
Improving Performance of TCP over Wireless Networks �Bikram S. Bakshi P. Krishna N. H. Vaidya D. K. PradhanDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112E-mail: fabcg@cs.tamu.eduPhone: (409) 862-3411AbstractTransmission Control Protocol (TCP) assumesa relatively reliable underlying network where mostpacket losses are due to congestion. In a wirelessnetwork, however, packet losses will occur more oftendue to unreliable wireless links than due to congestion.When using TCP over wireless links, each packet losson the wireless link results in congestion control mea-sures being invoked at the source. This causes severeperformance degradation. In this paper, we study thee�ect of (a) burst errors on wireless links, (b) packetsize variation on the wired network, (c) local error re-covery by the base station, and (d) explicit feedbackby the base station, on the performance of TCP overwireless networks.It is shown that the performance of TCP is sensitiveto the packet size, and that signi�cant performanceimprovements are obtained if a `good' packet size isused. While local recovery by the base station usinglink-level retransmissions is found to improve perfor-mance, timeouts can still occur at the source, caus-ing redundant packet retransmissions from the source.We propose an \explicit feedback" mechanism to pre-vent these timeouts during local recovery. Results in-dicate signi�cant performance improvements when ex-plicit feedback from the base station is used. A majoradvantage of our approaches over existing proposals isthat, no state maintenance is required at any interme-diate host.Experiments are performed using the Network Sim-ulator (NS) from Lawrence Berkeley Labs. The sim-ulator has been extended to incorporate wireless linkcharacteristics.�This research is supported, in part, by the Texas AdvancedTechnology Program under grants C-009741-052 and C-999903-029.

1 IntroductionA typical wireless network with mobile users is im-plemented using a wired network of �xed hosts, someof which are augmented with wireless interfaces. Suchhosts are called base stations. The base stations pro-vide a gateway for communication between the wire-less and wired network.Users of portable computers would like to executepopular applications like ftp, telnet, www-access, etc.,over the wireless link, when they are mobile. Mostof these popular applications employ TCP as theirtransport-layer protocol. One of the primary reasonsfor the widespread use of TCP on the internet is itsinbuilt algorithms for congestion control and avoid-ance. Over the years, the internet community has in-corporated new schemes into the TCP suite to makethese protocols more robust to congestion. Details ofschemes for congestion control and avoidance in TCPcan be found in [2]. Here, we will give a brief overviewof the general ideas behind these schemes, as this ex-planation proves useful in understanding the problemstypical to a wireless network.Two parameters of interest in this discussionare congestion window (cwnd), and slow-start-threshold (ssthresh) maintained by each TCP con-nection for use in
ow-control. The value of cwnd
uctuates as new acknowledgments of previously sentdata packets stream in. The maximum amount of un-acknowledged data that TCP can have on the internetat any time, is the minimum of the receiver's adver-tised window and cwnd. The parameter ssthresh isused to control the rate of growth of cwnd.Packets on the internet may get lost either due tocongestion, or due to corruption by the underlyingphysical medium. Given the low bit error rates ofwired links, almost all losses are related to conges-1

tion. TCP's reaction to losses is based on this veryobservation. Losses are detected either by timeoutsat the source or by multiple duplicate acknowledege-ments (dupacks) from the receiver (referred to as thefast-retransmit policy [5]). Upon loss of a packet, TCPreacts by setting ssthresh to half the value of cwnd,subsequently decreasing cwnd to one, and entering theslow-start phase. This measure would appear severe,but works well, because cutting the window size andthus limiting the amount of unacknowledged data onthe network, is the most e�ective way of dealing withcongestion. In addition to the above measures, thetimeout value is doubled upon each consecutive packetloss. Only upon receipt of an acknowledgement for a\non-retransmitted packet" is the timeout value re-computed [1].While wired links o�er a virtually error free trans-mission medium, errors on wireless links tend to be fre-quent and bursty, and are highly sensitive to directionof propagation, multipath fading, and general interfer-ence. As stated earlier, TCP assumes that each packetloss is solely due to congestion. However, in a wirelessnetwork, TCP will encounter packet losses that maybe unrelated to congestion. Nonetheless, these lossestrigger congestion control measures at the source andseverely degrade performance. In addition, for wide-area wireless networks, the packet size over wirelesslinks is typically much smaller than the packet sizeover the wired network. For example, the packet sizeover wireless links for CDPD Networks [12] is only 128bytes. As a result, each packet on the wired networkgets fragmented when transmitted over the wirelesslink. Loss of a fragment over the wireless link willinitiate error recovery and congestion control mecha-nisms at the source, causing noticeable performancedegradation.In this study, we do not consider hando�s. Ina separate study [17], we have proposed schemes toimprove the performance of TCP in the presence ofhando�s. In this study, we are only interested in theperformance of TCP (for bulk data transfer) in thepresence of losses in wireless networks. The perfor-mance metrics of interest in this study are:� Goodput: This is the measure of how e�ciently aconnection utilizes the network. It is determined asthe ratio of useful data received at the destination andthe total amount of data transmitted by the source.If a connection requires a lot of extra packets to tra-verse the network due to retransmissions, its goodputis low. It is desirable that each connection have ashigh a goodput as possible. Clearly, this metric is ofgreat signi�cance for e�cient operation of a network.

� Throughput: This is the measure of how soon an enduser is able to receive data. It is determined as the ra-tio of the total data received by the end user and theconnection time. A higher throughput will directlyimpact the user's perception of the quality of service.In this paper we propose two approaches to improvethe performance of TCP. They are:� Packet size variation: As stated earlier, thepacket size on wide-area wireless networks is typ-ically much smaller than the packet size on thewired network. In this approach, we improvethe performance of TCP by choosing an `opti-mal' packet size on the wired network. It is ob-served that the optimal packet size depends onthe error conditions on the wireless link. We showthat choosing an optimal packet size over a non-optimal packet size can improve performance byupto 30% over basic TCP. It should be noted thatthis approach does not require any change in thetransport or the link layer protocols at any hostin the network.� Explicit feedback: Local recovery from thebase station is found to improve performance ofTCP. However, while the base station is perform-ing local recovery, timeouts can still occur at thesource. We propose an explicit feedback mecha-nism that eliminates timeouts at the source dur-ing local recovery. We performed experiments onwide-area wireless networks as well as local-areawireless networks using explicit feedback fromthe base station to the TCP source. It is ob-served that using explicit feedback improves per-formance of TCP by upto 100% over basic TCPin wide-area wireless networks, and upto 50% inlocal-area wireless networks. Our choice of errorcharacteristics over the wireless link is conserva-tive. We expect our schemes to yield even betterperformance if wireless links are more lossy.The remainder of this paper is organized as fol-lows. Section 2 presents a summary of the existingproposals for improving TCP performance over wire-less networks. We present our simulation environmentin Section 3. Section 4 presents the discussion of theproposed approaches, namely `packet size variation',and `explicit feedback'. Results and conclusions fol-low in Section 5 and Section 6 respectively.2 Summary of Previous ApproachesCaceres and Iftode were among the �rst to inves-tigate the impact of mobility on the performance ofTCP [4]. The authors employ the fast retransmit pro-cedure to recover quickly from packet losses during2

hando�s. This work, however, does not address theissue of packet losses due to lossy wireless links.The split-connection approach [6, 7] suggests thata TCP connection between a mobile host and a �xedhost should be split into two separate connections {one between the mobile host and the base station overthe wireless medium, and another between the basestation and the �xed host over the wired medium.Separation of
ow control and congestion control ofthe wireless link from that of the �xed network, helpsin improving TCP performance. However, the split-connection approach violates the semantics of end-to-end reliability. This is because, acknowledgments canarrive at the source even before the packet actuallyreaches the intended destination. Secondly, this ap-proach requires a lot of state maintenance at the basestation.Balakrishnan et.al. incorporate a transport layeraware agent (snoop agent) at the base station in [11].The snoop agent caches the TCP packets destinedfor the mobile host and performs local retransmis-sions after losses are detected by duplicate acknowl-edgments (dupacks) and timeouts. However, a time-out can occur at the source, and congestion controlprocedures invoked, while the snoop agent is tryingto resend lost packets to the mobile host. Moreover,both snoop and the split-connection approaches do notperform well in the presence of bursty losses on thewireless links.Several link level Channel State DependentPacket (CSDP) scheduling policies are proposed in [9].The performance of multiple TCP connections over awireless LAN is investigated. It is observed that underFIFO packet scheduling at the base station, the headof line packet, if encountering burst losses, could blockthe transmission of other packets. In case of multipleTCP connections sharing the wireless link, schedul-ing protocols such as round-robin provide signi�cantperformance improvement over FIFO. The main lim-itation of this approach is that the performance im-provement achievable depends mostly on the accuracyof the channel state predictor. The problem of sourcetimeouts exists in this approach too.3 Simulation EnvironmentWe use the Network Simulator (NS) [13] fromLawrence Berkeley Labs with extensions incorporatedto simulate wireless links, to evaluate the performanceof our proposed schemes. NS is an extensible simula-tion engine built using C++ and Tcl/Tk that can sim-ulate various
avors of TCP available today for wirednetworks. TCP-Tahoe is used for the purposes of oursimulation.

3.1 Wireless Link Parameters� Error Model : We consider a burst error modelfor errors on the wireless link. This error model ischaracterized by a 2 state markov model (as shownin Figure 1); the 2 states representing a good anda bad state. In each state, bit errors are poisson-distributed with a mean Bit Error Rate (BER) of �gfor the good state and �b for the bad state. The tran-sition from good-to-bad state, and from bad-to-goodstate are also poisson-distributed with a mean transi-tion rate of �gb=sec and �bg=sec respectively. We �xthe mean BER in the good state, �g = 10�6, and themean BER in the bad state, �b = 10�2 (e.g. deepfades). The mean value of good period 1�gb = 10sec,and the mean value of bad period 1�bg , is varied from1 sec to 4 sec.
Good Bad

λ
gb

λ
bg

λ
g

λ
bFigure 1: Two State Markov Model for Burst ErrorCharacterization�Maximum Transmission Unit (MTU) : This isthe maximum link level packet size admissible on thewireless link. Any network layer data packet largerthan the MTU gets fragmented while traversing thewireless link. Typically, the MTU for the wide-areawireless network is small. Unless otherwise mentioned,we use 128 bytes as the MTU for the wireless network.� Overhead : A number of bytes is added to eachnetwork layer packet by the lower layers on the pro-tocol stack before transmitting over the wireless link.These overheads are due to framing, error correction,segmentation, and synchronization. We assume thata packet over the wired network of length W bytes be-comes 1.5W bytes after addition of these overheads.Since we assume a large overhead due to error cor-rection, the BER during the good period (for bursterror model) is kept low. As a result, losses over thewireless link occur primarily during a bad period. If asmaller overhead is chosen, then the BER during thegood period should increase.� Bandwidth : Symmetrical, 19.2 Kbps (raw). Afteroverheads due to Forward Error Correction (FEC),etc. have been removed, the e�ective link bandwidthis equal to 12.8 Kbps.� Delay : Transmission delay and propagation de-3

Wired Link

Link

Wireless
BS

SRC

FH

Fixed Host Base Station Mobile Host

SNK

MHFigure 2: Simulation Setuplay are the main delay components. We assume thatthere is only one connection being served by the basestation. Therefore, MAC delay is assumed to be neg-ligible.3.2 Simulation ModelA simple network topology is chosen to make it eas-ier to understand performance dynamics. As shown inFigure 2, there are three nodes : a �xed host (FH),a base station (BS) and a mobile host (MH). Thereis a wired link (56 Kbps) between the �xed host andthe base station and a wireless link (19.2 Kbps) be-tween the base station and the mobile host. In thispaper, we are only concerned with bulk data trans-fer from a �xed host to a mobile host. Therefore, aTCP source (SRC) is embedded in the �xed host, anda TCP sink (SNK) is embedded in the mobile host.3.3 TCP ParametersWe use Tahoe TCP which incorporates slowstart, congestion avoidance and fast-retransmit algo-rithms [2, 13]. Unless otherwise speci�ed, the windowsize is set to 4 Kbytes. We run experiments for di�er-ent packet sizes ranging from 128 bytes to 1536 bytes.The header size is set to 40 bytes. The granularity ofthe TCP clock is set to 100 msec, implying that theroundtrip times are measured to the nearest 100 msec.3.4 Graphical OutputPacket traces for a connection may be obtainedas graphical output from the simulator. For eachgraph (as shown in Figures 3-5), the horizontal-axisshows the time in seconds, while the vertical-axis de-notes packet number mod 90. Each mark on thegraph indicates a packet generated by the TCP source.Packet retransmissions are indicated by multiple ad-jacent marks having the same vertical-coordinate, butdi�ering in transmission time. For example, in Fig-ure 3, Packet 44 gets retransmitted twice; once at 25.9sec, and then again at 28.3 sec.4 Proposed ApproachesIn this section, we provide detailed discussions oneach of the following approaches:� E�ect of varying packet size on the wired network.� E�ect of local recovery and explicit feedback mech-anism.

4.1 E�ect of Packet Size VariationIn this section we will discuss the e�ect of variationof packet size on the wired network on the performanceof TCP without local recovery from the base station.Here, our aim is to improve TCP's performance with-out making changes in the transport layer or the linklayer at any host.Typically, the MTU on a wide-area wireless net-work is kept small. This reduces the probability ofpackets getting corrupted during transmission over thewireless medium. For example, the MTU in CDPDnetworks is 128 bytes [12]. However, packets on thewired network larger than the wireless MTU get frag-mented into multiple MTUs before transmission overthe wireless link.Fragmentation of packets on a heterogeneous net-work appears to have many advantages as pointedout in [15]. The end hosts are relieved from worry-ing about the size of their data-segments even thoughthe intermediate links may have largely di�erent MTUsizes. If the packets from the source are larger thanthe MTU of an intermediate link, the routers at theends of this link are responsible for fragmenting andsubsequently reassembling the packet. Clearly, thisapproach will give better throughput in cases wherean intermediate high bandwidth link supports largerMTU sizes (those comparable to the size of the packetfrom the source).While fragmentation may appear to be an attrac-tive solution to the wide discrepancy in internetworkMTU sizes, the authors in [15] recommend it beavoided. It is pointed out that dropping or corrup-tion of a single such fragment will result in the wholepacket being dropped. The source would then have toretransmit the entire packet causing more fragmentsto litter the network and compound congestion prob-lems. For these reasons, fragmentation of data packetsshould be avoided as far as possible.The above argument has important rami�cationsfor e�cient operation of TCP over wide-area wirelessnetworks. While throughput of TCP is sensitive tothe error characteristics of the link, we show that thepacket size on the wired network also a�ects results.Note that, if Path MTU Discovery (PMTU) [21] isused to decide the size of the data packet to be usedfor a TCP connection, the packet size chosen will beequal to the smallest MTU among all links along theroute for the connection. In this case, it will be theMTU on the wireless link. If neither the MSS option,nor PMTU are used during TCP connection establish-ment, the source assumes the default IP datagram sizeof 576 bytes [22] as the packet size.4

We performed experiments for di�erent packet sizesunder di�erent error conditions over the wireless link.Our results indicate that for most error conditions,the optimal packet size di�ers from the MTU on thewireless link as well as the default IP datagram size.The numerical results of this study are presented inSection 5. We show that based on wireless link er-ror characteristics, choosing a `good' packet size willprovide signi�cant performance improvements with-out having to maintain any state information per con-nection at the the base station. This proposal maysimply be implemented by maintaining a �xed tableat each base station which maps a particular wirelesslink error characteristic to the `good' packet size forthat error characteristic.Even though a judicial choice of packet size givesperformance improvements, there exists a substantialdi�erence between the performance obtained, and thetheoretical maximum achievable. Using local recov-ery and explicit feedback mechanisms presented in thenext section, we can obtain goodput and throughputvalues that nearly equal the theoretical maximum.4.2 Explicit FeedbackWe will �rst illustrate the e�ects of losses, localrecovery and explicit feedback on TCP with the helpof an example.4.2.1 An ExampleA simple experiment is run on our simulator for a net-work con�guration shown in Figure 2, where bulk datais transmitted from a �xed host to a mobile host. Thepackets are subjected to burst losses on the wirelesslink. The losses are determined using the two-statemarkov model explained earlier. For this example weuse a simpler model, where the bit-errors and state-transition values are assumed to be constant and donot follow a random distribution. This is done so thatwe can exactly duplicate the errors and state transi-tions for each of the three experiments; basic TCP,local recovery, and explicit feedback. Following arethe parameters used in these experiments: mean BERin good state, �g = 10�6, mean BER in bad state,�b = 10�2, 1�gb = 10sec, and 1�bg = 4sec. The packetsize on the wired network is equal to 576 bytes. Thewindow size is equal to 4 Kbytes. As stated earlier,the MTU on the wireless link is equal to 128 bytes.The simulation starts with the wireless link in agood state. It remains in the good state for 10 secand then enters the bad state. It remains in the badstate for 4 sec and then reenters good state. This cyclecontinues for the length of the connection.

Basic TCP
packet

time

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00Figure 3: Basic TCPFigure 3 shows the trace of packets for a connectionusing basic TCP. During the bad periods, all packetstransmitted over the wireless link are lost. For exam-ple, consider the bad period between 24-28 sec, wherepackets 44-50 are lost on the wireless link. The sourcedetects the loss of packet 44 only after a timeout at25.9 sec as all acknowledegments from the mobile hostalso get lost during this bad period. The source nowinitiates congestion control measures and retransmitsthe lost packets, causing degradation of goodput aswell as throughput.Figure 4 shows the trace of packets for the sameconnection but using local recovery at the base sta-tion. (The basic setup of Figure 2 is modi�ed to em-ploy local link-level retransmissions from the base sta-tion.) The link-level protocol used is similar to to theprotocol in [9]. This involves aggressive retransmis-sion with packet discards. If the base station does notreceive an acknowledgement following a packet trans-mission, it retransmits the lost packet after a randomretransmission backo�. A maximum of RTmax suc-cessive retransmissions are allowed before a packet isdiscarded. We set RTmax to 13 [12]. It can be noticedthat in most bad periods, local recovery at the basestation prevents packet losses on the wireless link. Forexample, between 24-28 sec, no packets need to be re-transmitted from the source. However, in some badperiods, the source may time out waiting for acknowl-edgments of packets that have already been sent. Thisis evident in the bad period of 10-14 sec, where a time-5

Local Recovery
packet

time

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00Figure 4: Local Recoveryout for packet 27 occurs at the source at 13.75 sec.The problem of redundant retransmissions (fromthe TCP source as well as the base station) was alsopointed out in [3]. The authors in [3] suggested thaterror recovery employed at the link layer could po-tentially interfere with TCP's timeout mechanism.This leads to competing or redundant retransmissions.In our example, redundant retransmissions occur forpacket 27. While the base station is trying to trans-mit the packet to the mobile host, the source times outand retransmits the same packet. This problem willnot arise if TCP implementations use a very coarsetimer. Current TCP implementations have a coarsetimer granularity (of the order of 300-500 millisecond).Other approaches that employ local recovery [9, 11] as-sume a coarse timer, which is why they do not noticethis problem of redundant retransmissions during localrecovery. Recent proposals advocate the use of �nergranularity timers, as this increases the sensitivity ofthe source TCP to congestion on the network [23]. Inline with this trend, we use a timer granularity of 100milliseconds for our experiments.Explicit feedback from the base station can com-pletely eliminate the possibility of timeouts occurringat the source, while the wireless link is in a bad state.The results of using explicit feedback are shown inFigure 5. As can be seen, there are no timeouts atthe source, and therefore, the source does not invokecongestion control measures during any bad period.In the next section, we explore the possibility of using

Explicit Feedback
packet

time

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00Figure 5: Explicit Feedbackexisting feedback mechanisms, like Explicit Conges-tion Noti�cation ECN [23] for improving TCP per-formance over wireless links.4.2.2 Can ECN work for us ?The use of explicit feedback for congestion control inthe internet has already been shown to work well.ECN in the form of ICMP source quenches [20], isa host's means of informing the source of congestionin the network. This noti�cation is sent to the sourceafter either a packet has been dropped by the hostdue to an over
ow in its bu�ers, or if it anticipatesa dropping of packet(s) based on existing congestionconditions. The latter approach will be more e�ec-tive in combating congestion as it predicts congestionand tries to take preventive measures before packetsare actually dropped. Upon receipt of this explicitfeedback, the source reduces its congestion window toallow a reduction of congestion in the network.A base station can be con�gured to function as agateway supporting ICMP messages. When a wire-less link enters a bad state, little data is able to getacross to the mobile host (Figure 6, Case 2). This re-sults in queuing of packets from the source host at thebase station. It would appear that under these circum-stances sending a source quench message to the sourcewould decrease the
ow of new packets to the basestation, and thus prevent unnecessary timeouts. Thisshould improve the goodput as well as the throughputfor the connection. Our results show otherwise.6

After carefully tracing the
ow of data and ac-knowledgement packets, we came to the following con-clusion. When a wireless link enters a bad state,each datagram (acknowledgement) requires multipleretransmissions before it can get across to the mobilehost (base station). This increased delay will resultin the source TCP timer timing out (Figure 6, Case3(a)). A source quench message from the base sta-tion at this stage will not be able to prevent timeoutsof packets that are already on the network. It will ofcourse, stem the
ow of any further packets, and re-duce the probability of their timeouts. This observa-tion does, however, give us an important clue. Whena wireless link is in a bad state, what is needed to pre-vent timeouts of packets queued at the base station, isa mechanism to update the TCP timer at the source.This mechanism will essentially thwart the source'sattempts to invoke congestion control in response todelays on the wireless link. If the base station is ableto provide such a mechanism, then we can hope for ameasurable improvement in throughput.4.2.3 Explicit Bad State Noti�cation (EBSN)The preceding observation led us to explore how theTCP timer could be updated at the source. Clearly,in the absence of acknowledgments coming from themobile host when the link is in a bad state, we do nothave an estimate for the round-trip time. We cannotalso generate acknowledgments from the base stationfor packets that have not yet been received by themobile host. Neither can we send acknowledgmentsof previously acknowledged packets as they will be in-terpreted as dupacks. What seems to be a solutionis to send an Explicit Bad State Noti�cation (EBSN)that would cause the previous timeout to be canceledand a new timeout put in place, based on the existingestimate of round trip time and variance1. Thus, thenew timeout value is identical to the previous one. SeeAppendix for implementation details. Figure 6, Case3(b) summarizes the working of EBSN and its rolein preventing timeouts at the source. The EBSN ap-proach does not interfere with actual round trip timeor variance estimates, and at the same time preventsunnecessary (and detrimental) timeouts from occur-ring. When the wireless link is in a bad state, we donot want the source to decrease its window if there isno congestion. At the same time we should prevent1If the new timeout value is chosen to be very large, dead-lock might occur, where the source might never timeout. Onthe other hand, if we choose a very small value for the newtimeout, a timeout might occur before the next EBSN arrives.The existing timeout estimate worked well for our simulations.

timeouts for packets that had already been put on thenetwork before the wireless link encountered the badstate. Clearly, EBSN is successful in accomplishingboth these tasks.
TIMEOUT!!

MSSs

EBSN
Timeout prevented.

BS generates EBSN

(No acks coming in)

Substantial Queueing

(No more acks coming in)

Base
Station

Source
Host

Source
Host

Ack

Host

Mobile
Host

Host
Mobile

(No data gets through)
Window of Packets

Base
Station

Base
Station

Window of Packets

Source
Host

(No data gets through)

(Little or No data gets through)

Mobile

CASE 2: Wireless Link going into Bad State

CASE 3a : Wireless Link in Bad State (Without EBSN).

CASE 3b : Wireless Link in Bad State (With EBSN)

WIRED WIRELESS

Base
Station

Smaller MTUs

Acks

Minimal QueueingMSSs

Acks

Source
Host

Mobile
Host

CASE 1 : Wireless Link in Good State.

Figure 6: EBSN: How it worksIn our simulations, EBSNs are sent to the sourceafter every unsuccessful attempt by the base stationto transmit packets over the wireless link. The correcttimeout value at the source is readjusted upon receiptof the �rst new acknowledgement from the MH follow-ing any EBSN messages received. This acknowledge-ment may initially cause a large variance in the rttcalculation because of the large delay encountered onthe wireless link. However, a new acknowledgement isa good indicator that the wireless link has quit the badstate and has entered a good state. This will ensure asteady in
ow of acknowledgments and ultimately re-7

duce variance. Figure 7 provides a comparison for rttvariance in the cases where no link level retransmissionoccurs, link level retransmission occurs but EBSN isnot used, and when EBSN is used along with link levelretransmission. It is clear that using EBSN preventsunnecessary timeouts at the source thus decreasingrtt variance and improving throughput. The simula-tion model for this comparison was: packet size = 256Bytes, wireless link at 12.8 Kbps (wide-area wirelessnetwork), mean length of good/bad period = 10/4 sec.
0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

R
T
T

(
s
e
c
)

Time (sec)

RTT Variation with Time

EBSN
LL retx.

No-LL retx.Figure 7: rtt variaton with and without EBSN4.2.4 EBSN in Local-Area Wireless NetworksA TCP source is more susceptible to timeouts duringlocal recovery when round-trip times are very small.The round-trip times are typically of the order of mil-liseconds in a LAN environment. Thus, a LAN en-vironment is an ideal candidate for use of EBSN. Westudy the impact of EBSN in a typical local-area wire-less network. In this case we assume no fragmentationover the wireless link. The setup in Figure 2 is modi-�ed for LAN experiments. The wired link bandwidthis set to 10 Mbps, and the wireless link bandwidth isset to 2 Mbps. The TCP window size is �xed at 64Kbytes. Results of this study are presented in the nextsection.5 Results and DiscussionIn this section we �rst present the results of experi-ments performed on wide-area and local-area wirelessnetworks. We then discuss various issues related tothe explicit feedback mechanism using EBSN.We take into account 40 bytes of header overheadwhile measuring connection throughput. The stan-dard deviation for all results presented is less than4%.5.1 Wide-Area Wireless NetworksFigure 8 and Figure 9 illustrate the variation ofthroughput with packet size for basic TCP, and EBSN

respectively. As stated earlier in Section 3, the ef-fective maximum throughput (tputmax) (the maxi-mum throughput achievable without any errors) iskept as 12.8 Kbps. The theoretical maximum through-put (tputth) in the presence of errors is determined as(�bg(�bg+�gb) � tputmax) (which is � tputmax).The value of tputth for each �bg is marked on thetop right hand corner of Figures 7 and 8. We variedthe packet size on the wired network from 128 bytesto 1536 bytes. Each run involved a 100 Kbyte �letransfer from the �xed host to the mobile host. Themean length of the good period is set to 10 sec. Weran experiments for bad period lengths with meansranging from 1 to 4 sec.Figure 8 shows that for a given packet size, through-put increases as the length of bad period decreases.It can also be seen that for each bad period length,there is an optimal packet size which delivers the max-imum throughput. For example, in Figure 8, for badperiod = 1 sec, packets of size 512 bytes give thebest throughput, however, for a bad period = 3 sec,packets of size 384 bytes give the best throughput.Clearly, a good choice of packet size could providesigni�cant performance improvements over basic TCP(about 30% improvement in throughput is obtained if512 bytes is chosen as the packet size instead of 1536bytes, for a bad period = 1 sec). We would like todraw the reader`s attention to the large di�erence be-tween tputth and the throughput obtained even forthe optimal packet size for a particular error condi-tion. For example, tputth for bad period = 1 sec is11.8 Kbps. However, the throughput achieved using512 bytes (the optimal packet size for bad period = 1sec) is only 8.7 Kbps.It can be noticed in Figure 8, that for packet sizesbeyond the optimal packet size, throughput decreases.One of the main reasons for this degradation, is in-creased fragmentation of packets on the wireless link.Loss of a single fragment causes the retransmission ofthe whole packet from the source. The impact of largerpacket size over the wired link is better illustrated inFigure 10 which shows the extra data transmitted bythe source due to retransmissions. As is evident, theamount of retransmitted data increases with both thepacket size and the length of the bad period; larger theamount of retransmitted data, lower is the goodput ofthe connection.The performance of TCP using EBSN is illustratedin Figure 9. There is signi�cantly more improvementin performance of TCP using EBSN than performanceof basic TCP. An interesting observation is that un-like basic TCP, the throughput now increases with in-8

4000

5000

6000

7000

8000

9000

10000

11000

12000

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

K
bi

ts
/s

ec
)

Packet Size (Bytes)

Throughput vs. Mean Length of Bad Period (for Basic TCP)

bad period = 1 sec
bad period = 2 sec
bad period = 3 sec
bad period = 4 sec

Maximum throughput for bad period = 1 sec

= 2 sec

= 3 sec

= 4 secFigure 8: Basic TCP(Wide-Area): Mean Good Pe-riod=10 sec 4000

5000

6000

7000

8000

9000

10000

11000

12000

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

K
bi

ts
/s

ec
)

Packet Size (Bytes)

Throughput vs. Packet Size (Using Explicit Feedback)

bad period = 1 sec
bad period = 2 sec
bad period = 3 sec
bad period = 4 sec

Maximum throughput for bad period = 1 sec

= 3 sec

= 2 sec

= 4 secFigure 9: EBSN(Wide-Area): Mean Good Period=10seccrease in packet sizes. This is because, irrespectiveof packet size, timeouts are being completely elimi-nated when EBSN is used. In the absence of time-outs, there are no redundant retransmissions from thesource which is shown in Figure 10. The performanceis no longer sensitive to fragmentation over the wire-less link, and larger packets perform better. For ex-ample, for 1536 bytes, and for a bad period = 4 sec,we notice a 100% improvement in throughput usingEBSN; the throughput for basic TCP is 4.5 Kbps,and for TCP using EBSN is 9.0 Kbps. Indeed, weexpect improvements to be much higher for largerbad period lengths. The e�ectiveness of EBSN is evi-dent from Figure 9, where throughput obtained usingEBSN is quite close to the theoretical maximum tputthfor larger packet sizes.
0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600

D
at

a
R

et
ra

ns
m

itt
ed

 (
K

by
te

s)

Packet Sie (Bytes)

Data Retransmitted vs. Mean Length of Bad Period

Using EBSN
bad period = 1 sec
bad period = 2 sec
bad period = 3 sec
bad period = 4 secFigure 10: Basic TCP vs EBSN(Wide-Area): 100Kbyte File, Mean Good Period=10 sec5.2 Local-Area Wireless NetworksThe packet size for this study is �xed at 1536 bytes.We also assume that there is no fragmentation on the

1

1.2

1.4

1.6

1.8

2

0.4 0.6 0.8 1 1.2 1.4 1.6

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Mean Length of Bad Period (sec)

Throughput vs. Mean Length of Bad Period

Theoretical Maximum
 Using EBSN

Using Basic TCP

Figure 11: Basic TCP vs EBSN(Local-Area): MeanGood Period=4 secwireless link. The maximum throughput on the wire-less link in the absence of errors (tputmax) is chosento be 2 Mbps. As before, the maximum theoreticalthroughput (tputth) in the presence of errors is givenby (�bg�bg+�gb � tputmax).Each run involved a 4 Mbyte �le transfer from the�xed host to the mobile host. The mean good periodlength is set to 4 sec. We ran experiments for di�erentbad period lengths with means ranging from 400 mil-liseconds to 1.6 sec. Figure 11 illustrates the variationof throughput with bad period length for basic TCPand EBSN. The value of tputth for the correspondingbad period lengths is also plotted. TCP using EBSNclearly outperforms the basic TCP scheme. For somebad period lengths, there is about 50% improvement inthroughput using EBSN. As before, the primary rea-son for performance improvement using EBSN is zerotimeouts at the TCP source (Figure 12). Once again,the goodput achieved using EBSN is 100%. This is9

in contrast to the basic TCP scheme, where sourcetimeouts result in a large number of retransmissions.
0

50

100

150

200

0.4 0.6 0.8 1 1.2 1.4 1.6

D
at

a
R

et
ra

ns
m

itt
ed

 in
 K

B
yt

es

Mean Length of Bad Period (sec)

Data Retransmitted vs. Mean Length of Bad Period

EBSN
Basic TCPFigure 12: Basic TCP vs EBSN(Local-Area): 4 MbyteFile, Mean Good Period=4 sec6 ConclusionsThis paper presents a study of the e�ect of bursterrors, packet size variation, local recovery, and ex-plicit feedback, on the performance of TCP over wire-less networks. First, we propose variation in packetsize over the wired network to improve TCP perfor-mance. Since, the MTU on the wide-area wirelesslinks is small, a packet on the wired network getsfragmented before transmission over the wireless link.Loss of a fragment causes signi�cant degradation inperformance of TCP. Results show that an optimalpacket size can lead to about 30% performance im-provement over a non-optimal packet size. We haveshown that the optimal packet size varies with the er-ror conditions on the link.Local recovery using link-layer retransmissions fromthe base station is shown to improve performance.However, while the base station is performing local re-covery, the source could still timeout. To prevent thesetimeouts, we propose an explicit feedback mechanism.The central idea of our approach is to send an ExplicitBad State Noti�cation (EBSN) Message to the sourcefrom the base station during local recovery. Upon re-ceipt of an EBSN, the source resets its timeout value.This way, timeouts at the source during local recoveryare totally eliminated. It is observed that TCP us-ing EBSN provides upto 100% performance improve-ment over basic TCP in wide-area wireless networks,and upto 50% performance improvement in local-areawireless networks. These results are for a very con-servative error model for the wireless link. We expectgreater performance improvements for wireless links

having higher BERs. We also show that the through-put and goodput values obtained for TCP using EBSNare very close to the theoretical maximum.We now summarize the main advantages and dis-advantages of the explicit feedback mechanism usingEBSN.Advantages:� Source timeouts are prevented during local recovery.This improves goodput and throughput of the con-nection. Note, that the improvements will be morepronounced in high BER wireless links. � TCP us-ing EBSN does not require state maintenance at anyintermediate host.� E�ectiveness of some of the proposed approaches [9,11] depend on the granularity of the TCP timer. ATCP timer with �ner granularity will result in a largernumber of timeouts during local recovery. This willcause signi�cant degradation in throughput and good-put. With our explicit feedback mechanism, the time-out value at the source is reset upon receipt of everyEBSN. This reduces the number of timeouts, and ina large number of cases prevents timeouts from oc-curring at all. The e�ect of clock granularity on per-formance is now greatly reduced, thus improving therobustness of the network [23].Disadvantage:� The main disadvantage of EBSN is that it requiresmodi�cation to TCP code at the source. Note, how-ever, the changes involved are minimal as shown inthe Appendix.We view this work as a preliminary investigationinto the e�ectiveness of explicit feedback mechanisms,to improve performance of TCP in wireless networks.In this paper, we have assumed that the wired net-work is not congested. We are separately studying theimpact of congestion in the wired network on the ef-fectiveness of EBSN [18]. This involves looking intoissues related to the interaction between ECN andEBSN. We are also investigating schemes to make asource timer more robust to larger delays on the wire-less link without using explicit feedback mechanisms.If this is possible, we will be able to achieve perfor-mance improvements comparable to those using EBSNwithout changing TCP code at the end hosts.References[1] P. Karn and C. Partridge, \Estimating round-triptimes in reliable transport protocols," Proc. SIG-COMM, Aug., 1987.[2] V. Jacobson, \Congestion Avoidance and Con-trol," Proc. SIGCOMM, pp. 314-329, Aug., 1988.10

[3] A. DeSimone, M.C. Chuah, and O.C. Yue,\Throughput Performance of Transport-LayerProtocols over Wireless LANs," Proc. Globecom,December 1993.[4] R. Caceres and L. Iftode, \Improving the Perfor-mance of Reliable Transport Protocols in MobileComputing Environments," IEEE JSAC SpecialIssue on Mobile Computing Networks, 1994.[5] W. Stevens, TCP/IP Illustrated, Volume 1,Addison-Wesley, 1994.[6] R. Yavatkar and N. Bhagwat, \Improving End-to-End Performance of TCP over Mobile Internet-works," Proc. of Workshop on Mobile ComputingSystems and Applications, Dec., 1994.[7] A.Bakre and B.R. Badrinath, \I-TCP: IndirectTCP for Mobile Hosts," ICDCS, Oct., 1994.[8] Tim Alanko et al, \Measured Performance ofData Transmission Over Cellular Telephone Net-works." Technical report TR C-1994-53, Univer-sity of Helsinki.[9] P. Bhagwat et. al., \Enhancing Throughput overWireless LANs Using Channel State DependentPacket Scheduling," INFOCOM, 1995.[10] A.Bakre and B.R. Badrinath, \Hando� and Sys-tem Support for Indirect TCP/IP," Proc. SecondUsenix Symp. on Mobile and Location-IndependentComputing, April, 1995.[11] H. Balakrishnan, S. Seshan, E. Amir, R. H. Katz,\Improving TCP/IP Performance over WirelessNetworks," Proc. 1st ACM Conf. on Mobile Com-puting and Networking, November 1995.[12] Cellular Digital Packet Data System Speci�ca-tion: Release 1.0, CDPD Forum Inc., 1993.[13] Sally Floyd, Steve McCanne, \Network Simula-tor." LBNL public domain software. Available viaftp from ftp.ee.lbl.gov.[14] R Braden, \Requirements for Internet Hosts{ Communication Layers", RFC 1122, October1989.[15] C. A. Kent, J. C. Mogul, \Fragmentation consid-ered harmful," SIGCOMM 1988.[16] Bikram S. Bakshi, P. Krishna, N.H. Vaidya, D.K. Pradhan, \Performance of TCP over WirelessNetworks," Tech Report # TR-96-014, December,1995.

[17] Bikram S. Bakshi, P. Krishna, N.H. Vaidya, D.K. Pradhan, \Providing Seamless Communicationover Mobile Wireless Networks," In Proc. 21st Lo-cal Computer Networks Conference, Minneapolis,MN, October 13-16, 1996.[18] Authors of this paper, \Explicit Feedback inWireless Networks," Tech Report in preparation.[19] A. Conta and S. Deering, \Internet Control Mes-sage Protocol (ICMPv6) for the Internet ProtocolVersion 6 (IPv6)," RFC 1885, December, 1995.[20] J. Postel, \Internet Control Message Protocol,"RFC 792, September 1981.[21] J. Mogul and S. Deering, \Path MTU Discovery,"RFC 1191, November, 1990.[22] J. Postel, \The TCP Maximum Segment Size andRelated Topics," RFC 879, November, 1983.[23] Sally Floyd, \TCP and Explicit Congestion No-ti�cation," ACM Computer Communication Re-view, V.24, No. 5, October 1994.Appendix: Implementation of EBSN inour SimulatorIn the normal operation of TCP, each time a datapacket is sent out by a TCP source, any previouslyset timer is �rst disabled, and a new one put in placebased on the latest estimate of round trip time. Wereproduce the basic algorithm below. Details may befound in [stev94].Basic TCPtcp_recv(){ if ((fast_retransmit) || (timeout)) {update ssthresh;update cwnd;update timer_backoff;set_rtx_timer(); /* explained below */retransmit lost pkt;return;}/* Other packet processing */} The set rtx timer() procedure cancels any previoustimer, and puts a new one in place based on the latestestimate of round trip time.set_rtx_timer(){11

if previous timer(TCP_TIMER)cancel(TCP_TIMER);/* Now calculate new timeout based on latestestimate of round trip time and variance */new_timeout = calculate_new_timeout();set_tcp_timer(new_timeout);} Response to an EBSN message requires minimalchanges to the tcp code, which are localized to thetcp recv() routine only. On receipt of an EBSN mes-sage, the source replaces any previous timer with anew timer retaining the current timeout value. Note,that EBSN can be implemented as a new type ofICMP message.TCP's response to EBSNtcp_recv(){ if EBSN received {set_rtx_timer();return;}/* Other packet processing */}

12

