A Case for Two-Level Distributed Recovery Schemes

Nitin H. Vaidya
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112, U.S.A.

E-mail: vaidya@cs.tamu.edu

Abstract

Most distributed and multiprocessor recovery schemes proposed
in the literature are designed to tolerate arbitrary number of
failures. In this paper, we demonstrate that, it is often ad-
vantageous to use “two-level” recovery schemes. A two-level
recovery scheme tolerates the more probable failures with low
performance overhead, while the less probable failures may be
tolerated with a higher overhead. By minimizing the overhead
for the more frequently occurring failure scenarios, our approach
is expected to achieve lower performance overhead (on average)
as compared to existing recovery schemes.

To demonstrate the advantages of two-level recovery, we
evaluate the performance of a recovery scheme that takes two
different types of checkpoints, namely, 1-checkpoints and N-
checkpoints. A single failure can be tolerated by rolling the
system back to a 1-checkpoint, while multiple failure recovery is
possible by rolling back to an N-checkpoint. For such a system,
we demonstrate that to minimize the average overhead, it is
often necessary to take both 1-checkpoints and N-checkpoints.

While the conclusions of this paper are intuitive, the work
on design of appropriate recovery schemes is lacking. The objec-
tive of this paper is to motivate research into recovery schemes
that can provide multiple levels of fault tolerance.

1 Introduction

Many applications require massive parallelism to solve a
problem in a reasonable amount of time. Such applica-
tions encounter a high failure rate due to large multiplicity
of hardware components. In the absence of a failure recov-
ery scheme, the task must be restarted (from beginning)
whenever a failure occurs. This leads to unacceptable per-
formance overhead for long-running applications. Some
failure recovery scheme must be used to minimize the per-
formance overhead. Performance overhead of a recovery
scheme is the increase in the execution time of the task
when using the recovery scheme. The performance over-
head of a recovery scheme consists of two components:

e Overhead during failure-free operation (failure-free
overhead), e.g., checkpointing and message logging.

o Overhead during recovery (recovery overhead).

The objective of this paper is to analyze an approach to
reduce the average performance overhead.

The design principle “make the common case fast” has
been successfully used in designing many components of
a computer system (e.g., cache memory, RISC [12]), and
some aspects of checkpointing and rollback [14, 21]. How-
ever, designers of distributed rollback recovery schemes
have largely ignored this guideline. In any system, some
failure scenarios have a greater probability of occurring
as compared to other scenarios. In the context of failure
recovery, the “common case” consists of the more prob-
able failure scenarios. The above guideline suggests that
a recovery scheme should provide low-overhead protection
against more probablefailures, providing protection against
other failures with, possibly, higher overhead. We refer
to recovery schemes having this capability as two-level
schemes. This approach can be generalized to multi-level
recovery [18]. Tt was recently brought to our attention [3]
that, for transaction-oriented systems, Gelenbe [8] previ-
ously proposed an approach similar to the multi-level re-
covery approach. Gelenbe’s work is discussed in Section 5.

Most existing recovery schemes are “one-level” in the
sense that their actions during failure-free execution are
designed to tolerate the worst case failure scenario. For ex-
ample, the traditional implementations of consistent check-
pointing algorithms are designed to tolerate simultaneous
failure of all components in the system [13]. The two-level
recovery approach can achieve lower overhead than one-
level schemes by differentiating between the more probable
failures and the less probable failures. In this paper, we
analyze a two-level recovery scheme and demonstrate that
it can perform better than a one-level recovery scheme. Al-
though a large number of researchers have analyzed check-
pointing and recovery (e.g., see [4, 6, 11, 15, 19]), to our
knowledge, except for [8], no analysis of two-level recovery
schemes has been attempted so far.

Paper organization: Section 2 describes the proposed
two-level recovery scheme. Performance analysis is pre-
sented in Sections 3 and 4. Related work is discussed in
Section 5. The paper concludes with Section 6. The ap-
pendix briefly presents an alternate approach to analyze
the two-level scheme.

2 A Two-Level Recovery Scheme

The proposed recovery scheme is useful for a network of
N processors. Each processor has a local volatile memory

storage. The processors share a stable storage that can
be accessed over the network. To simplify the discussion,
each processor i1s assumed to execute one process.

We consider only crash (fail-stop) failures. Each pro-
cessor is subject to failures; the occurrence of a processor
failure is governed by a Poisson process with failure rate A.
Failures of the processors are independent of each other.
Failure of a processor results in the loss of its volatile stor-
age. The stablestorage is assumed to be always failure-free.

In the environment under consideration, small number
of failures are more probable than a large number of fail-
ures. Specifically, single processor failures are more proba-
ble than all other failure scenarios. The two-level recovery
scheme analyzed in this paper consists of two components,
one component recovery scheme designed for single failure
tolerance; and the second component scheme designed for
tolerating all other failure scenarios. The two component
recovery schemes are summarized here:

e The first component is the single process failure toler-
ance scheme presented in [1]. In this scheme, the processes
periodically take checkpoints (which need not be consistent
with each other). The checkpoint of a process can be saved
in any volatile storage except that of its own processor.
The communication messages are saved by their senders
in their volatile storage. As the messages are simply re-
tained in the volatile storage of their senders, we assume
that they do not affect the overhead of the recovery scheme
significantly. The failure-free overhead is dominated by the
overhead of taking checkpoints.

To simplify analysis, we assume that, the processes take
checkpoints at about the same time. Our analysis assumes
that the synchronization overhead is included in the check-
point overhead.

This component scheme is capable of tolerating only a
single failure. To tolerate a single failure, the faulty process
is rolled back to its previous checkpoint (which is saved on
a non-faulty processor). Subsequently, the messages that
the faulty process had received before failure are re-sent
to recover its state. These messages are available in the
volatile memory of the message senders.

If a second failure occurs before the system has recov-
ered from the first failure, it is possible that the system
may not be able to recover from the failure. We make
the pessimistic assumption that this component scheme
can never recover from more than one failure. Thus, when
multiple simultaneous failures occur the system must be
rolled back to the start of the task (or to a consistent state
saved on the stable storage, as discussed below). (Two
failures are said to be simultaneousif second failure occurs
before system has recovered from the first failure.)

We make a second pessimistic assumption that, when
a single processor failure occurs, during recovery, the non-
faulty processors do not perform any useful computation.
In other words, we assume that the non-faulty processes
block until the faulty processor has recovered. This may
not always be true for all applications. In spite of the
pessimistic assumptions, we show that the two-level recov-
ery scheme can perform better than a traditional one-level
recovery scheme.

We refer to the checkpoints taken by this component
scheme as 1-checkpoints, as they are useful to recover from
single failures only. A checkpoint interval is the duration
between two adjacent checkpoints. For this scheme, the
failure-free overhead per checkpoint interval is denoted by
C7. (1 is the increase in the execution time of a checkpoint
interval due to the use of this recovery scheme. As noted

earlier, (1 is assumed to be dominated by the overhead of
taking 1-checkpoints.

e The second component recovery scheme periodically
saves consistent’ global checkpoints on the stable stor-
age. To establish the checkpoint, the processes coordi-
nate with each other and ensure that their states saved
on the stable storage are consistent with each other. Such
a checkpoint is useful to recover from an arbitrary num-
ber of failures. Therefore, these checkpoints are called
N-checkpoints. For this component scheme, the failure-free
overhead per checkpoint interval is denoted by Cn. Cx
includes the overhead of checkpoint coordination. Volatile
storage access i1s often cheaper than accessing the shared
stable storage. Therefore, we expect that C1 < Cy.

The two-level recovery scheme analyzed here consists
of the above two components. This two-level scheme takes
1-checkpoints more frequently and N-checkpoints less fre-
quently. As the 1-checkpoints are taken more frequently,
recovery overhead for a single processor failure is smaller.
Also, overhead of taking 1-checkpoints is lower than that
of N-checkpoints. As will be demonstrated in this paper,
the two-level scheme can achieve better performance as
compared to either component recovery scheme.

To further clarify the concept of two-level recovery, the
tables below present an analogy of the two-level recovery
scheme with cache memory organizations.

Cache and main memory (two-level) hierarchy
access type served by access time
address in cache cache small
address not in cache | main mem. | large
average access time = small

Two-level recovery scheme
failure scenario | failure tolerated by overhead
single failure 1st component scheme | small
other 2nd component scheme | large
average performance overhead = small

We assume that the processes take equi-distant check-
points, adjacent checkpoints being separated by T time
units. Every k-th checkpoint is an N-checkpoint (k > 1)
and all others are 1-checkpoints. Thus, the interval be-
tween two consecutive 1-checkpoints is 7' and the inter-
val between two consecutive N-checkpoints is kT (exclud-
ing the time required to take 1-checkpoints). Figure 1
illustrates this for & = 3. (Empty boxes represent a 1-
checkpoint, while shaded boxes represent N-checkpoints.)
Figures in this paper illustrate execution of the task using
a single horizontal line, as in Figure 1. The task consists of
N processes, however, as their checkpoints occur at about
the same time, the checkpoints are shown on the execution
line using a single box.

The execution time (length) of the task, in a failure-
free environment (without using any recovery scheme), is
denoted by T. It is assumed that T is an integral multiple
of T', say pT" where p i1s a positive integer. However, T is
not necessarily an integral multiple of kT

The interval between any two consecutive checkpoints
is called a 1-interval. The execution of the task is divided
into certain number of segments, each segment terminating
with an N-checkpoint. For example, in Figure 1, the task
is divided into four segments.

We assume that no checkpoint needs to be taken at the

1A consistent global checkpoint consists of one checkpoint per
process such that a message sent after the checkpoint of one process
is not received by another process before taking its checkpoint [5].

T T Failure-free execution of atask of length 11T

1 | | B |
I

g 0o v oo o U 0 1
segment 1—=— segment 2—==— segment 3—t= seg. 4

Task begins H N-checkpoint H 1-checkpoint ~ Task ends

Figure 1: 1-checkpoints and N-checkpoints

beginning of the task, and an N-checkpoint is taken at the
completion of the task. This implies that, when T is not
an integral multiple of k7', the last segment is shorter than
the rest. For example, in Figure 1, length of the task is
117" and k& = 3. Therefore, computation time in the last
segment is 27", while that in other segments is 37" each.
Rollback Recovery: The time required to perform a roll-
back to a previous checkpoint is assumed to be R. (This
does not include the time required for re-execution.) Con-
sider a failure that can be tolerated by rolling back to a
certain checkpoint CP. If the failure is detected when ¢ time
units of computation was performed after checkpoint CP,
then it is assumed that ¢ units of execution is required to
re-do the lost computation (in absence of further failures).
In the past, some researchers have assumed (e.g., [4]) that
the time required to re-do the computation is at for some
constant «. Thus, we assume o = 1 here. However, our
analysis can be easily revised when o # 1.

If at most one failure occurs during the execution of a
1-interval, the failure can be tolerated by rolling back to
the most recent checkpoint. (The most recent checkpoint
may be a 1-checkpoint or an N-checkpoint.) If, however,
a failure also occurs during the re-execution of the same
l-interval, system is rolled back to the most recent N-
checkpoint (or to the start of the task, if no N-checkpoint
is taken before the failure).

Figure 2(a) illustrates a scenario where a failure occurs
during 1-interval />, and the system is rolled back to the
most recent checkpoint (C'P1). No failure occurs during
the re-execution of /5.

Figure 2(b) illustrates a scenario where a failure occurs
during 1-interval />, and the system is rolled back to the
previous checkpoint (C'P1). Another failure occurs during
the re-execution of Io. Therefore, the system is rolled back
to the most recent N-checkpoint (CPO0).

Figure 2(c) illustrates a scenario similar to 2(a). In this
case also a failure occurs during interval /> and no failure
occurs during the re-execution of I>. A failure occurring
during interval /3 is treated identical to the first failure
during /. That is, the system rolls back to the most recent
checkpoint C'P2. Essentially, failures occurring during two
different 1-intervals are treated independently.

3 Performance Analysis

The metric of interest here is the average performance
overhead of the recovery scheme. Let E(I') denote the
expected (average) time required to complete the task us-
ing the given recovery scheme. The average overhead is
evaluated as a fraction of task length Y. Specifically,

ET
average performance overhead = L -1

T

Average percentage overhead is obtained by multiplying
the average overhead by 100.

k=3 aprocessor failed

CPO CPll CP2
| |
I Ul |2% 12 1 13

rollback to CP1

 — —
I

@
denotes
rollback . another
aprocessor failed processor
failed

CPO CP1

11 Hﬁlﬁ
U UIlUIZH I2H 11

 — —

rollback rollback
(b) toCP1 toCPO
another
aprocessor failed ~ processor
failed
CPO cpll CP2 cP3
U 11 U I2E 12 U I3E |3U

? ?

rollback to CP1 rollback to CP2
(©

Figure 2: Mllustration of fault effects

This section presents an analysis of the average perfor-
mance overhead. The analysis can be made more intuitive
by using Markov chains. The Appendix briefly describes
the Markov chain for the proposed scheme. For an exam-
ple of detailed analysis using Markov chains, the reader is
referred to a recent report that presents analysis of another
two-level scheme [17]. (The following analysis was included
in the reviewed manuscript, and therefore, is retained in
this publication without significant changes.)

3.1 Notation Convention

Two superscripts are used in our notation, namely, * and
@. While the exact implications of the superscripts will be
clearer as various notation is introduced, the two super-
scripts are intended to be used as defined below:

e A superscript * denotes that the quantity is related
to a 1-interval that terminates with an N-checkpoint.
Absence of the superscript # generally implies (not
always) that the quantity is related to a 1-interval
that terminates with a 1-checkpoint.

e A superscript @ denotes that the quantity is related
to execution of a segment or a 1-interval that is not
initiated immediately following a failure. Absence of
the superscript @ generally implies (not always) that
the quantity is related to execution of a segment or
a l-interval that is initiated immediately following a
failure.

3.2 Preliminaries

In the following, we use the terms cost and overhead in-
terchangeably.

Recall that each N-checkpoint terminates a segment of
the task’s execution. From the discussion above it is clear
that multiple failures cause a rollback to the beginning of
the segment during which the failures occur. Addition-
ally, failures while executing one segment do not affect the
time required to execute other segments. Therefore, the
expected time required to complete the task can be ob-
tained as the sum of expected time required to complete
each segment of the task.

For a given k, the task is divided into [%] segments.
Each segment, possibly except the first segment, includes
a total of k checkpoint (of which k — 1 are 1-checkpoints).
The first segment may contain less than (k — 1)
1-checkpoints, as the task length T may not be an inte-
gral multiple of kT. We first evaluate the expected time
required to complete a single segment that includes ¢ 1-
checkpoints and one N-checkpoint, as shown in Figure 3.
The ¢ 1-checkpoints are labeled C' Py through C P, and the
N-checkpoint at the end of the segment is labeled C P.41.
(The analysis below assumes that ¢ > 0. The results for
the case of ¢ = 0 can be obtained similarly.) Observe
that the segment consists of (c + 1) 1-intervals. Failures
may occur while executing any of these intervals. If mul-
tiple simultaneous failures occur while executing any one
l-interval, then the system must be rolled back to the start
of the segment.

CP1 CP2 CPc-1 CPc CPct+l

| [] eee [I 1

{ I I %

segment begins segment ends

Figure 3: A segment: failure-free execution

We now introduce some notation. (The Appendix re-
lates some of the notation to the Markov chain presented
in the appendix.) To understand the notation, recall that
a rollback may occur to the start of segment if multiple
failures occur while executing a l-interval. It is possible
that zero, one or more such rollbacks may occur. In the
following, we differentiate between the first such rollback
and the subsequent rollbacks to the start of the segment;
the reason will be explained below using an example. Let:

S. = total time required to execute the above
segment containing (c+1) 1-intervals. S,
is a random variable.

P® = oprobability that a rollback will occur to
the beginning of the segment, given that
no previous rollback to the beginning of
the segment has occurred.

P = probability that a rollback will occur to
the beginning of the segment, given that
at least one rollback to the beginning of
the segment has already occurred.

p = number of times a rollback occurs to the
beginning of the segment, after the first
rollback to the beginning of the segment.
p is a random variable.

F® = time lost due to a rollback to the begin-
ning of the segment, given that this is the
first rollback to the beginning of the seg-
ment. F® is a random variable.

F = time lost due to a rollback to the begin-
ning of the segment, given that this is not
the first rollback to the beginning of the
segment. F'is a random variable.

I® = time spent in executing a single 1-interval
that terminates with a 1-checkpoint,
given that at most a single failure occurs
while executing the interval, and that a
failure did not occur immediately before
this interval started execution. I® is a
random variable.

I = time spent in executing a single 1-interval
that terminates with a 1-checkpoint,
given that at most a single failure occurs
while executing the interval, and that a
failure occurred immediately before this
interval started execution. [is a random
variable.

I*® = time spent in executing a single l-interval
that terminates with an N-checkpoint,
given that at most a single failure occurs
while executing the interval, and that a
failure did not occur immediately before
this interval started execution. I*® is a
random variable.

E(z) = expected value of random variable z.

The appendix relates the above notation with a Markov
chain representation of a segment’s execution.

For accurate analysis, it is necessary to distinguish be-
tween the first rollback to the beginning of a segment and
the subsequent rollbacks. Figure 4 illustrates this. As
shown in the figure, length of the first 1-interval of the
segment, before failures occur, is 7'+ C1. However, when
a rollback to the start of the segment is needed, due to the
additional R time units required to rollback, the length of
the first 1-interval in the segment is increased to T'+Ch1 +R.
(That is, we model the rollback overhead R as a part of
the 1-interval executed immediately following the failure.)
After each subsequent rollback, the length of the first 1-
interval is always T + C1 + R.

The execution of a segment consists of two parts:

o Certain number of executions (may be zero or more)
during which multiple failures occur that cause a roll-
back to the start of the segment: On the average, this
requires P? E(F®) + P®E(p)E(F) units of time.
Justification: P is the probability that a rollback
to the start of the segment will occur and E(F®)
is the average cost of a first rollback to the start of
the segment. Therefore, the first rollback contributes
PeE(F?) to the average task completion time.
E(p) is the expected number of rollbacks to the start
of the segment after the first such rollback. There-
fore, the rollbacks to the start of the segment (ex-
cluding the first rollback) contribute P®E(p)E(F)

to the expected task completion time.

e An execution during which rollback to the start of the
segment does not occur: On the average, this requires
(1= PYE(I*) 4+ PCE(I)+ (c =)E(I%) 4+ BE(I*?)

units of time.

rollback to the start of the interval

k=4

T+C1 [T+CI+R T+Cl T+Cl T+CI+R T+Cl &

11 UQH M U 12 U 13 UI4H 145 11 U 12 U 13 U 14
segment begins rollback to the start of the segment segment ends

Figure 4: Rollback increases length of the first 1-interval

Justification: The expected time required to exe-
cute the first 1-interval after a rollback to the start
of the segment is E(I) and before such a rollback
is E(I®). Therefore, the expected time required to
complete the first 1-interval of the segment is (1 —
PYE(I%)+ P®E(I). The expected time required to
complete the last 1-interval of the segment is E(1*®)
and the expected time required to complete the mid-
dle (¢ — 1) l-intervals is (¢ — 1)E(I®).

Therefore,
E(S.) = PE(F*)+ P E(p)E(F)+ (1 - P*)E(I%)
+PUE(I)+ (c—)EI®) + E(I*®) (1)

We first evaluate each quantity on the right hand side of
the above equation. The reader may skip sections 3.3, 3.4
and 3.5 without loss of continuity.

3.3 Evaluation of P®, P and F(p)

We now define three probabilities (their definitions are sim-
ilar). The appendix relates them with the Markov chain
presented in the appendix.
p® = oprobability that a rollback to the start
of the segment occurs during a given
l-interval that terminates with a 1-
checkpoint, given that a failure did not
occur immediately before this interval
started.
p = probability that a rollback to the start
of the segment occurs during a given
l-interval that terminates with a 1-
checkpoint, given that a failure occurred
immediately before this interval started.

p*® = probability that a rollback to the start
of the segment occurs during a given
l-interval that terminates with an N-
checkpoint, given that a failure did not
occur immediately before this interval

started.
Then,

pe_1q_ (1 _p@)c (1 —p*@).
A rollback will occur during a l-interval if a processor
fails before completion of the interval, and a processor also

fails while re-executing the interval. Therefore,

p@ =(1- e—NA(T+01))(1 _ e—NA(T+Cl+R))
Similarly,
p*@ _ (1 . 6—NA(T+CN))(1 _ e—NA(T+CN+R))
p = (1 _e—NA(T+C1+R))(1 _e—NA(T+Cl+R))

Knowing p® and p*©, P can be evaluated.

When it is known that at least one rollback occurred
to the beginning of the segment, the length of the first 1-
interval in the segment becomes R+ T'+ C;. The length
of other 1-intervals is unchanged. Therefore,

P=1-(1-p)(1=p") T (1=p"), ¢>0

It follows that E(p) = P/(1 — P).

3.4 Evaluation of E(F)

To be able to evaluate E(F), we first need to evaluate
E(I%) and E(TI).

The definition of I® implies that a failure may occur
while the 1-interval is executed, but no failure occurs when
(and if) the 1-interval is re-executed. A rollback to the
start of the 1-interval is required if a failure occurs any
time during the 7' units of execution or while taking the
1-checkpoint at the end of the l-interval. Thus, a failure
during 7'+ C time units can cause a rollback to the start
of the l-interval. When a rollback occurs, R time units
are spent in performing the rollback (i.e., initiating the
re-execution). Therefore,

E(I%) = T+C+
_ e—NA(T+C1))6—N>\(T+Cl+R)

(1
|:6—N>\(T+C1) + (1 — e~ NNT+C1))e=NNT+C1+R)

T+Cy —NAt
NXe
><‘/0 (t+R)—1_e—NA(T+Cl)dt]

= T+Ci +
_ e—NA(T+C1))6—N>\(T+Cl+R)

(1
|:6—N>\(T+C1) + (1 — e~ NNT+C1))e=NNT+C1+R)

. (T+Cl)e—N)\(T+C1)
Tl —e—NAT+CD)

x (R +(N))

If a failure occurs immediately before the start of a 1-
interval that terminates with a 1-checkpoint, then length

of that interval is 7'+ C; 4+ R. Therefore,

E(I) = TH+Ci+R+
(1 _ 6—N>\(T+C1+R))6—N>\(T+C1+R)
|:6—N>\(T+C1+R) + (1 _ e—NA(T+C1+R))6—N>\(T+C1+R)

T+C1+R N e—NAt
x /0) T —mrrerm U

= T+Ci+R+
[(1- e—NA(T+Cl+R))6—N>\(T+01+R)

e~ NAMT+C1+R) 4 (1- e—NA(T+Cl+R))6—N>\(T+CI+R)

x ((NA)—1 _T+a +_R)6_NA(T+C1+R))]
1 — e—NATH+C1+R)

Note that the integral term above contains (t) unlike the

integral term for E(I@) which contains (¢ + R). This is

because, for E(I), R is already included in the term outside

the integral. E(I*%) is obtained by replacing C; by Ci in

the equation for E(I).

Recall that F' is defined as the time lost due to a roll-
back to the beginning of the segment, given that this is not
the first rollback to the beginning of the segment. Evalua-
tion of E(F) is conditional on the fact that such a rollback
indeed occurred. The rollback can occur during any one
of the 1-intervals. Therefore,

c+1

E(F) = Y QiE(F) where, (2)

Q@ is the probability that a rollback to start of the seg-
ment occurred during interval ¢ given that such a rollback
occurred during the segment. F; is the execution time lost
because of such a rollback during interval ¢. For ¢ > 0,

p/ P, ‘ i=1
Qi=4 (1-p(Q—p°)7p*/P, 1<i<c
(1—p)(1=p*)'p*®/P, i=c+1
(p, P@, p*@ and P were obtained previously. It is easy to
verify that Z:;l Qi=1)

Given that a rollback to the start of the interval oc-
curred during interval ¢, for 1 <12 < c and ¢ > 0,

E(F) = B(I)+ (i —2)E(I®)

T+Cq N e~ NAt
+/0 (t) —1_6—N>\(T+C1)dt

T4+C,+R NAe— VAt
s e

= E()4+ (G —-2)EI%) +2(N))! (3)

(T+Cl)e—N)\(T+C1) (T+Cl +R)6—N)\(T+C1+R)
1 — e—NANT+Cy1) 1 — e—NANT+C14R)

E(Fy) is obtained similar to E(F;).

T+C1+R —NAt
NXe
E(F) = 2/0 (t)l_e—NA<T+cl+R>dt

(T+Cl +R)6—N)\(T+C1+R)
1— e—N)\(T-I-Cl-I-R)

20NN =2

When ¢ > 0, E(Fc41) can be obtained by replacing C,
by Cny and ¢ by ¢ + 1 in Equation 3. FE(F) can now be
evaluated using Equation 2 and the expressions for F(F;)
and @;.

3.5 Evaluation of E(F®)

Recall that F® is defined as the time lost due to a rollback
to the beginning of the segment, given that this is the first
rollback to the beginning of the segment. Evaluation of
E(F®)is very similar to the evaluation of F(F).

c+1

E(F®) = > QFE(F?) where, (4)

Q2 is the probability that a rollback to start of the seg-
ment occurred during interval ¢ given that such a rollback
occurred during the segment and that this is the first such
rollback in this segment. F2 is the execution time lost
because of such a rollback during interval ¢. For ¢ > 0,

Q° = (1—p®)~'p® /P9 1<i<e
[(l—p@)cp*@/P@, i=c+1

Note that Z:;l Qf =1.
Given that a rollback to the start of the interval oc-
curred during interval ¢, for 1 <1 < c and ¢ > 0,

T+Cy — Nt
a . @ NXe
E(FY) = (i—=1)E()+/ tT e @

0

T+C14+R —NAt
Nle
+/0 tl_e—NA(T+Cl+R)dt (5)

E(Fg_l) can be obtained by replacing C; by Cx and i
by ¢+ 1in Equation 5. E(F®) can now be evaluated using
Equation 4 and the expressions for E(F{") and Qf.

3.6 Evaluation of expected task completion time

Using the expressions derived above and Equation 1, the
value of E(S.), ¢ > 0, can now be evaluated. E(S.) for
¢ = 0 can also be obtained similarly. Recall that length
of the task (T) is an integral multiple of T. Specifically,
T = pT. The task consists of [u/k] segments, of which
[1t/k] — 1 segments contain & 1-intervals each and one seg-
ment contains k¥ = p — k([p/k] — 1) l-intervals. There-
fore, the expected task completion time F(T') is obtained
as

ET) = ([n/k] = 1) E(Sk—1) + E(Siz_1) (6)

As we know how to evaluate E(S.) for arbitrary c, the
expected task completion time can now be evaluated.

3.7 Average Performance Overhead

The average performance overhead can be obtained as,

average overhead = @ -1
(T/k] = 1) E(Sk—1) + E(Si# 1)
= T -1 (7N

Average percentage overhead is obtained by multiplying
the average overhead by 100. For very large tasks (g —

00), the average overhead approaches % — 1.

4 Numerical Results

In this section, we present numerical results to determine
optimal values of £ and g that minimize the average over-
head, for a given task size and a given A. Significant effort
has been devoted in the past for analytically determining
optimal checkpoint intervals for checkpointing and rollback
recovery schemes (e.g., [4, 7, 19]). Due to the complexity
of the expressions for the two-level recovery scheme under
consideration, an analytical approach for determining op-
timal & and g is not very attractive. Instead, we choose to
determine the optimal values numerically.

A number of parameters affect the performance over-
head, including C1, Cn, A, N and task length T. In this
paper, we are primarily interested in the effect of relative
values of Cy and Cy on the optimal operating point. (For
a given task, an operating point is characterized by the
chosen values of k and p.)

We evaluate the average overhead for a hypothetical
task characterized by following parameters: A = 0.00001
per time unit, T = 200 time unit, N = 500, Cy = 1.0 time
unit, R = 1.0 time unit. Different values of C; are used in
the following for different graphs.

Due to the himitations of our graph-plotting software,
p is denoted as MU in the graphs.

“Non”-Convex Curves for Two-Level Recovery

The first interesting feature of the two-level scheme is that
the performance overhead curves do not always have a
unique minimum. Figure 5 plots the average percentage
overhead versus p for €7 = 0.2 time unit and & = 3 and
10. Observe that the curves for &k = 3 and 10 have multi-
ple minima. These curves are not convex, unlike the tra-
ditional checkpointing and rollback schemes (e.g., [4]).

The curve for K =1 and ¢4 = 0.2 is shown in Figure 6.
When k£ =1, the two-level recovery scheme reduces to the
traditional checkpointing and rollback scheme that takes
only N-checkpoints. Therefore, as shown previously in [4],
the curve for K = 1is convex and has exactly one minimum.
Note that the curve for £ = 1 is independent of ', as no
1-checkpoints are taken in this case.

aver age percentage over head

Figure 5: €7 = 0.2 and k = 3, 10 — curves are not convex

Optimization of the Two-Level Recovery Scheme

Figures 7 through 10 plot the percentage overhead versus u
for various values of & and C;. For four different values of
C1, we evaluated the average overhead for various values
of k and g, and determined the optimal values of k¥ and
i that minimize the average percentage overhead. The
optimal values of k and g are presented in Table 1. Note
that when €7 = 1.0 (see Figure 10), we have C; = Cy,
i.e., taking 1-checkpoints is as expensive as N-checkpoints.
As N-checkpoints provide more protection against failures,
it is obvious that, to minimize the average overhead, all
the checkpoints must be N-checkpoints (i.e., k¥ = 1). In
practice, C7 will often be smaller than Cy.

average percentage over head

Figure 6: &k = 1 — the curve is

average percentage over head

aver age percentage over head

convex

Figure 8: C7 =04

Ch k u | average % overhead
0.2 14 | 27 7.1
0.4 6 | 18 9.1
0.6 3|14 10.3
1.0 1] 10 11.2

Table 1: Minimum average percentage overhead

average percentage over head average percentage over head

average percentage over head

16
15.5
15
14.5
14
13.5
13
12.5
12
11.5
11

19

18

20

k =1—
k =3
k =6
10 12 14 16 18
wJ
Figure 9: C7 =0.6
| Kk =1 —
i k=2--—-1
L k=3]
\\
6 8 10 12 14 16 18
wJ
Figure 10: C1 = 1.0
only 1-checkpoints —
k =1 --
k =6

Figure 11: ¢1 =0.4

Comparison With One-Level Recovery Schemes

Two one-level recovery schemes (corresponding to the two
component schemes) are compared with the two-level re-
covery scheme.

The first one-level scheme is the traditional consistent
checkpointing scheme that takes only N-checkpoint. When
k = 1, the two-level recovery scheme is identical to this
one-level scheme. In the graphs presented above, observe
that, with the exception of the case when 7y = Cy = 1.0,
the performance overhead is minimized when & > 1. This
implies that, the two-level recovery scheme can achieve a
lower performance overhead as compared to the one-level
recovery scheme except when C; = Cy. When ¢ = Cy,
the 1-checkpoints are as expensive as N-checkpoints, and
therefore, the two-level recovery scheme can only perform
as well as the one-level scheme.

The second one-level scheme takes only 1-checkpoints,
i.e., all g checkpoints are 1-checkpoints. When multi-
ple failures occur within a single 1-interval, this recovery
scheme requires that the task be restarted from the be-
ginning. (This scheme may also be viewed as a degen-
erate two-level scheme, as it tolerates single and multiple
failures differently.) To compare the performance of the
second one-level scheme with the two-level scheme, Fig-
ure 11 shows the curves for the two-level scheme with k = 6
and for the one-level scheme that takes only 1-checkpoints.
(The figure also plots the curve for k =1, i.e., for the first
one-level scheme.) Observe that the two-level scheme can
achieve a lower performance overhead as compared to the
scheme that takes only 1-checkpoints.

In the above we have compared three schemes: the two-
level schemes, and the two component schemes. It should
be noted that, for each scheme, it is possible to pick a
set of parameters for which the chosen scheme will per-
form better than the other two. However, our numerical
search suggests that the one-level scheme that takes only
N-checkpoints is not optimal for many sets of parameters
(which we believe to be realistic parameters). This is in-
teresting, as many current implementations of consistent
checkpoints take only N-checkpoints, and therefore are not
likely to be optimal for many applications.

5 Related Work

We define two-level recovery schemes as those that toler-
ate more probable failures with a low overhead, while the
less probable failures may incur a higher overhead. This
definition can also be extended to multi-level schemes.

It was recently brought to our attention [3] that Ge-
lenbe [8] previously proposed a “multiple checkpointing”
approach that is similar to the “multi-level” approach that
we advocate in this paper. Gelenbe divides system failures
into multiple (n) categories according to their severity. The
system takes n types of checkpoints, each type of check-
point designed for one type of failure. Each type of failure
is assumed to be governed by a Poisson process. Although
Gelenbe considers transaction-oriented systems, the fun-
damental idea behind multiple checkpoints and multi-level
recovery is the same — minimize overhead by designing dif-
ferent approaches for tolerating different types of failures.
We characterize a failure “type” according to the probabil-
ity of its occurrence, while Gelenbe characterizes a failure
“type” according to how “difficult” it is to recover from
the failure. (A failure of type 1 is less “difficult” than a
failure of type 2 if a checkpoint for failure type 2 can be

used to recover from a type 1 failure [8].) Gelenbe’s anal-
ysis as such may not be applicable to multi-level schemes
of our interest, for three reasons:

e Our multi-level approach is not confined to multiple
types of checkpoints. The component schemes can,
for example, use message logging. When message log-
ging is used, the failure-free overhead may increase
as the length of the interval between checkpoints in-
creases. On the other hand, when only checkpoints
are taken, the overhead of a single checkpoint is typ-
ically assumed to be independent of the length of
checkpoint interval.

o Gelenbe assumes the failures of different types to be
governed by Poisson process. This may not be true,
in general, even if the failure of each processor is
governed by a Poisson process. For instance, this
assumption will not apply for the two-level scheme
presented in this paper.

e Gelenbe considers transaction-oriented systems. The
analysis for a distributed system executing a
long-running parallel application may differ (depend-
ing on the multi-level scheme under consideration).

Ziv and Bruck [21] present a checkpointing scheme for
duplex systems. Although it does not satisfy our definition
of two-level schemes, their scheme also takes two types
of checkpoints. They assume that the duplex system is
formed by a pair of workstations connected by a local area
network (LAN). It is assumed that the state of the two
processors in a duplex system must be compared to de-
tect failures. To compare the checkpoints, the checkpoints
must be sent over the LAN. The overhead of checkpoint
comparison, therefore, is high as compared to saving the
checkpoints (the checkpoints are saved on the local disk
of each workstation). Ziv and Bruck propose a scheme
where checkpoint comparison is performed only at every
k-th checkpoint. If a failure is detected, then the previ-
ous k checkpoints are compared until an error-free check-
point is found. The duplex system then rolls back to this
checkpoint. By restricting checkpoint comparison (during
failure-free operation) to every k-th checkpoint, [21] re-
duces overhead of the recovery scheme, as compared to a
scheme that compares the states at each checkpoint. Our
approach differs from [21] in that we attempt to minimize
the average overhead by distinguishing between more prob-
able and less probable failures. [21] improves the overhead
(for duplex systems) by decoupling checkpoint saving and
checkpoint comparison.

We previously proposed a roll-forward scheme [14], for
duplex systems, that tolerates single processor failures with
a low overhead, and multiple failures with a high overhead.
This is achieved by taking different actions during recovery,
depending on the number of failures — the actions taken
during failure-free operation are independent of the num-
ber of expected failures. Although this scheme satisfies
our definition of two-level recovery, our present research is
concerned with recovery schemes that take explicit actions
during failure-free operation that are designed to minimize
the overhead for the more probable failures.

6 Conclusions

The objective of this paper was to illustrate the two-level
recovery approach using a simple example, and to show

that two-level recovery scheme can achieve better perfor-
mance than traditional recovery schemes. The paper pre-
sented a two-level recovery scheme that tolerates single
failures with a low overhead and multiple failures with a
higher overhead. From the performance analysis of this
two-level recovery scheme, the following conclusions can
be drawn:

e To minimize the overhead, it is often necessary to
take both 1-checkpoints and N-checkpoints. This im-
plies that the two-level recovery scheme can achieve
lower performance overhead as compared to the one-
level recovery schemes.

e The optimal values of y and &k at which the over-
head is minimized are sensitive to the changes in Cy.
Changes in C; can affect the performance overhead
significantly. Therefore, it is desirable to keep Ci as
small as possible.

The above conclusions motivate the following research:

e Techniques to reduce the overhead of single failure
tolerance need to be investigated. In general, it is
necessary to design efficient recovery schemes to tol-
erate the more probable failure scenarios. Past re-
search on such recovery schemes is very limited [1, 2,
9, 10]. Another important question is how to charac-
terize the more probable failures such that the per-
formance is optimized (or, for multi-level schemes,
how to characterize the different levels). These char-
acterizations should take the hardware organization
into account. In this paper, somewhat arbitrarily,
we characterize single failures as the more probable
failures.

o Design of other two-level recovery schemes for mes-
sage passing and shared memory systems. Although
the above conclusions imply that two-level recovery
can achieve better performance as compared to tra-
ditional one-level recovery schemes, research on such
schemes is lacking. This paper provides a strong mo-
tivation for further research on two-level recovery.

e Analytical optimization of two-level schemes. In this
paper, the optimal was determined by numerical
search.

e Implementation and experimental evaluation of two-
level recovery schemes. Analysis of distributed fail-
ure recovery schemes is usually approximate, because
parameters such as checkpoint overhead are time-
dependent and difficult to characterize accurately.
Therefore, an experimental evaluation is desirable.

Acknowledgements
We thank the referees for pointing us to the work by
Gelenbe [8], and for other helpful comments.

Appendix

The Markov chain below models execution of a single seg-
ment. State ¢ (¢ > 0) in the Markov chain is entered when
the i-th checkpoint in the segment is established. State 7"
(¢ > 0) is entered when a failure occurs while in state 1
(i.e., when the first failure occurs while executing ¢ + 1-th
interval). State D is entered when a failure occurs while
in state i* before the 1 + 1-th 1-interval is completed (i.e.,
when double failures occur while executing an interval).

Transitions out of state I} are similar to those from state
0. (Transitions into states D and ¢*, 0 < ¢ < ¢ correspond
to rollbacks.)

A cost is associated with each transition. The cost of
a transition (X,Y) from state X to Y is the expected time
spent in state X before making the transition to state Y.
For example, for 0 < i < ¢, the cost of the transition (i,i+1)
is T' 4 (4, the cost of transition (i*,i4+1)is R+ 1T + Cy,

.. ks — —NMTHCN)
the cost of transition (i,i*)is (NA)™ — (qu-fi\f_)]e”(T_'—CN)N

Similarly, the cost of transition (¢,c+1)is T+ Cy.

Transition probability for transition (X,Y) is the prob-
ability that a transition to state Y will be made from state
X. For instance, for 0 < 1 < ¢, transition probability for
transition (i,i+1) is e~ NAMTHCD) for transition (1i*)is 1—
e~ NAMTHC) 4nd for transition (i*,D)is 1 — e NAMR+THCL)

The execution of the segment can be viewed as follow-
ing a path from state 0 to state ¢+ 1. E(S.) is, then, the
expected cost of a path from state 0 to state ¢+ 1. E(S,)
can be evaluated using standard techniques for Markov
chains [16, 17, 20].

Now we relate the notation in Section 3 to the above
Markov chain. P® is the probability that a path from
state 0 will reach state [). P is the probability that a
path originating at state I will return to state D. pis the
number of entries into state D excluding the first entry into
state D. F® is the length of a path from state 0 to state
D. F is the length of a path from state D back to state
D. I® is the length of a path, from state i (0 < i < ¢) to
state 1+ 1, that does not enter state D). [is the length of a
path, from state) to state 1, that does not re-enter state
D. I"® is the length of a path, from state ¢ to state ¢+ 1,
that does not enter state D. p® is the probability that a
transition will be made from state 1 (0 < ¢ < ¢) to state i*,
followed by a transition from state i* to state D. p*® is
the probability that a transition will be made from state ¢
to state c¢*, followed by a transition from state ¢* to state
D. pis the probability that a transition will be made from
state D to state 0", followed by a transition from state 0*
to state D).

References

[1] L. Alvisi, B. Hoppe, and K. Marzullo, “Nonblocking

and orphan-free message logging protocols,” in 2374
Int. Symp. Fault-Tolerant Comp., pp. 145-154, 1993.

[2] L. Alvisi and K. Marzullo, “Optimal message logging
protocols,” Tech. Rep. in preparation, Department of
Computer Science, Cornell University, 1994.

[3] Anonymous referee’s comments on this paper, Jan-
uary 1995.

[4] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R.
Uhrig, “Analytic models for rollback and recovery
strategies in data base systems,” IFEF Trans. Softw.
Eng., vol. 1, pp. 100-110, March 1975.

[5] K. M. Chandy and L. Lamport, “Distributed snap-
shots: Determining global states in distributed sys-
tems,” ACM Trans. Comp. Syst., pp.63-75, Feb. 1985.

[6] S. Garg and K. F. Wong, “Analysis of an improved
distributed checkpointing algorithm,” WUCS-93-37,
Dept. of Comp. Sc., Washington Univ., June 1993.

[7] E. Gelenbe and D. Derochette, “Performance of roll-
back recovery systems under intermittent failures,”
Comm. ACM, vol. 21, pp. 493-499, June 1978.

[8] E. Gelenbe, “A model for roll-back recovery with mul-
tiple checkpoints,” in 2nd Int. Conf. on Software En-
gineering, pp. 251-255, October 1976.

[9] D. B. Johnson and W. Zwaenepoel, “Sender-based

message logging,” in Digest of papers: The 17" Int.
Symp. Fault-Tolerant Comp., pp. 14-19, June 1987.

[10] J. Lebn, A. L. Fisher, and P. Steenkiste, “Fail-safe
PVM: A portable package for distributed program-
ming with transparent recovery,” Tech. Rep. CMU-
(CS-93-124, School of Computer Science, Carnegie
Mellon University, Pittsburgh, February 1993.

[11] V. F. Nicola and J. M. van Spanje, “Comparative
analysis of different models of checkpointing and re-
covery,” IFEE Trans. Softw. Eng., pp. 807-821, Au-
gust 1990.

[12] D. A. Patterson and J. L. Hennessy, Computer Orga-
nization & Design: The Hardware/Software Interface.
Morgan Kaufmann Publishers, 1994.

[13] J. S. Plank, Efficient Checkpointing on MIMD Ar-
chitectures. PhD thesis, Dept. of Computer Science,
Princeton University, June 1993.

[14] D. K. Pradhan and N. H. Vaidya, “Roll-forward check-
pointing scheme: A novel fault-tolerant architecture,”
IEEE Trans. Computers, pp. 1163-1174, Oct. 1994.

[15] A.N. Tantawi and M. Ruschitzka, “Performance anal-
ysis of checkpointing strategies,” ACM Trans. Comp.
Syst., vol. 2, pp. 123-144, May 1984.

[16] K. S. Trivedi, Probability and Statistics with Relia-
bility, Queueing and Computer Science Applications.
Prentice-Hall, 1988.

[17] N. H. Vaidya, “Another two-level failure recovery
scheme: Performance impact of checkpoint placement
and checkpoint latency,” Tech. Rep. 94-068, Com-
puter Science, Texas A&M University, Dec. 1994.

[18] N. H. Vaidya, “A case for multi-level distributed re-
covery schemes,” Tech. Rep. 94-043, Computer Sci-
ence, Texas A&M University, May 1994.

[19] J. W. Young, “A first order approximation to the op-
timum checkpoint interval,” Comm. ACM, vol. 17,
pp- 530-531, September 1974.

[20] A. Ziv and J. Bruck, “Analysis of checkpointing
schemes for multiprocessor systems,” Tech. Rep. RJ
9593, IBM Almaden Research Center, Nov. 1993.

[21] A. Ziv and J. Bruck, “Efficient checkpointing over
local area mnetwork,” in IFEFE Workshop on Fault-
Tolerant Parallel and Distributed Systems, College
Station, June 1994.

