
Reaching Approximate Byzantine Consensus with
Multi-hop Communication∗

Lili Su, Nitin Vaidya
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
{lilisu3, nhv}@illinois.edu

November, 2014

Abstract

We address the problem of reaching consensus in the presence of Byzantine faults. Fault-tolerant
consensus algorithms typically assume knowledge of nonlocal information and multi-hop communi-
cation; however, this assumption is not suitable for large-scale static/dynamic networks. A handful
of iterative algorithms have been proposed recently under the assumption that each node (faulty or
fault-free) can only access local information, thus is only capable of sending messages via one-hop
communication. In this paper, we unify these two streams of work by assuming that each node knows
the topology of up to lth hop neighborhood and can send messages to other nodes via up to l-hop
transmission, where 1 ≤ l ≤ n− 1 and n is the number of nodes. We prove a family of necessary and
sufficient conditions for the existence of iterative algorithms that achieve approximate Byzantine con-
sensus in arbitrary directed graphs. The class of iterative algorithms considered in this paper ensures
that, after each iteration of the algorithm, the state of each fault-free node remains in the convex hull
of the initial states of the fault-free nodes. The following convergence requirement is imposed: for any
ε > 0, after a sufficiently large number of iterations, the states of the fault-free nodes are guaranteed to
be within ε of each other.

1 Introduction

Consensus is fundamental to diverse applications such as data aggregation [18], distributed estimation
[24], distributed optimization [26], distributed classification [13], and flocking [16]. Reaching consensus
∗This research is supported in part by National Science Foundation awards NSF 1329681. Any opinions, findings, and

conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the funding
agencies or the U.S. government.

1

resiliently in the presence of Byzantine faults has been studied extensively in distributed computing [20,
23, 4, 10, 5], communication networks [17], and mobile robotics [1]. A Byzantine fault is an arbitrary
fault that encompasses both omission failures (e.g., crash failures, failing to receive a request, or failing
to send a response) and commission failures (e.g., processing a request incorrectly, corrupting local state,
and/or sending an incorrect or inconsistent response to a request). Dolev et al. [9] introduced the notion
of approximate Byzantine consensus by relaxing the requirement of exact consensus [22]. The goal in
approximate consensus is to allow the fault-free nodes to agree on values that are approximately equal to
each other (and not necessarily exactly identical). While exact consensus is impossible in asynchronous
systems [12] in presence of Byzantine faults, approximate consensus is achievable [9]. The notion of
approximate consensus is of interest in synchronous systems as well, since approximate consensus can be
achieved using distributed algorithms that do not require complete knowledge of the network topology [7].
The discussion in this paper applies to synchronous systems. However, analogous results can be obtained
for an asychronous system too.

It has been shown that given f Byzantine nodes, if the network node-connectivity is at least 2f+1, there
exist algorithmic solutions for the fault-free nodes to reach consensus over all possible inputs. Conversely,
if the network node-connectivity is strictly less than 2f + 1, then reaching consensus is not guaranteed
[11]. However, this stream of work implicitly assumes that each node can send messages to any other
node via multi-hop transmission. As a result of this communication assumption, the proposed algorithms
require fault-free nodes to keep track of the entire network topology, leading to huge consumption of both
memory resource and computation power. On the contrary, iterative algorithms are typically characterized
by local communication (among neighbors, or near-neighbors), simple computations performed repeat-
edly, and a small amount of state per node. [9, 22] present iterative approximate Byzantine consensus
(IABC) algorithms that work correctly in fully connected graphs. Fekete [10] studies the convergence
rate of approximate consensus algorithms. There have been attempts at achieving approximate consensus
iteratively in partially connected graphs. Kieckhafer and Azadmanesh examined the necessary conditions
in order to achieve “local” convergence in synchronous [19] and asynchronous [3] systems. [2] presents
a specific class of networks in which convergence condition can be satisfied using iterative algorithms.
[33, 21] consider a restricted fault model in which the faulty nodes are restricted to sending identical
messages to their neighbors.

In this paper, we unify these two streams of work by considering a general communication model that
encompasses the (n− 1)-hop communication and the 1-hop communication, respectively, as two extreme
cases. Concretely, we are interested in a class of iterative algorithms for achieving approximate Byzantine
consensus in synchronous point-to-point networks that are modeled by arbitrary directed graphs. The
IABC algorithms of interest have the following properties, which we will soon state more formally:

• Initial state of each node is equal to a real-valued scalar input provided to that node.

• Validity condition: After each iteration of an IABC algorithm, the state of each fault-free node must
remain in the convex hull of the initial states of the fault-free nodes.

• Convergence condition: For any ε > 0, after a sufficiently large number of iterations, the states of
the fault-free nodes are guaranteed to be within ε of each other.

We assume that each node can send messages to nodes that are up to l hops away. We prove a neces-
sary and sufficient condition for the existence of iterative algorithms that achieve approximate Byzantine

2

consensus in arbitrary directed graphs for a given l. The aforementioned two streams of work correspond
to the two special cases when l = n − 1 and l = 1, respectively. The proof technique used for proving
sufficiency in this paper is inspired by the prior work on non-fault-tolerant algorithms [7], as applied in our
previous work as well [25, 27, 28].

The rest of the paper is organized as follows. Section 2 presents our system and network models. The
family of iterative algorithms of interest are described in Section 3. The necessary condition is demon-
strated in Section 4. The sufficiency of the condition obtained in Section 4 is shown constructively in
Section 5. Section 6 comments on the connection with the aforementioned two streams of work. Section
7 discusses possible relaxations of our failure model and concludes the paper.

2 Network and Failure Models

In this section, we introduce our communication and failure models.

Communication Model The system is assumed to be synchronous. The communication network is
modeled as a simple directed graph G, where V(G) = {1, . . . , n} denotes the set of n nodes, and E(G)
denotes the set of directed edges between nodes in V(G). We assume that n ≥ 2, since the consensus
problem for n = 1 is trivial. Node i can send messages to node j if and only if there exists an i, j–path of
length at most l in G, where l is some given integer in {1, . . . , n− 1}. In addition, we assume each node
can send messages to itself as well, i.e., (i, i) ∈ E(G) for all i ∈ V(G). For each node i, let N l−

i be the
set of nodes that can reach node i via at most l hops. Similarly, denote the set of nodes that are reachable
from node i via at most l hops by N l+

i . Due to the existence of self-loops, i ∈ N l−
i and i ∈ N l+

i .

Note that node i may send a message to node j via different i, j–paths. To capture this distinction
in transmission routes, we represent a message as a tuple m = (w,P), where w ∈ R and P indicates
the path via which message m was transmitted. Four functions are defined over m. Let function value
be value(m) = w and let path be path(m) = P , whose images are the first entry and the second entry,
respectively, of message m. In addition, functions source and destination are defined by source(m) = i
and destination(m) = j if P is an i, j–path, i.e., message m is sent from node i to node j.

Failure Model We consider the Byzantine failure model with up to f nodes becoming faulty. A faulty
node may misbehave arbitrarily. Possible misbehavior includes sending incorrect and mismatching (or
inconsistent) messages to different neighbors. In addition, a faulty node k may tamper message m if it
is in the transmission path, i.e., k ∈ V(path(m)). Recall that V(·) is the vertex set of a given graph.
However, faulty nodes are only able to tamper value(m), leaving path(m) unchanged. This assumption is
placed for ease of exposition, later in Section 7 we relax this assumption by considering the possibilities
that faulty nodes may also tamper messages paths or even fake and transmit non-existing messages.

In addition, faulty nodes may potentially collaborate with each other. Moreover, faulty nodes are
assumed to have complete knowledge of the execution of the algorithm, including the states of all nodes,
contents of messages the other nodes send to each other, and the algorithm specification.

3

3 Iterative Approximate Byzantine Consensus (IABC) Algorithms

In this section, we describe the structure of the Iterative Approximate Byzantine Consensus (IABC) algo-
rithms of interest, and state the validity and convergence conditions that they need to satisfy. With a slight
abuse of terminology, we will use the terms node and vertex interchangeably in our presentation.

Each node i maintains state vi, with vi[t] denoting the state of node i at the end of the t-th iteration of
the algorithm. Initial state of node i, vi[0], is equal to the initial input provided to node i. At the start of
the t-th iteration (t > 0), the state of node i is vi[t− 1]. The IABC algorithms of interest will require each
node i to perform the following three steps in iteration t, where t > 0. Note that the faulty nodes may
deviate from this specification.

1. Transmit step: Transmit current state, namely vi[t − 1], as the message value to nodes in N l+
i , i.e.,

the nodes that are reachable from node i via at most l hops. If node i is an intermediate node on the
route of some message, then node i forwards that message as instructed by the message path.

2. Receive step: Receive messages from N l−
i , i.e., the nodes that can reach node i via at most l hops.

Denote byMi[t] the set of messages that node i received at iteration t.

3. Update step: Node i updates its state using a transition function Zi, where Zi is a part of the
specification of the algorithm, and takes as input the setMi[t]. Note thatMi[t] contains vi[t − 1]
because i ∈ N l−

i .

vi[t] = Zi(Mi[t]). (1)

We now define U [t] and µ[t], assuming that F is the set of Byzantine faulty nodes, with the nodes in
V − F being fault-free.

• U [t] = maxi∈V−F vi[t]. U [t] is the largest state among the fault-free nodes at the end of the t-th
iteration. Since the initial state of each node is equal to its input, U [0] is equal to the maximum value
of the initial input at the fault-free nodes.

• µ[t] = mini∈V−F vi[t]. µ[t] is the smallest state among the fault-free nodes at the end of the t-th
iteration. µ[0] is equal to the minimum value of the initial input at the fault-free nodes.

The following conditions must be satisfied by an IABC algorithm in presence of up to f Byzantine faulty
nodes:

• Validity: ∀ t > 0, µ[t] ≥ µ[0] and U [t] ≤ U [0]

• Convergence: lim t→∞ U [t]− µ[t] = 0

The objective of this paper is to identify the necessary and sufficient conditions for the existence of a
correct IABC algorithm (i.e., an algorithm satisfying the above validity and convergence conditions) for a
given G and a given l.

4

4 Necessary condition

For a correct IABC algorithm to exist, the underlying communication graph G must satisfy the necessary
condition proved in this section.

Definition 4.1. Let W be a set of vertices in G and x be a vertex in G such that x /∈ W . A W,x–path is a
path from some vertex w ∈ W to vertex x. A set S of vertices such that x /∈ S is a W,x–vertex cut if every
W,x–path contains a vertex in S. The minimum size of a W,x–vertex cut is called the W,x–connectivity
and is denoted by κ(W,x). Similarly, for any integer l ≥ 2, a set Sl of vertices is a l–restricted vertex cut
if the deletion of Sl destroys all W,x–paths of length at most l. Let κl(W,x) be the minimum size of such
restricted vertex cut in G.

We now define relations⇒l and 6⇒l that are used frequently in our subsequent discussion.

Definition 4.2. For non-empty disjoint sets of nodes A and B in G, we say A ⇒l B if and only if there
exists a node i ∈ B such that κl(A, i) ≥ f + 1; A;l B otherwise.

Let F ⊆ V(G) be a set of vertices in G, denote the induced subgraph of G induced by vertex set V−F
by GF . 1

Condition NC: For any node partition L,C,R, F of G such that L 6= Ø, R 6= Ø and |F | ≤ f , in the
induced subgraph GF , at least one of the two conditions below must be true: (i) R ∪ C ⇒l L; (ii)
L ∪ C ⇒l R.

Theorem 4.1. Suppose that a correct IABC algorithm exists for G. Then G satisfies Condition NC.

Proof. The proof is by contradiction. Let us assume that a correct IABC exists, and there exists a partition
L,C,R, F of V(G) such that L 6= Ø, R 6= Ø and |F | ≤ f , but neither R∪C ⇒l L nor L∪C ⇒l R holds,
i.e., R ∪ C ;l L and L ∪ C ;l R. Consider the case when all nodes in F , if F 6= Ø, are faulty, and the
other nodes in sets L,C,R are fault-free. Note that the fault-free nodes are not aware of the identities of
the faulty nodes. In addition, assume (i) each node in L has initial input µ, (ii) each node in R has initial
input U , such that U > µ + ε for some given constant ε, and (iii) each node in C, if C 6= Ø, has initial
input in the interval [µ, U].

In the Transmit step of iteration 1, suppose that each faulty node k ∈ F sends w = µ− < µ to nodes
in N l+

k ∩ L, sends w = U+ > U to nodes in N l+
k ∩ R, and sends some arbitrary value in the interval

[µ, U] to nodes in N l+
k ∩ C. For messages m such that the faulty node k is in its transmission path, i.e.,

k ∈ V(path(m)), if destination(m) ∈ L, node k resets value(m) = µ−; if destination(m) ∈ R, node k
resets value(m) = U+; if destination(m) ∈ C, node k resets value(m) to be some arbitrary value in [µ, U].

Consider any node i ∈ L. Since |F | ≤ f , we know |N l−
i ∩ F | ≤ f . In addition, in GF C ∪ R ;l L

implies κl(C ∪ R, i) ≤ f . Let Sl be a minimum restricted (C ∪ R, i)–cut in GF . From the perspective of
node i, there exist two possible cases:

1An induced subgraph of G, induced by vertex set S ⊆ V(G), is the subgraph H with vertex set S such that E(H) =
{(u, v) ∈ E(G) : u, v ∈ S}. Recall that V(·) and E(·) are the vertex set and edge set, respectively, of a given graph.

5

p1

p4

p2

p3

p5

Figure 1: n = 5 and f = 1.

(a) Both Sl and N l−
i ∩ F are non-empty: We know |N l−

i ∩ F | ≤ f and |Sl| ≤ f . From node i’s
perspective, two scenarios are possible: (1) nodes in N l−

i ∩ F are faulty, all the messages relayed
via them are tampered and the other nodes are fault-free, and (2) nodes in Sl are faulty and the other
nodes are fault-free.

In scenario (1), from node i’s perspective, the untampered values are in the interval [µ, U]. By
validity condition, vi[1] ≥ µ. On the other hand, in scenario (2), the untampered values are µ−

and µ, where µ− < µ; so vi[1] ≤ µ, according to validity condition. Since node i does not know
whether the correct scenario is (1) or (2), it must update its state to satisfy the validity condition in
both cases. Thus, it follows that vi[1] = µ.

(b) At most one of Sl and N l−
i ∩ F is non-empty: Thus, |Sl ∪ (N l−

i ∩ F)| ≤ f . From node i’s
perspective, it is possible that the nodes in Sl ∪ (N l−

i ∩ F) are all faulty, the messages relayed via
nodes in Sl ∪ (N l−

i ∩F) are tampered while the rest of the nodes are fault-free. In this situation, the
untampered values received by node i (which are all from nodes in N l−

i ∩L) are all µ, and therefore,
vi[1] must be set to µ as per the validity condition.

At the end of iteration 1: for each node i in L vi[1] = µ; similarly, for each node j in R, vj[1] = U ;
if C 6= Ø, for each node i in C, vi[1] ∈ [µ, U]. All these conditions are identical to the condition when
t = 0. Then by a repeated application of of above argument, it follows that for any t ≥ 0, vi[t] = µ for all
i ∈ L, vj[t] = U for all j ∈ R and vk[t] ∈ [µ, U] for all k ∈ C, if C 6= Ø.

Since L and R both contain fault-free nodes, the convergence requirement is not satisfied. This con-
tradicts the assumption that a correct iterative algorithm exists.

Note that Condition NC is strictly weaker than the necessary condition under single hop message
transmission model (i.e., l = 1) [30]. Consider the system depicted in Fig. 1. In this system, there are
five processors p1, p2, p3, p4 and p5; all communication links are bi-directional; and at most one processor
can fail, i.e., f = 1. The topology of this system does not satisfy the necessary condition derived in [30].
Since in the node partition L = {p1, p4}, R = {p2, p3}, C = Ø and F = {p5}, neither L ∪ C ⇒ R nor
R ∪ C ⇒ L holds. However, via enumeration it can be seen that the above graph (depicted in Fig. 1)
satisfies Condition NC when 2 ≤ l ≤ 4 = n− 1.

Corollary 4.2. If G satisfies Condition NC, then n must be at least 3f + 1, and each node must have at
least 2f + 1 incoming neighbors other than itself.

6

Proof. The main techniques used here are fairly routine, and are given here largely for both concreteness
and completeness.

We first show the claim that n ≥ 3f + 1. For f = 0, n ≥ 3f + 1 is trivially true. For f > 0, the proof
is by contradiction. Suppose that 2 ≤ n ≤ 3f . In this case, we can partition V(G) into sets L,R,C, F
such that 0 ≤ |L| ≤ f , 0 ≤ |R| ≤ f , 0 ≤ |F | ≤ f and |C| = 0, i.e., C is empty. Since 0 ≤ |L| ≤ f and
0 ≤ |R| ≤ f , we have L∪C 6⇒l R and R∪C 6⇒l L, respectively in GF . This contradicts the assumption
that G satisfies Condition NC. Thus, n ≥ 3f + 1.

It remains to show that each node i must have at least 2f + 1 incoming neighbors other than itself. Let
N−i = {j : (j, i) ∈ E(G), and i 6= j} be the set of incoming neighbors of node i other than node i itself,
i.e., N−i = N1−

i − {i}. Suppose that, contrary to our claim, there exists a node i such that |N−i | ≤ 2f .
Define set L = {i}. Partition N−i into two sets F and H such that |H| = b|N−i |/2c ≤ f and |F | =
d|N−i |/2e ≤ f . Note that H = Ø, F = Ø if and only if f = 0. Define R = V −F −L = V −F −{i} and
C = Ø. Since |V| = n ≥ max(2, 3f +1), R is non-empty. Now, N−i ∩R = H , and |N−i ∩R| = |H| ≤ f .
Since L = {i}, |N−i ∩ R| ≤ f and C = Ø, it follows that R ∪ C 6⇒l L. Also, as |L| = 1 < f + 1,
L ∪ C 6⇒l R. This violates the assumption that G satisfies Condition NC and the proof is complete.

In Section 5, we prove that Condition NC is also sufficient for the existence of a correct IABC algo-
rithm. Condition NC is not very intuitive. In Theorem 4.3 below, we state another necessary condition
that is equivalent to Condition NC, and is somewhat easier to interpret.

Definition 4.3. Meta-graph of SCCs: Let K1, K2, . . . , Kk be the strongly connected components (i.e.,
SCCs) of G. The graph of SCCs, GSCC , is defined by

• Nodes are K1, K2, . . . , Kk;

• There is an edge (Ki, Kj) if there is some u ∈ Ki and v ∈ Kj such that (u, v) is an edge in G.

Strongly connected component Kh is said to be a source component if the corresponding node in GSCC is
not reachable from any other node in GSCC .

It is known that the GSCC is a directed acyclic graph (i.e., DAG) [8], which contains no directed
cycles. It can be easily checked that due to the absence of directed cycles and finiteness, there exists
one node in GSCC that is not reachable from any other node. That is, a graph G has at least one source
component.

Definition 4.4. The lth power of a graph G, denoted by Gl, is a graph with the same set of vertices as G
and a directed edge between two vertices u, v if and only if there is a path of length at most l from u to v
in G.

A path of length one between vertices u and v inG exists if (u, v) is an edge inG. And a path of length
two between vertices u and v in G exists for every vertex w such that (u,w) and (w, v) are edges in G.
Then for a given graph G with self-loop at each node, the (u, v)th element in the square of the adjacency
matrix of G counts the number of paths of length at most two in G. Similarly, the (u, v)th element in the
lth power of the adjacency matrix of G gives the number of paths of length at most l between vertices u

7

and v in G. The power graph Gl is a multigraph2 and there is a one-to-one correspondence between an
edge e in Gl and a path of length at most l in G. Let e be an edge in Gl, and let P (e) be the corresponding
path in G, we say an edge e in Gl is covered by node set S, if V(P (e)) ∩ S 6= Ø, i.e., path P (e) passes
through a node in S.

For a given graph G and F ⊆ V(G), let E = {e ∈ E(Gl) : V(P (e)) ∩ F 6= Ø} be the set of edges
in Gl that are covered by node set F . For each node i ∈ V(G) − F , choose Ci ⊆ N l−

i − {i} such that
|Ci| ≤ f . Let

Ei = {e ∈ E(Gl) : e is an incoming edge of node i in Gl and V(P (e)) ∩ Ci 6= Ø}

be the set of incoming edges of node i in Gl that are covered by node set Ci. With these notations at hand,
we are ready to introduce the notion of reduced graph.

Definition 4.5. Reduced Graph: For a given graph G and F ⊆ V(G), a reduced graph of Gl, denoted
by G̃l

F , is a graph where the node set and edge set are defined by
(i) V(G̃l

F) = V(G)− F , and
(ii) E(G̃l

F) = E(Gl)− E − ∪i∈V(G)−FEi, respectively.

Note that for a given G and a given F , multiple reduced graphs may exist. Let us define set RF to be
the collection of all reduced graph of Gl for a given F , i.e.,

RF = {G̃l
F : G̃l

F is a reduced graph of Gl}. (2)

Since Gl
F , the lth power of the induced subgraph GF , itself is a reduced graph of Gl, thus RF is

nonempty. In addition, |RF | is finite since the graph G is finite,

Theorem 4.3. Suppose that graph G satisfies Condition NC, then for any F ⊆ V(G) such that |F | ≤ f ,
every reduced graph G̃l

F obtained as per Definition 4.5 must contain exactly one source component.

Proof. For any reduced graph G̃l
F , the meta-graph (G̃l

F)SCC is a DAG and finite. Thus, at least one source
component must exist in G̃l

F . We now prove that G̃l
F cannot contain more than one source component.

The proof is by contradiction. Suppose that there exists a set F ⊆ V(G) with |F | ≤ f , and a reduced
graph G̃l

F corresponding to F , such that G̃l
F contains at least two source components, say K1 and K2,

respectively. Let L = K1, R = K2, and C = V − F − L − R. Then L,R,C together with the given F
form a node partition of V(G) such that L 6= Ø, R 6= Ø and |F | ≤ f .

Since graph G satisfies Condition NC, without loss of generality, assume that R ∪ C ⇒l L, i.e., there
exists a node i ∈ L such that κl(R∪C, i) ≥ f+1 inGF . On the other hand, since L is a source component
in G̃l

F , by the definition of reduced graph, we know all paths from R ∪ C to node i of length at most l in
G are covered by Ci ∪ F , where Ci is defined in Definition 4.5. Thus, Ci is a restricted (R ∪ C, i)–cut of
GF . However, by construction of G̃l

F , the size of Ci is at most f . So we arrive at a contradiction.

2A multigraph (or pseudograph) is a graph which is permitted to have multiple edges between each vertex pair, that is, edges
that have the same end nodes. Thus two vertices may be connected by more than one edge.

8

Corollary 4.4. Suppose that graph G satisfies Condition NC. Then it follows that in each reduced graph
G̃l

F ∈ RF , there exists at least one node that has directed paths to all the nodes in G̃l
F .

This corollary follows immediately from Theorem 4.3.

Corollary 4.5. Suppose that G satisfies Condition NC. Let |F | = φ, for any G̃l
F ∈ RF with H as the

adjacency matrix, Hn−φ has at least one non-zero column.

Proof. By Corollary 4.4, in graph G̃l
F there exists at least one node, say node k, that has a directed path

in G̃l
F to all the remaining nodes in VF , i.e., V(G) − F . Since the length of the path from k to any

other node in G̃l
F can contain at most n− φ− 1 directed edges, the k-th column of matrix Hn−φ will be

non-zero.3

Definition 4.6. We will say that an entry of a matrix is “non-trivial” if it is lower bounded by β, where β
is some constant to be defined later.

5 Sufficiency: Algorithm 1

We introduce the definition of message cover that will be used frequently in this section. It is closely
related to the notion of path cover that we defined before.

Definition 5.1. For a communication graph G, letM be a set of messages, and let P(M) be the set of
paths corresponding to all the messages inM, i.e., P(M) = {path(m)|m ∈ M}. A message cover of
M is a set of nodes T (M) ⊆ V(G), such that for each path P ∈ P , we have V(P) ∩ T (M) 6= Ø. In
particular, a minimum message cover is defined by

T ∗(M) ∈ argmin
T (M)⊆V(G): T (M) is a cover of M

|T (M)|.

Conversely, given a set of messages M0 and a set of nodes T ⊆ V(G), a maximal set of messages
M⊆M0 that are covered by T is defined by,

M∗ ∈ argmax
M⊆M0: T is a cover of M

|M|.

We further need the following two definitions before we are able to proceed to the description of
our algorithm. Recall that Mi[t] is the collection of messages received by node i at iteration t. Let
M′

i[t] = Mi[t] − {(vi[t − 1], (i, i))}. Sort messages inM′
i[t] in an increasing order, according to their

message values, i.e., value(m) form ∈M′
i[t]. LetMis[t] ⊆M′

i[t] such that (i) for allm ∈M′
i[t]−Mis[t]

and m′ ∈ Mis[t] we have value(m) ≥ value(m′); and (ii) the cardinality of a minimum cover ofMis[t]
is exactly f , i.e., |T ∗(Mis[t])| = f . Similarly, we define Mil[t] ⊆ M′

i[t] as follows: (i) for all m ∈
M′

i[t] −Mil[t] and m′′ ∈ Mil[t] we have value(m) ≤ value(m′′); and (ii) the cardinality of a minimum
cover ofMil[t] is exactly f , i.e., |T ∗(Mil[t])| = f . In addition, defineM∗

i [t] =M′
i[t]−Mis[t]−Mil[t].

3That is, all the entries of the column will be non-zero (more precisely, positive, since the entries of matrix H are non-
negative). Also, such a non-zero column will exist in Hn−φ−1 too. We use the loose bound of n−φ to simplify the presentation.

9

Theorem 5.1. Suppose that graph G satisfies Condition NC, then the sets of messagesMis[t],Mil[t] are
well-defined andM∗

i [t] is nonempty.

Proof. For ease of exposition, with a slight abuse of notation, we drop the time indices ofM′
i[t],Mis[t],

Mil[t] and M∗
i [t], respectively. From Corollary 4.2, we know |N−i | ≥ 2f + 1. Since |T ∗(Mis)| =

f and |T ∗(Mil)| = f , the message from at least one incoming neighbor of node i is not covered by
T ∗(Mis) ∪ T ∗(Mil). SoM∗

i is nonempty.

We prove the existence ofMis andMil by construction. The setMis can be constructed using the
following algorithm, which can be easily adapted for the construction of setMil. For clarity of proof, we
constructMis andMil sequentially, although they can be found in parallel.

As before, sort the messages inM′
i in an increasing order, according to their messages values. Initialize

Mis ← Ø, Q ← Ø andM ← M′
i. At each round, let ms be a message with the smallest value inM,

and update Q,M as follows,

Q← Q ∪ {ms};
M←M− {ms}.

If |T ∗(Q)| ≥ f + 1, setMis ← Q−ms and returnMis; otherwise, repeat this procedure.

If the algorithm terminates, then by the code, it is easy to see that the returned Mis satisfies the
following conditions: For all m ∈ M′

i −Mis and m′ ∈ Mis we have value(m) ≥ value(m′); and the
cardinality of a minimum cover ofMis is exactly f , i.e., |T ∗(Mis)| = f . It remains to show this algorithm
terminates. Suppose this algorithm does not terminate. The problem of finding a minimum cover of a set
of messages, i.e., computing T ∗(Q), can be converted to the problem of finding a minimum cut of a vertex
pair, which can be solved in polynomial time. Thus, non-termination implies that |T ∗(M′

i)| ≤ f , which
further implies that the l–restricted (V(G) − {i}, i)–connectivity is less than or equal to f . On the other
hand, consider the node partition that L = {i}, R = V(G) − {i}, and C = F = Ø, neither L ∪ C ⇒l R
nor R ∪ C ⇒l L holds. This contradicts the assumption that G satisfies Condition NC. So the above
algorithm terminates.

We can adapt the above procedure to constructMil by modifying the initialization step to be Q← Ø,
M←M′

i −Mis.

Termination can be shown similarly. Suppose this algorithm does not terminate. Non-termination
implies that |T ∗(M′

i−Mis)| ≤ f , which further implies that in the node partitionL = {i}, F = T ∗(Mis),
R = V(G)−F−L, C = Ø, the l–restricted (R∪C, {i})–connectivity is no more than f , i.e.,R∪C ;l L.
In addition, since |L| = 1, L ∪ C ;l R. This contradicts the assumption that G satisfies Condition NC.

Therefore,Mis andMil are well-defined.

We will prove that there exists an IABC algorithm – particularly Algorithm 1 below – that satisfies the
validity and convergence conditions provided that the graph G satisfies Condition NC. This implies that

10

Condition NC is also sufficient. Algorithm 1 has the three-step structure described in Section 3.

Algorithm 1

1. Transmit step: Transmit current state, namely vi[t− 1], to nodes in N l+
i . If node i is an intermediate

node of some message, then node i forwards that message as instructed by the message path. When
node i expects to receive a message from a path but does not receive the message, the message value
is assumed to be equal to some default message.

2. Receive step: Receive messages from N l−
i .

3. Update step:

Define

vi[t] = Zi(Mi[t]) = aivi[t− 1] +
∑

m∈M∗i [t]

aiwm. (3)

where
wm = value(m), ai =

1

|M∗
i [t]|+ 1

and M∗
i [t] =M′

i[t]−Mis[t]−Mil[t].

The “weight” of each term on the right-hand side of (3) is ai, where 0 < ai ≤ 1, and these weights
add to 1. For future reference, let us define α, which is used in Theorem 5.3, as:

α = min
i∈V−F

ai. (4)

In Algorithm 1, each fault-free node i’s state, vi[t], is updated as a convex combination of all the
messages values collected by node i at round t. In particular, the coefficient of the message value is
ai if the message is in M∗

i [t] or the message is sent via self-loop of node i; and the coefficient is zero,
otherwise. The update step in Algorithm 1 is a generalization of the update steps proposed in [27, 31, 33],
where the update summation is over all the incoming neighbors of node i instead of over message routes.
In [27, 31, 33], only single-hop communication is allowed, i.e.,l = 1, and the graph G is a simple, thus
the fault-free node i can receive only one message from its incoming neighbor. On the contrary, in our
model, multi-hop communication is considered and the fault-free node can receive message from a node
via multiple routes. The update step in Algorithm 1 take the multi-routes into account. Actually, the
Algorithm 1 also works when the communication graph G is a multi-graph.

5.1 Matrix Preliminaries

We use boldface upper case letters to denote matrices, rows of matrices, and their entries. For instance, A
denotes a matrix, Ai denotes the i-th row of matrix A, and Aij denotes the element at the intersection of
the i-th row and the j-th column of matrix A.

Definition 5.2. A vector is said to be stochastic if all the entries of the vector are non-negative, and the
entries add up to 1. A matrix is said to be row stochastic if each row of the matrix is a stochastic vector.

11

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are defined as [32]:

δ(A) := max
j

max
i1,i2

|Ai1 j −Ai2 j|, (5)

λ(A) := 1−min
i1,i2

∑
j

min(Ai1 j ,Ai2 j). (6)

It is easy to see that 0 ≤ δ(A) ≤ 1 and 0 ≤ λ(A) ≤ 1, and that the rows are all identical if and and only
if δ(A) = 0. Additionally, λ(A) = 0 if and only if δ(A) = 0.

The next result from [14] establishes a relation between the coefficient of ergodicity δ(·) of a product
of row stochastic matrices, and the coefficients of ergodicity λ(·) of the individual matrices defining the
product.

Claim 5.2. For any p square row stochastic matrices Q(1),Q(2), . . . ,Q(p),

δ(Q(1)Q(2) · · ·Q(p)) ≤ Πp
i=1 λ(Q(i)). (7)

Claim 5.2 is proved in [14]. It implies that if, for all i, λ(Q(i)) ≤ 1 − γ for some γ > 0, then
δ(Q(1)Q(2) · · ·Q(p)) will approach zero as p approaches∞.

Definition 5.3. A row stochastic matrix H is said to be a scrambling matrix, if λ(H) < 1 [14, 32].

In a scrambling matrix H, since λ(H) < 1, for each pair of rows i1 and i2, there exists a column j
(which may depend on i1 and i2) such that Hi1 j > 0 and Hi2 j > 0, and vice-versa [14, 32]. As a special
case, if any one column of a row stochastic matrix H contains only non-zero entries that are lower bounded
by some constant γ > 0, then H must be scrambling, and λ(H) ≤ 1− γ.

Definition 5.4. For matrices A and B of identical size, and a scalar γ, A ≤ γB provided that Aij ≤ γBij

for all i, j.

5.2 Matrix Representation of Algorithm 1

Recall that F is the set of faulty nodes. Let |F| = φ. Without loss of generality, suppose that nodes 1
through (n− φ) are fault-free, and if φ > 0, nodes (n− φ+ 1) through n are faulty.

Denote by v[0] ∈ Rn−φ the column vector consisting of the initial states of all the fault-free nodes.
Denote by v[t], where t ≥ 1, the column vector consisting of the states of all the fault-free nodes at the
end of the t-th iteration, t ≥ 1, where the i-th element of vector v[t] is state vi[t].

Theorem 5.3. We can express the iterative update of the state of a fault-free node i (1 ≤ i ≤ n − φ)
performed in (3) using the matrix form in (8) below, where Mi[t] satisfies the four conditions listed below.
In addition to t, the row vector Mi[t] may depend on the state vector v[t − 1] as well as the behavior of
the faulty nodes in F . For simplicity, the notation Mi[t] does not explicitly represent this dependence.

vi[t] = Mi[t] v[t− 1] (8)

12

1. Mi[t] is a stochastic row vector of size (n− φ). Thus, Mij[t] ≥ 0, where 1 ≤ j ≤ n− φ, and∑
1≤j≤n−φ

Mij[t] = 1

2. Mii[t] ≥ ai ≥ α.

3. Mij[t] is non-zero only if there exists a messagem ∈Mi[t] such that source(m) = j and destination(m) =
i.

4. For any t ≥ 1, there exists a reduced graph G̃l
F ∈ RF with adjacent matrix H[t] such that

βH[t] ≤ M[t], where β is some constant 0 < β ≤ 1 to be specified later.

From the code of Algorithm 1, we know that vi[t] = aivi[t−1]+
∑

m∈M∗i [t] aiwm, where ai = 1
|M∗i [t]|+1

.
Theorem 5.3 says that we can rewrite aivi[t− 1] +

∑
m∈M∗i [t] aiwm as∑

j∈V−F

Mij[t]vj[t− 1],

where Mij[t]s together satisfy the preceding four conditions. The proof of this theorem is presented in
Section 5.2.1 below. The last condition above plays an important role in the proof. By “stacking” (8) for
different i, 1 ≤ i ≤ n− φ, we can represent the state update for all the fault-free nodes together using (9)
below, where M[t] is a (n− φ)× (n− φ) row stochastic matrix, with its i-th row being equal to Mi[t] in
(8).

v[t] = M[t] v[t− 1]. (9)

By repeated application of (9), we obtain:

v[t] =
(

Πt
τ=1M[τ]

)
v[0].

5.2.1 Correctness of Theorem 5.3

We prove the correctness of Theorem 5.3 by constructing Mi[t] for 1 ≤ i ≤ n − φ that satisfies the
conditions in Theorem 5.3. Recall that nodes 1 through n − φ are fault-free, and the remaining φ nodes
(φ ≤ f) are faulty. Consider a fault-free node i performing the update step in Algorithm 1. Recall
that Mis[t] and Mil[t] messages are eliminated from Mi[t]. Let Sig[t] ⊆ Mis[t] and Lig[t] ⊆ Mil[t],
respectively, be the sets of removed messages that are not covered by faulty nodes. Let P∗i [t] be the set of
paths corresponding to all the messages inM∗

i [t]. Untampered message representation of the evolution
of vi and construction of Mi[t] differ somewhat depending on whether sets Lig[t],Sig[t] and P∗i [t]∩F are
empty or not, where P∗i [t] ∩ F = Ø means that no message inM∗

i [t] has been tampered by faulty nodes
and P∗i [t] ∩ F 6= Ø means that there exists a message that is tampered by faulty nodes. It is possible that
T ∗(Mis[t]) = T ∗(Mil[t]) = F , which means all messages inMis[t] andMil[t] are tampered by faulty
nodes, i.e., Sig[t] = Ø and Lig[t] = Ø. We divide the possibilities into six cases:

1. Case I: Sig[t] 6= Ø,Lig[t] 6= Ø and P∗i [t] ∩ F 6= Ø.

13

2. Case II: Sig[t] 6= Ø,Lig[t] 6= Ø and P∗i [t] ∩ F = Ø.

3. Case III: one of Sig[t],Lig[t] is empty and P∗i [t] ∩ F 6= Ø.

4. Case IV: one of Sig[t],Lig[t] is empty and P∗i [t] ∩ F = Ø.

5. Case V: Sig[t] = Ø,Lig[t] = Ø and P∗i [t] ∩ F 6= Ø.

6. Case VI: Sig[t] = Ø,Lig[t] = Ø and P∗i [t] ∩ F = Ø.

We first describe the construction of Mi[t] in case I, when Sig[t] 6= Ø,Lig[t] 6= Ø and P∗i [t] ∩ F 6= Ø.
Let w̄is[t] and w̄il[t] be defined as shown below. Recall that wm = value(m).

w̄is[t] =

∑
m∈Sig [t] wm

|Sig[t]|
and w̄il[t] =

∑
m∈Lig [t] wm

|Lig[t]|
. (10)

By the definitions of Sig[t] and Lig[t], w̄is ≤ wm′ ≤ w̄il, for each message m′ ∈M∗
i [t]. Thus, for each

message m′, we can find convex coefficient γm′ , where 0 ≤ γm′ ≤ 1, such that

wm′ = γm′w̄is + (1− γm′)w̄il

=
γm′

|Sig[t]|
∑

m∈Sig [t]

wm +
1− γm′
|Lig[t]|

∑
m∈Lig [t]

wm.

Recall that in Algorithm 1, vi[t] = aivi[t− 1] +
∑

m∈M∗i [t] aiwm, where ai = 1
|M∗i [t]|+1

. In case I, since
P∗i [t]∩F 6= Ø, there exist messages inM∗

i [t] that are tampered by faulty nodes. We need to replace these
“bad messages” by “good messages” in the evolution of vi. In particular,

vi[t] = aivi[t− 1] +
∑

m∈M∗i [t]

aiwm (11)

= aivi[t− 1] +
∑

m∈M∗i [t]: V(path(m))∩F=Ø

aiwm +
∑

m∈M∗i [t]: V(path(m))∩F6=Ø

aiwm (12)

= aivi[t− 1] +
∑

m∈M∗i [t]: V(path(m))∩F=Ø

aiwm (13)

+
∑

m∈M∗i [t]: V(path(m))∩F6=Ø

ai(
γm
|Sig[t]|

∑
m′∈Sig [t]

wm′ +
1− γm
|Lig[t]|

∑
m′∈Lig [t]

wm′) (14)

= aivi[t− 1] +
∑

m∈M∗i [t]: V(path(m))∩F=Ø

aiwm (15)

+
∑

m′∈Sig [t]

(∑
m∈M∗i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

)
wm′ (16)

+
∑

m′∈Lig [t]

(∑
m∈M∗i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
)
wm′ . (17)

14

That is, vi[t] can be represented as a convex combination of values of untampered messages collected at
iteration t, where vi[t − 1] = value(vi[t − 1], (i, i)). For future reference, we refer to the above convex
combination as untampered message representation of vi[t] in case I and the convex coefficient of each
message in the untampered message representation as message weight.

Note that if m is an untampered message inM∗
i [t] or m ∈ Sig[t] ∪ Lig[t], then wm = vj[t− 1] holds,

where node j is the source of message m, i.e., source(m) = j. vi[t] can be further rewritten as follows,
where 1{x} = 1 if x is true, and 1{x} = 0, otherwise.

vi[t] =
∑

j∈V−F

vj[t− 1]
(
ai1{j = i}+

∑
m∈M∗i [t]: V(path(m))∩F=Ø

ai1{source(m) = j}

+
∑

m′∈Sig [t]

(∑
m∈M∗i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

1{source(m′) = j}
)

+
∑

m′∈Lig [t]

(∑
m∈M∗i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
1{source(m′) = j}

))
,

Thus, for each node i, j ∈ V − F , define the entry Mij[t] as follows,

Mij[t] = ai1{j = i}+
∑

m∈M∗i [t]: V(path(m))∩F=Ø

ai1{source(m) = j}

+
∑

m′∈Sig [t]

(∑
m∈M∗i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

1{source(m′) = j}
)

+
∑

m′∈Lig [t]

(∑
m∈M∗i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
1{source(m′) = j}

)
.

The third condition in Theorem 5.3 trivially follows from the above construction. By above definition,
Mij ≥ ai, where Mij > ai holds when there exists a nontrivial cycle (not a self-loop) of length at most
l that contains node i and no faulty nodes. In addition, ai ≥ α by (4). Thus, Mii[t] ≥ α. The second
condition holds. Now we show that Mi[t] is a stochastic vector. It is easy to see that Mij[t] ≥ 0. In
addition, we have

15

∑
j∈V−F

Mij[t] =
∑

j∈V−F

(
ai1{j = i}+

∑
m∈M∗i [t]: V(path(m))∩F=Ø

ai1{source(m) = j}

+
∑

m′∈Sig [t]

(∑
m∈M∗i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

1{source(m′) = j}
)

+
∑

m′∈Lig [t]

(∑
m∈M∗i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
1{source(m′) = j}

))
= ai

∑
j∈V−F

1{i = j}+
∑

m∈M∗i [t]: path(m)∩F=Ø

ai
∑

j∈V−F

1{source(m) = j}

+
∑

m∈M∗i [t]: path(m)∩F6=Ø

(aiγm
|Sig[t]|

∑
m′∈Sig [t]

∑
j∈V−F

1{source(m′) = j}
)

+
∑

m∈M∗i [t]: path(m)∩F6=Ø

(ai(1− γm)

|Lig[t]|
∑

m′ ∈Lig [t]

∑
j∈V−F

1{source(m′) = j}
)

= ai +
∑

m∈M∗i [t]: path(m)∩F=Ø

ai

+
∑

m∈M∗i [t]: path(m)∩F6=Ø

aiγm
|Sig[t]|

∑
m′ ∈Sig [t]

1

+
∑

m∈M∗i [t]: path(m)∩F6=Ø

ai(1− γm)

|Lig[t]|
∑

m′ ∈Lig [t]

1

= ai +
∑

m∈M∗i [t]: path(m)∩F=Ø

ai +
∑

m∈M∗i [t]: path(m)∩F6=Ø

aiγm
|Sig[t]|

|Sig[t]|

+
∑

m∈M∗i [t]: path(m)∩F6=Ø

ai(1− γm)

|Lig[t]|
|Lig[t]|

= ai +
∑

m∈M∗i [t]: path(m)∩F=Ø

ai +
∑

m∈M∗i [t]: path(m)∩F6=Ø

ai

= ai(|M∗
i [t]|+ 1)

= 1.

So Mi[t] is row stochastic.

In case II, since P∗i [t] ∩ F = Ø, all messages inM∗
i [t] are untampered by faulty nodes. Let m0 be an

arbitrary message inM∗
i [t], with source(m0) = j∗. In order to guarantee condition 4) holds, we rewrite

16

vi[t] as follows,

vi[t] = aivi[t− 1] +
∑

m∈M∗i [t]

aiwm

= aivi[t− 1] + aiwm0 +
∑

m∈M∗i [t]−{m0}

aiwm

= aivi[t− 1] +
1

2
aiwm0 +

1

2
aiwm0 +

∑
m∈M∗i [t]−{m0}

aiwm

= aivi[t− 1] +
1

2
aiwm0 +

1

2
ai(

γm0

|Sig[t]|
∑

m′∈Sig [t]

wm′ +
1− γm0

|Lig[t]|
∑

m′∈Lig [t]

wm′)

+
∑

m∈M∗i [t]−{m0}

aiwm

= aivi[t− 1] +
1

2
aiwm0 +

∑
m′∈Sig [t]

aiγm0

2|Sig[t]|
wm′ +

∑
m′∈Lig [t]

ai(1− γm0)

2|Lig[t]|
wm′

+
∑

m∈M∗i [t]−{m0}

aiwm.

Note that we did not use the above trick in case I. This is because, in case I, by substituting tampered
messages in M∗

i [t] by untampered messages in Sig[t] and Lig[t], as will be seen later, condition 4) is
automatically guaranteed.

We refer to the above convex combination as the untampered message representation of vi[t] in case
II. And the convex coefficient of each message in the above representation as weight assigned to that
message. Combining the coefficients of messages according to message sources, it is obtained that

vi[t] =
∑

j∈V−F

vj[t− 1]
(
ai1{i = j}+

1

2
ai1{j = j∗}+

∑
m∈M∗i [t]−{m0}

ai1{source(m) = j}

+
aiγm0

2|Sig[t]|
∑

m′∈Sig [t]

1{source(m′) = j}+
ai(1− γm0)

2|Lig[t]|
∑

m′∈Lig [t]

1{source(m′) = j}
)
.

Thus, define Mij by

Mij = ai1{i = j}+
1

2
ai1{j = j∗}+

∑
m∈M∗i [t]−{m0}

ai1{source(m) = j}

+
aiγm0

2|Sig[t]|
∑

m′∈Sig [t]

1{source(m′) = j}+
ai(1− γm0)

2|Lig[t]|
∑

m′∈Lig [t]

1{source(m′) = j}.

Follow the same line as in the proof of case I, it can be shown that the above Mij satisfies conditions 1),
2) and 3).

In case III, case IV, case V and case VI, at least one of Sig[t] and Lig[t] is empty, without loss of
generality, assume that Sig[t] is empty. By the definition of Sig[t], we know that the setMis[t] is covered

17

by F . On the other hand, by the definition of Mis[t], a minimum cover of Mis[t] is of size f . Since
|F| ≤ f , then we know F is a minimum cover ofMis[t] and |F| = f . From the definition ofMis[t], we
know there exists a message with the smallest value inM∗

i [t], denoted by ms is not covered by F . So, we
can use singleton {ms} to mimic the role of Sig[t] in cases I and II. Similarly, we can use the same trick
when Lig[t] is empty. The untampered message representation of vi[t] and message weight are defined
similarly as that in case I and case II.

To show the above constructions satisfy the last condition in Theorem 5.3, we need the following
claim.

Claim 5.4. For node i ∈ V −F , in the untampered message representation of vi[t], at most one of the sets
Sig[t] and Lig[t] contains messages with assigned weights less than β, where β = 1

16n2l .

Proof. An untampered message is either inM∗
i [t] or in Sig[t] ∪ Lig[t].

For case V and case VI, both Sig[t] and Lig[t] are empty, all untampered messages are contained in
M∗

i [t]. For each untampered message inM∗
i [t], its weight in the untampered message representation is

ai = 1
|M∗i [t]|+1

. InMi[t], there are at most n messages were transmitted via one hop, at most n2 messages
were transmitted via two hops. In general,Mi[t] contains at most nd messages that were transmitted via
d hops, where d is an integer in {1, . . . , l}. Thus,

|M∗
i [t]|+ 1 ≤ |Mi[t]|

≤ n+ n2 + . . .+ nl

=
n(nl − 1)

n− 1
(a)

≤ n(nl − 1)
n
2

≤ 2nl.

Inequality (a) is true because n ≥ 2. Thus, ai ≥ 1
2nl

. In cases V and VI, as both Sig[t] and Lig[t] are
empty, all untampered messages are with weight no less than 1

2nl
.

For case III and case IV, WLOG, assume Sig[t] is empty. An untampered message is either inM∗
i [t]

or in Lig[t]. Since for each untampered message in M∗
i [t], the weight assigned to it in the untampered

message representation of vi[t] is at least 1
2nl

. Thus, only Lig[t] may contain untampered messages with
assigned weights less than 1

2nl
.

For case II, both Sig[t] and Lig[t] are nonempty, an untampered message is in one ofM∗
i [t], Sig[t] and

Lig[t]. In the untampered message representation of vi[t], either γm0 ≥ 1
2

or 1− γm0 ≥ 1
2
. WLOG, assume

that γm0 ≥ 1
2
, which implies that for each message in Sig[t], the assigned weight is at least ai

4|Sig [t]| ≥
1

16n2l ,
since |Sig[t]| ≤ |Mi[t]| ≤ 2nl. Let β = 1

16n2l , then we can conclude that only Lig[t] may contain
untampered messages with assigned weights less than β.

It can be shown similarly that the above claim also holds for case I.

18

Now we are ready to show the following property is also true.

Claim 5.5. For any t ≥ 1, there exists a reduced graph G̃lF ∈ RF such that βH[t] ≤ M[t].

Proof. We construct the desired reduced graph G̃lF as follows. Let

E = {e ∈ E(Gl) : V(P (e)) ∩ F 6= Ø}

be the set of edges in Gl that are covered by node set F .

For a fault-free node i: (i) if both Sig[t] and Lig[t] are empty, then choose Ci = Ø; (ii) if one of Sig[t]
and Lig[t] is empty, WLOG, assume that Sig[t] is empty, then choose Ci = T ∗(Mil[t]); (iii) if both Sig[t]
and Lig[t] are nonempty, WLOG, assume that the weight assigned to every message in Sig[t] is lower
bounded by β, then choose Ci = T ∗(Mil[t]). Let

Ei = {e ∈ E(Gl) : e is an incoming edge of node i in Gl and V(P (e)) ∩ Ci 6= Ø}

be the set of incoming edges of node i in Gl that are covered by node set Ci.

Set V(G̃lF) = V(G)−F . And let E(G̃lF) = E(G̃l)− E − ∪i∈V−FEi.

From claim 5.4, for node i, at most one of the sets Sig[t] and Lig[t] contains messages with assigned
weights less than β. Then it is easy to see that the adjacency matrix of the obtained reduced graph, H[t],
has the property that βH[t] ≤ M[t].

5.3 Correctness of Algorithm 1

The proof below uses techniques also applied in prior work (e.g., [16, 6, 29, 15]), with some similarities
to the arguments used in [29, 15].

Lemma 5.6. In the product below of H[t] matrices for consecutive τ(n−φ) iterations, at least one column
is non-zero.

Π
z+τ(n−φ)−1
t=z H[t]

Proof. Since the above product consists of τ(n− φ) matrices in RF , at least one of the τ distinct connec-
tivity matrices in RF , say matrix H∗, will appear in the above product at least n− φ times.

Now observe that: (i) By Lemma 4.5, Hn−φ
∗ contains a non-zero column, say the k-th column is non-

zero, and (ii) all the H[t] matrices in the product contain a non-zero diagonal. These two observations
together imply that the k-th column in the above product is non-zero.

Let us now define a sequence of matrices Q(i) such that each of these matrices is a product of τ(n−φ)
of the M[t] matrices. Specifically,

Q(i) = Π
iτ(n−φ)
t=(i−1)τ(n−φ)+1 M[t]

19

Observe that

v[kτ(n− φ)] =
(

Πk
i=1 Q(i)

)
v[0] (18)

Lemma 5.7. For i ≥ 1, Q(i) is a scrambling row stochastic matrix, and λ(Q(i)) is bounded from above
by a constant smaller than 1.

Proof. Q(i) is a product of row stochastic matrices (M[t]), therefore, Q(i) is row stochastic.

From Lemma 5.5, for each t,
βH[t] ≤ M[t]

Therefore,
βτ(n−φ) Π

iτ(n−φ)
t=(i−1)τ(n−φ)+1 H[t] ≤ Q(i)

By using z = (i − 1)(n − φ) + 1 in Lemma 5.6, we conclude that the matrix product on the left side of
the above inequality contains a non-zero column. Therefore, Q(i) contains a non-zero column as well.
Therefore, Q(i) is a scrambling matrix.

Observe that τ(n−φ) is finite, therefore, βτ(n−φ) is non-zero. Since the non-zero terms in H[t] matrices
are all 1, the non-zero entries in Π

iτ(n−φ)
t=(i−1)τ(n−φ)+1H[t] must each be≥ 1. Therefore, there exists a non-zero

column in Q(i) with all the entries in the column being≥ βτ(n−φ). Therefore λ(Q(i)) ≤ 1−βτ(n−φ).

Theorem 5.8. Algorithm 1 satisfies the validity and the convergence conditions.

Proof. Since v[t] = M[t] v[t−1], and M[t] is a row stochastic matrix, it follows that Algorithm 1 satisfies
the validity condition.

By Claim 5.2,

lim
t→∞

δ(Πt
i=1M[t]) ≤ lim

t→∞
Πt
i=1λ(M[t]) (19)

≤ lim
i→∞

Π
b t
τ(n−φ) c
i=1 λ(Q(i)) (20)

= 0 (21)

The above argument makes use of the facts that λ(M[t]) ≤ 1 and λ(Q(i)) ≤ (1−βτ(n−φ)) < 1. Thus, the
rows of Πt

i=1M[t] become identical in the limit. This observation, and the fact that v[t] = (Πt
i=1M[i])v[t−

1] together imply that the state of the fault-free nodes satisfies the convergence condition.

Now, the validity and convergence conditions together imply that there exists a positive scalar c such
that

lim
t→∞

v[t] = lim
t→∞

(
Πt
i=1M[i])

)
v[0] = c1

where 1 denotes a column with all its entries being 1.

20

6 Extension of Above Results

We show that our proposed conditions encompass the conditions in [30] and [11] as special cases.

6.1 When l = 1

When l = 1, our necessary and sufficient condition coincides with the one provided in [30], which states
that: For any node partition L,C,R, F of G such that L 6= Ø, R 6= Ø and |F | ≤ f , either there exists a
node i ∈ L such that |N−i ∩(R∪C)| ≥ f+1 or there exists a node i ∈ R such that |N−i ∩(L∪C)| ≥ f+1.

6.2 When l = n− 1

If G is undirected, it has been shown in [11], that |V(G)| ≥ 3f + 1 and node-connectivity 2f + 1 are
both necessary and sufficient for achieving Byzantine approximate consensus. We will show that when
l = n− 1, our Condition NC is equivalent to the above conditions.

Theorem 6.1. When l = n− 1, if G undirected, then |V(G)| ≥ 3f + 1 and the node-connectivity of G is
at least 2f + 1 if and only if G satisfies Condition NC.

Proof. First we show “Condition NC implies |V(G)| ≥ 3f + 1 and node connectivity at least 2f + 1”. It
has already been shown in corollary 4.2 that |V(G)| ≥ 3f + 1. It remains to show the node connectivity
of G is at least 2f + 1. We prove this by contradiction. Suppose the node-connectivity is no more than
2f . Let S be a min cut of G, then |S| ≤ 2f . Let K1 and K2 be two connected components in GS , the
subgraph of G induced by node set V(G)− S.

Construct a node partition of G as follows: Let L = K1, R = K2 and C = V − F − L−R, where (1)
if |S| ≥ f + 1, let F ⊆ S such that |F | = f ; (2) otherwise, let F = S. For the later case, there is no path
between L ∪ C and R in GF , then κ(L ∪ C, i) ≤ f for any i ∈ R in GF . Similarly, κ(R ∪ C, j) ≤ f for
any j ∈ L. On the other hand, we know that G satisfies Condition NC. Thus, we arrive at a contradiction.

For the former case, i.e., F ⊂ S, since G satisfies Condition NC, WLOG, assume R ∪ C ⇒n−1 L in
GF , i.e., there exists a node i ∈ L such that there are at least f + 1 disjoint paths from set R ∪ C to node
i in GF . Add an additional node y and connect node y to all nodes in R ∪ C. And denote the resulting
graph by G′F . From Menger’s Theorem we know that a min y, i-cut in graph G′F has size at least f + 1.
On the other hand, since S is a cut of G, then we know S − F is a y, i–cut in G′F . In addition, we know
|S − F | = |S| − |F | ≤ 2f − f ≤ f . Thus we arrive at a contradiction.

Next we show that “|V(G)| ≥ 3f+1 and 2f+1 node-connectivity also imply Condition NC”. Consider
an arbitrary node partition L,R,C, F such that L 6= Ø, R 6= Ø and |F | ≤ f . Since |V| ≥ 3f + 1 and
|F | ≤ f , either |L∪C| ≥ f + 1 or |R∪C| ≥ f + 1. WLOG, assume that |R∪C| ≥ f + 1. Add a node y
connecting to all nodes in R∪C ∪F and denote the newly obtained graph by G′′. By Expansion Lemma4,

4Expansion Lemma: IfG is a k-connected graph, andG′ is formed fromG by adding a vertex y having at least k neighbors
in G, then G′ is k-connected.

21

G′′ is |F |+ f + 1 connected. Thus, fix i ∈ L. There are at least |F |+ f + 1 internally disjoint y, i–paths.
So there are at least f + 1 internally disjoint y, i–paths in G′′F . Thus R ∪ C ⇒n−1 L in GF . Since this
holds for all partitions of the form L,R,C, F where L 6= Ø, R 6= Ø and |F | ≤ f , then we conclude that
Condition NC holds. This completes the proof.

7 Discussion and Conclusion

Throughout this paper, we assume that faulty nodes are only able to tamper message values, leaving
message paths unchanged. However, even when faulty nodes are able to tamper message paths or even fake
and transmit non-existing messages, as long as (i) the number of faked messages is finite (each faulty node
k ∈ F cannot create too many non-existing messages); and (ii) for each message m tampered/faked by
the faulty node k, path(m) must satisfy k ∈ V(path(m)), i.e., the faulty node k cannot conceal itself from
the message path, using the same line of arguments as in Section 4 and Section 5, it can be shown that the
Condition NC described above is the necessary and sufficient condition for the existence of approximate
consensus under the relaxed model.

In this paper, we unify two streams of work by assuming that each node knows the topology of up to
lth neighborhood and can send message to nodes up to l hops away, where 1 ≤ l ≤ n − 1 and n is the
number of nodes. We prove a family of necessary and sufficient conditions for the existence of iterative
algorithms that achieve approximate Byzantine consensus in arbitrary directed graphs. The class of itera-
tive algorithms considered in this paper ensures that, after each iteration of the algorithm, the state of each
fault-free node remains in the convex hull of the states of the fault-free nodes at the end of the previous
iteration. The following convergence requirement is imposed: for any ε > 0, after a sufficiently large
number of iterations, the states of the fault-free nodes are guaranteed to be within ε of each other.

References

[1] Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots. In
SIAM J. Comput, pages 1063–1071, 2004.

[2] A.H. Azadmanesh and H. Bajwa. Global convergence in partially fully connected networks (pfcn)
with limited relays. In Industrial Electronics Society, 2001. IECON ’01. The 27th Annual Conference
of the IEEE, volume 3, pages 2022 –2025 vol.3, 2001.

[3] M. H. Azadmanesh and R.M. Kieckhafer. Asynchronous approximate agreement in partially con-
nected networks. International Journal of Parallel and Distributed Systems and Networks, 5(1):26–
34, 2002.

[4] Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous
agreement protocols. In Proceedings of the Second Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983. ACM.

22

[5] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Simple gradecast based algorithms. CoRR,
abs/1007.1049, 2010.

[6] F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli. Weighted gossip: Distributed aver-
aging using non-doubly stochastic matrices. In Information Theory Proceedings (ISIT), 2010 IEEE
International Symposium on, pages 1753–1757, June 2010.

[7] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-
ods. Optimization and Neural Computation Series. Athena Scientific, 1997.

[8] Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill Higher
Education, 2006.

[9] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl. Reaching
approximate agreement in the presence of faults. J. ACM, 33:499–516, May 1986.

[10] A D Fekete. Asymptotically optimal algorithms for approximate agreement. In Proceedings of the
fifth annual ACM symposium on Principles of distributed computing, PODC ’86, pages 73–87, New
York, NY, USA, 1986. ACM.

[11] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for distributed
consensus problems. In Proceedings of the fourth annual ACM symposium on Principles of dis-
tributed computing, PODC ’85, pages 59–70, New York, NY, USA, 1985. ACM.

[12] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32:374–382, April 1985.

[13] Pedro A. Forero, Alfonso Cano, and Georgios B. Giannakis. Consensus-based distributed support
vector machines. J. Mach. Learn. Res., 11:1663–1707, August 2010.

[14] John Hajnal and MS Bartlett. Weak ergodicity in non-homogeneous markov chains. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 54, pages 233–246. Cambridge Univ
Press, 1958.

[15] Shreyas Sundaram Heath LeBlanc, Haotian Zhang and Xenofon Koutsoukos. Consensus of multi-
agent networks in the presence of adversaries using only local information. HiCoNs, 2012.

[16] A. Jadbabaie, Jie Lin, and A.S. Morse. Coordination of groups of mobile autonomous agents using
nearest neighbor rules. Automatic Control, IEEE Transactions on, 48(6):988–1001, June 2003.

[17] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard. Resilient network coding in
the presence of byzantine adversaries. In INFOCOM 2007. 26th IEEE International Conference on
Computer Communications. IEEE, pages 616–624, May 2007.

[18] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In Foun-
dations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages 482–491,
Oct 2003.

[19] R. M. Kieckhafer and M. H. Azadmanesh. Low cost approximate agreement in partially connected
networks. Journal of Computing and Information, 3(1):53–85, 1993.

23

[20] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, July 1982.

[21] Heath J. LeBlanc, Haotian Zhang, Shreyas Sundaram, and Xenofon Koutsoukos. Consensus of
multi-agent networks in the presence of adversaries using only local information. In Proceedings of
the 1st International Conference on High Confidence Networked Systems, HiCoNS ’12, pages 1–10,
New York, NY, USA, 2012. ACM.

[22] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[23] M.O. Rabin. Randomized byzantine generals. In Foundations of Computer Science, 1983., 24th
Annual Symposium on, pages 403–409, Nov 1983.

[24] I.D. Schizas, G. Mateos, and G.B. Giannakis. Distributed lms for consensus-based in-network adap-
tive processing. Signal Processing, IEEE Transactions on, 57(6):2365–2382, June 2009.

[25] Lewis Tseng and Nitin Vaidya. Iterative approximate consensus in the presence of byzantine link
failures. In Guevara Noubir and Michel Raynal, editors, Networked Systems, Lecture Notes in Com-
puter Science, pages 84–98. Springer International Publishing, 2014.

[26] J.N. Tsitsiklis, D.P. Bertsekas, and M. Athans. Distributed asynchronous deterministic and stochastic
gradient optimization algorithms. Automatic Control, IEEE Transactions on, 31(9):803–812, Sep
1986.

[27] Nitin H. Vaidya. Matrix representation of iterative approximate byzantine consensus in directed
graphs. CoRR, pages –1–1, 2012.

[28] Nitin H Vaidya. Iterative byzantine vector consensus in incomplete graphs. In Distributed Computing
and Networking, pages 14–28. Springer, 2014.

[29] Nitin H. Vaidya, Christoforos N. Hadjicostis, and Alejandro D. Domnguez-Garca. Distributed al-
gorithms for consensus and coordination in the presence of packet-dropping communication links -
part ii: Coefficients of ergodicity analysis approach. CoRR, pages –1–1, 2011.

[30] Nitin H. Vaidya, Lewis Tseng, and Guanfeng Liang. Iterative approximate byzantine consensus in
arbitrary directed graphs. In Proceedings of the 2012 ACM Symposium on Principles of Distributed
Computing, PODC ’12, pages 365–374, New York, NY, USA, 2012. ACM.

[31] Nitin H. Vaidya, Lewis Tseng, and Guanfeng Liang. Iterative approximate byzantine consensus in
arbitrary directed graphs: Synchronous and asynchronous systems. Technical report, University of
Illinois at Urbana-Champaign, february 2012.

[32] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices. Proceedings of the Amer-
ican Mathematical Society, 14(5):pp. 733–737, 1963.

[33] Haotian Zhang and Shreyas Sundaram. Robustness of information diffusion algorithms to locally
bounded adversaries. CoRR, abs/1110.3843, 2011.

24

