
A Case for Two-Level Distributed Recovery SchemesNitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112, U.S.A.E-mail: vaidya@cs.tamu.eduAbstractMost distributed and multiprocessor recovery schemes proposedin the literature are designed to tolerate arbitrary number offailures. In this paper, we demonstrate that, it is often ad-vantageous to use \two-level" recovery schemes. A two-levelrecovery scheme tolerates the more probable failures with lowperformance overhead, while the less probable failures may betolerated with a higher overhead. By minimizing the overheadfor the more frequently occurring failure scenarios, our approachis expected to achieve lower performance overhead (on average)as compared to existing recovery schemes.To demonstrate the advantages of two-level recovery, weevaluate the performance of a recovery scheme that takes twodi�erent types of checkpoints, namely, 1-checkpoints and N -checkpoints. A single failure can be tolerated by rolling thesystem back to a 1-checkpoint, while multiple failure recovery ispossible by rolling back to an N -checkpoint. For such a system,we demonstrate that to minimize the average overhead, it isoften necessary to take both 1-checkpoints and N -checkpoints.While the conclusions of this paper are intuitive, the workon design of appropriate recovery schemes is lacking. The objec-tive of this paper is to motivate research into recovery schemesthat can provide multiple levels of fault tolerance.1 IntroductionMany applications require massive parallelism to solve aproblem in a reasonable amount of time. Such applica-tions encounter a high failure rate due to large multiplicityof hardware components. In the absence of a failure recov-ery scheme, the task must be restarted (from beginning)whenever a failure occurs. This leads to unacceptable per-formance overhead for long-running applications. Somefailure recovery scheme must be used to minimize the per-formance overhead. Performance overhead of a recoveryscheme is the increase in the execution time of the taskwhen using the recovery scheme. The performance over-head of a recovery scheme consists of two components:� Overhead during failure-free operation (failure-freeoverhead), e.g., checkpointing and message logging.

� Overhead during recovery (recovery overhead).The objective of this paper is to analyze an approach toreduce the average performance overhead.The design principle \make the common case fast" hasbeen successfully used in designing many components ofa computer system (e.g., cache memory, RISC [12]), andsome aspects of checkpointing and rollback [14, 21]. How-ever, designers of distributed rollback recovery schemeshave largely ignored this guideline. In any system, somefailure scenarios have a greater probability of occurringas compared to other scenarios. In the context of failurerecovery, the \common case" consists of the more prob-able failure scenarios. The above guideline suggests thata recovery scheme should provide low-overhead protectionagainst more probable failures, providing protection againstother failures with, possibly, higher overhead. We referto recovery schemes having this capability as two-levelschemes. This approach can be generalized to multi-levelrecovery [18]. It was recently brought to our attention [3]that, for transaction-oriented systems, Gelenbe [8] previ-ously proposed an approach similar to the multi-level re-covery approach. Gelenbe's work is discussed in Section 5.Most existing recovery schemes are \one-level" in thesense that their actions during failure-free execution aredesigned to tolerate the worst case failure scenario. For ex-ample, the traditional implementations of consistent check-pointing algorithms are designed to tolerate simultaneousfailure of all components in the system [13]. The two-levelrecovery approach can achieve lower overhead than one-level schemes by di�erentiating between the more probablefailures and the less probable failures. In this paper, weanalyze a two-level recovery scheme and demonstrate thatit can perform better than a one-level recovery scheme. Al-though a large number of researchers have analyzed check-pointing and recovery (e.g., see [4, 6, 11, 15, 19]), to ourknowledge, except for [8], no analysis of two-level recoveryschemes has been attempted so far.Paper organization: Section 2 describes the proposedtwo-level recovery scheme. Performance analysis is pre-sented in Sections 3 and 4. Related work is discussed inSection 5. The paper concludes with Section 6. The ap-pendix brie
y presents an alternate approach to analyzethe two-level scheme.2 A Two-Level Recovery SchemeThe proposed recovery scheme is useful for a network ofN processors. Each processor has a local volatile memory

storage. The processors share a stable storage that canbe accessed over the network. To simplify the discussion,each processor is assumed to execute one process.We consider only crash (fail-stop) failures. Each pro-cessor is subject to failures; the occurrence of a processorfailure is governed by a Poisson process with failure rate �.Failures of the processors are independent of each other.Failure of a processor results in the loss of its volatile stor-age. The stable storage is assumed to be always failure-free.In the environment under consideration, small numberof failures are more probable than a large number of fail-ures. Speci�cally, single processor failures are more proba-ble than all other failure scenarios. The two-level recoveryscheme analyzed in this paper consists of two components ,one component recovery scheme designed for single failuretolerance, and the second component scheme designed fortolerating all other failure scenarios. The two componentrecovery schemes are summarized here:� The �rst component is the single process failure toler-ance scheme presented in [1]. In this scheme, the processesperiodically take checkpoints (which need not be consistentwith each other). The checkpoint of a process can be savedin any volatile storage except that of its own processor.The communication messages are saved by their sendersin their volatile storage. As the messages are simply re-tained in the volatile storage of their senders, we assumethat they do not a�ect the overhead of the recovery schemesigni�cantly. The failure-free overhead is dominated by theoverhead of taking checkpoints.To simplify analysis, we assume that, the processes takecheckpoints at about the same time. Our analysis assumesthat the synchronization overhead is included in the check-point overhead.This component scheme is capable of tolerating only asingle failure. To tolerate a single failure, the faulty processis rolled back to its previous checkpoint (which is saved ona non-faulty processor). Subsequently, the messages thatthe faulty process had received before failure are re-sentto recover its state. These messages are available in thevolatile memory of the message senders.If a second failure occurs before the system has recov-ered from the �rst failure, it is possible that the systemmay not be able to recover from the failure. We makethe pessimistic assumption that this component schemecan never recover from more than one failure. Thus, whenmultiple simultaneous failures occur the system must berolled back to the start of the task (or to a consistent statesaved on the stable storage, as discussed below). (Twofailures are said to be simultaneous if second failure occursbefore system has recovered from the �rst failure.)We make a second pessimistic assumption that, whena single processor failure occurs, during recovery, the non-faulty processors do not perform any useful computation.In other words, we assume that the non-faulty processesblock until the faulty processor has recovered. This maynot always be true for all applications. In spite of thepessimistic assumptions, we show that the two-level recov-ery scheme can perform better than a traditional one-levelrecovery scheme.We refer to the checkpoints taken by this componentscheme as 1-checkpoints, as they are useful to recover fromsingle failures only. A checkpoint interval is the durationbetween two adjacent checkpoints. For this scheme, thefailure-free overhead per checkpoint interval is denoted byC1. C1 is the increase in the execution time of a checkpointinterval due to the use of this recovery scheme. As noted

earlier, C1 is assumed to be dominated by the overhead oftaking 1-checkpoints.� The second component recovery scheme periodicallysaves consistent1 global checkpoints on the stable stor-age. To establish the checkpoint, the processes coordi-nate with each other and ensure that their states savedon the stable storage are consistent with each other. Sucha checkpoint is useful to recover from an arbitrary num-ber of failures. Therefore, these checkpoints are calledN-checkpoints. For this component scheme, the failure-freeoverhead per checkpoint interval is denoted by CN . CNincludes the overhead of checkpoint coordination. Volatilestorage access is often cheaper than accessing the sharedstable storage. Therefore, we expect that C1 < CN .The two-level recovery scheme analyzed here consistsof the above two components. This two-level scheme takes1-checkpoints more frequently and N -checkpoints less fre-quently. As the 1-checkpoints are taken more frequently,recovery overhead for a single processor failure is smaller.Also, overhead of taking 1-checkpoints is lower than thatof N -checkpoints. As will be demonstrated in this paper,the two-level scheme can achieve better performance ascompared to either component recovery scheme.To further clarify the concept of two-level recovery, thetables below present an analogy of the two-level recoveryscheme with cache memory organizations.Cache and main memory (two-level) hierarchyaccess type served by access timeaddress in cache cache smalladdress not in cache main mem. largeaverage access time = smallTwo-level recovery schemefailure scenario failure tolerated by overheadsingle failure 1st component scheme smallother 2nd component scheme largeaverage performance overhead = smallWe assume that the processes take equi-distant check-points, adjacent checkpoints being separated by T timeunits. Every k-th checkpoint is an N -checkpoint (k � 1)and all others are 1-checkpoints. Thus, the interval be-tween two consecutive 1-checkpoints is T and the inter-val between two consecutive N -checkpoints is kT (exclud-ing the time required to take 1-checkpoints). Figure 1illustrates this for k = 3. (Empty boxes represent a 1-checkpoint, while shaded boxes represent N -checkpoints.)Figures in this paper illustrate execution of the task usinga single horizontal line, as in Figure 1. The task consists ofN processes, however, as their checkpoints occur at aboutthe same time, the checkpoints are shown on the executionline using a single box.The execution time (length) of the task, in a failure-free environment (without using any recovery scheme), isdenoted by �. It is assumed that � is an integral multipleof T , say �T where � is a positive integer. However, � isnot necessarily an integral multiple of kT .The interval between any two consecutive checkpointsis called a 1-interval . The execution of the task is dividedinto certain number of segments, each segment terminatingwith an N -checkpoint. For example, in Figure 1, the taskis divided into four segments.We assume that no checkpoint needs to be taken at the1A consistent global checkpoint consists of one checkpoint perprocess such that a message sent after the checkpoint of one processis not received by another process before taking its checkpoint [5].

T T

segment 1 segment 2 segment 3 seg. 4

Task begins N-checkpoint 1-checkpoint Task ends

Failure-free execution of a task of length 11TFigure 1: 1-checkpoints and N -checkpointsbeginning of the task, and an N -checkpoint is taken at thecompletion of the task. This implies that, when � is notan integral multiple of kT , the last segment is shorter thanthe rest. For example, in Figure 1, length of the task is11T and k = 3. Therefore, computation time in the lastsegment is 2T , while that in other segments is 3T each.Rollback Recovery: The time required to perform a roll-back to a previous checkpoint is assumed to be R. (Thisdoes not include the time required for re-execution.) Con-sider a failure that can be tolerated by rolling back to acertain checkpoint CP. If the failure is detected when t timeunits of computation was performed after checkpoint CP,then it is assumed that t units of execution is required tore-do the lost computation (in absence of further failures).In the past, some researchers have assumed (e.g., [4]) thatthe time required to re-do the computation is �t for someconstant �. Thus, we assume � = 1 here. However, ouranalysis can be easily revised when � 6= 1.If at most one failure occurs during the execution of a1-interval, the failure can be tolerated by rolling back tothe most recent checkpoint. (The most recent checkpointmay be a 1-checkpoint or an N -checkpoint.) If, however,a failure also occurs during the re-execution of the same1-interval, system is rolled back to the most recent N -checkpoint (or to the start of the task, if no N -checkpointis taken before the failure).Figure 2(a) illustrates a scenario where a failure occursduring 1-interval I2, and the system is rolled back to themost recent checkpoint (CP1). No failure occurs duringthe re-execution of I2.Figure 2(b) illustrates a scenario where a failure occursduring 1-interval I2, and the system is rolled back to theprevious checkpoint (CP1). Another failure occurs duringthe re-execution of I2. Therefore, the system is rolled backto the most recent N -checkpoint (CP0).Figure 2(c) illustrates a scenario similar to 2(a). In thiscase also a failure occurs during interval I2 and no failureoccurs during the re-execution of I2. A failure occurringduring interval I3 is treated identical to the �rst failureduring I2. That is, the system rolls back to the most recentcheckpoint CP2. Essentially, failures occurring during twodi�erent 1-intervals are treated independently.3 Performance AnalysisThe metric of interest here is the average performanceoverhead of the recovery scheme. Let E(�) denote theexpected (average) time required to complete the task us-ing the given recovery scheme. The average overhead isevaluated as a fraction of task length �. Speci�cally,average performance overhead = E(�)� � 1Average percentage overhead is obtained by multiplyingthe average overhead by 100.

denotes
rollback

failed
processor
another

failed
processor
another

CP0 CP1 CP2

I1 I2 I2 I3

rollback to CP1

a processor failedk = 3

CP0 CP1

I1 I2 I2 I1

(b)

CP0 CP1 CP2 CP3

I1 I2 I2 I3 I3

rollback to CP1 rollback to CP2

(c)

(a)

rollback rollback
to CP1 to CP0

a processor failed

a processor failed

Figure 2: Illustration of fault e�ectsThis section presents an analysis of the average perfor-mance overhead. The analysis can be made more intuitiveby using Markov chains. The Appendix brie
y describesthe Markov chain for the proposed scheme. For an exam-ple of detailed analysis using Markov chains, the reader isreferred to a recent report that presents analysis of anothertwo-level scheme [17]. (The following analysis was includedin the reviewed manuscript, and therefore, is retained inthis publication without signi�cant changes.)3.1 Notation ConventionTwo superscripts are used in our notation, namely, � and@. While the exact implications of the superscripts will beclearer as various notation is introduced, the two super-scripts are intended to be used as de�ned below:� A superscript � denotes that the quantity is relatedto a 1-interval that terminates with an N -checkpoint.Absence of the superscript � generally implies (notalways) that the quantity is related to a 1-intervalthat terminates with a 1-checkpoint.� A superscript @ denotes that the quantity is relatedto execution of a segment or a 1-interval that is notinitiated immediately following a failure. Absence ofthe superscript @ generally implies (not always) thatthe quantity is related to execution of a segment ora 1-interval that is initiated immediately following afailure.

3.2 PreliminariesIn the following, we use the terms cost and overhead in-terchangeably.Recall that each N -checkpoint terminates a segment ofthe task's execution. From the discussion above it is clearthat multiple failures cause a rollback to the beginning ofthe segment during which the failures occur. Addition-ally, failures while executing one segment do not a�ect thetime required to execute other segments. Therefore, theexpected time required to complete the task can be ob-tained as the sum of expected time required to completeeach segment of the task.For a given k, the task is divided into d�k e segments.Each segment, possibly except the �rst segment, includesa total of k checkpoint (of which k � 1 are 1-checkpoints).The �rst segment may contain less than (k � 1)1-checkpoints, as the task length � may not be an inte-gral multiple of kT . We �rst evaluate the expected timerequired to complete a single segment that includes c 1-checkpoints and one N -checkpoint, as shown in Figure 3.The c 1-checkpoints are labeled CP1 through CPc, and theN -checkpoint at the end of the segment is labeled CPc+1.(The analysis below assumes that c > 0. The results forthe case of c = 0 can be obtained similarly.) Observethat the segment consists of (c + 1) 1-intervals. Failuresmay occur while executing any of these intervals. If mul-tiple simultaneous failures occur while executing any one1-interval, then the system must be rolled back to the startof the segment.
CPcCPc-1CP1 CP2 CPc+1

segment begins segment endsFigure 3: A segment: failure-free executionWe now introduce some notation. (The Appendix re-lates some of the notation to the Markov chain presentedin the appendix.) To understand the notation, recall thata rollback may occur to the start of segment if multiplefailures occur while executing a 1-interval. It is possiblethat zero, one or more such rollbacks may occur. In thefollowing, we di�erentiate between the �rst such rollbackand the subsequent rollbacks to the start of the segment;the reason will be explained below using an example. Let:Sc = total time required to execute the abovesegment containing (c+1) 1-intervals. Scis a random variable.P@ = probability that a rollback will occur tothe beginning of the segment, given thatno previous rollback to the beginning ofthe segment has occurred.P = probability that a rollback will occur tothe beginning of the segment, given thatat least one rollback to the beginning ofthe segment has already occurred.� = number of times a rollback occurs to thebeginning of the segment, after the �rstrollback to the beginning of the segment.� is a random variable.

F@ = time lost due to a rollback to the begin-ning of the segment, given that this is the�rst rollback to the beginning of the seg-ment. F@ is a random variable.F = time lost due to a rollback to the begin-ning of the segment, given that this is notthe �rst rollback to the beginning of thesegment. F is a random variable.I@ = time spent in executing a single 1-intervalthat terminates with a 1-checkpoint,given that at most a single failure occurswhile executing the interval, and that afailure did not occur immediately beforethis interval started execution. I@ is arandom variable.I = time spent in executing a single 1-intervalthat terminates with a 1-checkpoint,given that at most a single failure occurswhile executing the interval, and that afailure occurred immediately before thisinterval started execution. I is a randomvariable.I�@ = time spent in executing a single 1-intervalthat terminates with an N -checkpoint,given that at most a single failure occurswhile executing the interval, and that afailure did not occur immediately beforethis interval started execution. I�@ is arandom variable.E(x) = expected value of random variable x.The appendix relates the above notation with a Markovchain representation of a segment's execution.For accurate analysis, it is necessary to distinguish be-tween the �rst rollback to the beginning of a segment andthe subsequent rollbacks. Figure 4 illustrates this. Asshown in the �gure, length of the �rst 1-interval of thesegment, before failures occur, is T + C1. However, whena rollback to the start of the segment is needed, due to theadditional R time units required to rollback, the length ofthe �rst 1-interval in the segment is increased to T+C1+R.(That is, we model the rollback overhead R as a part ofthe 1-interval executed immediately following the failure.)After each subsequent rollback, the length of the �rst 1-interval is always T +C1 + R.The execution of a segment consists of two parts:� Certain number of executions (may be zero or more)during which multiple failures occur that cause a roll-back to the start of the segment: On the average, thisrequires P@E(F@) + P@E(�)E(F) units of time.Justi�cation: P@ is the probability that a rollbackto the start of the segment will occur and E(F@)is the average cost of a �rst rollback to the start ofthe segment. Therefore, the �rst rollback contributesP@E(F@) to the average task completion time.E(�) is the expected number of rollbacks to the startof the segment after the �rst such rollback. There-fore, the rollbacks to the start of the segment (ex-cluding the �rst rollback) contribute P@E(�)E(F)to the expected task completion time.� An execution during which rollback to the start of thesegment does not occur: On the average, this requires(1 � P@)E(I@) + P@E(I) + (c� 1)E(I@) + E(I�@)units of time.

rollback to the start of the interval

rollback to the start of the segmentsegment begins segment ends

k = 4

I1 I2 I1 I2 I3 I4 I4 I1 I2 I3 I4

T+C1 T+C1+R T+C1 T+C1 T+C1+R T+C1 T+CNFigure 4: Rollback increases length of the �rst 1-intervalJusti�cation: The expected time required to exe-cute the �rst 1-interval after a rollback to the startof the segment is E(I) and before such a rollbackis E(I@). Therefore, the expected time required tocomplete the �rst 1-interval of the segment is (1 �P@)E(I@)+P@E(I). The expected time required tocomplete the last 1-interval of the segment is E(I�@)and the expected time required to complete the mid-dle (c� 1) 1-intervals is (c� 1)E(I@).Therefore,E(Sc) = P@E(F@) + P@E(�)E(F) + (1� P@)E(I@)+P@E(I) + (c� 1)E(I@) + E(I�@) (1)We �rst evaluate each quantity on the right hand side ofthe above equation. The reader may skip sections 3.3, 3.4and 3.5 without loss of continuity.3.3 Evaluation of P@, P and E(�)We now de�ne three probabilities (their de�nitions are sim-ilar). The appendix relates them with the Markov chainpresented in the appendix.p@ = probability that a rollback to the startof the segment occurs during a given1-interval that terminates with a 1-checkpoint, given that a failure did notoccur immediately before this intervalstarted.p = probability that a rollback to the startof the segment occurs during a given1-interval that terminates with a 1-checkpoint, given that a failure occurredimmediately before this interval started.p�@ = probability that a rollback to the startof the segment occurs during a given1-interval that terminates with an N -checkpoint, given that a failure did notoccur immediately before this intervalstarted.Then, P@ = 1� (1� p@)c (1� p�@):A rollback will occur during a 1-interval if a processorfails before completion of the interval, and a processor alsofails while re-executing the interval. Therefore,p@ = (1� e�N�(T+C1))(1� e�N�(T+C1+R))Similarly,p�@ = (1� e�N�(T+CN))(1� e�N�(T+CN+R))p = (1� e�N�(T+C1+R))(1� e�N�(T+C1+R))

Knowing p@ and p�@, P@ can be evaluated.When it is known that at least one rollback occurredto the beginning of the segment, the length of the �rst 1-interval in the segment becomes R+ T + C1. The lengthof other 1-intervals is unchanged. Therefore,P = 1� (1� p)(1� p@)c�1(1� p�@); c > 0It follows that E(�) = P=(1� P).3.4 Evaluation of E(F)To be able to evaluate E(F), we �rst need to evaluateE(I@) and E(I).The de�nition of I@ implies that a failure may occurwhile the 1-interval is executed, but no failure occurs when(and if) the 1-interval is re-executed. A rollback to thestart of the 1-interval is required if a failure occurs anytime during the T units of execution or while taking the1-checkpoint at the end of the 1-interval. Thus, a failureduring T +C1 time units can cause a rollback to the startof the 1-interval. When a rollback occurs, R time unitsare spent in performing the rollback (i.e., initiating there-execution). Therefore,E(I@) = T +C1 +� (1� e�N�(T+C1))e�N�(T+C1+R)e�N�(T+C1) + (1� e�N�(T+C1))e�N�(T+C1+R)� Z T+C10 (t+ R) N� e�N�t1� e�N�(T+C1) dt�= T +C1 +� (1� e�N�(T+C1))e�N�(T+C1+R)e�N�(T+C1) + (1� e�N�(T+C1))e�N�(T+C1+R)��R+ (N�)�1 � (T +C1)e�N�(T+C1)1� e�N�(T+C1) ��If a failure occurs immediately before the start of a 1-interval that terminates with a 1-checkpoint, then lengthof that interval is T +C1 + R. Therefore,E(I) = T +C1 + R+� (1� e�N�(T+C1+R))e�N�(T+C1+R)e�N�(T+C1+R) + (1� e�N�(T+C1+R))e�N�(T+C1+R)�Z T+C1+R0 (t) N� e�N�t1� e�N�(T+C1+R) dt�= T +C1 + R+� (1� e�N�(T+C1+R))e�N�(T+C1+R)e�N�(T+C1+R) + (1� e�N�(T+C1+R))e�N�(T+C1+R)

��(N�)�1 � (T +C1 + R)e�N�(T+C1+R)1� e�N�(T+C1+R) ��Note that the integral term above contains (t) unlike theintegral term for E(I@) which contains (t + R). This isbecause, for E(I), R is already included in the term outsidethe integral. E(I�@) is obtained by replacing C1 by CN inthe equation for E(I@).Recall that F is de�ned as the time lost due to a roll-back to the beginning of the segment, given that this is notthe �rst rollback to the beginning of the segment. Evalua-tion of E(F) is conditional on the fact that such a rollbackindeed occurred. The rollback can occur during any oneof the 1-intervals. Therefore,E(F) = c+1Xi=1 Qi E(Fi) where, (2)Qi is the probability that a rollback to start of the seg-ment occurred during interval i given that such a rollbackoccurred during the segment. Fi is the execution time lostbecause of such a rollback during interval i. For c > 0,Qi = (p=P; i = 1(1� p)(1� p@)i�2p@=P; 1 < i � c(1� p)(1� p@)c�1p�@=P; i = c+ 1(p, p@, p�@ and P were obtained previously. It is easy toverify thatPc+1i=1 Qi = 1.)Given that a rollback to the start of the interval oc-curred during interval i, for 1 < i � c and c > 0,E(Fi) = E(I) + (i � 2)E(I@)+Z T+C10 (t) N�e�N�t1� e�N�(T+C1) dt+ Z T+C1+R0 (t) N�e�N�t1� e�N�(T+C1+R) dt= E(I) + (i� 2)E(I@) + 2(N�)�1 (3)� (T + C1)e�N�(T+C1)1� e�N�(T+C1) � (T + C1 +R)e�N�(T+C1+R)1� e�N�(T+C1+R)E(F1) is obtained similar to E(Fi).E(F1) = 2 Z T+C1+R0 (t) N�e�N�t1� e�N�(T+C1+R) dt= 2(N�)�1 � 2(T +C1 + R)e�N�(T+C1+R)1� e�N�(T+C1+R)When c > 0, E(Fc+1) can be obtained by replacing C1by CN and i by c + 1 in Equation 3. E(F) can now beevaluated using Equation 2 and the expressions for E(Fi)and Qi.3.5 Evaluation of E(F@)Recall that F@ is de�ned as the time lost due to a rollbackto the beginning of the segment, given that this is the �rstrollback to the beginning of the segment. Evaluation ofE(F@) is very similar to the evaluation of E(F).E(F@) = c+1Xi=1 Q@i E(F@i) where, (4)

Q@i is the probability that a rollback to start of the seg-ment occurred during interval i given that such a rollbackoccurred during the segment and that this is the �rst suchrollback in this segment. F@i is the execution time lostbecause of such a rollback during interval i. For c > 0,Q@i = � (1� p@)i�1p@=P@; 1 � i � c(1� p@)cp�@=P@; i = c+ 1Note thatPc+1i=1 Q@i = 1.Given that a rollback to the start of the interval oc-curred during interval i, for 1 � i � c and c > 0,E(F@i) = (i � 1)E(I@) + Z T+C10 t N� e�N�t1� e�N�(T+C1) dt+ Z T+C1+R0 t N�e�N�t1� e�N�(T+C1+R) dt (5)E(F@c+1) can be obtained by replacing C1 by CN and iby c+1 in Equation 5. E(F@) can now be evaluated usingEquation 4 and the expressions for E(F@i) and Q@i .3.6 Evaluation of expected task completion timeUsing the expressions derived above and Equation 1, thevalue of E(Sc), c > 0, can now be evaluated. E(Sc) forc = 0 can also be obtained similarly. Recall that lengthof the task (�) is an integral multiple of T . Speci�cally,� = �T . The task consists of d�=ke segments, of whichd�=ke�1 segments contain k 1-intervals each and one seg-ment contains k# = � � k (d�=ke � 1) 1-intervals. There-fore, the expected task completion time E(�) is obtainedas E(�) = (d�=ke � 1)E(Sk�1) +E(Sk#�1) (6)As we know how to evaluate E(Sc) for arbitrary c, theexpected task completion time can now be evaluated.3.7 Average Performance OverheadThe average performance overhead can be obtained as,average overhead = E(�)� � 1= (d�=ke � 1)E(Sk�1) +E(Sk#�1)�T � 1 (7)Average percentage overhead is obtained by multiplyingthe average overhead by 100. For very large tasks (� !1), the average overhead approaches E(Sk�1)kT � 1.4 Numerical ResultsIn this section, we present numerical results to determineoptimal values of k and � that minimize the average over-head, for a given task size and a given �. Signi�cant e�orthas been devoted in the past for analytically determiningoptimal checkpoint intervals for checkpointing and rollbackrecovery schemes (e.g., [4, 7, 19]). Due to the complexityof the expressions for the two-level recovery scheme underconsideration, an analytical approach for determining op-timal k and � is not very attractive. Instead, we choose todetermine the optimal values numerically.

A number of parameters a�ect the performance over-head, including C1, CN , �, N and task length �. In thispaper, we are primarily interested in the e�ect of relativevalues of C1 and CN on the optimal operating point. (Fora given task, an operating point is characterized by thechosen values of k and �.)We evaluate the average overhead for a hypotheticaltask characterized by following parameters: � = 0.00001per time unit, � = 200 time unit, N = 500, CN = 1.0 timeunit, R = 1.0 time unit. Di�erent values of C1 are used inthe following for di�erent graphs.Due to the limitations of our graph-plotting software,� is denoted as MU in the graphs.\Non"-Convex Curves for Two-Level RecoveryThe �rst interesting feature of the two-level scheme is thatthe performance overhead curves do not always have aunique minimum. Figure 5 plots the average percentageoverhead versus � for C1 = 0:2 time unit and k = 3 and10. Observe that the curves for k = 3 and 10 have multi-ple minima. These curves are not convex, unlike the tra-ditional checkpointing and rollback schemes (e.g., [4]).The curve for k = 1 and C1 = 0:2 is shown in Figure 6.When k = 1, the two-level recovery scheme reduces to thetraditional checkpointing and rollback scheme that takesonly N -checkpoints. Therefore, as shown previously in [4],the curve for k = 1 is convex and has exactly one minimum.Note that the curve for k = 1 is independent of C1, as no1-checkpoints are taken in this case.
7

8

9

10

11

12

13

14

10 15 20 25 30 35 40

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

MU

k = 3
k = 10

Figure 5: C1 = 0:2 and k = 3; 10 { curves are not convexOptimization of the Two-Level Recovery SchemeFigures 7 through 10 plot the percentage overhead versus �for various values of k and C1. For four di�erent values ofC1, we evaluated the average overhead for various valuesof k and �, and determined the optimal values of k and� that minimize the average percentage overhead. Theoptimal values of k and � are presented in Table 1. Notethat when C1 = 1:0 (see Figure 10), we have C1 = CN ,i.e., taking 1-checkpoints is as expensive as N -checkpoints.As N -checkpoints provide more protection against failures,it is obvious that, to minimize the average overhead, allthe checkpoints must be N -checkpoints (i.e., k = 1). Inpractice, C1 will often be smaller than CN .

10

20

30

40

50

60

70

80

5 10 15 20 25 30

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

MU

k = 1

Figure 6: k = 1 { the curve is convex
7

8

9

10

11

12

13

10 15 20 25 30 35 40 45

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

MU

k = 10
k = 14
k = 20

Figure 7: C1 = 0:2
9

9.5

10

10.5

11

11.5

12

12.5

10 15 20 25 30

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

MU

k = 3
k = 6
k = 12

Figure 8: C1 = 0:4C1 k � average % overhead0.2 14 27 7.10.4 6 18 9.10.6 3 14 10.31.0 1 10 11.2Table 1: Minimum average percentage overhead

10

10.5

11

11.5

12

12.5

13

13.5

14

10 12 14 16 18 20

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

MU

k = 1
k = 3
k = 6

Figure 9: C1 = 0:6
11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

6 8 10 12 14 16 18 20

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

MU

k = 1
k = 2
k = 3

Figure 10: C1 = 1:0
9

10

11

12

13

14

15

16

17

18

19

10 15 20 25 30

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

MU

only 1-checkpoints
k = 1
k = 6

Figure 11: C1 = 0:4

Comparison With One-Level Recovery SchemesTwo one-level recovery schemes (corresponding to the twocomponent schemes) are compared with the two-level re-covery scheme.The �rst one-level scheme is the traditional consistentcheckpointing scheme that takes only N -checkpoint. Whenk = 1, the two-level recovery scheme is identical to thisone-level scheme. In the graphs presented above, observethat, with the exception of the case when C1 = CN = 1:0,the performance overhead is minimized when k > 1. Thisimplies that, the two-level recovery scheme can achieve alower performance overhead as compared to the one-levelrecovery scheme except when C1 = CN . When C1 = CN ,the 1-checkpoints are as expensive as N -checkpoints, andtherefore, the two-level recovery scheme can only performas well as the one-level scheme.The second one-level scheme takes only 1-checkpoints,i.e., all � checkpoints are 1-checkpoints. When multi-ple failures occur within a single 1-interval, this recoveryscheme requires that the task be restarted from the be-ginning. (This scheme may also be viewed as a degen-erate two-level scheme, as it tolerates single and multiplefailures di�erently.) To compare the performance of thesecond one-level scheme with the two-level scheme, Fig-ure 11 shows the curves for the two-level scheme with k = 6and for the one-level scheme that takes only 1-checkpoints.(The �gure also plots the curve for k = 1, i.e., for the �rstone-level scheme.) Observe that the two-level scheme canachieve a lower performance overhead as compared to thescheme that takes only 1-checkpoints.In the above we have compared three schemes: the two-level schemes, and the two component schemes. It shouldbe noted that, for each scheme, it is possible to pick aset of parameters for which the chosen scheme will per-form better than the other two. However, our numericalsearch suggests that the one-level scheme that takes onlyN -checkpoints is not optimal for many sets of parameters(which we believe to be realistic parameters). This is in-teresting, as many current implementations of consistentcheckpoints take only N -checkpoints, and therefore are notlikely to be optimal for many applications.5 Related WorkWe de�ne two-level recovery schemes as those that toler-ate more probable failures with a low overhead, while theless probable failures may incur a higher overhead. Thisde�nition can also be extended to multi-level schemes.It was recently brought to our attention [3] that Ge-lenbe [8] previously proposed a \multiple checkpointing"approach that is similar to the \multi-level" approach thatwe advocate in this paper. Gelenbe divides system failuresinto multiple (n) categories according to their severity. Thesystem takes n types of checkpoints, each type of check-point designed for one type of failure. Each type of failureis assumed to be governed by a Poisson process. AlthoughGelenbe considers transaction-oriented systems, the fun-damental idea behind multiple checkpoints and multi-levelrecovery is the same { minimize overhead by designing dif-ferent approaches for tolerating di�erent types of failures.We characterize a failure \type" according to the probabil-ity of its occurrence, while Gelenbe characterizes a failure\type" according to how \di�cult" it is to recover fromthe failure. (A failure of type 1 is less \di�cult" than afailure of type 2 if a checkpoint for failure type 2 can be

used to recover from a type 1 failure [8].) Gelenbe's anal-ysis as such may not be applicable to multi-level schemesof our interest, for three reasons:� Our multi-level approach is not con�ned to multipletypes of checkpoints. The component schemes can,for example, use message logging. When message log-ging is used, the failure-free overhead may increaseas the length of the interval between checkpoints in-creases. On the other hand, when only checkpointsare taken, the overhead of a single checkpoint is typ-ically assumed to be independent of the length ofcheckpoint interval.� Gelenbe assumes the failures of di�erent types to begoverned by Poisson process. This may not be true,in general, even if the failure of each processor isgoverned by a Poisson process. For instance, thisassumption will not apply for the two-level schemepresented in this paper.� Gelenbe considers transaction-oriented systems. Theanalysis for a distributed system executing along-running parallel application may di�er (depend-ing on the multi-level scheme under consideration).Ziv and Bruck [21] present a checkpointing scheme forduplex systems. Although it does not satisfy our de�nitionof two-level schemes, their scheme also takes two typesof checkpoints. They assume that the duplex system isformed by a pair of workstations connected by a local areanetwork (LAN). It is assumed that the state of the twoprocessors in a duplex system must be compared to de-tect failures. To compare the checkpoints, the checkpointsmust be sent over the LAN. The overhead of checkpointcomparison, therefore, is high as compared to saving thecheckpoints (the checkpoints are saved on the local diskof each workstation). Ziv and Bruck propose a schemewhere checkpoint comparison is performed only at everyk-th checkpoint. If a failure is detected, then the previ-ous k checkpoints are compared until an error-free check-point is found. The duplex system then rolls back to thischeckpoint. By restricting checkpoint comparison (duringfailure-free operation) to every k-th checkpoint, [21] re-duces overhead of the recovery scheme, as compared to ascheme that compares the states at each checkpoint. Ourapproach di�ers from [21] in that we attempt to minimizethe average overhead by distinguishing between more prob-able and less probable failures. [21] improves the overhead(for duplex systems) by decoupling checkpoint saving andcheckpoint comparison.We previously proposed a roll-forward scheme [14], forduplex systems, that tolerates single processor failures witha low overhead, and multiple failures with a high overhead.This is achieved by taking di�erent actions during recovery,depending on the number of failures { the actions takenduring failure-free operation are independent of the num-ber of expected failures. Although this scheme satis�esour de�nition of two-level recovery, our present research isconcerned with recovery schemes that take explicit actionsduring failure-free operation that are designed to minimizethe overhead for the more probable failures.6 ConclusionsThe objective of this paper was to illustrate the two-levelrecovery approach using a simple example, and to show

that two-level recovery scheme can achieve better perfor-mance than traditional recovery schemes. The paper pre-sented a two-level recovery scheme that tolerates singlefailures with a low overhead and multiple failures with ahigher overhead. From the performance analysis of thistwo-level recovery scheme, the following conclusions canbe drawn:� To minimize the overhead, it is often necessary totake both 1-checkpoints and N -checkpoints. This im-plies that the two-level recovery scheme can achievelower performance overhead as compared to the one-level recovery schemes.� The optimal values of � and k at which the over-head is minimized are sensitive to the changes in C1.Changes in C1 can a�ect the performance overheadsigni�cantly. Therefore, it is desirable to keep C1 assmall as possible.The above conclusions motivate the following research:� Techniques to reduce the overhead of single failuretolerance need to be investigated. In general, it isnecessary to design e�cient recovery schemes to tol-erate the more probable failure scenarios. Past re-search on such recovery schemes is very limited [1, 2,9, 10]. Another important question is how to charac-terize the more probable failures such that the per-formance is optimized (or, for multi-level schemes,how to characterize the di�erent levels). These char-acterizations should take the hardware organizationinto account. In this paper, somewhat arbitrarily,we characterize single failures as the more probablefailures.� Design of other two-level recovery schemes for mes-sage passing and shared memory systems. Althoughthe above conclusions imply that two-level recoverycan achieve better performance as compared to tra-ditional one-level recovery schemes, research on suchschemes is lacking. This paper provides a strong mo-tivation for further research on two-level recovery.� Analytical optimization of two-level schemes. In thispaper, the optimal was determined by numericalsearch.� Implementation and experimental evaluation of two-level recovery schemes. Analysis of distributed fail-ure recovery schemes is usually approximate, becauseparameters such as checkpoint overhead are time-dependent and di�cult to characterize accurately.Therefore, an experimental evaluation is desirable.AcknowledgementsWe thank the referees for pointing us to the work byGelenbe [8], and for other helpful comments.AppendixThe Markov chain below models execution of a single seg-ment. State i (i > 0) in the Markov chain is entered whenthe i-th checkpoint in the segment is established. State i�(i � 0) is entered when a failure occurs while in state i(i.e., when the �rst failure occurs while executing i + 1-thinterval). State D is entered when a failure occurs whilein state i� before the i+ 1-th 1-interval is completed (i.e.,when double failures occur while executing an interval).

Transitions out of state D are similar to those from state0. (Transitions into states D and i�, 0 � i � c correspondto rollbacks.)A cost is associated with each transition. The cost ofa transition (X,Y) from state X to Y is the expected timespent in state X before making the transition to state Y.For example, for 0 � i < c, the cost of the transition (i,i+1)is T + C1, the cost of transition (i�,i+1) is R + T + C1,the cost of transition (i,i�) is (N�)�1� (T+CN)e�N�(T+CN)1�e�N�(T+CN) .Similarly, the cost of transition (c; c+ 1) is T +CN .
D

O*

1

1*

i+1

i+1*

C

C*

O C+1i

i*

startTransition probability for transition (X,Y) is the prob-ability that a transition to state Y will be made from stateX. For instance, for 0 � i < c, transition probability fortransition (i,i+1) is e�N�(T+C1), for transition (i,i�) is 1�e�N�(T+C1), and for transition (i�,D) is 1�e�N�(R+T+C1).The execution of the segment can be viewed as follow-ing a path from state 0 to state c+ 1. E(Sc) is, then, theexpected cost of a path from state 0 to state c+ 1. E(Sc)can be evaluated using standard techniques for Markovchains [16, 17, 20].Now we relate the notation in Section 3 to the aboveMarkov chain. P@ is the probability that a path fromstate 0 will reach state D. P is the probability that apath originating at state D will return to state D. � is thenumber of entries into state D excluding the �rst entry intostate D. F@ is the length of a path from state 0 to stateD. F is the length of a path from state D back to stateD. I@ is the length of a path, from state i (0 � i < c) tostate i+1, that does not enter state D. I is the length of apath, from state D to state 1, that does not re-enter stateD. I�@ is the length of a path, from state c to state c+ 1,that does not enter state D. p@ is the probability that atransition will be made from state i (0 � i < c) to state i�,followed by a transition from state i� to state D. p�@ isthe probability that a transition will be made from state cto state c�, followed by a transition from state c� to stateD. p is the probability that a transition will be made fromstate D to state 0�, followed by a transition from state 0�to state D.References[1] L. Alvisi, B. Hoppe, and K. Marzullo, \Nonblockingand orphan-free message logging protocols," in 23rdInt. Symp. Fault-Tolerant Comp., pp. 145{154, 1993.[2] L. Alvisi and K. Marzullo, \Optimal message loggingprotocols," Tech. Rep. in preparation, Department ofComputer Science, Cornell University, 1994.[3] Anonymous referee's comments on this paper, Jan-uary 1995.[4] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R.Uhrig, \Analytic models for rollback and recoverystrategies in data base systems," IEEE Trans. Softw.Eng., vol. 1, pp. 100{110, March 1975.

[5] K. M. Chandy and L. Lamport, \Distributed snap-shots: Determining global states in distributed sys-tems," ACM Trans. Comp. Syst., pp.63{75, Feb. 1985.[6] S. Garg and K. F. Wong, \Analysis of an improveddistributed checkpointing algorithm," WUCS-93-37,Dept. of Comp. Sc., Washington Univ., June 1993.[7] E. Gelenbe and D. Derochette, \Performance of roll-back recovery systems under intermittent failures,"Comm. ACM, vol. 21, pp. 493{499, June 1978.[8] E. Gelenbe, \A model for roll-back recovery with mul-tiple checkpoints," in 2nd Int. Conf. on Software En-gineering, pp. 251{255, October 1976.[9] D. B. Johnson and W. Zwaenepoel, \Sender-basedmessage logging," in Digest of papers: The 17th Int.Symp. Fault-Tolerant Comp., pp. 14{19, June 1987.[10] J. Le�on, A. L. Fisher, and P. Steenkiste, \Fail-safePVM: A portable package for distributed program-ming with transparent recovery," Tech. Rep. CMU-CS-93-124, School of Computer Science, CarnegieMellon University, Pittsburgh, February 1993.[11] V. F. Nicola and J. M. van Spanje, \Comparativeanalysis of di�erent models of checkpointing and re-covery," IEEE Trans. Softw. Eng., pp. 807{821, Au-gust 1990.[12] D. A. Patterson and J. L. Hennessy, Computer Orga-nization & Design: The Hardware/Software Interface.Morgan Kaufmann Publishers, 1994.[13] J. S. Plank, E�cient Checkpointing on MIMD Ar-chitectures. PhD thesis, Dept. of Computer Science,Princeton University, June 1993.[14] D. K. Pradhan and N. H. Vaidya, \Roll-forward check-pointing scheme: A novel fault-tolerant architecture,"IEEE Trans. Computers, pp. 1163{1174, Oct. 1994.[15] A. N. Tantawi and M. Ruschitzka, \Performance anal-ysis of checkpointing strategies," ACM Trans. Comp.Syst., vol. 2, pp. 123{144, May 1984.[16] K. S. Trivedi, Probability and Statistics with Relia-bility, Queueing and Computer Science Applications.Prentice-Hall, 1988.[17] N. H. Vaidya, \Another two-level failure recoveryscheme: Performance impact of checkpoint placementand checkpoint latency," Tech. Rep. 94-068, Com-puter Science, Texas A&M University, Dec. 1994.[18] N. H. Vaidya, \A case for multi-level distributed re-covery schemes," Tech. Rep. 94-043, Computer Sci-ence, Texas A&M University, May 1994.[19] J. W. Young, \A �rst order approximation to the op-timum checkpoint interval," Comm. ACM, vol. 17,pp. 530{531, September 1974.[20] A. Ziv and J. Bruck, \Analysis of checkpointingschemes for multiprocessor systems," Tech. Rep. RJ9593, IBM Almaden Research Center, Nov. 1993.[21] A. Ziv and J. Bruck, \E�cient checkpointing overlocal area network," in IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems, CollegeStation, June 1994.

