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Abstract—Carrier Sense Multiple Access (CSMA) protocols
have been shown to reach the full capacity region for data
communication in wireless networks, with polynomial complexity.
However, current literature achieves the throughput optimality
with an exponential delay scaling with the network size, even
in a simplified scenario for transmission jobs with uniform
sizes. Although CSMA protocols with order-optimal average
delay have been proposed for specific topologies, no existing
work can provide worst-case delay guarantee for each job in
general network settings, not to mention the case when the jobs
have non-uniform lengths while the throughput optimality is still
targeted. In this paper, we tackle on this issue by proposing a
two-timescale CSMA-based data communication protocol with
dynamic decisions on rate control, link scheduling, job transmis-
sion and dropping in polynomial complexity. Through rigorous
analysis, we demonstrate that the proposed protocol can achieve
a throughput utility arbitrarily close to its offline optima for jobs
with non-uniform sizes and worst-case delay guarantees, with a
tradeoff of longer maximum allowable delay.

I. INTRODUCTION

The efficacy of a wireless communication algorithm can be

examined with three criteria: high throughput, low response

delay and low computation/communication complexity. How-

ever, it is commonly accepted that there is a tradeoff among the

three dimensions of algorithm performances [17]. Maximum-

weight scheduling (MWS) [19] algorithms are proven to be

throughput-optimal, however incurring exponential computa-

tion complexity as the network size grows up. Low-complexity

algorithms ( [10] and references therein) are proposed to

approximate the MWS, while achieving only a fraction of the

optimal throughput.
CSMA-style random access control protocols have been

studied intensely in recent years for its low complexity and

provable optimality in throughput maximization [5], [15]. Nev-

ertheless, it comes with an exponentially long delay scaling

with the network size [12]. Although some recent efforts [1]–

[3], [6], [12], [16], [18] try to improve the delay performance

and have even achieved asymptotic bounds on the average

delay [12], [16], [18] in specific topologies, the worst-case

delay guarantee, which is a more practical concern in real-

world implementations ensuring that each transmission job

is either served or dropped before its maximum allowable

delay, is yet to be studied. The difficulty further escalates
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if we still aim to obtain (close-to-)optimal throughput utility

at the same time, with general network topologies and low

computation/communication complexities.

Apart from above, a common assumption is shared by

current literature such that each transmission job has the same

size and is packed in a single data unit, e.g., one data packet,

which can be completely delivered within one time slot. This

idealized model fails to capture the diverse job sizes of some

mainstream applications. For example, one Twitter update may

need just tens of bytes while a video clip on Youtube may be

in the size of several mega-bytes. A more practical model

should allow the existence of transmission jobs consisted of

one/multiple consecutive data packets, which should either

be fully delivered to the destination or completely dropped.

Partial reception of the transmission job brings no utility to

the network, e.g., a video clip with missing information may

not be decodable. When coupled with the worst-case delay

guarantee, i.e., each transmission job instead of one packet

is either delivered or dropped before its service deadline,

we should explore novel designs for the low-complexity

throughput-optimal CSMA protocol.

In this paper, we investigate the throughput-utility op-

timal CSMA protocol in general network topologies with

low computation/communication complexities and worst-case

delay guarantees for transmission jobs with diverse sizes.

A two-timescale algorithm is proposed to dynamically make

decisions in each time slot on: 1) rate control: how many jobs

should be admitted into the network such that congestion could

be avoided while the throughput utility is maximized? 2) link

scheduling: which subset of the links should be simultaneously

scheduled for transmission such that no collision will occur

while the network capacity can be fully exploited? 3) job

transmission: how many jobs, from each category of job sizes

and worst-case delay requirements, should be transmitted over

the scheduled links? 4) job dropping: how many jobs of each

category should be dropped so as to meet the worst-case delay

bounds? A CSMA-style random access control mechanism is

integrated with the Lyapunov optimization framework [13] for

the algorithm design. To be specific, the link scheduling is

carried out with the CSMA protocol and randomly gener-

ates collision-free transmissions, while the rate control, and

job transmission and dropping decisions are deterministically

made based on the network status in each time slot. Rigorous

analysis demonstrates that our protocol can achieve a through-

put utility, which can be made arbitrarily close to its optima,

with polynomial computation/communication complexity at
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each link and guaranteed worst-case delay for jobs with non-

uniform sizes, at a tradeoff of longer maximum allowable

delay.

The contribution of this paper is summarized as follows,

⊲ To our best knowledge, we are the first to investigate the

existence of worst-case delay guarantees and non-uniform job

sizes for CSMA protocols in general network topologies.

⊲ A CSMA-based two-timescale wireless communication al-

gorithm is proposed to dynamically decide the rate control,

link scheduling, and job transmission and dropping in each

time slot, with an objective to maximize the time-averaged

throughput utility.

⊲ Theoretical analysis demonstrates that our proposed algo-

rithm can guarantee the worst-case delay for all job sizes, and

achieve a throughput-utility that can be arbitrarily close to

its optimality, with a polynomial computation/communication

complexity at each link and the tradeoff of a longer maximum

allowable delay.

The rest of the paper is organized as follows. We discuss

the related works in Sec. II and present the problem model in

Sec. III. The two-timescale dynamic algorithm is introduced

with details in Sec. IV. In Sec. V, we rigorously analyze the

efficiency of our algorithm. Finally, we conclude this paper in

Sec. VI.

II. RELATED WORK

CSMA protocols have attracted tremendous attention in

recent years [5], [15] mainly due to its potential to simul-

taneously achieve high throughput and low complexity, and

its implementation in a distributed fashion.

With perfect and instantaneous carrier sensing assump-

tion (no collision will happen), Jiang et al. [5] introduce a

continuous-time CSMA protocol, that can achieve the opti-

mal throughput. A discrete-time queue-length based CSMA

protocol is next proposed by Ni et al. [15] to reach the

full capacity region, explicitly considering the avoidance of

collisions without the perfect carrier sensing assumption.

However, it has been shown that it is hard to achieve

throughput optimality and low delay simultaneously with

CSMA protocols [17]. Hence, a rich body of research efforts

have been devoted to decreasing the delay for CSMA proto-

cols. Shah et al. [16] present a CSMA protocol with order-

optimal delay for networks with geometry. Jiang et al. [3]

demonstrate the relation between the small mixing time and

a low delay, and investigate on how to tighten the generic

bound of mixing time for specific topologies. For networks

with bounded interference degree and an arrival rate within

only a fraction of the capacity region, Jiang et al. [2] show that

the average delay grows polynomially with the network size

under parallel Glauber dynamics, and a constantly bounded

mean delay independent of the network size is proved by

Subramanian et al. [18]. In contrast, Lotfinezhad et al. [12]

achieve not only the throughput optimality but also an order-

optimal delay, in the torus topology. However, it is not clear

whether the above improvements can be extended to general

network topologies.
Lee et al. [7] examine the delay performance of a class

of CSMA protocol by tuning the control parameters. Never-

theless, there is no evidence on whether tuning parameters

could fundamentally improve the exponential order of delay

performance. Lam et al. [6] try to improve the average delay

with multiple physical channels, however, each link can be

scheduled on at most one channel at a time, which cannot fully

exploit the capacity region. Huang et al. [1] explore the power

of multiple virtual channels to reduce the head-of-line delay,

with a definition different from the average delay. Throughput

utility, instead of queue lengthes, is used as the scheduling

weight. Order-optimal head-of-line delay can be obtained in a

close-loop setting with rate control.
The only work that considers the deadline for data trans-

mission by Li et al. in [8]. However, the solution proposed by

[8] only applies to a complete graph (each link collides with

each other), but cannot be adapted to general topologies.
Different from the papers discussed above, this paper prac-

tically considers the guarantee of worst-case delay bounds

and the communication service for jobs with non-uniform

sizes. Meanwhile, the throughput-utility optimality can still

be achieved with a low complexity, for general topologies.

III. PROBLEM MODEL

We have a wireless network composed of a node set N
and link set E . Each source-destination pair is within one

hop distance, which means each source just needs exactly one

transmission to reach its destination without relaying. Each

link has unit-capacity, i.e., transmitting at most one packet in

one time slot.
We consider a general interference model by defining an

interference-relation set Ci for each link i ∈ E . Each link

j ∈ Ci will cause collision to link i scheduled concurrently.
Different from existing efforts on throughput-optimal

CSMA protocols assuming identical sizes of transmission jobs,

we model the diverse job sizes of various network applications

by differentiating types of transmission jobs. Let M denote

the set of job types. For each job type m ∈ M, it is composed

of sm consecutive data packets, which should be either fully

delivered to its destination or entirely dropped.
The network runs in a time-slotted fashion. In each time

slot t ≥ 0, a random number of Ami(t) (∀m ∈ M, i ∈ E)

jobs arrive at the transmitter of link i. Here, Ami(t) is i.i.d. in

[0, Amax
mi ] with Amax

mi as the maximum job arrival rate for type

m job at link i. Uncontrolled admission of job arrivals may

cause congestion in the network. Thus, a rate control decision

rmi(t) should be made such that jobs of type-m are admitted

into the job queue on link i with

rmi(t) ∈ [0, Ami(t)], ∀m ∈ M, i ∈ E . (1)

A. Job queues

After jobs of type m ∈ M are admitted to the source of

link i ∈ E , they are injected into a queue Qmi(t) of unsent

jobs with queueing law as follows,
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Qmi(t+ 1) =max{Qmi(t)− µmi(t)− dmi(t)× sm, 0}

+ rmi(t)× sm, ∀m ∈ M, i ∈ E . (2)

Here, the length of Qmi(t) is the total number of packets

waiting to be delivered at time slot t. dmi(t) is the number

of type m jobs that are dropped by link i at time slot t, as a

result of meeting its delay deadline (to be introduced shortly),

with

dmi(t) ∈ [0, dmax
mi ], ∀m ∈ M, i ∈ E . (3)

where, dmax
mi is the maximum dropping rate. µmi(t) is the

number of type m packets delivered over link i at time slot t.
Since unit-capacity is assumed for each link, we have that

B. Link scheduling and job transmission

Each link i ∈ E is indicated to be either active (transmitting)

or idle in each time slot with binary variable xi as follows,

xi(t) =

{

1 if link i is scheduled in slot t

0 Otherwise.
, ∀i ∈ E . (4)

A feasible link schedule should ensure that no pair of

mutually interfering links can be active concurrently, i.e.,

xi(t) + xj(t) ≤ 1, ∀j ∈ Ci, i ∈ E . (5)

If link i is active in slot t, it needs to decide which type of

jobs should be served with the available capacity. Recall that

each link has unit capacity, at most one type of jobs can be

served in current slot with the following capacity constraint,
∑

m∈M

µmi(t) = xi(t), ∀i ∈ E . (6)

µmi(t) ∈ {0, 1}, ∀m ∈ M, i ∈ E . (7)

C. Worst case delay guarantee

As stated previously, we novelly address the worst-case

delay bound for each admitted job in the network as follows,

Each type-m job for link i is either scheduled for transmission or

dropped (subject to a penalty) before its maximum delay Dm,

∀m ∈ M, i ∈ E . (8)

It is natural that a penalty, β > 0, for each dropped packet

should be charged, such that it is not rational for each link i
to greedily admit jobs for now while to drop them later.

D. Useful definitions

We present some important definitions that will be used in

the rest of the paper.

Definition 1 (Queue and Network Stability [13]): A queue

Q is strongly stable (or stable for short) if and only if

lim
t→∞

sup
1

t

t−1
∑

τ=0

E(Q(τ )) < ∞,

where Q(τ) is the queue size at time slot τ and E(·) is the

expectation. A network is strongly stable (or stable for short)

if and only if all queues in the network are strongly stable.

Theorem 1 (Necessity & Sufficiency for Queue Stability [13]):

For any queue Q with the following queuing law,

Q(t+ 1) = Q(t)− γ(t) + α(t),

where α(t) and γ(t) are the arrival and departure rates in time

slot t, respectively, the following results hold:

N Set of nodes E Set of links
M Set of job types Ci Collision set of link i

E(·) The expectation U(·) Utility function

sm Size of type-m jobs
smax Maximum job size of all types
Dm Worst-case delay of type-m jobs
Ami(t) Arrival rate of type-m jobs on link i in time slot t
Amax

mi Maximum arrival rate of type-m jobs on link i

rmi(t) Admitted type-m jobs on link i in time slot t
ηmi(t) Auxiliary variable for rmi(t) in time slot t
xi(t) Binary var: link i is scheduled in time slot t?
µmi(t) Binary var: type-m job is transmitted over link i in time slot

t?

µmi(t
−) Binary var: type-m job has not finished transmission over

link i in time slot t?
dmi(t) # of dropped type-m jobs on link i in time slot t
dmax
mi (t) Maximum drop rate of type-m jobs on link i

Qmi(t) Packet queue of type-m jobs on link i in time slot t
Ymi(t) Rate control virtual queue for type-m jobs on link i at time

t

Zmi(t) Delay virtual queue for type-m jobs on link i at time t

ǫmi Constant for delay virtual queue Zmi(t)
V User-defined positive constant in dynamic algorithm
B Quantity defined in Sec. IV

TABLE I
LIST OF NOTATIONS.

Necessity: If queue Q is strongly stable, then its average

incoming rate ᾱ = limt→∞
1
t

∑t−1
τ=0 E(α(τ)) is no larger than

the average outgoing rate γ̄ = limt→∞
1
t

∑t−1
τ=0 E(γ(τ)).

Sufficiency: If the average incoming rate ᾱ is strictly smaller

than the average outgoing rate γ̄, i.e., ᾱ + ǫ ≤ γ̄ with ǫ > 0,

then queue Q is strongly stable.

Hereinafter, for any variable α(t), we denote its time-

averaged value as ᾱ, i.e., ᾱ = limt→∞
1
t

∑t−1
τ=0 E(α(τ)).

E. Throughput utility maximization problem

Our objective is to dynamically decide the rate control,

link scheduling, and job transmission and dropping, such that

the time-averaged net utility (throughput utility minus the job

dropping penalty) can be maximized while the worst-case

delay is guaranteed for jobs with non-uniform sizes.

max
∑

m∈M

∑

i∈E

[U(r̄mi × sm)− βd̄mi × sm] (9)

s.t. Network stability, and Constraint (1),(3),(7),(4),(5),(6),(8).

Here, U(·) is the throughput utility function, which is non-

negative, non-decreasing, concave and differentiable. It is

reasonable to have β > U ′(0) such that admitting one job into

the queue for now while dropping it later brings no positive

utility gain.

Important notations are summarized in Table I.

IV. CSMA-BASED DYNAMIC WIRELESS

COMMUNICATION ALGORITHM

In this section, we introduce our CSMA-based wireless

communication algorithm, which dynamically decides the rate

control, link scheduling, and job transmission and dropping,

so as to maximize the time-averaged throughput utility as

defined in (9). We first define two important virtual queues

(to deal with rate control and delay bounds, respectively), and

then present the algorithm design in details by solving four

one-slot optimization problems in each time slot in order to

approximate (9).
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A. Virtual queues

We have two types of virtual queues to assist the algorithm

design.

Virtual queue for rate control: To deal with the case when

the utility function U(·) is non-linear [13], each link i ∈ E
has the following virtual queue for its rate control on each job

type m ∈ M,

Ymi(t+ 1) = max{Ymi(t)− rmi(t) · sm, 0}+ ηmi(t) · sm

∀m ∈ M, i ∈ E .
(10)

Here, ηmi(t) is an auxiliary variable with

ηmi(t) ∈∈ [0, Amax
mi ], ∀m ∈ M, i ∈ E . (11)

The rationale is that, if virtual queue Ymi(t) is kept stable,

we have η̄mi ≤ r̄mi with Theorem 1, i.e., the time-averaged

value of ηmi(t) · sm constitutes a lower bound for the average

throughput. Later on, we will show that maximizing the utility

of η̄mi ·sm can approximately maximize the utility of average

throughput r̄mi · sm.

Virtual queue for delay bound: The ǫ−persistence queue

[14]1 is applied in order to meet the QoS constraint. For each

job type m ∈ M, each link i ∈ E maintains the following

virtual queue,

Zmi(t+ 1) =max{Zmi(t) + 1{Qmi(t)>0}(ǫmi − µmi(t))

− dmi(t)× sm − 1{Qmi(t)=0}, 0}, ∀m ∈ M, i ∈ E .
(12)

Here, 1{·} is a binary indicator function. ǫmi is a positive

constant. The virtual queue Zmi(t) approximately keeps track

of the delay information for data packet queue Qmi(t) and

assists our algorithm design (to be introduced shortly).

B. Distributed dynamic algorithm

We derive the dynamic algorithm by decoupling the time-

averaged utility maximization problem (9) into four one-slot

optimization problems to be solved in each time slot.

Each link i ∈ E maintains a set of queues Θ(t) =
{Ymi(t), Qmi(t), Zmi(t)|∀m ∈ M, i ∈ E}. We define the

Lyapunov function as follows,

L(Θ(t)) =
1

2

∑

m∈M

∑

i∈E

[(Ymi(t))
2 + (Qmi(t))

2 + (Zmi(t))
2].

(13)
The one-slot conditional Lyapunov drift is

∆(Θ(t)) = L(Θ(t+ 1))− L(Θ(t)). (14)

By squaring the queueing laws in Eqn. (2), (10) and

(12), We can have the drift-plus-penalty inequality as follows

(derivation details are included in technical report [9]),

∆(Θ(t))− V
∑

m∈M

∑

i∈E

(U(ηmi(t) · sm)− βdmi(t)× sm)

≤B +
∑

m∈M

∑

i∈E

Zmi(t) · ǫmi − Φ1(t)−Φ2(t)− Φ3(t)− Φ4(t).

(15)

1Note that, in [14], the ǫ−persistence queue can only handle the case
when transmission jobs have the uniform size. In this paper, we adapt this
technique to the jobs with non-uniform sizes.

Here, B = 1
2

∑

m∈M

∑

i∈E [3(A
max
mi · sm)2 + 2(1 + dmax

mi ·
sm)2 + (ǫmi)

2] is a constant value, and V > 0 is a user-

defined parameter to adjust the weight of net utility in the

expression. Φ1(t), Φ2(t), Φ3(t) and Φ4(t) are as follows,

• Terms related to auxiliary variables ηmi(t):

Φ1(t) =
∑

m∈M

∑

i∈E

[V · U(ηmi(t)sm)− Ymi(t) · ηmi(t)sm].

• Terms related to rate control variables rmi(t):

Φ2(t) =
∑

m∈M

∑

i∈E

rmi(t) · sm · [Ymi(t)−Qmi(t)].

• Terms related to link scheduling and job transmission

variables µmi(t):

Φ3(t) =
∑

m∈M

∑

i∈E

µmi(t) · [Qmi(t) + Zmi(t)].

• Terms related to packet drop variables dmi(t):

Φ4(t) =
∑

m∈M

∑

i∈E

dmi(t) · sm · [Qmi(t) + Zmi(t)− V · β].

According to Lyapunov optimization theory [13], we can

maximize a lower bound of the time-averaged throughput util-

ity and find optimal solutions to the rate control, link schedul-

ing, job transmission and dropping variables by minimizing

the RHS of the drift-plus-penalty equality (15), observing the

queue lengths Θ(t) and the packet arrival Ami(t) in each time

slot t. Hence, we propose a dynamic algorithm to solve the

one-slot optimization problem in each time slot t as follows,

max Φ1(t) + Φ2(t) + Φ3(t) + Φ4(t) (16)

s.t. Constraints (1),(3),(7),(4),(5),(6),(11).

Note that, the delay constraint (8) is not included in the one-

slot optimization, since it could be satisfied by the stability of

virtual queue Zmi(t) to be shown in Sec. V.

The maximization problem in (16) can be decoupled into

four independent optimization problems:

max Φ1(t) (17)

s.t. Constraint (11),

which is related to the optimal decision on the auxiliary

variable ηmi(t); and

max Φ2(t) (18)

s.t. Constraint (1),

which is related to the optimal decision on the rate control

variable rmi(t); and

max Φ3(t) (19)

s.t. Constraint (7),(4),(5),(6),

which is related to the optimal decision on the link scheduling

variable xi(t) and job transmission variable µmi(t); and

max Φ4(t) (20)

s.t. Constraint (3),

which is related to the optimal decision on the job dropping

variable dmi(t). Hence, we have the following dynamic algo-

rithm with optimal solutions to each variable.
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1) Rate control: We solve (17) and (18) to decide the

auxiliary variables and rate control variables (∀m ∈ M, i ∈ E)

as follows,

ηmi(t) = max{min{U ′−1(
Ymi(t)

V
)/sm, Amax

mi }, 0}, (21)

where, U ′−1(·) is the reverse function of the first-order deriva-

tive of the utility function; and

rmi =

{

Ami(t) if Ymi(t)−Qmi(t) > 0

0 Otherwise.
(22)

Remark: Virtual queue Ymi(t) can be regarded as the unused

tokens for data admission. A large value for Ymi(t) indicates

adequate available tokens, which results in fewer new tokens,

i.e., ηmi(t), to be added in this slot. Meanwhile, Qmi(t)
reflects the congestion level on the link. Ymi(t)−Qmi(t) > 0
means we have enough tokens while relatively low congestion.

Thus, we admit all the arrived jobs. Otherwise, no job is

admitted into the network.

2) Link scheduling and job transmission with CSMA: We

design the following mechanism to approximate the optimal

solution to (19). Our CSMA-based scheduling mechanism runs

in a two-timescale fashion: super slot and regular slot. Each

super slot is composed of T ≥ smax (smax = maxm∈M{sm})

regular slots, while each regular slot has the same definition

as in [15] and our problem model. The link scheduling

decisions are made upon the beginning of each super slot and

remain fixed throughout each regular slot in that super slot.

However, the served job-types are decided in every regular slot

dynamically. To be specific, we have that

• If t = nT with n ≥ 0: this is the beginning of the

nth super slot. The regular slot of this type is composed

of two consecutive phases: control phase and scheduling

phase.

– Control phase: In this phase, all the links dis-

tributively randomly generate a collision-free con-

trol schedule z(t) = [z1, . . . , zi(t), . . . , zE(t)] with

zi(t) ∈ {0, 1}, ∀i ∈ E . This control schedule is not

the final decision on link scheduling, but indicates

the links which may make changes to its scheduling

decision in the scheduling phase.

The control phase has W mini-slots2. At the start of

this phase, each link i uniformly randomly select an

integer Ti in [0,W−1] and backoff for Ti mini-slots.

Link i has the following possible actions:

⊲ If link i hears no ‘INTENT’ message before the

(Ti + 1)th mini-slot, it broadcasts an ‘INTENT’

message at mini-slot Ti + 1.

– If there is no collision, link i is included in the

control schedule and we have zi(t) = 1.

– Otherwise, link i is not selected into the control

schedule and we have zi(t) = 0.

⊲ If link i hears any ‘INTENT’ message before the

(Ti +1)th mini-slot, it is not included in the control

schedule and we have zi(t) = 0.

2Compared with the regular slot, the length of mini-slots is negligible.

– Scheduling phase: We make the link scheduling

decisions based on the control scheduling and the

link scheduling decisions in previous regular slot as

follows:

⊲: If zi(t) = 0, xi(t) = xi(t− 1).
⊲: If zi(t) = 1, we further have that

– If there is any active link in link i’s collision set,

i.e., ∃j ∈ Ci, xj(t − 1) = 1, link i is not scheduled

in this regular slot and xi(t) = 0.

– Otherwise, link i randomly becomes active in

this regular slot with probability pi =
ewi(t)

1+ewi(t)
, i.e.,

{

xi(t) = 1 with probability pi

xi(t) = 0 with probability p̄i = 1− pi.
(23)

Here, weight wi(t) = maxm∈M{Qmi(t)+Zmi(t)}.

• If t = nT + τ with n ≥ 0 and τ ∈ (0, T − 1]: this

regular slot is within the nth super slot. We keep the link

scheduling decision made in slot nT . However, each link

can decide which job type is served in this slot:

– If link i is not scheduled in slot nT , i.e., xi(nT ) =
0, it keeps inactive in slot t with xi(t) = 0 and

µmi(t) = 0, ∀m ∈ M.

– If the transmission job m∗ ∈ M scheduled in

previous slot is not finished, link i goes on with trans-

mitting job type m∗ with xi(t) = 1, µm∗i(t) = 1
and µmi(t) = 0, ∀m ∈ M,m 6= m∗. We use

µmi(t
−) ∈ {0, 1} to indicate whether the previously

scheduled job is finished or not, with µmi(t
−) = 1

for unfinished case while µmi(t
−) = 0 for cases

where either jobs are completed delivered or no job

is scheduled in previous slot.

– Otherwise, link i is still active in slot t. However, it

will select the job type, with maximum weight, to

be served in this slot:

m∗ = arg max
m∈M,(n+1)T−t≥sm

{wmi(t)}. (24)

Here, (n + 1)T − t ≥ sm ensures that the selected

job can be served before the end of this super slot.

Thus, at the beginning of the next super slot, there

is no on-going unfinished transmission jobs.

3) Job drop: In each time slot t, we deterministically decide

the number of time-out jobs to be dropped, by solving (20),

as follows,

dmi(t) =

{

dmax
mi if Qmi(t) + Zmi(t) > V β

0 Otherwise
. (25)

Remark: The rationale is that, each link is reluctant to drop

packets until the queue lengths exceed certain threshold, above

which we may indicate that packets are suffering a long delay.

The dynamic algorithm is summarized in Alg. 1.

C. Computation/communication complexities

In each time slot, Algorithm 1 incurs polynomial computa-

tion and communication complexities at each link i ∈ E .
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Algorithm 1 Dynamic Net Utility Maximization Algorithm in

Time Slot t
Input: Qmi(t), Ymi(t), Zmi(t), Ami(t), Amax

mi , dmax
mi , (∀m ∈

M, i ∈ E), V , U(·) and β.
Output: ηmi(t), rmi(t), xi(t), µmi(t), dmi(t), (∀m ∈ [1,M ]).

1: Rate Control: For each job-type m, link i decides the data
admission rate rmi(t) and auxiliary variable ηmi(t) by Eqn. (22)
and (21), respectively.

2: Link Scheduling: Each link i distributively execute the CSMA
algorithm as in Alg. 2 and find solutions to xi(t) and µmi(t).

3: Job Dropping: For each job-type m, link i decides the job
dropping rate dmi(t) Eqn. (25).

4: Update queues Qmi(t + 1), Ymi(t + 1) and Zmi(t + 1) based
on queuing law (2), (10) and (12), respectively.

Algorithm 2 CSMA Scheduling Algorithm at Link i in Time

Slot t
Input: Qmi(t), Zmi(t) and µmi(t

−), (∀m ∈ M).
Output: xi(t) and µmi(t), (∀m ∈ M).

If (t mod T ) = 0:

1: Uniformly randomly choose an integer Ti from [1,W ], and wait
for Ti mini-slots;

If link i hears an ‘INTENT’ message from any link in Ci

before the (Ti+1)th mini-slot, link i is not included in z(t) and
zi(t) := 0. No ‘INTENT’ message will be sent by i;

Else Link i broadcasts an ‘INTENT’ message to all links
in Ci at the beginning of the (Ti + 1)th mini-slot;

If there is a collision, link i is not included in z(t). Set
zi(t) := 0.

Else, link i is included in z(t) by setting zi(t) := 1.
2: If zi(t) = 0, set xi(t) := xi(t− 1);
3: Else,

If no link in Ci was active in slot t− 1
Set xi(t) := 1 with probability pi =

ewi(t)

1+ewi(t)
;

Or, set xi(t) := 0 with probability p̄i = 1− pi.
Else, set xi(t) := 0.

4: If xi(t) = 1, set µm∗i(t) := 1 with m∗ = maxm∈M{Qmi(t)+
Zmi(t)} and µm′i(t) := 0 with m′ 6= m∗.

5: Else set µm′i(t) := 0, ∀m ∈ M.

If (t mod T ) 6= 0:

1: xi(t) := xi(t− 1).
2: If xi(t) = 1

If ∃m′ ∈ M with µm′i(t
−) = 1, set µm′i(t) := 1 and

µm′′i(t) := 0 with m′′ 6= m′.
Else set µm∗i(t) := 1 with m∗ = maxm∈M{Qmi(t) +

Zmi(t)} and µm′′i(t) := 0 with m′′ 6= m∗.
3: Else set µm′i(t) := 0, ∀m ∈ M.

Computation complexity: For each job type m ∈ M, link

i ∈ E finds the optimal solutions to its auxiliary variable,

rate control and job dropping variables in constant time with

Algorithm 1. Thus, the overall computation complexity for

these variables is in O(|M|) for each link in each time slot.

For link scheduling and job transmission, each link con-

sumes constant time on the control schedule, at most O(|E|)
complexity to check out the scheduling status of mutual

interfering links in previous slot, constant time to compute the

link scheduling decision, and O(|M|) complexity to find the

job-type with maximum weight. Hence, the overall complexity

for this part is in O(|E| + |M|).
To sum up, the computation complexity at each link is in

O(|E| + |M|).

Communication complexity: The only communication over-

head occurs at the first step of link scheduling at the beginning

of each super slot with Algorithm 2. If link i timeouts before

any of its mutual-interfering links in the control phase, it will

just broadcasts one ‘INTENT’ message to its neighborhood;

otherwise, no message will be sent by link i. If link i is

included in the control schedule, it takes at most O(|E|)
communication overhead to find the link scheduling status

of its interfering links in previous slot. Therefore, the overall

communication complexity for each link is O(|E|) in each slot.

V. PERFORMANCE ANALYSIS

In this section, we present the analytical results of Algo-

rithm 1.

Lemma 1 (Bounded queue lengths): Let Y max
mi = V ·

U ′(0) + Amax
mi · sm, Qmax

m = V · U ′(0) + 2Amax
mi · sm and

Zmax
m = V ·β/sm+ ǫmi. If dmax

mi ≥ max{Amax
mi , ǫmi/sm}, in

each time slot t ≥ 0, the lengths of packet queues and virtual

queues are bounded as follows,

Qmi(t) ≤ Qmax
mi , Ymi(t) ≤ Y max

mi , and Zmi(t) ≤ Zmax
m . (26)

This lemma is the basis to prove the worst-case delay

guarantee in Theorem 2, and can be proved by induction.

Details can be found in technical report [9].

Theorem 2 (Worst-case delay guarantee): Each job of type

m ∈ M on link i ∈ E is either schedule for transmission

or dropped before a preset deadline Dmi if we set ǫmi =
Qmax

mi
+Zmax

mi

Dmi

.

We prove this theorem by contradiction with details in

technical report [9].

Theorem 3 (1− δ weight): Given any θ and δ with 0 <
θ, δ < 1, if max{Φ3(t)} ≥ 1

θ
(|E| log 2 + log 1

δ
), we have that

in any beginning timeslot nT of super frame n ≥ 0, with

probability greater than 1 − δ, Algorithm 2 finds a schedule

µmi(t) such that

Φ3(t) ≥ (1− θ)max{Φ3(t)}. (27)

This theorem is proved by glauber dynamics and time sepa-

ration assumption (commonly assumed in [15] and references

therein, and justified by [4], [11]). Details are included in

technical report [9]. This theorem will be utilized for the proof

to Theorem 4.

Theorem 4 (Utility-optimality): The average throughput

utility achieved with our proposed Algorithm 1, Ψ, is within a

constant gap
(T−1)
2V B′′+B′ (T−smax+1)(T−smax)

2V T
+B/V from

a (1−ν) offline optimum, Ψ∗ν , which uses (1−ν) fraction of

the full capacity region and has perfect information into the

future, as follows,

Ψ ≥ Ψ∗ν −
(T − 1)

2V
B′′ −B′ (T − smax + 1)(T − smax)

2V T
−B/V.

(28)
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Here, B = 1
2

∑

m∈M

∑

i∈E [3(A
max
mi sm)2 + 2(1 + dmax

mi )2 +
(ǫmi)

2], B′ =
∑

i∈E

∑

m∈M((Amax
mi + 2dmax

mi ) × sm + 2),
B′′ =

∑

m∈M

∑

i∈E((A
max
mi sm)2 + ǫ2mi + 2dmax

mi sm(1 +

dmax
mi sm)), and ν = 1− (1−δ)(1−θ)(T−smax+1)

T
.

Proof:

For each time slot t = nT + τ with n ≥ 0 and τ ∈ [0, T −
smax], we have that

∑

m∈M

(Qmi(t) + Zmi(t))µmi(t− 1)

=
∑

m∈M

(Qmi(t) + Zmi(t))µmi(t
−)

+
∑

m∈M

(Qmi(t) + Zmi(t))[µmi(t− 1)− µmi(t
−)]

≤
∑

m∈M

(Qmi(t) + Zmi(t))µmi(t
−)

+
∑

m∈M

(Qmi(t) + Zmi(t))(µmi(t)− µmi(t
−))

=
∑

m∈M

(Qmi(t) + Zmi(t))µmi(t).

The inequality is based on the fact that, in Algorithm 2,

(µmi(t) − µmi(t
−)) is determined by serving the job-types

with maximum queue lengths on each link.

Based on the queueing law Eqn. (2) and (12), we have that

|Qmi(t) + Zmi(t)−Qmi(t− 1)− Zmi(t− 1)|

=|rmi(t) · sm − µmi(t)− dmi(t) · sm

+ 1{Qmi(t)>0}(ǫmi − µmi(t))− dmi(t)× sm − 1{Qmi(t)=0}|

≤(Amax
mi + 2dmax

mi )× sm + ǫmi + 2.

Thus, we further have that, ∀i ∈ E ,
∑

m∈M

(Qmi(t− 1) + Zmi(t− 1))µmi(t− 1)

≤B′
i +

∑

m∈M

(Qmi(t) + Zmi(t))µmi(t), (29)

where, B′
i =

∑

m∈M((Amax
mi + 2dmax

mi )× sm + ǫmi + 2).
For time slot t = nT + τ with τ ∈ [0, T − smax], we have

the following based on Eqn. (29),
∑

m∈M

∑

i∈E

(Qmi(nT ) + Zmi(nT ))µmi(nT )

≤τB′ +
∑

m∈M

∑

i∈E

(Qmi(t) + Zmi(t))µmi(t). (30)

Here, B′ =
∑

i∈E B
′
i. The inequality is equivalent to the

following

Φ3(nT ) ≤ τB′ + Φ3(nT + τ ). (31)

Summing up this inequality over time slots with τ ∈ [0, T−
smax], we have that

(T − smax + 1)
∑

m∈M

∑

i∈E

(Qmi(nT ) + Zmi(nT ))µmi(nT )

≤
(T − smax + 1)(T − smax)

2
B′

+
∑

τ∈[0,T−smax]

∑

m∈M

∑

i∈E

(Qmi(nT + τ )

+ Zmi(nT + τ ))µmi(nT + τ ), (32)

which is equivalent to

(T − smax + 1)Φ3(nT )

≤
(T − smax + 1)(T − smax)

2
B′ +

∑

τ∈[0,T−smax]

Φ3(nT + τ ),

(33)
Based on Theorem 3, we have that, with probability no

larger than δ, our link scheduling decisions will result in

0 ≤ Φ3(t) < (1− θ)max{Φ3(t)}, ∀t = nT, n ≥ 0. (34)

Thus, taking expectations on Φ3(t), we have that

E(Φ3(t)) ≥(1− δ)(1− θ)E(max{Φ3(t)}) + δ · 0

=(1− δ)(1− θ)E(max{Φ3(t)}), ∀t = nT, n ≥ 0.
(35)

The above inequality is under the condition that t = nT .

Next, we study the case when t = nT + τ with τ ∈ [0, T −
smax].

When τ ∈ [0, T − smax], we can have the following based

on Eqn. (31)

E(Φ3(nT + τ )) ≥− τB′ + (1− δ)(1− θ)E(max{Φ3(t)}),

∀t = nT, n ≥ 0. (36)

Since the job arrival is i.i.d., we know that, for any fraction

1 − ν of the full capacity region, there exists a stationary

randomized algorithm solving the rate control, link scheduling

and job dropping decisions with offline optimal throughput

utility [13]. We denote the optimal solutions, with this station-

ary randomized algorithm in 1− ν capacity region, as η∗νmi(t),
r∗νmi(t), x

∗ν
i (t), µ∗ν

mi(t) and d∗νmi(t), respectively. Let Φ∗ν
1 (t),

Φ∗ν
2 (t), Φ∗ν

3 (t) and Φ∗ν
4 (t) denote the value of these four

expressions under the stationary randomized algorithm. De-

note η∗νmi = E{η∗νmi(t)}, r∗νmi = E{r∗νmi(t)}, x∗ν
i = E{x∗ν

i (t)},

µ∗ν
mi = E{µ∗ν

mi(t)} and d∗νmi = E{d∗νmi(t)}.
In Sec. IV, we have seen that our solutions to auxiliary

variables, rate control and job-drop decisions maximize the

value of Φ1(t), Φ2(t) and Φ4 in each time slot, i.e., Φ1(t) ≥
Φ∗ν

1 (t), Φ2(t) ≥ Φ∗ν
2 (t) and Φ4(t) ≥ Φ∗ν

4 (t). Then, for time

t = nT + τ with τ ∈ [0, T − smax], we have that

B +
∑

m∈M

∑

i∈E

E(Zmi(t))ǫmi − E(Φ1(t))− E(Φ2(t))

− E(Φ3(t))− E(Φ4(t))

≤B +
∑

m∈M

∑

i∈E

E(Zmi(t)) · ǫmi − E(Φ∗ν
1 (t))− E(Φ∗ν

2 (t)) + τB′

− (1− δ)(1− θ)E(Φ∗0
3 (nT ))− E(Φ∗ν

4 (t))

For time t = nT + τ with τ ∈ (T − smax, T ), we have that

B +
∑

m∈M

∑

i∈E

E(Zmi(t)) · ǫmi − E(Φ1(t))− E(Φ2(t))

− E(Φ3(t))− E(Φ4(t))

≤B +
∑

m∈M

∑

i∈E

E(Zmi(t)) · ǫmi − E(Φ∗ν
1 (t))− E(Φ∗ν

2 (t))− E(Φ∗ν
4 (t)),

which is based on the fact that Φ3(t) ≥ 0.
Recalling the drift-plus-penalty inequality (15), we have

that, for time t = nT + τ with τ ∈ [0, T − smax],

V E(
∑

m∈M

∑

i∈E

(U(ηmi(t) · sm)− βdmi(t) · sm))

≥E(Φ∗ν
1 (t)) + E(Φ∗ν

2 (t))− τB′ + (1− δ)(1− θ)E(Φ∗0
3 (nT ))

+ E(Φ∗ν
4 (t))−B −

∑

m∈M

∑

i∈E

E(Zmi(t)) · ǫmi,
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for time t = nT + τ with τ ∈ (T − smax, T ),

V E(
∑

m∈M

∑

i∈E

(U(ηmi(t) · sm)− βdmi(t) · sm))

≥E(Φ∗ν
1 (t)) + E(Φ∗ν

2 (t)) + E(Φ∗ν
4 (t))−B

−
∑

m∈M

∑

i∈E

E(Zmi(t)) · ǫmi.

Summing up the above two inequalities for t = nT+τ with

τ ∈ [0, T ), we have that

V
∑

τ∈[0,T )

E(
∑

m∈M

∑

i∈E

(U(ηmi(nT + τ ) · sm)

− βdmi(nT + τ ) · sm))

≥
∑

τ∈[0,T )

(E(Φ∗ν
1 (t)) + E(Φ∗ν

2 (t)) + E(Φ∗ν
4 (t)))

+ (1− δ)(1− θ)(T − smax + 1)E(Φ∗0
3 (nT ))

−B′
∑

τ∈[0,T−smax]

τ − TB

−
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

E(Zmi(nT + τ )) · ǫmi.

We expand the right-hand side of the above inequality and

have that

∑

τ∈[0,T )

∑

m∈M

∑

i∈E

V E(U(ηmi(nT + τ ) · sm)− βdmi(nT + τ )sm)

≥
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

V E(U(η∗ν
mi(nT + τ ) · sm)− βd∗νmi(nT + τ )sm)

+
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

E(Ymi(t) · sm · (r∗νmi(nT + τ )− η∗ν
mi(nT + τ )))

−
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

E(r∗νmi(nT + τ ) · sm ·Qmi(nT + τ ))

+ (1− δ)(1− θ)(T − smax + 1)
∑

m∈M

∑

i∈E

E(µ∗0
mi(nT )

× (Qmi(nT ) + Zmi(nT )))

+
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

E(d∗νmi(nT + τ )sm(Qmi(nT + τ )

+ Zmi(nT + τ )))

−B′ (T − smax + 1)(T − smax)

2
− TB

−
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

E(Zmi(nT + τ )) · ǫmi

≥
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

V (U(η∗ν
mi · sm)− βd∗νmism)

− T
∑

m∈M

∑

i∈E

E(r∗νmi · sm ·Qmi(nT ))

−
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

τ (Amax
mi sm)2

− T
∑

m∈M

∑

i∈E

E(Zmi(nT ) · ǫmi)

−
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

τǫ2mi

+ (1− δ)(1− θ)(T − smax + 1)
∑

m∈M

∑

i∈E

E(µ∗0
mi

× (Qmi(nT ) + Zmi(nT )))

+
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

E(d∗νmism(Qmi(nT ) + Zmi(nT )))

−
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

(2dmax
mi smτ (1 + dmax

mi sm))

−B′ (T − smax + 1)(T − smax)

2
− TB.

The second inequality comes from the facts that:

• Since the stationary randomized algorithm should stabi-

lize the network, each virtual queue Ymi(t) is also stable.

Thus, we have that

E(r∗νmi(nT + τ )− η∗ν
mi(nT + τ )) ≥ 0.

• According to the queueing law in Eqn. (2), we have that

Qmi(nT + τ)−Qmi(nT ) ≤ τAmax
mi sm. Meanwhile, it is

a fact that r∗νmi = E(r∗νmi(nT + τ)) So, we further have

that

E(r∗νmi(nT + τ ) · sm ·Qmi(nT + τ ))

≤E(r∗νmi · sm · (Qmi(nT ) + τAmax
mi sm))

≤E(r∗νmi · sm ·Qmi(nT ) + τ (Amax
mi sm)2).

• According to the queueing law in Eqn. (12), we have that

Zmi(nT + τ) − Zmi(nT ) ≤ τǫmi. So, we further have

that

E(ǫmi · Zmi(nT + τ ))

≤E(ǫmi · (Zmi(nT ) + τǫmi))

≤E(ǫmi · Zmi(nT ) + τ (ǫmi)
2).

• According to the queueing laws in Eqn. (2) and (12), we

have that Qmi(nT+τ)−Qmi(nT ) ≥ τ(1+dmax
mi sm) and

Zmi(nT + τ) − Zmi(nT ) ≥ τ(1 + dmax
mi sm). Based on

its definition, we also know that d∗νmi = E(d∗νmi(nT + τ)).
Thus, we have that

E(d∗νmi(nT + τ ) · sm · (Qmi(nT + τ ) + Zmi(nT + τ )))

≥E(d∗νmi · sm · (Qmi(nT ) + Zmi(nT )− 2τ (1 + dmax
mi sm)))

≥E(d∗νmi · sm · (Qmi(nT ) + Zmi(nT ))

− 2dmax
mi · smτ (1 + dmax

mi sm)).

Let 1− ν = (1−δ)(1−θ)(T−smax+1)
T

. We have that
(1− δ)(1− θ)(T − smax + 1)

T
µ∗0
mi = µ∗ν

mi.

Since the stationary randomized algorithm stabilized the

network, including all packet queues, we know that

r∗νmism ≤ µ∗ν
mi + d∗νmism,

ǫmi ≤ µ∗ν
mi + d∗νmism.

Then, we can have that
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

V E(U(ηmi(nT + τ ) · sm)− βdmi(nT + τ )sm)

≥
∑

τ∈[0,T )

∑

m∈M

∑

i∈E

V (U(η∗ν
mi · sm)− βd∗νmism)

−
T (T − 1)

2

∑

m∈M

∑

i∈E

[(Amax
mi sm)2 + ǫ2mi]

−
T (T − 1)

2

∑

m∈M

∑

i∈E

(2dmax
mi sm(1 + dmax

mi sm))

−B′ (T − smax + 1)(T − smax)

2
− TB.
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On both sides, we sum up over all n ≥ 0, divide by V nT
and take limits on n → ∞3. We can get that

∑

m∈M

∑

i∈E

(U(η̄mi · sm)− βd̄mism)

≥
∑

m∈M

∑

i∈E

(U(η∗ν
mi · sm)− βd∗νmism)

−
(T − 1)

2V
B′′ −B′ (T − smax + 1)(T − smax)

2V T
−B/V,

with B′′ =
∑

m∈M

∑

i∈E((A
max
mi sm)2 + ǫ2mi+2dmax

mi sm(1+
dmax
mi sm)).

With Algorithm 1, we know that r̄mi ≥ η̄mi. Meanwhile,

the stationary randomized algorithm can make r∗ν = η∗ν .

Then, we finally have that
∑

m∈M

∑

i∈E

(U(r̄mi · sm)− βd̄mism)

≥
∑

m∈M

∑

i∈E

(U(r∗νmi · sm)− βd∗νmism)

−
(T − 1)

2V
B′′ −B′ (T − smax + 1)(T − smax)

2V T
−B/V,

Remark (throughput-delay tradeoff ): If we let V → ∞,

the queue lengths will grow to infinitely large (Lemma 1).

With Lemma 1 and Theorem 3, we see that (1 − δ)(1 −
θ) → 1 in this case. If we further let T → ∞, we will

have 1 − ν = (1−δ)(1−θ)(T−smax+1)
T

→ 1, which means
∑

m∈M

∑

i∈E(U(r∗νmi ·sm)−βd∗νmism) will be arbitrarily close

to the offline optimum within the full capacity region instead

of a fraction. In addition, if T/V → 0, the constant utility gap

will become
(T−1)
2V B′′+B′ (T−smax+1)(T−smax)

2V T
+B/V → 0.

Nevertheless, with Theorem 2, we have to be able to tolerate

a long worst-case delay, which is proportional to V .

In conclusion, there is a tradeoff between the utility opti-

mality and the tolerable worst-case delay. If V → ∞, T → ∞
and T/V → 0, we will achieve an utility arbitrarily close to

the offline optimum at the cost of infinitely large delay.

VI. CONCLUSION AND REMARKS

In this paper, we investigate the optimal design of CSMA-

based wireless communication to achieve a time-averaged

maximum throughput utility with worst-case delay bounds

and non-uniform job sizes, in general network settings. A

two-timescale dynamic algorithm is proposed with dynamic

decisions on rate control, link scheduling, job transmission

and dropping in each time slot. Through rigorous analysis,

we demonstrate that the proposed protocol can achieve a

throughput utility arbitrarily close to its offline optima for jobs

with non-uniform sizes, with a worst-case delay guarantees

and a tradeoff of infinitely large maximum allowable delay.

As our future work, we will explore the optimal CSMA

protocol design in multi-channel settings with provable delay

performance for general network topologies.

3It should be noted that ā = limt→∞
1
t

∑
τ∈[1,t] E(a(τ))
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