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A Framework for Evaluating Iterative Algorithms on
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Introduction

In the field of Distributed Systems, different algorithms are developed that determine the behavior of a node - an independent
unit that processes work - within a network of nodes. The nodes are only aware of the properties pertaining to itself, and its
direct neighbors. Each node has the ability to communicate with its neighbors through some form of message passing
system. Iterative algorithms are a class of these algorithms - they consist of blocks of code that are repeatedly executed by
several nodes in a network. After multiple iterations, the values of the different nodes will approach consensus. The purpose
of this system is to evaluate and study the behavior of these algorithms, such as those described in [1][2][3][4]

When studying these algorithms, a significant amount of time is spent developing the system of nodes and a means for
communication between them. Development can become tedious due to the nature of launching and running multiple nodes
in parallel. This framework provides a way for the user to simulate and visualize a network of nodes running a given
algorithm, while blackboxing the actual implementation of those nodes.

The user provides a few lines of code to be compiled into the Java application that define the behavior of each node. They
then create an input file to indicate how these nodes are connected to each other and the nodes' initial values. With the input
algorithm and the network representation, the system can run the simulation over a given number of iterations and save
those results.

To complement the Java application, an Express.js web application was built to easily run simulations under different
conditions and to visualize the resulting data. This is the repository for the Java application, the web app can be found here -
https://lwww.github.com/speter52/GraphView

Table of Contents

« Application Architecture
o Node

o Network Layout File
o Message Passing
o Multi-Cluster Support

« Web App
o Initialize System

o Run Algorithm

o Create Graph
« Sample Runs
« Installation and Configuration
« References

« About

Application Architecture

The goal of the system was to simulate a theoretical network of nodes to study how an algorithm behaves, so real-world
constraints like network delay and faulty nodes weren't a concern in the initial design. In the interest of speed and minimizing
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communication overhead, a shared memory approach was chosen to pass messages between the different threads that
represented individual nodes.

The system also supports spreading different segments of the network amongst multiple computers, or "clusters”, to harness
more processing power. The individual nodes have no awareness of which cluster its neighbor is located in, that logic is
provided by the message passing data structures.

Node

The functionality of an individual node is divided between two classes - the GenericNode class, and its subclass

CcustomNode . The code for a specific algorithm is placed in customNode , which is required to implement the two abstract
methods - startNode() and processResponse() . To implement an algorithm, its logic must be separated into what to do to
start an iteration, startNode() , and complete an iteration, processResponse() . The user also has access to several helper
functions for access the system and the message passer.

Helper Functions

int selfID : The ID of this node.

int iterationNumber : The iteration counter that represents what iteration this node is currently on. Initialized to 1.
int iterationMax :The maximum number of iterations that should be executed.

List<Integer> neighbors : A list of the ID's of the neighbors to this node. neighbors.size() can used to find the
number of neighbors.

Object getState(String key) : Returns the value of a state variable, and null if not present. The value needs to be
casted to the appropriate type.

void setState(String key, Object value) : Updates the value of a state variable, or adds it if not already present.

void sendvalueToNeighbors(String key, Object value) : Sends the corresponding key and value to all its
neighbors.

void sendAllvaluesToNeighbors() : Sends all the keys and values of this node to all of its neighbors.
String Message.getData(String key) : Returns the value of a given key in a message received from another node.
void goToNextIteration() : Move this node to the next iteration.

void printToConsole(String output) : Prints a given string to the console using a separate helper thread so that the
primary thread can continue processing work for the node.

As the system initializes and launches different nodes in the network, they each stand by waiting for a start message from the

system coordinator(whose implementation is discussed later). After all the nodes in this cluster and any other cluster defined
by the network are started, the coordinator will then send start messages to each node to indicate that they can begin
processing work. Upon receiving a message from a start message from the coordinator, the node executes the code in
startResponse() that will do the work to begin executing the algorithm.

To illustrate a proper implementation of the method, a simple algorithm to calculate the average value of all the nodes in a
network is used. The algorithm assumes each node has a different value for x , but after several iterations the values for all
the nodes will converge to the initial system average. The logic for each node is to calculate the average of all of the
neighbors' values and store that as your new value. After running several iterations of this, all the values will represent the
system average. This is the pseudocode:

while node is running:
Get all neighbors' value of x
Calculate the average of the responses and store as new X

For this algorithm, once a node starts, it needs to send all of its values to its neighbors. This can be easily done using the
helper functions provided by the framework. Here startNode() retrieves the initial value of x , and then sends it to its



neighbors. A valid implementation would look similar to this:

@override
protected void startNode() {
int initialX = getState("x");

sendvValueToNeighbors("x", initialX);

Now after every node in the network has sent its value to all the other nodes, the system can begin doing work. To complete
an iteration, each node has to keep track of all the values it receives from its neighbors. Once it receives all messages from
all the neighbors, the average is calculated and stored as the new value for x . A proper implementation of
processResponse() along with some supporting functions follow:

private List<Double> responsesReceived = new ArraylList<>();

private double calculateAverageOfList(List<Double> 1listOfInts) {
double sum = 0;

for(double item : 1listOfInts) {
sum += item;

}

return sum/listOfInts.size();
}
@Ooverride

protected void processResponse(Message incomingMessage) {
Double responseValue = Double.parseDouble(incomingMessage.getData("x"));

responsesReceived.add(responseVvalue);
// Once all the neighboring responses are received, average them and update x
if(responsesReceived.size() >= neighbors.size()){
double averageOfResponses = calculateAverageOfList(responsesReceived);
setState("x", averageOfResponses);
responsesReceived.clear();

goToNextIteration();

sendValueToNeighbors("x", averageOfResponses);

A list is used to store another neighbor's value of x everytime a response is received. Once the messages from all the
neighbors are received, the node calculates the average and stores that as the new value for x . When the work for this
iteration is complete, the node needs to once again do the preliminary work to start the next iteration as in
startResponse() . For this algorithm, the node just needs to send its value of x again to all its neighbors.
goToNextIteration() is called to notify the system that this node is moving to the next iteration.

NOTE: The algorithm will continue iterating until it has reached the maximum number of iterations that was set, either as
a command-line argument or by the webapp. If goToNextIteration() isn't called, the node will continue processing
work indefinitely since it doesn't know when it's time to stop.

Network Layout file

The system requires an input file that represents the layout of the network - which nodes are connected to which nodes. This
file also holds the all the initial state values of every node. YAML was chosen as the data serialization format for its
readability. Here's a valid input file:



Cluster0:
isSelfCluster: true
ip: localhost
port: 20005
nodelList:

0:
neighbors: [1,2]
data:
X: 2.

y: 0.
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neighbors: [0, 2]
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X:
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neighbors: [0,1]
data:

X: 6.
y: 0.
t: 0.
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The network is grouped into different clusters to identify which computer each of the nodes are running on. Every cluster has
an ip and port Kkey to indicate what address it is listening on. It also has a boolean attribute isSelfcluster that indicates
that this is the cluster that will be represented by the current computer. To launch a multi-clustered network across multiple
Java Virtual Machines(the multi-cluster implementation is discussed further below), the user just launches another instance of
the Java application with the same input file. The only difference being isSelfcCluster is setto true for the cluster that that
JVM should run.

The nodeList consists of a map of all the nodes(by their ID's) to their initial properties. Each node entry has a neighbors
attribute that represents a list of all the neighbors' ID's, along with a data attribute that represents a map of the initial values
of that node.

The input YAML file can either be written manually, or generated through the webapp.

Message Passing

Communication between nodes is accomplished through the MessagePasser data structure, which is initialized by the
Launcher class and passed in to each node before they begin to process work. At it's core, it is simply an array where each
entry corresponds to a node in the network. Each entry contains a queue, which will hold all the messages being sent to that
particular node.

When the MessagePasser receives a message to send, it simply places the message at the end of the appropriate queue for
a given node. The function waitAndRetrieveMessage() oOf the MessagePasser is used to allow each node to monitor its
appropriate queue for incoming messages. The node will process that message using the algorithm given by the user, and
then move to the next message in the queue if there is one, otherwise wait for a new message to arrive.

The MessagePasser 's array of queues is implemented using Java's LinkedBlockingQueue . This queue is classified as
thread-safe, so can be added to and read from by multiple nodes without deadlocking. It has a method take() thatis used
to retrieve a message or wait if necessary, without the node having to continuously poll for the status of the queue and waste
computational resources.

Despite the safety guaranteed by LinkedBlockingQueue , there is still an opportunity to deadlock in the run given certain
race conditions. Assume a scenario of a fully connected network using the average consensus algorithm above, where every
node in the system is in Iteration 1 and begins to process work. Each node is waiting for a response from its neighbors, and
once all the messages are received, that node calculates the average and moves on to Iteration 2 by sending the new value
to all its neighbors. Ideally the thread for each node is synchronized with the other threads in the system, and they all move to
the next iteration together. But the order and amount of time the processor spends on each thread is a detail beyond the
domain of a Java application, and is handled by the Operating System.



Deadlock could arise then if one node moves on to the next iteration ahead of the other, and the messages received by its
neighbors span more than one iteration. Imagine the case where Node A begins Iteration 1 by sending its value to all its
neighbors. For clarity in this example, the node IDs will be letters instead of numbers. Node A then waits for its neighbors
values, after which Node A will calculate the average and store that as the new value. Once complete, Node A then moves to
Iteration 2 by sending out its newest value. Now Node A's neighbor, Node B, is still in Iteration 1 waiting for responses from
its various neighbors. Due to the unpredictability of how the OS schedules threads, Node B could receive Node A's message
from Iteration 1, and also Iteration 2, before the Iteration 1 messages from all its other neighbors. Processing Node A's
Iteration 2 Message while Node B is still in Iteration 1 would make any resulting work done by Node B invalid.

To solve this, each node has a private Inbox class that keeps track of all incoming messages. The Inbox continuously
listens for incoming messages from the MessagePasser and sorts the messages by the Iteration they were sent from. It
holds the messages in an array of LinkedBlockingQueue s similar to the MessagePasser , but here each queue corresponds
to a different iteration. The size of the array is equal to the maximum number of iterations the algorithm should run, plus one
for the start messages received at the beginning of the run. The node will then listen for messages in the queue
corresponding the iteration it is currently on, and when it's ready to move to the next iteration it will begin processing
messages from the next queue.

A diagram of the network communication structures can be found at the end of the next section on Multi-Cluster support.

Multi-Cluster Support

As the size of a network grows larger, a single computer would struggle launching and running a large number of nodes in
parallel. To address this, the application supports dividing up the network into groups of nodes referred to as "clusters”, where
each cluster is run on a different instance of the Java Virtual Machine. Each JVM can either be run as different processes on
the same computer, or across multiple computers that are networked. The application just needs to know the IP address and
Port of the computer that each JVM is on.

The entire application is initialized and started by the Launcher class. The Launcher 's first tasks are to read the input YAML
file, and build the nodes located in the local cluster. After all the nodes have been created, the Launcher then sends
messages to the JVM's running other clusters indicating that it is ready to process work. Once Ready messages are received
from all the clusters specified in the input file, the Launcher sends Start messages to all the local nodes to signal that they
can run the algorithm.

An individual node is not aware whether its neighbors are in a local cluster or an external cluster. That is handled by the
MessagePasser , which keeps track of which cluster each node belongs to when the MessagePasser is built. When a node
attempts to send a message to a node on a another cluster, the MessagePasser forwards it to that cluster over a socket to
the appropriate address. Each cluster has a NetworkListener thread started by the Launcher that receives all the
messages from external clusters, and then uses the local MessagePasser to route it to the appropriate node's queue.
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Web App

The Express.js web app simplifies the use of the Java application by creating a front end for configuring and launching the
system. It provides the ability to create input YAML files for a network of nodes, which can then be used to run a user-inputed
algorithm for a set number of iterations. Once the run is complete, a separate view handles creating graphs of different nodes
from different runs to help compare the performance of various algorithms.

Initialize System

The "Initialize System" view handles generating a customizing an input file for a large variety of graphs. After parsing through
a certain set of parameters, it will compile the InputGenerator tool from the main Java application which then generates a
network layout file that is sent to the client browser.
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The generator uses 5 parameters to build the input file, the first being the number of nodes in the network. The second
parameter specifies the number of "partitions" - distinct groups of nodes that are linked to each other by one edge. The third
parameter indicates the number of neighbors each node should have. In the case of a cycle, each node would only have 2
neighbors. For a fully connected graph, each node would have n - 1 neighbors where n is the number of nodes in the graph.
The fourth parameter takes in a comma-separated list of names that declare the state variables of each node. The very last
parameter is the function calculateInitialvalue() , which needs to be implemented by the user to initialize the state
variables for each node. The function is called on every node for every state value it holds, and based on the switch
statement determines a value for that state variable.

NOTE: To be valid, the number of neighbors for each node has to be less than n-1 where n is the number of nodes in
the network, or if there is more than one partition, the number of nodes in the partition.

After clicking Generate, a request is sent to the server to build and run the InputGenerator . Once the input file is created,
the client has the opportunity to further customize it by editing the YAML file in the browser. Once it is edited, it is saved to the
database with the specified name after clicking Save.

Run Algorithm

The "Run Algorithm" view is where the user specifies the conditions for a new run and then launches the system.

The iteration counter that must be incremented everytime an iteration is complete. Initialized to 0

: Alist of the ID's of the neighbors to this node. neighbors.size() can used to find the number of neighbors.

Run Algorithm
Returns the value of a state variable, and null if not present. The value needs to be casted to the appropriate type.

(String key, Ob t 1 : Updates the value of a siate variable, or adds it if not already present.
: Sends the corresponding key and value to all its neighbors.
1} :Sends all the keys and values of this node to all of its neighbors.

Retrieves the value of a state variable from a received message.

.
* This function determines what the node will do when 1t first begins to start processing work.
e

@0override

protected void startNode()

// Insert code here.

1

.
* This function determines what the node will do when 1t receives a message from ancther node.
ey

@0override

protected void processResponse(Message 1ncomingMessage)

Network Layout  Liliinput ¥ Number of Iterations 100 Run Name d12212015t232336 m
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The page has a quick reference to the helper functions provided by the framework to utilize the system. The Input Algorithm
box contains template code for the 2 functions, startNode() and processResponse() , that the user needs to implement in
order to run the system. After inputing the algorithm, the user then specifies additional parameters for the system - which
input file to use(generated from the previous view), how many iterations to run, and what name the run should be saved
under in the database.

Upon clicking Run, the input algorithm and parameters are sent to the server which will then attempt to run the algorithm. The
server first replaces the customNode.java file with the user's new algorithm, and then launches the shell script that builds
and runs the system. Upon successful compilation, the Java application will run the algorithm and save the results to the
database, then send the algorithm log to view on the client. In the case where there's an error in the user-inputted algorithm
and compilation fails, those errors are sent to the client to indicate which line the error occurred.

Create Graphs

The graphing module allows the user to compare the values of different nodes from different algorithm runs over all the
iterations of the run.
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|aw Algorithm Performance

Algorithm Performance

The multi-select boxes allow standard selecting of entries with the CTRL and SHIFT keys. Holding down CTRL and clicking
different entries will allow you to select individual entries. Also holding down CTRL while dragging your cursor over entries will
select all those entries. Holding down SHIFT will allow you to select a range of entries between two selected entries.

Every time a selection is made from on of the select boxes, a request is sent to the server to pull the appropriate entries from
the database for the next select box. After selecting which runs to graph from the Algorithm Runs box, the Nodes box is
populated with all the nodes from those runs. Once which nodes to graph are selected, the final State Variables box is
populated with the state variables that each node holds. Upon selecting which state variables to graph and clicking Create
Graph, the client sends the server all of the parameters needed to retrieve the appropriate data. The server then runs a SQL
query to pull the run results, transforms it into a form that can be processed by the DyGraphs charting library, and sends it to
the client.

DyGraphs will then graph a line for each state variable of a node that it receives. DyGraphs was chosen for its ability to chart
extremely large datasets quickly and efficiently. Once the graph is generated, the user can click and drag a section on the
graph to zoom in, as well as hold down SHIFT to pan the graph left and right. Double clicking will reset the zoom of the graph.

Sample Runs

The primary goal of this system is to easily compare and study the performance of different algorithms in various network
configurations. To illustrate this, consider a network of 100 nodes where each each node has a state variable x . Node 0 is
initialized with a value of 2, and every node after that has a value of 2 more than the previous node. Node 99 will then end
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with a value of 200. Below is a graph, generated by the web app, of the average consensus algorithm run for 100 iterations

on the described network.

Algorithm Performance
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The graph consists of a 100 lines, each line representing the value of x for a particular node. It shows the nodes
progressing towards consensus as the iterations complete.

Now consider another average consensus algorithm from Lili Su's paper(reference below). This algorithm slightly differs from
the standard algorithm in the way it calculates the new value for x after receiving all the neighbors' responses. Here's the
algorithm run over a 100 iterations on the same network described before.
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The values here behave quite differently, and reach consensus significantly quicker than the previous algorithm. The
differences between the two can be better highlighted by graphing a subset of the network from both algorithm runs on the

same graph.
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Graphing Nodes 0-9 of both runs, it can be easily seen that the algorithm from Lili's paper will reach consensus much earlier
than the standard averaging algorithm. The standard algorithm's values also appear to oscillate with a greater magnitude
than Lili's algorithm.

NOTE: In the web app, the values of different nodes at different iterations can be seen by hovering the cursor over those
points.

The ability to quickly test different algorithms under different conditions on the same system is a valuable tool to study their
performances and relationships. This system allows users to avoid the difficulties that arise with simulating a network of
nodes and facilitating communication between them. Graphing these results also provides a way to easily visualize the
overall trends of an algorithm along with any subtle behaviors that would be hard to detect from simple console outputs.

Installation and Configuration

The Java Application and Express Web App were both developed and tested in Ubuntu 12.04, but should be easily portable
to other operating systems. The source code for the projects are here:

« Java Application - https://www.github.com/speter52/GraphSim
« Express Web App - https://www.github.com/speter52/GraphView

Both projects require a MySQL instance, and the credentials for a user that has access to the database that will be used by
the projects.

Java Application

The Java application requires the following dependencies in order to run:

« Java - To compile and run the application.
- Ant - To build the project with the required files.

The application also needs two more jar files - a YAML parsing library and a Java-MySQL connector - both of which are in the
git repository. The parameters to connect to the MySQL instance are set in the config.yml file located in the root folder of
the project.

mysgl database : jdbc:mysqgl://localhost:3306/GraphSim
database_user : java
database_password : password
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The proper login credentials need to be set here, along with the IP information for the MySQL instance. The name of the
database to be used should be appended to the mysql _database string.

There is a shell script, build_and_run.sh , located in the root folder that will compile all the code and start the system with
the given command line arguments. The first argument is the path to the input YAML file, and the second argument will
specify the number of iterations the system should run. Sample input files, as well as algorithms, can be found in
Graphinputs. The following command will run the system with some sample data.

./build_and_run.sh GraphInputs/OneCluster.yml 100

The Java application also comes with a tool, InputGenerator , to automatically generate different input files. This is the tool
that the web app retrieves parameters for and creates input files with. The first three arguments for the tool match the
parameters from the Initialize System tab - number of nodes, number of partitions, and number of neighbors for each node.
After these, the tool accepts any number of arguments that represent the different state variables each node will have. The
function calculateInitialvalue() in NodeDataGenerator.java determines what value each state variable is initialized to.
The following shell script from the root folder can be used to run the InputGenerator :

./run_input_generator 10 1 9 x y t

Express Web App
The web app requires Node.js, and NPM, Node's package installer. The app also depends on several other packages, but

these can be automatically installed navigating to the root folder and running:

npm install

This will read through the package.json file and install all the dependencies required by the server-side code in the folder
node_modules/ . It will then use another dependency manager, Bower, to install all the client-side dependencies in

client/assets/bower_components/ .

NOTE: Ubuntu has a known issue where a legacy binary is also named node , and conflicts with the executable for
Node.js. This needs to be resolved before proceeding.

The web app also needs the proper credentials to connect to the same MySQL instance as the Java application. This can be
setin server/config/database-info.js :
var mysql = require('mysql');
var connection = mysql.createConnection({
host: '127.0.0.1"',
user: 'java',
password: 'password',
database: 'GraphSim',
multipleStatements: true

1)

module.exports = connection;

The final step is to let the web app know where the Java application is located. This is setin server/config/core-info.js :

var pathToCore = '../../../Data/CS/cs499-Thesis/GraphSim/"';

module.exports = pathToCore;

pathToCore should specify the location of the root folder of the Java application in the filesystem.

Once all of the app is properly configured, launch the web server by running



npm start

and then navigating to localhost:3000 .
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