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Abstract

Transmission Control Protocol (TCP) assumes
a relatively reliable underlying network where most
packet losses are due to congestion. In a wireless
network, however, packet losses will occur more often
due to unreliable wireless links than due to congestion.
When using TCP over wireless links, each packet loss
on the wireless link results in congestion control mea-
sures being invoked at the source. This causes severe
performance degradation. In this paper, we study the
effect of (a) burst errors on wireless links, (b) packet
size variation on the wired network, (c) local error re-
covery by the base station, and (d) explicit feedback
by the base station, on the performance of TCP over
wireless networks.

It is shown that the performance of TCP is sensitive
to the packet size, and that significant performance
improvements are obtained if a ‘good’ packet size s
used. While local recovery by the base station using
link-level retransmissions is found to tmprove perfor-
mance, timeouts can still occur at the source, caus-
ing redundant packet retransmissions from the source.
We propose an “explicit feedback” mechanism to pre-
vent these timeouts during local recovery. Results in-
dicate significant performance improvements when ez-
plicit feedback from the base station is used. A major
advantage of our approaches over existing proposals is
that, no state maintenance is required at any interme-
diate host.

Ezperiments are performed using the Network Sim-
ulator (NS) from Lawrence Berkeley Labs. The sim-
ulator has been extended to incorporate wireless link
characteristics.

*This research is supported, in part, by the Texas Advanced
Technology Program under grants C-009741-052 and C-999903-
029.

1 Introduction

A typical wireless network with mobile users is im-
plemented using a wired network of fixed hosts, some
of which are augmented with wireless interfaces. Such
hosts are called base stations. The base stations pro-
vide a gateway for communication between the wire-
less and wired network.

Users of portable computers would like to execute
popular applications like ftp, telnet, www-access, etc.,
over the wireless link, when they are mobile. Most
of these popular applications employ TCP as their
transport-layer protocol. One of the primary reasons
for the widespread use of TCP on the internet is its
inbuilt algorithms for congestion control and avoid-
ance. Over the years, the internet community has in-
corporated new schemes into the TCP suite to make
these protocols more robust to congestion. Details of
schemes for congestion control and avoidance in TCP
can be found in [2]. Here, we will give a brief overview
of the general ideas behind these schemes, as this ex-
planation proves useful in understanding the problems
typical to a wireless network.

Two parameters of interest in this discussion
are congestion window (cwnd), and slow-start-
threshold (ssthresh) maintained by each TCP con-
nection for use in flow-control. The value of cwnd
fluctuates as new acknowledgments of previously sent
data packets stream in. The maximum amount of un-
acknowledged data that TCP can have on the internet
at any time, is the minimum of the receiver’s adver-
tised window and cwnd. The parameter ssthresh is
used to control the rate of growth of cwnd.

Packets on the internet may get lost either due to
congestion, or due to corruption by the underlying
physical medium. Given the low bit error rates of
wired links, almost all losses are related to conges-



tion. TCP’s reaction to losses is based on this very
observation. Losses are detected either by timeouts
at the source or by multiple duplicate acknowledege-
ments (dupacks) from the receiver (referred to as the
fast-retransmit policy [5]). Upon loss of a packet, TCP
reacts by setting ssthresh to half the value of cwnd,
subsequently decreasing cwnd to one, and entering the
slow-start phase. This measure would appear severe,
but works well, because cutting the window size and
thus limiting the amount of unacknowledged data on
the network, is the most effective way of dealing with
congestion. In addition to the above measures, the
timeout value is doubled upon each consecutive packet
loss. Ounly upon receipt of an acknowledgement for a
“non-retransmitted packet” is the timeout value re-
computed [1].

While wired links offer a virtually error free trans-
mission medium, errors on wireless links tend to be fre-
quent and bursty, and are highly sensitive to direction
of propagation, multipath fading, and general interfer-
ence. As stated earlier, TCP assumes that each packet
loss is solely due to congestion. However, in a wireless
network, TCP will encounter packet losses that may
be unrelated to congestion. Nonetheless, these losses
trigger congestion control measures at the source and
severely degrade performance. In addition, for wide-
area wireless networks, the packet size over wireless
links is typically much smaller than the packet size
over the wired network. For example, the packet size
over wireless links for CDPD Networks [12] is only 128
bytes. As a result, each packet on the wired network
gets fragmented when transmitted over the wireless
link. Loss of a fragment over the wireless link will
initiate error recovery and congestion control mecha-
nisms at the source, causing noticeable performance
degradation.

In this study, we do not consider handoffs. In
a separate study [17], we have proposed schemes to
improve the performance of TCP in the presence of
handoffs. In this study, we are only interested in the
performance of TCP (for bulk data transfer) in the
presence of losses in wireless networks. The perfor-
mance metrics of interest in this study are:
e Goodput: This is the measure of how efficiently a
connection utilizes the network. It is determined as
the ratio of useful data received at the destination and
the total amount of data transmitted by the source.
If a connection requires a lot of extra packets to tra-
verse the network due to retransmissions, its goodput
is low. It is desirable that each connection have as
high a goodput as possible. Clearly, this metric is of
great significance for efficient operation of a network.

e Throughput: This is the measure of how soon an end
user is able to receive data. It is determined as the ra-
tio of the total data received by the end user and the
connection time. A higher throughput will directly
impact the user’s perception of the quality of service.

In this paper we propose two approaches to improve
the performance of TCP. They are:

e Packet size variation: As stated earlier, the
packet size on wide-area wireless networks is typ-
ically much smaller than the packet size on the
wired network. In this approach, we improve
the performance of TCP by choosing an ‘opti-
mal’ packet size on the wired network. It is ob-
served that the optimal packet size depends on
the error conditions on the wireless link. We show
that choosing an optimal packet size over a non-
optimal packet size can improve performance by
upto 30% over basic TCP. It should be noted that
this approach does not require any change in the
transport or the link layer protocols at any host
in the network.

e Explicit feedback: Local recovery from the
base station is found to improve performance of
TCP. However, while the base station is perform-
ing local recovery, timeouts can still occur at the
source. We propose an explicit feedback mecha-
nism that eliminates timeouts at the source dur-
ing local recovery. We performed experiments on
wide-area wireless networks as well as local-area
wireless networks using explicit feedback from
the base station to the TCP source. It is ob-
served that using explicit feedback improves per-
formance of TCP by upto 100% over basic TCP
in wide-area wireless networks, and upto 50% in
local-area wireless networks. Our choice of error
characteristics over the wireless link is conserva-
tive. We expect our schemes to yield even better
performance if wireless links are more lossy.

The remainder of this paper is organized as fol-
lows. Section 2 presents a summary of the existing
proposals for improving TCP performance over wire-
less networks. We present our simulation environment
in Section 3. Section 4 presents the discussion of the
proposed approaches, namely ‘packet size variation’,
and ‘explicit feedback’. Results and conclusions fol-
low in Section 5 and Section 6 respectively.

2 Summary of Previous Approaches
Caceres and Iftode were among the first to inves-
tigate the impact of mobility on the performance of
TCP [4]. The authors employ the fast retransmit pro-
cedure to recover quickly from packet losses during



handoffs. This work, however, does not address the
issue of packet losses due to lossy wireless links.

The split-connection approach [6, 7] suggests that
a TCP connection between a mobile host and a fixed
host should be split into two separate connections —
one between the mobile host and the base station over
the wireless medium, and another between the base
station and the fixed host over the wired medium.
Separation of flow control and congestion control of
the wireless link from that of the fixed network, helps
in improving TCP performance. However, the split-
connection approach violates the semantics of end-to-
end reliability. This is because, acknowledgments can
arrive at the source even before the packet actually
reaches the intended destination. Secondly, this ap-
proach requires a lot of state maintenance at the base
station.

Balakrishnan et.al. incorporate a transport layer
aware agent (snoop agent) at the base station in [11].
The snoop agent caches the TCP packets destined
for the mobile host and performs local retransmis-
sions after losses are detected by duplicate acknowl-
edgments (dupacks) and timeouts. However, a time-
out can occur at the source, and congestion control
procedures invoked, while the snoop agent is trying
to resend lost packets to the mobile host. Moreover,
both snoop and the split-connection approaches do not
perform well in the presence of bursty losses on the
wireless links.

Several link level Channel State Dependent
Packet (CSDP) scheduling policies are proposed in [9].
The performance of multiple TCP connections over a
wireless LAN is investigated. It is observed that under
FIFO packet scheduling at the base station, the head
of line packet, if encountering burst losses, could block
the transmission of other packets. In case of multiple
TCP connections sharing the wireless link, schedul-
ing protocols such as round-robin provide significant
performance improvement over FIFO. The main lim-
itation of this approach is that the performance im-
provement achievable depends mostly on the accuracy
of the channel state predictor. The problem of source
timeouts exists in this approach too.

3 Simulation Environment

We use the Network Simulator (NS) [13] from
Lawrence Berkeley Labs with extensions incorporated
to simulate wireless links, to evaluate the performance
of our proposed schemes. NS is an extensible simula-
tion engine built using C++ and Tcl/Tk that can sim-
ulate various flavors of TCP available today for wired
networks. TCP-Tahoe is used for the purposes of our
simulation.

3.1 Wireless Link Parameters

e Error Model : We consider a burst error model
for errors on the wireless link. This error model is
characterized by a 2 state markov model (as shown
in Figure 1); the 2 states representing a good and
a bad state. In each state, bit errors are poisson-
distributed with a mean Bit Error Rate (BER) of A,
for the good state and A for the bad state. The tran-
sition from good-to-bad state, and from bad-to-good
state are also poisson-distributed with a mean transi-
tion rate of Mg /sec and Apg/sec respectively. We fix
the mean BER in the good state, A; = 107°, and the
mean BER in the bad state, A, = 1072 (e.g. deep
fades). The mean value of good period %gb = 10sec,

and the mean value of bad period %, is varied from
1 sec to 4 sec. ‘
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Figure 1: Two State Markov Model for Burst Error
Characterization

e Maximum Transmission Unit (MTU) : This is
the maximum link level packet size admissible on the
wireless link. Any network layer data packet larger
than the MTU gets fragmented while traversing the
wireless link. Typically, the MTU for the wide-area
wireless network is small. Unless otherwise mentioned,
we use 128 bytes as the MTU for the wireless network.
e Overhead : A number of bytes is added to each
network layer packet by the lower layers on the pro-
tocol stack before transmitting over the wireless link.
These overheads are due to framing, error correction,
segmentation, and synchronization. We assume that
a packet over the wired network of length W bytes be-
comes 1.5W bytes after addition of these overheads.
Since we assume a large overhead due to error cor-
rection, the BER during the good period (for burst
error model) is kept low. As a result, losses over the
wireless link occur primarily during a bad period. If a
smaller overhead is chosen, then the BER during the
good period should increase.

e Bandwidth : Symmetrical, 19.2 Kbps (raw). After
overheads due to Forward Error Correction (FEC),
etc. have been removed, the effective link bandwidth
is equal to 12.8 Kbps.

e Delay : Transmission delay and propagation de-
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Figure 2: Simulation Setup

lay are the main delay components. We assume that
there is only one connection being served by the base
station. Therefore, MAC delay is assumed to be neg-
ligible.

3.2 Simulation Model

A simple network topology is chosen to make it eas-
ier to understand performance dynamics. As shown in
Figure 2, there are three nodes : a fixed host (FH),
a base station (BS) and a mobile host (MH). There
is a wired link (56 Kbps) between the fixed host and
the base station and a wireless link (19.2 Kbps) be-
tween the base station and the mobile host. In this
paper, we are only concerned with bulk data trans-
fer from a fixed host to a mobile host. Therefore, a
TCP source (SRC) is embedded in the fixed host, and
a TCP sink (SNK) is embedded in the mobile host.

3.3 TCP Parameters

We use Tahoe TCP which incorporates slow
start, congestion avoidance and fast-retransmit algo-
rithms [2, 13]. Unless otherwise specified, the window
size is set to 4 Kbytes. We run experiments for differ-
ent packet sizes ranging from 128 bytes to 1536 bytes.
The header size is set to 40 bytes. The granularity of
the TCP clock is set to 100 msec, implying that the
roundtrip times are measured to the nearest 100 msec.

3.4 Graphical Output

Packet traces for a connection may be obtained
as graphical output from the simulator. For each
graph (as shown in Figures 3-5), the horizontal-axis
shows the time in seconds, while the vertical-axis de-
notes packet number mod 90.
graph indicates a packet generated by the TCP source.
Packet retransmissions are indicated by multiple ad-
Jacent marks having the same vertical-coordinate, but
differing in transmission time. For example, in Fig-
ure 3, Packet 44 gets retransmitted twice; once at 25.9
sec, and then again at 28.3 sec.

Each mark on the

4 Proposed Approaches

In this section, we provide detailed discussions on
each of the following approaches:
o Effect of varying packet size on the wired network.
e Effect of local recovery and explicit feedback mech-
anism.

4.1 Effect of Packet Size Variation

In this section we will discuss the effect of variation
of packet size on the wired network on the performance
of TCP without local recovery from the base station.
Here, our aim is to improve TCP’s performance with-
out making changes in the transport layer or the link
layer at any host.

Typically, the MTU on a wide-area wireless net-
work is kept small. This reduces the probability of
packets getting corrupted during transmission over the
wireless medium. For example, the MTU in CDPD
networks is 128 bytes [12]. However, packets on the
wired network larger than the wireless MTU get frag-
mented into multiple MTUs before transmission over
the wireless link.

Fragmentation of packets on a heterogeneous net-
work appears to have many advantages as pointed
out in [15]. The end hosts are relieved from worry-
ing about the size of their data-segments even though
the intermediate links may have largely different MTU
sizes. If the packets from the source are larger than
the MTU of an intermediate link, the routers at the
ends of this link are responsible for fragmenting and
subsequently reassembling the packet. Clearly, this
approach will give better throughput in cases where
an intermediate high bandwidth link supports larger
MTU sizes (those comparable to the size of the packet
from the source).

While fragmentation may appear to be an attrac-
tive solution to the wide discrepancy in internetwork
MTU sizes, the authors in [15] recommend it be
avoided. It is pointed out that dropping or corrup-
tion of a single such fragment will result in the whole
packet being dropped. The source would then have to
retransmit the entire packet causing more fragments
to litter the network and compound congestion prob-
lems. For these reasons, fragmentation of data packets
should be avoided as far as possible.

The above argument has important ramifications
for efficient operation of TCP over wide-area wireless
networks. While throughput of TCP is sensitive to
the error characteristics of the link, we show that the
packet size on the wired network also affects results.
Note that, if Path MTU Discovery (PMTU) [21] is
used to decide the size of the data packet to be used
for a TCP connection, the packet size chosen will be
equal to the smallest MTU among all links along the
route for the connection. In this case, it will be the
MTU on the wireless link. If neither the MSS option,
nor PMTU are used during TCP connection establish-
ment, the source assumes the default IP datagram size
of 576 bytes [22] as the packet size.



We performed experiments for different packet sizes
under different error conditions over the wireless link.
Our results indicate that for most error conditions,
the optimal packet size differs from the MTU on the
wireless link as well as the default IP datagram size.
The numerical results of this study are presented in
Section 5. We show that based on wireless link er-
ror characteristics, choosing a ‘good’ packet size will
provide significant performance improvements with-
out having to maintain any state information per con-
nection at the the base station. This proposal may
simply be implemented by maintaining a fixed table
at each base station which maps a particular wireless
link error characteristic to the ‘good’ packet size for
that error characteristic.

Even though a judicial choice of packet size gives
performance improvements, there exists a substantial
difference between the performance obtained, and the
theoretical maximum achievable. Using local recov-
ery and explicit feedback mechanisms presented in the
next section, we can obtain goodput and throughput
values that nearly equal the theoretical maximum.

4.2 Explicit Feedback

We will first illustrate the effects of losses, local
recovery and explicit feedback on TCP with the help
of an example.

4.2.1 An Example

A simple experiment is run on our simulator for a net-
work configuration shown in Figure 2, where bulk data
is transmitted from a fixed host to a mobile host. The
packets are subjected to burst losses on the wireless
link. The losses are determined using the two-state
markov model explained earlier. For this example we
use a simpler model, where the bit-errors and state-
transition values are assumed to be constant and do
not follow a random distribution. This is done so that
we can exactly duplicate the errors and state transi-
tions for each of the three experiments; basic TCP,
local recovery, and explicit feedback. Following are
the parameters used in these experiments: mean BER
in good state, A; = 107°, mean BER in bad state,
Ay = 1072, %gb = 10sec, and ﬁ = 4sec. The packet
size on the wired network is equal to 576 bytes. The
window size is equal to 4 Kbytes. As stated earlier,
the MTU on the wireless link is equal to 128 bytes.

The simulation starts with the wireless link in a
good state. It remains in the good state for 10 sec
and then enters the bad state. It remains in the bad
state for 4 sec and then reenters good state. This cycle
continues for the length of the connection.

Basic TCP
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Figure 3: Basic TCP

Figure 3 shows the trace of packets for a connection
using basic TCP. During the bad periods, all packets
transmitted over the wireless link are lost. For exam-
ple, consider the bad period between 24-28 sec, where
packets 44-50 are lost on the wireless link. The source
detects the loss of packet 44 only after a timeout at
25.9 sec as all acknowledegments from the mobile host
also get lost during this bad period. The source now
initiates congestion control measures and retransmits
the lost packets, causing degradation of goodput as
well as throughput.

Figure 4 shows the trace of packets for the same
connection but using local recovery at the base sta-
tion. (The basic setup of Figure 2 is modified to em-
ploy local link-level retransmissions from the base sta-
tion.) The link-level protocol used is similar to to the
protocol in [9]. This involves aggressive retransmis-
sion with packet discards. If the base station does not
receive an acknowledgement following a packet trans-
mission, it retransmits the lost packet after a random
retransmission backoff. A maximum of RT,,,; suc-
cessive retransmissions are allowed before a packet is
discarded. We set RT},4, to 13 [12]. It can be noticed
that in most bad periods, local recovery at the base
station prevents packet losses on the wireless link. For
example, between 24-28 sec, no packets need to be re-
transmitted from the source. However, in some bad
periods, the source may time out waiting for acknowl-
edgments of packets that have already been sent. This
is evident in the bad period of 10-14 sec, where a time-
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Figure 4: Local Recovery

out for packet 27 occurs at the source at 13.75 sec.

The problem of redundant retransmissions (from
the TCP source as well as the base station) was also
pointed out in [3]. The authors in [3] suggested that
error recovery employed at the link layer could po-
tentially interfere with TCP’s timeout mechanism.
This leads to competing or redundant retransmissions.
In our example, redundant retransmissions occur for
packet 27. While the base station is trying to trans-
mit the packet to the mobile host, the source times out
and retransmits the same packet. This problem will
not arise if TCP implementations use a very coarse
timer. Current TCP implementations have a coarse
timer granularity (of the order of 300-500 millisecond).
Other approaches that employ local recovery [9, 11] as-
sume a coarse timer, which is why they do not notice
this problem of redundant retransmissions during local
recovery. Recent proposals advocate the use of finer
granularity timers, as this increases the sensitivity of
the source TCP to congestion on the network [23]. In
line with this trend, we use a timer granularity of 100
milliseconds for our experiments.

Explicit feedback from the base station can com-
pletely eliminate the possibility of timeouts occurring
at the source, while the wireless link is in a bad state.
The results of using explicit feedback are shown in
Figure 5. As can be seen, there are no timeouts at
the source, and therefore, the source does not invoke
congestion control measures during any bad period.
In the next section, we explore the possibility of using

Explicit Feedback
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Figure 5: Explicit Feedback

existing feedback mechanisms, like Ezplicit Conges-
tion Notification ECN [23] for improving TCP per-
formance over wireless links.

4.2.2 Can ECN work for us ?

The use of explicit feedback for congestion control in
the internet has already been shown to work well.
ECN in the form of ICMP source quenches [20], is
a host’s means of informing the source of congestion
in the network. This notification is sent to the source
after either a packet has been dropped by the host
due to an overflow in its buffers, or if it anticipates
a dropping of packet(s) based on existing congestion
conditions. The latter approach will be more effec-
tive in combating congestion as it predicts congestion
and tries to take preventive measures before packets
are actually dropped. Upon receipt of this explicit
feedback, the source reduces its congestion window to
allow a reduction of congestion in the network.

A base station can be configured to function as a
gateway supporting ICMP messages. When a wire-
less link enters a bad state, little data is able to get
across to the mobile host (Figure 6, Case 2). This re-
sults in queuing of packets from the source host at the
base station. It would appear that under these circum-
stances sending a source quench message to the source
would decrease the flow of new packets to the base
station, and thus prevent unnecessary timeouts. This
should improve the goodput as well as the throughput
for the connection. Our results show otherwise.




After carefully tracing the flow of data and ac-
knowledgement packets, we came to the following con-
clusion. When a wireless link enters a bad state,
each datagram (acknowledgement) requires multiple
retransmissions before it can get across to the mobile
host (base station). This increased delay will result
in the source TCP timer timing out (Figure 6, Case
3(a)). A source quench message from the base sta-
tion at this stage will not be able to prevent timeouts
of packets that are already on the network. It will of
course, stem the flow of any further packets, and re-
duce the probability of their timeouts. This observa-
tion does, however, give us an important clue. When
a wireless link is in a bad state, what is needed to pre-
vent timeouts of packets queued at the base station, is
a mechanism to update the TCP timer at the source.
This mechanism will essentially thwart the source’s
attempts to invoke congestion control in response to
delays on the wireless link. If the base station is able
to provide such a mechanism, then we can hope for a
measurable improvement in throughput.

4.2.3 Explicit Bad State Notification (EBSN)

The preceding observation led us to explore how the
TCP timer could be updated at the source. Clearly,
in the absence of acknowledgments coming from the
mobile host when the link is in a bad state, we do not
have an estimate for the round-trip time. We cannot
also generate acknowledgments from the base station
for packets that have not yet been received by the
mobile host. Neither can we send acknowledgments
of previously acknowledged packets as they will be in-
terpreted as dupacks. What seems to be a solution
is to send an FEzplicit Bad State Notification (EBSN)
that would cause the previous timeout to be canceled
and a new timeout put in place, based on the ezisting
estimate of round trip time and variance!. Thus, the
new timeout value is identical to the previous one. See
Appendix for implementation details. Figure 6, Case
3(b) summarizes the working of EBSN and its role
in preventing timeouts at the source. The EBSN ap-
proach does not interfere with actual round trip time
or variance estimates, and at the same time prevents
unnecessary (and detrimental) timeouts from occur-
ring. When the wireless link is in a bad state, we do
not want the source to decrease its window if there is
no congestion. At the same time we should prevent

LIf the new timeout value is chosen to be very large, dead-
lock might occur, where the source might never timeout. On
the other hand, if we choose a very small value for the new
timeout, a timeout might occur before the next EBSN arrives.
The existing timeout estimate worked well for our simulations.

timeouts for packets that had already been put on the
network before the wireless link encountered the bad
state. Clearly, EBSN is successful in accomplishing
both these tasks.
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Figure 6: EBSN: How it works

In our simulations, EBSNs are sent to the source
after every unsuccessful attempt by the base station
to transmit packets over the wireless link. The correct
timeout value at the source is readjusted upon receipt
of the first new acknowledgement from the MH follow-
ing any EBSN messages received. This acknowledge-
ment may initially cause a large variance in the rtt
calculation because of the large delay encountered on
the wireless link. However, a new acknowledgement is
a good indicator that the wireless link has quit the bad
state and has entered a good state. This will ensure a
steady inflow of acknowledgments and ultimately re-



duce variance. Figure 7 provides a comparison for rtt
variance in the cases where no link level retransmission
occurs, link level retransmission occurs but EBSN is
not used, and when EBSN is used along with link level
retransmission. It is clear that using EBSN prevents
unnecessary timeouts at the source thus decreasing
rtt variance and improving throughput. The simula-
tion model for this comparison was: packet size = 256
Bytes, wireless link at 12.8 Kbps (wide-area wireless
network), mean length of good/bad period = 10/4 sec.

RTT Variation with Tine
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Figure 7: rtt variaton with and without EBSN

4.2.4 EBSN in Local-Area Wireless Networks

A TCP source is more susceptible to timeouts during
local recovery when round-trip times are very small.
The round-trip times are typically of the order of mil-
liseconds in a LAN environment. Thus, a LAN en-
vironment is an ideal candidate for use of EBSN. We
study the impact of EBSN in a typical local-area wire-
less network. In this case we assume no fragmentation
over the wireless link. The setup in Figure 2 is modi-
fied for LAN experiments. The wired link bandwidth
is set to 10 Mbps, and the wireless link bandwidth is
set to 2 Mbps. The TCP window size is fixed at 64
Kbytes. Results of this study are presented in the next
section.

5 Results and Discussion

In this section we first present the results of experi-
ments performed on wide-area and local-area wireless
networks. We then discuss various issues related to
the explicit feedback mechanism using EBSN.

We take into account 40 bytes of header overhead
while measuring connection throughput. The stan-
dard deviation for all results presented is less than

4%.
5.1 Wide-Area Wireless Networks

Figure 8 and Figure 9 illustrate the variation of
throughput with packet size for basic TCP, and EBSN

respectively. As stated earlier in Section 3, the ef-
fective maximum throughput ((putme.) (the maxi-
mum throughput achievable without any errors) is
kept as 12.8 Kbps. The theoretical maximum through-
put (¢tputsn) in the presence of errors is determined as
((}\bg}\‘l'%gb) X tputmaz) ( which is < tputmaes).

The value of tputs, for each Apg is marked on the
top right hand corner of Figures 7 and 8. We varied
the packet size on the wired network from 128 bytes
to 1536 bytes. Each run involved a 100 Kbyte file
transfer from the fixed host to the mobile host. The
mean length of the good period is set to 10 sec. We
ran experiments for bad period lengths with means
ranging from 1 to 4 sec.

Figure 8 shows that for a given packet size, through-
put increases as the length of bad period decreases.
It can also be seen that for each bad period length,
there is an optimal packet size which delivers the max-
imum throughput. For example, in Figure 8, for bad
period = 1 sec, packets of size 512 bytes give the
best throughput, however, for a bad period = 3 sec,
packets of size 384 bytes give the best throughput.
Clearly, a good choice of packet size could provide
significant performance improvements over basic TCP
(about 30% improvement in throughput is obtained if
512 bytes is chosen as the packet size instead of 1536
bytes, for a bad period = 1 sec). We would like to
draw the reader‘s attention to the large difference be-
tween tputss and the throughput obtained even for
the optimal packet size for a particular error condi-
tion. For example, tputs, for bad period = 1 sec is
11.8 Kbps. However, the throughput achieved using
512 bytes (the optimal packet size for bad period = 1
sec) is only 8.7 Kbps.

It can be noticed in Figure 8, that for packet sizes
beyond the optimal packet size, throughput decreases.
One of the main reasons for this degradation, is in-
creased fragmentation of packets on the wireless link.
Loss of a single fragment causes the retransmission of
the whole packet from the source. The impact of larger
packet size over the wired link is better illustrated in
Figure 10 which shows the extra data transmitted by
the source due to retransmissions. As is evident, the
amount of retransmitted data increases with both the
packet size and the length of the bad period; larger the
amount of retransmitted data, lower is the goodput of
the connection.

The performance of TCP using EBSN is illustrated
in Figure 9. There is significantly more improvement
in performance of TCP using EBSN than performance
of basic TCP. An interesting observation is that un-
like basic TCP, the throughput now increases with in-
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crease in packet sizes. This is because, irrespective
of packet size, timeouts are being completely elimi-
nated when EBSN is used. In the absence of time-
outs, there are no redundant retransmissions from the
source which is shown in Figure 10. The performance
is no longer sensitive to fragmentation over the wire-
less link, and larger packets perform better. For ex-
ample, for 1536 bytes, and for a bad period = 4 sec,
we notice a 100% improvement in throughput using
EBSN; the throughput for basic TCP is 4.5 Kbps,
and for TCP using EBSN is 9.0 Kbps. Indeed, we
expect improvements to be much higher for larger
bad period lengths. The effectiveness of EBSN is evi-
dent from Figure 9, where throughput obtained using
EBSN is quite close to the theoretical maximum tputss
for larger packet sizes.
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5.2 Local-Area Wireless Networks
The packet size for this study is fixed at 1536 bytes.
We also assume that there is no fragmentation on the
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Mean

wireless link. The maximum throughput on the wire-
less link in the absence of errors (¢putmqe) is chosen
to be 2 Mbps. As before, the maximum theoretical
throughput (¢put:p) in the presence of errors is given
by (}\b}\+}\ = X tputmaz)-

Each run involved a 4 Mbyte file transfer from the
fixed host to the mobile host. The mean good period
length is set to 4 sec. We ran experiments for different
bad period lengths with means ranging from 400 mil-
liseconds to 1.6 sec. Figure 11 illustrates the variation
of throughput with bad period length for basic TCP
and EBSN. The value of ¢{put;, for the corresponding
bad period lengths is also plotted. TCP using EBSN
clearly outperforms the basic TCP scheme. For some
bad period lengths, there is about 50% improvement in
throughput using EBSN. As before, the primary rea-
son for performance improvement using EBSN is zero
timeouts at the TCP source (Figure 12). Once again,
the goodput achieved using EBSN is 100%. This is




in contrast to the basic TCP scheme, where source
timeouts result in a large number of retransmissions.
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6 Conclusions

This paper presents a study of the effect of burst
errors, packet size variation, local recovery, and ex-
plicit feedback, on the performance of TCP over wire-
less networks. First, we propose variation in packet
size over the wired network to improve TCP perfor-
mance. Since, the MTU on the wide-area wireless
links is small, a packet on the wired network gets
fragmented before transmission over the wireless link.
Loss of a fragment causes significant degradation in
performance of TCP. Results show that an optimal
packet size can lead to about 30% performance im-
provement over a non-optimal packet size. We have
shown that the optimal packet size varies with the er-
ror conditions on the link.

Local recovery using link-layer retransmissions from
the base station is shown to improve performance.
However, while the base station is performing local re-
covery, the source could still timeout. To prevent these
timeouts, we propose an explicit feedback mechanism.
The central idea of our approach is to send an Explicit
Bad State Notification (EBSN) Message to the source
from the base station during local recovery. Upon re-
ceipt of an EBSN, the source resets its timeout value.
This way, timeouts at the source during local recovery
are totally eliminated. It is observed that TCP us-
ing EBSN provides upto 100% performance improve-
ment over basic TCP in wide-area wireless networks,
and upto 50% performance improvement in local-area
wireless networks. These results are for a very con-
servative error model for the wireless link. We expect
greater performance improvements for wireless links
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having higher BERs. We also show that the through-
put and goodput values obtained for TCP using EBSN
are very close to the theoretical maximum.

We now summarize the main advantages and dis-
advantages of the explicit feedback mechanism using
EBSN.

Advantages:

e Source timeouts are prevented during local recovery.
This improves goodput and throughput of the con-
nection. Note, that the improvements will be more
pronounced in high BER wireless links. o TCP us-
ing EBSN does not require state maintenance at any
intermediate host.

e Effectiveness of some of the proposed approaches [9,
11] depend on the granularity of the TCP timer. A
TCP timer with finer granularity will result in a larger
number of timeouts during local recovery. This will
cause significant degradation in throughput and good-
put. With our explicit feedback mechanism, the time-
out value at the source is reset upon receipt of every
EBSN. This reduces the number of timeouts, and in
a large number of cases prevents timeouts from oc-
curring at all. The effect of clock granularity on per-
formance is now greatly reduced, thus improving the
robustness of the network [23].

Disadvantage:

e The main disadvantage of EBSN is that it requires
modification to TCP code at the source. Note, how-
ever, the changes involved are minimal as shown in
the Appendix.

We view this work as a preliminary investigation
into the effectiveness of explicit feedback mechanisms,
to improve performance of TCP in wireless networks.
In this paper, we have assumed that the wired net-
work is not congested. We are separately studying the
impact of congestion in the wired network on the ef-
fectiveness of EBSN [18]. This involves looking into
issues related to the interaction between ECN and
EBSN. We are also investigating schemes to make a
source timer more robust to larger delays on the wire-
less link without using explicit feedback mechanisms.
If this is possible, we will be able to achieve perfor-
mance improvements comparable to those using EBSN
without changing TCP code at the end hosts.
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Appendix: Implementation of EBSN in
our Simulator

In the normal operation of TCP, each time a data
packet is sent out by a TCP source, any previously
set timer is first disabled, and a new one put in place
based on the latest estimate of round trip time. We
reproduce the basic algorithm below. Details may be
found in [stev94].
Basic TCP

tcp_recv()
{
if ((fast_retransmit) ||

update ssthresh;
update cwnd;
update timer_backoff;
set_rtx_timer(); /* explained below */
retransmit lost pkt;
return;

(timeout)) {

}
/* Other packet processing */
}

The set_rtx_timer() procedure cancels any previous
timer, and puts a new one in place based on the latest
estimate of round trip time.

set_rtx_timer()

{



/%

if previous timer (TCP_TIMER)

cancel (TCP_TIMER) ;
Now calculate new timeout based on latest
estimate of round trip time and variance */
new_timeout = calculate_new_timeout();
set_tcp_timer(new_timeout);

Response to an EBSN message requires minimal

changes to the tcp code, which are localized to the
tcp_recv() routine only. On receipt of an EBSN mes-
sage, the source replaces any previous timer with a
new timer retaining the current timeout value. Note,
that EBSN can be implemented as a new type of
ICMP message.

TCP’s response to EBSN

tcp_recv()

{

if EBSN received {
set_rtx_timer();
return;

}

/* Other packet processing */
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