
Recovery in Distributed Mobile Environments�P. Krishna N. H. Vaidya D. K. PradhanComputer Science DepartmentTexas A&M UniversityCollege Station, TX 77843-3112AbstractMobile computing is a rapidly emerging trend indistributed computing. The new mobile computing en-vironment presents many challenges due to the mobilenature of the hosts. In this paper we present somefault-tolerant data management strategies for a dis-tributed mobile environment. These strategies needto be di�erent from the traditional fault-tolerance ap-proaches because of the resource limitations of mobilecomputing environment.1 IntroductionMobile computers using wireless networks is arapidly emerging trend in computer systems. Thiswill give users the information accessing capability re-gardless of the location of the user or of the informa-tion. Nowadays, the portable computers are as pow-erful as some desktop workstations in terms of com-puting power, memory, display and disk storage [7].Users of portable computers would like to carry theirlaptops with them whenever they move from one placeto another and yet maintain transparent network ac-cess through the wireless link. With the availability ofwireless interface cards, the mobile users are no longerrequired to remain con�ned within the static networkpremises to get network access.In this paper we present some recovery strate-gies for mobile systems. Traditional fault-toleranceschemes cannot be directly applied to these systems.The mobile computing environment poses challengingfault-tolerant data management problems due to themobility of the users, limited bandwidth on the wire-less link, and power restrictions on the mobile hosts.Mobile systems are more often subject to environmen-tal conditions which can cause loss of communica-tions or data. Because of the consumer orientationof most mobile systems, run-time faults must be cor-rected with minimal (if any) intervention from theuser. Therefore, the fault-tolerance capability mustbe self-contained.2 System ModelIn this section we present a model for a distributedsystem with mobile hosts. As shown in Figure 1,mobile networks are generally composed of a static�Research reported is supported in part by AFOSR undergrant F49620-92-J-0383.

backbone network and a wireless network. There aretwo distinct sets of entities, namely, mobile hosts and�xed hosts. A host that can move while retaining itsnetwork connection is a mobile host [6]. The staticnetwork comprises of the �xed hosts and the com-munication links between them. Some of the �xedhosts, called base stations (BS) are augmented witha wireless interface, and, they provide a gateway forcommunication between the wireless network and thestatic network. There are di�erent types of wirelessnetworks, namely, cellular (analog and digital cellularphones), wireless LAN, and unused portions of FMradio or satellite services (paging) [6]. The same mo-bile host can interact with all three di�erent types ofwireless networks at di�erent points of time. Due tothe limited range of the wireless transreceivers, a mo-bile host can communicate with a base station onlywithin a limited geographical region around it. Thisregion is referred to as a base station's cell. The ge-ographical area covered by a cell is a function of themedium used for wireless communication. Currently,the average size of a cell is of the order of 1-2 milesin diameter [6]. In future, the cells are expected to benano-cellular (less than 10 meters in diameter) cover-ing the interior of a building [7]. A mobile host canreside in the cell of only one base station at any giventime. Due to mobility, the mobile host may cross the
Mobile Host

Base Station

Wireless

m4

m3
BS3

m1

BS2BS1
NETWORK

STATIC 

m2Figure 1: Model of a distributed system with mobilehostsboundary between two cells while being active. Thus,the task of forwarding data between the static networkand the mobile host must be transferred to the newcell's base station. This process, known as hando� is



transparent to the mobile user [7]. It, thus, maintainsend-to-end connectivity in the dynamically recon�g-ured network topology.3 Modes of FailureIn this paper we will be mainly dealing with therecovery of the mobile computing system upon thefailure of a mobile unit1. Mobile systems are moreoften subject to environmental adversities which cancause loss of communications or data. There are sev-eral modes of mobile unit \failure", namely, 1) failureof the mobile host, 2) disconnection of the mobile host,and 3) message loss due to weak wireless link. In thispaper we develop strategies to tolerate failure of themobile host, i.e. mode 1. This is because it is thismode that a�ects the system state, whereas failuremodes 2 and 3 mainly delay the system response.� Failure of the mobile host : In this mode themobile host fails resulting in a loss of its volatilestate. The mobile host is assumed to be fail-stopi.e., the base station is able to detect the failureof the mobile host. One way to detect the failure,is to make the active mobile host send a \I amalive" message at regular intervals of time to thebase station.� Disconnection of the mobile host : Mobile unitsrun on batteries. Smaller units run on AA bat-teries; larger units run on Ni-Cd packs [6]. Due tobattery power restrictions, the mobile units willbe frequently disconnected (powered o�). Thedi�erence between disconnection and failure is itselective nature. Disconnections can be treated asplanned failures which can be anticipated and pre-pared for [6].� Weak wireless link : The base station and the mo-bile hosts are connected by a slow and often unre-liable wireless link. This is equivalent to an inter-mittently faulty link, which transmits the correctmessage during fault-free conditions, and stopstransmitting upon a failure.4 MotivationA distributed system with mobile units can be con-sidered to have a two tier structure: reliable static net-work with �xed hosts and a number of mobile unitsconnected by a slow and often unreliable wireless link.The new style brought about by mobile computing,poses new challenges to the fault-tolerant data man-agement community.Consider Figure 2 as an example, where base sta-tions BS1 and BS2 are a part of a static network. BS1and BS2 cover the cells which contain mobile hostsm1 and m2 respectively. Hosts m1 and m2 may betaking part in a distributed algorithm, or a criticaltransaction, or may be querying each other. If the mo-bile hosts were taking part in a critical task, the taskmight have to be aborted due to the absence of fault-tolerance. For instance, let m2 perform critical data1In the following section we will brie
y explain the recoveryof the system upon the failure of a base station.

processing, and it requires some updated data fromm1 before it can proceed. If m1 fails, m2 will have toabort the data processing. A mechanism for recover-ing an intermediate consistent state of the system maybe useful to avoid loosing all the work performed by atask.
m1

BS2BS1
NETWORK

STATIC 

m2Figure 2: Distributed processing between mobile hostsOver the past couple of years there has been alot of literature dealing with locating strategies, andmodifying distributed algorithms for \reliable" mobilehosts [6, 13, 2, 3]. But how do we recover the execution(with or without real-time deadlines) without user in-tervention, when one of the participants (i.e. mobilehost) fails? Is the cost of incorporating fault-tolerance,during normal fault-free execution, high? What arethe tradeo�s? We are trying to answer these ques-tions, and this paper presents some preliminary ideas.Traditional fault-tolerance schemes like checkpoint-ing and message logging [8, 4, 11, 12, 9] would haveserved the purpose, without any modi�cation, if themobile hosts restricted their movements within onecell. But, that is not the case - because the wholeconcept of mobile computing revolves around the factthat the computing environment does not require auser to maintain a �xed position in the network andit allows almost unrestricted user mobility. Due tothe mobility, the mobile users cross cells, and hando�occurs. In addition to the mobility of the user, wemust keep in mind the battery power restrictions ofthe mobile hosts, and also the limited bandwidth ofthe wireless connection. The bandwidth limitationsrestrict the volume of data that can be transferredover the wireless link. Keeping in mind these new re-source limitations, we have tried to develop strategiesfor \energy e�cient" fault-tolerant data managementin a distributed mobile computing environment.5 Base Station Driven RecoveryStrategiesIn the following subsections we are going to presenttwo strategies for saving the state, and two strategiesfor hando�. The strategies for saving the state aresimilar to the traditional fault-tolerance strategies.5.1 State SavingWe present two strategies to back-up the processstate: (i) Synchronous and (ii) Asynchronous. In bothstrategies, basically, the base station of the cell inwhich the mobile host currently resides, serves as aback-up for that host. For recovery purposes, it is nota good idea to store the log of transactions or mes-sages on the mobile host, as mobile host state is loston its failure. Hence we will require that the processimage and the log be backed up on the base station.



As stated earlier, the mobile hosts might be tak-ing part in some distributed application. Such ap-plications require messages to be transferred betweenthe mobile hosts, and might also require user inputs.While the user inputs may go directly to the mobilehost, the messages will �rst reach the base station incharge of the cell in which the mobile host currentlyresides. The base station, then forwards it to the cor-responding mobile host. Likewise, all the messagessent by a mobile host, will be �rst sent to its basestation, which will forward it over the static networkto the base station which is in charge of the cell inwhich the destination mobile host currently resides.Figure 3 presents the message types and transfers thatmay take place in a distributed mobile environment.
Messages.
Process image, and
Logging information,

the static network.
or received from
Messages sent to

BS

mh

User InputFigure 3: Message transfer between the �xed and themobile hostThe process image is backed up periodically at astable storage - in our case it is the base station, sincewe assume the base station to be fault-tolerant. Sav-ing the state periodically has been one of the tradi-tional fault-tolerance measures, to avoid recomput-ing/reexecuting from the initial state. Upon a fail-ure, the process rolls back to the most recent back-upprocess image and continues execution; thus resultingin loss of execution only from the most recent back-up process image. Systems with hard real-time con-straints require a recovery mechanism that minimizesthe loss of computation. Thus, the question \how fre-quently do we back-up the process image on the basestation?" arises. We present two strategies for back-ing up the process image - depending upon the ap-plication requirements, the user might want to chooseone of them. The two strategies are described below.(Note: Instead of backing up the whole process image,we might just want to save the \incremental" processimage - thereby saving some bandwidth.) Both thestrategies allow each mobile host to fail and recoverindependently. Also, the processes are assumed to bedeterministic.5.1.1 Synchronous ApproachThe state of the process can get altered either uponreceipt of a message from another mobile host or uponan user input. The messages or inputs that modify the

state are called write2 events. In the synchronous ap-proach, the \incremental" process image of the mobilehost is backed up at the base station upon every writeevent on the mobile host data.Upon a failure of the mobile host, the base stationloads the latest backed up process image. Thus, therecovery will be quick and totally transparent to theexternal environment (which comprises of other hoststaking part in the distributed algorithm or transactionetc.). Upon repair, the mobile host sends a messageto the base station, which then loads the latest processimage onto the mobile host, and allows the mobile hostto continue from that point.As stated earlier, hando� occurs only when an ac-tivemobile host crosses cells. Failure after hando� canbe recovered using the strategies described in the nextsection. But there can be a situation where a hostfails, then goes to another cell, and then recovers. Inthis case, hando� does not happen, thus, the new cell'sbase station does not know the last cell of the mobilehost. So recovery is not possible. This situation canbe avoided if the base station of the cell in which themobile host fails noti�es the home location server [6] ofthe mobile host. Thus when the mobile host recoversin a new cell, its base station, if it does not know thelast cell, asks the home location server of the mobilehost. Thus upon knowing the last cell, the base sta-tion sends a message requesting the process image ofthe mobile host from the last cell's base station. Somevariations of this scheme also exist.Synchronous approach is most suited for systemswith mobile hosts having a very high failure rate.In addition to this, this approach will be suited forsystems having hard real-time deadlines, thus requir-ing a quick recovery upon failure. But, the currentstate of art for wireless communications supports lim-ited bandwidth, thereby restricting the volume of datathat can be transferred over the wireless medium [6].Therefore, instead of backing up the process imagesynchronously (i.e. after every write event), we mightwant to do the back-up asynchronously { as explainedin the next section.5.1.2 Asynchronous ApproachIn this strategy we back-up the process image afterregular intervals. The intervals can be determined ei-ther by certain number of (a) write events, or (b) timeunits. As de�ned earlier, the messages or inputs thatmodify the state of the mobile host are called writeevents. The length of the interval is to be determinedfrom the application requirements and the failure rateof the mobile host. If the failure rate is high, we mightwant to back-up more frequently. Likewise, if we havereal-time constraints we must ensure a quick recovery- thus back-up more frequently.Backing up the process image is not enough for re-covery. In addition, we will have to log the messagesor transaction (depending on the application type). If2If semantics of the message is not known, in the worst case,we might have to assume that the process image gets alteredupon receipt of every message or an user input.



a write message is received from another mobile host,the base station �rst logs it and then forwards it tothe mobile host for execution. Likewise, upon an userinput (write event), the mobile host �rst forwards acopy of the user input to the base station for logging.After logging, the base station sends an acknowledge-ment back to the mobile host. The mobile host canprocess the input, while waiting for the acknowledge-ment, but not send a response to the user. Only uponreceipt of the acknowledgement, the mobile host sendsits response.The above procedure ensures that no messages oruser inputs are lost due to a failure of the mobile host.The logging of the write events continue till a newprocess image is backed up at the base station. Thebase station then purges the log of the old write events.Upon failure of the mobile host, the base stationloads the latest backed up process image of the mo-bile host and restarts executing by replaying the writerequests from its logs, thus reaching the state of themobile host before failure.5.2 Hando�Till now, the recovery strategy seems to be verysimilar to the traditional fault-tolerance schemes. But,for mobile systems, in addition to above we have todeal with hando� process. What should happen whenthe mobile user moves to a new cell in the middle ofa distributed algorithm's execution or a transaction'sexecution?
mh2

mh2

NETWORK

STATIC

BS5

mh2mh1

BS4

BS3

BS2BS1Figure 4: Hando� in the middle of an executionConsider Figure 4 as an example. Here, mobilehosts mh1 and mh2 are executing a distributed al-gorithm. In the middle of the execution, mh2 movesthrough the cell of BS3 and settles in the cell of BS4.Hando� occurs at the boundaries of BS2 and BS3,and, BS3 and BS4. The mobile host mh2 fails onreaching the cell of BS4. If mh2 had remained in thecell of BS2 the system would have recovered becausethe process image and the logs are backed up at BS2.But since no back-up took place at BS3 or BS4, andsince BS4 does not know where the last back-up ofmh2is stored, recovery cannot take place. Thus, the exe-cution has to be aborted. We tackle this problem bybasically transferring some information correspondingto the mobile host during the hando� process. Thereare two ways in which data can be transferred duringthe hando� process, (i) Pessimistic and (ii) Lazy.

5.2.1 Pessimistic StrategyThe process image and log of write requests are trans-ferred immediately to the new cell's base station.Upon receipt of the process image and the log, thenew cell's base station sends an acknowledgement tothe old base station. The old base station, on receivingthe acknowledgement, deletes its copy of the processimage and the log, since the mobile host is no longer inits cell. This is done to save space on the base station.Consider Figure 5 as an example.
4

3

2

1

mh2

mh2

mh2

BS4

BS3

BS2Figure 5: Pessimistic hando�When mh2 crosses the boundary of BS2 and BS3,hando� occurs. BS2 sends the process image and logscorresponding to mh2 (1). BS3, on receiving the data,sends back an acknowledgement to BS2 (2). BS2,then, deletes the process image and the logs of mh2.Likewise, when mh2 crosses the boundary of BS3 andBS4, at the end of steps (3,4), the process image andlogs corresponding to mh2 is present at BS4. Thus, ifmh2 fails in this cell, successful and quick recovery isattained.This strategy will be suited for distributed systemswhere the failure rate of the mobile hosts are very high,and for applications where long service disruptions arenot tolerated. The disadvantage with this approach isthat there will be heavy volume of data transfer duringeach hando�. This can be avoided if we use the Lazystrategy, as explained in the next section.5.2.2 Lazy StrategyWith Lazy strategy, during hando�, there is no trans-fer of process image and the log. Consider Figure 6as an example. Upon a hando� of mh2 from BS2 toBS3, BS2 sends a message to BS3 indicating the lastcell location of mh2 i.e. the cell of BS2 (1). Simi-larly, when mh2moves into the cell of BS4, BS3 sendsan indication to BS4 (2). The new cell's base stationjust remembers the mobile host's last cell. Thus, as amobile host moves from cell to cell, the correspondingbase stations e�ectively form a linked list. One suchlinked list needs to be maintained for each mobile host.This strategy might lead to a problem, because, theprocess image and logs of mh2 may be unnecessarilysaved at di�erent base stations. Thus to avoid this,after a hando�, if a back-up is done at the new basestation, it sends a noti�cation to the last cell's base



B

L2

L1

2

1

mh2

mh2

mh2

BS4

BS3

BS2 Figure 6: Lazy hando�station to delete the process image and logs of mh2, ifpresent. If not present, this base station forwards thenoti�cation to predecessor's base station in the linkedlist. This process continues, till a base station with aold process image and logs of mh2 is encountered orthe starting cell of mh2 is reached. In Figure 6, after aback-up operation at BS4 (B), BS4 sends a noti�cationto BS3 (L1), which in turn forwards the noti�cationto BS2 (L2) (because there was no back-up or loggingdone at BS3). Incidentally, there was a back-up doneat BS2. Thus, BS2 deletes the process image and logcorresponding to mh2.The Lazy strategy saves a lot of time during hand-o� as compared to the Pessimistic strategy. But therecovery is more complicated. Upon a failure, if thebase station does not have a back-up of the process im-age, it gets the logs and the process image from thebase stations in the linked list. The base station thenloads the process image and replays the messages fromthe logs to reach the state of the mobile host just be-fore failure. The recovery is presented in the form ofa pseudo-code in Figure 7.Recovery()If Current BS has the latest process imageLoad process image and replay messages from thelog to recover.elseRequest the BS's in the linked list for the processimage and log.Load process image and replay messages from thelogs to recover.Figure 7: Recovery when using Lazy() hando�5.3 Tradeo� ParametersDepending on the system speci�cations and re-quirements, the appropriate recovery and hando�strategy will be chosen. The tradeo� will depend onthe following factors, (i) failure rate of the mobile host,(ii) communication/mobility ratio, (iii) message size(energy e�ciency), (iv) memory constraints on thebase station and (v) time available for recovery.

� Failure rate of the host : System failures arecaused by defects introduced in manufacturing orby transient or permanent faults occurring duringoperation. Moreover the mobile systems are sub-ject to environmental conditions which can causeloss of communications or data. For systems witha high failure rate, a Synchronous state savingstrategy may be preferred, if a quick recovery isrequired.� Communication/Mobility ratio : Communicationrefers to the number of messages sent/received bythe mobile host and mobility refers to the numberof moves the mobile host makes in a given periodof time. For mobile hosts having low communica-tion/mobility ratio (a very mobile user), the Lazyhando� strategy may be preferred.� Message Size : The constraint of limited avail-able energy will require \energy e�cient" datamanagement strategies. Transmitting and receiv-ing data consumes additional power. In gen-eral, transmitting a given amount of data con-sumes twice as much power as receiving the sameamount of data [6]. Thus, systems having se-vere energy constraints, Asynchronous state sav-ing strategy may be preferred.� Memory constraints : A base station generally hasmany mobile hosts in its cell. Storing the processimage and the log of each mobile host at the basestation might use up a lot of memory space onthe base station. It is necessary to evaluate av-erage memory requirements based on statisticaldata and the recovery schemes used. Generally,the process image, logs, and the linked list foreach mobile host will be stored in the base sta-tion memory.� Recovery time : This is essentially the time re-quired to recover a process upon failure. Ifthe process has hard real-time deadlines, or re-quires high availability, the recovery upon a fail-ure should be quick. For quick recovery, a com-bination of Synchronous state saving and Pes-simistic hando� strategy may be preferred.We are currently studying the strategies using thesetradeo� parameters to �nd out the environmentswhere a particular combination of recovery and hand-o� strategy will be best suited.5.4 Failure of the Base StationTill now, we have been assuming the base stationto be fault-free. How do we recover the system ifa base station fails? We assume the base station tobe fail-stop [10]. Since the base station is a part ofthe static network, traditional fault-tolerance schemeslike checkpointing and logging can be used with mi-nor modi�cations to support the communication withthe mobile hosts. A simple solution to this problemis \replication". Recovery due to the failure of a basestation can be achieved by switching in a back-up basestation (similar to the \cold-spare" approach of Tan-dem [5]).



6 ConclusionMobile computing is a rapidly emerging trend indistributed computing. The new mobile computingenvironment presents many challenges due to the re-quirements of the mobile nature of the hosts. Inthis paper we have presented preliminary ideas forfault-tolerant data management in a distributed mo-bile computing environment. These strategies needto be di�erent from the traditional fault-tolerance ap-proaches, because of the resource limitations of mobilecomputing environment. We have also identi�ed thetradeo� parameters to evaluate the recovery scheme.We are currently studying the strategies using thesetradeo� parameters to determine the environmentswhere a particular combination of recovery and hand-o� strategy will be best suited.References[1] B. R. Badrinath and T. Imielinski, \Replicationand Mobility," Proc. of Second Workshop on theManagement of Replicated Data, November 1992.[2] B. R. Badrinath, A. Acharya and T. Imielin-ski, \Structuring distributed algorithms for mo-bile hosts," Technical Report, WINLAB/RutgersTech. Rept DCS-TR-298/WINLAB TR-55.[3] P. Bhagwat and C. E. Perkins, \A mobile net-working system based on internet protocol(IP),"Proc. of the USENIX Symposium on Mobileand Location-Independent Computing, Cambridge,Massachussets, August 1993.[4] B. Bhargava and S. R. Lian, \Independent check-pointing and concurrent rollback recovery for re-covery - An optimistic approach," Proc. IEEESymp. on Reliable Distributed Systems, pp. 3-12,1988.[5] C. I. Dimmer, \The Tandem non-stop system,"Resilient Computing Systems, edited by T. An-derson, chapter 10, pp. 178-196, Collins, London,1985.[6] T. Imielinski and B. R. Badrinath, \Mobile wire-less computing: solutions and challenges in datamanagement," Technical Report, Rutgers DCS-TR-296/WINLAB TR-49, Feb. 1993.[7] K. Keeton et.al., \Providing connection-orientednetwork services to mobile hosts," Proc. of theUSENIX Symposium on Mobile and Location-Independent Computing, Cambridge, Massachus-sets, August 1993.[8] R. Koo and S. Toueg, \Checkpointing androllback-recovery for distributed systems," IEEETrans. on Software Engineering, Vol. SE-13, No.1, pp. 23-31, Jan. 1987.[9] P. Krishna, Nitin H. Vaidya and D. K. Prad-han, \Independent checkpointing and recoveryscheme for fail-slow processors," Tech. Rep. 93-028, Dept. of Computer Science, Texas A&M Uni-versity, 1993.

[10] R. D. Schlichting and F. B. Schneider, \Fail-stop processors : An approach to designing fault-tolerant distributed computing systems," ACMTrans. on Computer Systems, Vol. 1, No. 3, pp.222-238, Aug. 1983.[11] R. E. Strom and S. Yemini, \Optimisitic recoveryin distributed systems," ACM Trans. on Comp.Sys., pp. 204-226, Aug. 1985.[12] Nitin H. Vaidya, \Dynamic cluster-based recov-ery: Pessimistic and Optimistic Schemes," Tech.Rep. 93-027, Dept. of Computer Science, TexasA&M University, 1993.[13] T. Watson and B. N. Bershad, \Local area mo-bile computing on stock hardware and mostlystock software," Proc. of the USENIX Symposiumon Mobile and Location-Independent Computing,Cambridge, Massachussets, August 1993.


