulty and will be removed from G′. All fault-free nodes and the links between them
remain in G′ throughout the whole algorithm.

Now we argue the correctness of the claims.

Broadcast (claim 1): It can be shown that G′ belongs to the second class of subgraphs of G
defined earlier in this section, and all the fault-free nodes are always included in G′. Recall that
D∗ = minG′

k
D(G′

k
, 1) ≤ D(G′, 1). So the broadcast from node 1 in G′ at rate D∗ is achievable with

simple store-and-forward routing [7], if no node in G′ misbehaves. Data received by a fault-free
peer i during this broadcast is named xi.

8



Algorithm 4 BB Algorithm (generation g)

Let G′ be the subgraph of G obtained by removing from G those edges and nodes that have been
identified as faulty during the Fault Diagnosis phase. Graph G′ evolves with time, and only the
nodes in G′ perform the algorithm below. It can be shown that all the fault-free nodes, and the
links between them, are always in G′.

1. Broadcast: Source node 1 uses a traditional store-and-forward approach to broadcast the
g-th part of its input, x(g), to the nodes in subgraph G′, at rate D∗. This broadcast is not
fault-tolerant. Source node 1 sets x1 = x(g), and each peer i (i , 1) sets xi equal to the B bits
received during the above broadcast (if nothing is received, then xi is set to some default
value).

2. Failure Detection: Perform Algorithm 3 with parameter R∗ over graph G = G′ and xi’s at
the nodes in G′ as the inputs (we will justify the use of G′ and R∗ in the discussion below).

(a) Each node in G′ obtains an output bit from the MEQ algorithm execution. Each node
in G′ broadcasts its output bit using a traditional 1-bit Byzantine Broadcast algorithm,
denoted as Broadcast Binary (e.g., algorithm in [6, 3] may be used).

Failure is detected if the output bit broadcast by any of the nodes in G′ is 1.

(b) If failure is not detected, every fault-free node i in G′ decides on output x′
i
(g) = xi,

and proceeds to the next generation. Otherwise, the fault-free nodes perform Fault
Diagnosis.

3. Fault Diagnosis: Performed only when failure is detected during Failure Detection.
Information about the identity of the faulty node(s) is updated using “dispute control”
mechanism [1]. During Fault Diagnosis, node 1 once again broadcasts x1 using algorithm
Broadcast Binary. By the end of Fault Diagnosis, additional nodes and/or links in G′ may
be identified as faulty, and removed from G′ used in the subsequent generations.

(a) If node 1 is found faulty in the Fault Diagnosis step, terminate the algorithm with a
default output.

(b) Otherwise, every fault-free node i sets x′
i
(g) equal to x1 broadcast by node 1 during

Fault Diagnosis, and proceeds to the next generation.

Failure Detection (claim 2): For failure detection, our objective is to solve the MEQ problem in
every subgraph Gk that is also a subgraph of G′ (recall that Gk is in the first class of subgraphs of G
defined earlier), and to determine whether absence of equality is detected during at least one of the
MEQ executions. A naive approach for this is to run the MEQ algorithm independently for each
of these subgraphs Gk (recall that, each Gk considered here is also a subgraph of G′). If in any of
these executions, a node in one of the subgraphs Gk sets its output to 1, then an absence of equality
would be detected. However, we only need to know whether equality check failed in one of these
subgraphs; identify of the subgraph is not required to be known. Due to this, along with the the
local communication (only between adjacent nodes) used in MEQ Algorithm 3, we can achieve
the goal more efficiently. In particular, we can apply Algorithm 3 just once to graph G′ itself, with
parameter ρ for the algorithm chosen as to not exceed the number of disjoint undirected spanning
trees in any of the subgraphs Gk that are included in G′. In particular, we choose ρ = R∗.

By a simple extension of Theorem 2, it can be shown that Algorithm 3 with parameter R∗ can
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detect, with a non-zero probability, the absence of equality in all Gk that are subgraphs of G′.

This claim follows from the theorem below. Let us define matrix M(k) used in the theorem
first. Each subgraph Gk contains n − f nodes. For each subgraph Gk included in G′, let us pick

any set of R∗ undirected spanning trees of Gk and construct a square matrix, say M(k), of size
(n − f − 1)R∗, similar to MR in the previous section. An edge being reused in spanning trees of

multiple subgraphs Gk’s is equivalent to the corresponding M(k)’s having one row in common (up
to permutation of node indices). The theorem below (proof included in Appendix F) states that,
for sufficiently large B, all M(k) matrices can be made invertible simultaneously:

Theorem 4 When performing Algorithm 3 with parameter ρ = R∗ in G = G′, all matrices M(k) are
invertible simultaneously with probability at least 1 −

( n
n− f

)

(n − f − 1)R∗/2B/R∗ .

It can be shown that G′ always contains all fault-free nodes as well as the links between then.
So the union of all such subgraphs Gk includes all the fault-free nodes and the links between
them. As noted above, if the inputs (at the fault-free nodes) to Algorithm 3 are unequal, then the
inequality will be detected by Algorithm 3. Alternatively, it is also possible that a faulty node in
G′ may misbehave leading to the conclusion the inputs are unequal. It follows that if the output
bits broadcast after Failure Detection step are all 0, then all fault-free nodes i will have identical
xi value, and hence BB of this generation is correct. Otherwise, some node must have misbehave
sometime during the current generation (including possibly node 1).

Fault Diagnosis (claim 3): The Fault Diagnosis step using “dispute control” [1] is then per-
formed: this step results in either (a) a specific node as being identified as the culprit during
generation g, or (b) the identity of the misbehaving node is narrowed down to a pair of neighbor-
ing nodes (that is connected in G′), such that at least one of the nodes is certain to be faulty. The
link between this pair of nodes is then deemed “faulty” and not used in future generations. Also,
due to the use of “dispute control”, fault diagnosis will be performed for at most f ( f + 1) times
throughout the whole execution. Please see Appendix G for more details.

5.3 Throughput of Algorithm 4

In Appendix H, we show that the throughput of Algorithm 4 can be made arbitrarily close to
D∗R∗

D∗+R∗ for large enough B and L = Ω(B). Then we further prove the following theorem:

Theorem 5 For sufficiently large B and L = Ω(B), throughput of Algorithm 4 satisfies:

Throughput ≥
CBB(G)

2
if D∗ ≤ R∗; (4)

Throughput ≥
CBB(G)

3
if D∗ > R∗. (5)

6 Conclusion
We prove upper bounds on the capacity of Byzantine Broadcast in general point-to-point

networks. A local linear coding based BB algorithm that achieves throughput at least 1/2 or 1/3 of
the capacity CBB in general point-to-point networks is introduced. To the best of our knowledge
this is the first result for the BB problem that achieves a constant factor of capacity for general
point-to-point networks.
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Appendices

A Proof of Theorem 1

Suppose the cut between a certain set s ⊂ V and V − s is the minimum undirected cut in G,
the undirected multigraph representation of G. Now consider a constrained version of the MEQ
problem wherein all nodes in s are have an identical L-bit input, denoted as x, and all nodes inV−s
have another identical L-bit input, denoted as y. If we ignore the cost of “internal” communication
among the nodes in set s, and similarly, ignore the cost of internal communication among the nodes
inV− s, then solving the MEQ problem with such constrained distribution of inputs is equivalent
to solving the 2-party equality problem: Alice and Bob each is given input x and y, respectively,
need to check if x = y by communicating with each other. It has been proved that at least L bits
must be communicated between Alice and Bob, in the worst case, to solve 2-party equality for L-bit
values. It then follows that even if the inputs at the nodes inG are constrained as described above,
the execution time t(G, L,A) must satisfy U(G)t(G, L,A) ≥ L for any L and any MEQ algorithm A.
This implies that CMEQ(G) ≤ U(G).

B Proof of Theorem 2

Proof: We now show that each Mk is invertible with probability at least
(

1 − n−1
2B/R

)k
. The proof is

done by induction, with k = 1 being the base case.

Base Case – k = 1:

M1 = C1,1A1 (6)

As showed in Appendix C, Ak is always invertible and det(Ak) = ±1. Since C1,1 is a (m − 1)-
by-(m − 1) diagonal matrix, it is invertible provided that all its m − 1 diagonal elements are
non-zero. Remember that the diagonal elements of C1,1 are chosen uniformly and independently

from GF(2B/R). The probability that they are all non-zero is
(

1 − 1
2B/R

)m−1
≥ 1 − m−1

2B/R .

Induction Step – k to k+ 1 ≤ R: The (m− 1)(k + 1)-by-(m − 1)(k + 1) matrix Mk+1 can be written as

Mk+1 =

(

Mk Dk

Fk Ck+1,k+1Ak+1

)

, (7)

where

Dk =
(

AT
1 C1,k+1,A

T
2 C2,k+1, · · · ,A

T
k Ck,k+1

)T
(8)

is an (m − 1)k-by-(m − 1) matrix, and

Fk =
(

Ck+1,1Ak+1,Ck+1,2Ak+1, · · · ,Ck+1,kAk+1

)

(9)

is an (m − 1)-by-(m − 1)k matrix.

Assuming that Mk is invertible, we transform Mk+1 as follows:

M′k+1 =

(

I(m−1)k 0
−FkM−1

k
I(m−1)

)

Mk+1

(

I(m−1)k 0
0 A−1

k+1

)

(10)

=

(

I(m−1)k 0
−FkM−1

k
I(m−1)

) (

Mk Dk

Fk Ck+1,k+1Ak+1

) (

I(m−1)k 0
0 A−1

k+1

)

(11)

=

(

Mk DkA−1
k+1

0 Ck+1,k+1 − FkM−1
k

DkA−1
k+1

)

. (12)
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Here Iq denotes a q-by-q identity matrix. Note that |det(M′
k+1

)| = |det(Mk+1)|, since the matrix
multiplied at the left has determinant 1, and the matrix multiplied at the right has determinant ±1.

Observe that the diagonal elements of the (m−1)-by-(m−1) diagonal matrix Ck+1,k+1 are chosen
independently from FkM−1

k
DkA−1

k+1
. Then it can be proved that Ck+1,k+1 − FkM−1

k
DkA−1

k+1
is invertible

with probability at least 1 − m−1
2B/R (See Appendix D.) given that Mk is invertible, which happens

with probability at least
(

1 − m−1
2B/R

)k
according to the induction assumption. So we have

Pr{Mk+1 is invertible} ≥
(

1 −
m − 1

2B/R

)k (

1 −
m − 1

2B/R

)

=

(

1 −
m − 1

2B/R

)k+1

. (13)

This completes the induction. Now we can see that MR is invertible with probability

≥

(

1 −
m − 1

2B/R

)R

≥ 1 −
(m − 1)R

2B/R
→ 1, as L→∞. (14)

�

C Proof of Ak being Invertible
Observe that, for edges incident on nodes 1, the corresponding rows have exactly one non-zero

entry. Also, the row corresponding to an edge that is incident to node i has a non-zero entry in
column i. Since there must be at least one edge in Tk that is incident on node n, there must be
at least one row of Ak that has only one non-zero element. Also, since every node is incident to
at least one edge in Tk, every column of Ak has at least one non-zero element(s). Since there is at
most one edge between every pair of nodes in Tk, no two rows are non-zero in identical columns.
Therefore, by row manipulation, we can transform matrix Ak into another matrix in which every
row and every column has exactly one non-zero element. Hence det(Ak) equals to either 1 or −1,
and Ak is invertible.

D Proof of Ck+1,k+1 − FkM
−1
k

DkA
−1
k+1

being Invertible
Consider Q be an arbitrary fixed q-by-q matrix. Consider a random q-by-q diagonal matrix C

with m diagonal elements c1, · · · , cq.

C =































c1 0 · · · 0
0 c2 · · · 0
...

. . .
...

0 · · · 0 cq































(15)

The diagonal elements of C are selected independently and uniformly randomly from GF(2p).
Then we have:

Theorem 6 The probability that the q-by-q matrix C −Q is invertible is lower bounded by:

Pr{(C −Q) is invertible} ≥ 1 −
q

2p
. (16)

Proof: Consider the determinant of matrix C − A.

det(C −Q) = det































(c1 −Q1,1) −Q1,2 · · · −Q1,q

−Q2,1 (c2 −Q2,2) · · · −Q2,q
...

. . .
...

−Qq,1 · · · −Qq,q−1 (cm −Qq,q)































(17)

= (c1 −Q1,1)(c2 −Q2,2) · · · (cq −Qq,q) + other terms (18)

= Π
q

i=1
ci + Qq− (19)
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The first term above,Π
q

i=1
ci, is a degree-q polynomial of c1, · · · , cq. Qq− is a polynomial of degree at

most q− 1 of c1, · · · , cq, and it represents the remaining terms in det(C −Q). Notice that det(C −Q)
cannot be identically zero since it contains only one degree q term. Then by the Schwartz-Zippel
Theorem, the probability that det(C − Q) = 0 is ≤ q/2p. Since C − Q is invertible if and only if
det(C −Q) , 0, we conclude that

Pr{(C − A) is invertible} ≥ 1 −
q

2p
(20)

By setting C = Ck+1,k+1, Q = FkM−1
k

DkA−1
k+1

, q = m − 1 and p = B/R, we proof that Ck+1,k+1 −

FkM−1
k

DkA−1
k+1

is invertible with probability at least 1 − m−1
2B/R . �

E Proof of Theorem 3
In arbitrary point-to-point network G(V,E), the capacity of the BB problem with node 1 being

the source and up to f < n/3 faults satisfies the following upper bounds:

E.1 First Condition

CBB is upper bounded by the capacity of MEQ in any subgraph Gk, that is,

CBB(G) ≤ min
Gk

CMEQ(Gk);

Proof: Given any subgraph Gk of G with size n− f , let us rename the nodes in Gk as g1, g2, · · · , gn−t,
and the nodes not in Gi as b1, b2, · · · , b f .

We first discuss the case when the source of the Byzantine broadcast problem is not in Gk.
Without loss of generality, we can assume that b1 is the source.

Given any algorithm, namely A, that solves BB in network G, with node b1 as the source, with
at most f failures, and achieves throughput R, in the following, we construct a protocol A′ that
solves MEQ in Gk with throughput R as follows. For the MEQ problem, let us assume that xi is
the input value at node gi. Thus, the goal is to determine whether xi is identical at all gi ∈ Gk. A′

is constructed as follows:

1. Every node gi ∈ Gk creates a local virtual network as follows:

(a) It creates one virtual node g j,i for each g j ∈ Gk, j , i. Similarly, it creates one virtual
node bl,i for each bl < Gk. Node gi also includes itself in the local virtual network.

(b) Every pair of virtual nodes are connected with a pair of links of the same capacity as
the ones that connects the corresponding pair of actual nodes in the original network
G. In other words, link (g j,i, gl,i) has the same capacity as link (g j, gl) in G. Similarly, link
(g j,i, bl,i) has the same capacity as link (g j, bl) in G.

(c) Node gi connects itself with each of the virtual nodes bl,i such that link (gi, bl,i) has the
same capacity as link (gi, bl) in G, and link (bl,i, gi) has the same capacity as link (bl, gi)
in G.

(d) Node gi connects itself with each of the virtual nodes g j,i with one link (gi, g j,i) that has
the same capacity as link (gi, g j) in G. There is no link from virtual node g j,i to node gi.

(e) Every virtual node is assigned with the same code that the corresponding actual node
should run in algorithm A. In other words, virtual node bl,i is assigned the execution
code that node bl should run in A. Virtual node g j,i is assigned the execution code that
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node g j should run in algorithm A, except that it drops the messages that should be sent
to node gi (since there is no link from virtual node g j,i to node gi).

2. Every node gi ∈ Gk executes correctly as specified by algorithm A. When algorithm A
specifies that gi should send a message to an actual node g j ∈ Gk, gi sends the message to
both the actual node g j and the virtual node g j,i. When it should send a message to node
bl < Gk according to algorithm P, gi sends the message only to the virtual node bl,i. When
it receives an message from virtual node bl,i, it pretends that the message is received from
the actual node bl. Since there is no link from virtual node g j,i to node gi, gi will not receive
messages from g j,i.

3. Recall that node b1 is the source nodes for the broadcast being performed by algorithm A.
Thus, each virtual node b1,i should be given an input value for algorithm A. Each node
gi ∈ Gk sets the input value at node b1,i equal to xi (recall that xi is the input for the MEQ
operation at node gi). Thus, algorithm A for node b1,i will have input xi. Then, all the nodes
in the network perform their part of algorithm A, with each node gi simulating the behavior
of the corresponding virtual nodes.

4. As we will see later, algorithm A will eventually terminate (at all nodes, including the virtual
nodes). When algorithm A terminates, every node gi ∈ Gk obtains an output value x′

i
. Each

node g j sets its output for the MEQ problem to 0 if xi = x′
i
, and to 1 otherwise.

Figure 2 illustrates the construction of an MEQ protocol P for 3 nodes, g1, g2 and g3, with a
Byzantine broadcast algorithm A for 4 nodes, and at most 1 failure. The gray areas indicate the
virtual networks created by nodes g1, g2 and g3.

Observe that, from the perspective of nodes g1, · · · , gn− f , what they see from the execution
of A′ is the same as what they would have seen from an execution of A when node bl is faulty
(1 ≤ l ≤ f ) and behaves like bl,i to node gi. Since algorithm A solves BB with up to f failures in
G, it will terminate in the above execution as well, and each node gi ∈ Gk will obtain an identical
output value x′

j
= x for some value x. The exact value of x will depend on the inputs x j.

Now consider two cases:

• x1 = x2 = · · · = xn− f = z (input to the MEQ problem at each node in Gi is equal to z): In this
case, observe that all the simulated sources nodes bl,i will have identical input, say, equal to z.
It should be easy to see that the behavior of nodes in Gk will then be identical to the behavior
as in network G wherein node b1 has input z, with all the nodes behaving correctly. Then the
output value x from A must equal to z for all gi ∈ Gk, and hence all the nodes in Gk will set
their outputs for the MEQ problem to 0 correctly (since xi = z).

• ∃gi, g j ∈ Gk s.t. xi , x j (the inputs for the MEQ problem at the nodes in Gk are not identical):
In this case as well, as noted above, the output x at all the nodes in Gk is identical by the
definition of algorithm A. However, xi , x j, it follows that, x must be different from at least
one of xi and x j. Without loss of generality, assume that xi , x. Then node gi will set its
output for the MEQ problem to 1, and inequality of the inputs will be correctly detected.

Now we can conclude that, given any algorithm A that solves BB in G at some throughput R,
we can construct a protocol A′ that solves the MEQ problem in Gk at the same throughput R, when
the source is not in Gk. This implies that CBB(G) ≤ CMEQ(Gk).

The discussion when the source, namely g1, is in Gk is almost the same. We can construct the
virtual network for each gi in the same way as described above, with the following modifications:
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Figure 2: Solving MEQ in 3 nodes with Byzantine broadcast algorithm for 4 nodes.

(1) node g1 sets x1, its input for the MEQ problem, as the value that it will broadcast using algorithm
P; and (2) node gi , g1 sets xi as the initial input at node g1,i, i.e., the virtual node corresponding
to node g1. Then we can prove that CBB(G) ≤ CMEQ(Gk) when the source is in Gk using the same
argument above.

�

E.2 Second Condition

CBB is upper bounded by the capacity of broadcast from node 1 in any subgraph G′
k

in the absence
of failures, that is,

CBB(G) ≤ min
G′

k

D(G′k, 1).

Proof: Consider any G′
k

and let Fk ∈ E be the corresponding set of edges that are removed to
construct G′

k
. By the construction of G′

k
, there must be at least one set W ⊂ V that explains Fk and

does not contain the source node 1, otherwise node 1 must have been removed. Without loss of
generality, let W1 be such a set that does not contain the source node. We are going to show that
CBB(G) ≤MINCUT(G′

k
, 1, i) for every peer node i that is in G′

k
.

First consider any peer node i in G′
k

but i < W1. Let all the nodes in W1 be faulty such that
they refuse to communicate over edges in Fk, but otherwise behave correctly. In this case, since
the source is fault-free, node i must be able to receive the value node 1 is trying to broadcast. So
CBB(G) ≤MINCUT(G′

k
, 1, i).

Now consider a peer node i in G′
k

and i ∈W1. Notice that in this case i <
⋂K

l=1 Wl, otherwise node
i must have been removed. If there exists a set W j ⊂ V that explains Fk and contains neither node
1 nor node i, then following the same argument above, CBB(G) ≤ MINCUT(G′

k
, 1, i). Otherwise,

there must exist a set W j that contains node 1 but not node i, given that node i was not removed,

i.e., i <
⋂K

l=1 Wl. Without loss of generality, let W2 be such a set. Define V− = V −W1 −W2. V−

is not empty since W1 and W2 both contain at most f nodes and there are n ≥ 3 f + 1 nodes in V.
Consider two scenarios: (1) nodes in W1 are faulty and refuse to communicate over edges in Fk;
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and (2) nodes in W2 are faulty and refuse to communicate over edges in Fk. Observe that among
edges between nodes in V− and W1 ∪W2, only edges between V− and W1 ∩W2 could have been
removed, because otherwise Fk cannot be explained by both W1 and W2. So nodes in V− cannot
distinguish between these two scenarios. In scenario (1), the source (node 1) is not faulty. Hence
nodes in V− must agree with the value x that node 1 is trying broadcast, according to the validity
condition. Since nodes in V− cannot distinguish between the two scenarios, they must also set their
outputs to x in scenario 2, even though in this case the source (node 1) is faulty. Then according
to the agreement condition, node i must agree with nodes in V− in scenario 2, which means that
node i also learn x. So CBB(G) ≤MINCUT(G′

k
, 1, i).

Now we can conclude that CBB(G) ≤ D(G′
k
, 1), and the theorem follows.

�

F Proof of Theorem 4

Theorem 4 When performing Algorithm 3 with parameter ρ = R∗ in G = G′, all matrices M(k) are
invertible simultaneously with probability at least 1 −

( n
n− f

)

(n − f − 1)R∗/2B/R∗ .

Proof: Let K be the number of subgraphs Gk’s included in G′. Without less of generality, rename
these subgraphs as G1, · · · ,GK. Let

M∗ =

K
∏

k=1

M(k)

. Since R∗ ≤ Rk, according to Theorem 2, each M(k) matrix (1 ≤ k ≤ K) is invertible with non-zero
probability. It implies that det(M(k)) is a not-identically-zero polynomial of the random coefficients
of degree at most (n − f − 1)R∗ (since M(k) is an square matrix of size (n − f − 1)R∗). So

det (M∗) =

K
∏

k=1

det
(

M(k)
)

is a non-identically-zero polynomial of the random coefficients of degree at most K(n − f − 1)R∗.
Notice that each coded symbol is used once in each subgraph Gk. So each random coefficient
appears in at most one row in each M(k). It follows that the largest exponent of any random
coefficient in det (M∗) is at most K.

According to Lemma 1 of [10], a non-identically-zero polynomial of degree no more than dv,
in which the largest exponent of any variable is at most d, equals zero with probability at most
1 − (1 − d/q)v for d < q, where q is the size of the field from which each variable is chosen. In our
case, d = K, v = (n − f − 1)R∗, and q = 2B/R∗ , so the probability that det (M∗) is non-zero is at least

(

1 − K/2B/R∗
)(n− f−1)R∗

≥ 1 − K(n − f − 1)R∗/2B/R∗ .

Since G′ is a subgraph of G, and there are at most
( n
n− f

)

subgraphs Gk’s in G, K ≤
( n
n− f

)

. Then the

theorem follows. �

G Fault Diagnosis
For fault diagnosis, every node i in G′ broadcasts everything it has received and sent in

Broadcast and Failure Detectionphases during the current generation with Broadcast Binary.
Due to the used of Broadcast Binary, all fault-free nodes share the same information about what
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each node claims it has received and sent. We will show that, by comparing this information, at
least one new pair of adjacent nodes, at least one of which must be faulty, will be identified.

First notice that everything a fault-free node sends in Broadcast and Failure Detection
phases is a function of the information it receives, as specified by Algorithm 4. So if what a node i
claims it has sent is inconsistent with what it claims to have received: (1) it claims to have received
a symbol y during Broadcast phase, but it claims to have forwarded a different y′ instead of y as
it should have; or (2) the coded symbols it claims to have sent during Failure Detection are not a
valid linear combination of xi; or (3) the output bit of Algorithm 3 contradicts to xi and the coded
symbols it claims to have received, then node i must be faulty. Then faulty node i will be removed
from G′, and all its adjacent edges will be removed as well.

Now consider the case when every faulty node are “smart” enough so that what it claims to
have sent is consistent with what it claims to have received. Then there must exist at least a pair
of nodes i and j such that what node i claims to have sent to node j contradicts with what node j
claims to have received from node i. Suppose on the contrary that there is no contradicting claims
between two nodes, then the claims from all peers are all consistent with the x(g) that node 1 claims
it has sent. If so, then all output bits of Algorithm 3 from fault-free nodes should be 0. Since failure
has been detected, at least one node k in G′ must have set its output bit as 1. Realize that this fact
contradicts with xk and the coded symbols node k claims to have received, which contradicts with
the assumption that every faulty node are “smart” enough so that what it claims to have sent is
consistent with what it claims to have received. This completes the argument that at least one link
in G′ will be identified as guilty and will be removed.

It is easy to see that the claims of any two fault-free nodes never contradict, so at least one of
the two nodes adjacent to a faulty link must be faulty.

After removing edges that are found faulty in G′, we try to identify additional faulty nodes
by applying the operation to construct the second class of subgraphs of G as described at the
beginning of this section 5 G′: find all subset W1, · · · ,WK ⊂ V such that every Wk contains no more
than f nodes and explains all edges that have been removed so far. Given that only edges adjacent
to a faulty node can be removed, each Wk represents a potentially set of no more than f faulty

nodes that explains the removed edges. So if some node i ∈
⋂K

k=1 Wk, it must be faulty. This part
is similar to the work in system-level diagnosis [24, 20].

H Throughput of Algorithm 4
Consider the time cost of each operation of Algorithm 4:

• Step 1: At most B/D∗ per generation since the broadcast from the source node 1 at rate D∗ is
achievable, as previously discussed. So total cost is L/B × B/D∗ = L/D∗.

• Step 2: At most B/R∗ per generation as discussed. So total cost is L/B × B/R∗ = L/R∗.

• Step 2(a): The per-generation cost for broadcasting the output bits of MEQ withBroadcast Binary
is some constant α independent of B and L. So total cost is αL/B.

• Step 3: Each time Fault Diagnosis is performed, at most βB bits are being broadcast
with Broadcast Binary for some constant β. So the time cost is γB for some constant γ
independent of B and L. As discussed previously, diagnosis is performed at most f ( f + 1)
times. So the total cost is f ( f + 1)γB.

Then we can computed the throughput of Algorithm 4 as

TPT =
L

L
D∗ +

L
R∗ + α

L
B + f ( f + 1)γB

=
D∗R∗

D∗ + R∗ + αD∗R∗

B + f ( f + 1)γD∗R∗B
L

(21)
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Notice that D∗, R∗, f , α and γ are independent of B and L. By choosing sufficiently large B and
L = Ω(B), the last two terms in the denominator can be made arbitrarily close to 0. So TPT can be
made arbitrarily close to

D∗R∗

D∗ + R∗
. (22)

Recall that for each Gk, we have U(Gk)/2 ≤ Rk ≤ U(Gk). Since R∗ = minGk
Rk and U∗ =

minGk
U(Gk), it follows that U∗/2 ≤ R∗ ≤ U∗. Also recall that CBB(G) ≤ min(U∗,D∗), then

1. When D∗ ≤ R∗: Observe that TPT is an increasing function of R∗. It is minimized when R∗ is
minimized. So

TPT ≥
D∗2

D∗ +D∗
= D∗/2 ≥ CBB(G)/2. (23)

The last inequality is due to D∗ ≥ CBB(G).

2. When R∗ < D∗ ≤ U∗:

TPT = D∗
R∗

D∗ + R∗
≥ D∗

R∗

U∗ + R∗
≥ CBB(G)/3. (24)

The last inequality is due to D∗ ≥ CBB(G) and U∗ ≤ 2R∗.

3. When R∗ ≤ U∗ < D∗: Observe that TPT is an increasing function of D∗. It is minimized when
D∗ is minimized. So

TPT ≥ U∗
R∗

U∗ + R∗
≥ CBB(G)/3. (25)

The second inequality is due to U∗ ≥ CBB(G) and U∗ ≤ 2R∗.

In the above discussion, we implicitly assumed that transmissions during the Broadcast stage
accomplish all at the same time. However, in reality, it may require transmissions over multiple
hops. A node cannot forward a message/packet until it receives it. So for each generation, the
information broadcast by the source propagates only one hop every B/D∗ time units. So for a large
network, the “time span” of the Broadcast stage can be much larger than B/D∗. This problem can
be solved by pipelining: We divide the time horizon into rounds of B/D∗ + B/R∗ time units. For
each generation g, x(g) from the source node 1 propagates one hop per round, using the first B/D∗

time units, until Broadcast completes. Then the remaining B/R∗ time units of the last round is
used to perform Failure Detection. An example in which Broadcast takes 3 hops is shown in
Figure 3. By pipelining, we achieve the throughput computed above.
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Figure 3: Example of pipelining
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