Recovery in Distributed Mobile Environments®

P. Krishna

N. H. Vaidya

D. K. Pradhan

Computer Science Department
Texas A&M University
College Station, TX 77843-3112

Abstract

Mobile computing is a rapidly emerging trend n
distributed computing. The new mobile computing en-
vironment presents many challenges due to the mobile
nature of the hosts. In this paper we present some
fauli-tolerant data management strategies for a dis-
tributed mobile environment. These strategies need
to be different from the traditional fault-tolerance ap-
proaches because of the resource limitations of mobile
computing environment.

1 Introduction

Mobile computers using wireless networks is a
rapidly emerging trend in computer systems. This
will give users the information accessing capability re-
gardless of the location of the user or of the informa-
tion. Nowadays, the portable computers are as pow-
erful as some desktop workstations in terms of com-
puting power, memory, display and disk storage [7].
Users of portable computers would like to carry their
laptops with them whenever they move from one place
to another and yet maintain transparent network ac-
cess through the wireless link. With the availability of
wireless interface cards, the mobile users are no longer
required to remain confined within the static network
premises to get network access.

In this paper we present some recovery strate-
gies for mobile systems. Traditional fault-tolerance
schemes cannot be directly applied to these systems.
The mobile computing environment poses challenging
fault-tolerant data management problems due to the
mobility of the users, limited bandwidth on the wire-
less link, and power restrictions on the mobile hosts.
Mobile systems are more often subject to environmen-
tal conditions which can cause loss of communica-
tions or data. Because of the consumer orientation
of most mobile systems, run-time faults must be cor-
rected with minimal (if any) intervention from the
user. Therefore, the fault-tolerance capability must
be self-contained.

2 System Model

In this section we present a model for a distributed
system with mobile hosts. As shown in Figure 1,
mobile networks are generally composed of a static

*Research reported is supported in part by AFOSR under
grant F'49620-92-J-0383.

backbone network and a wireless network. There are
two distinct sets of entities, namely, mobile hosts and
fixed hosts. A host that can move while retaining its
network connection is a mobile host [6]. The static
network comprises of the fixed hosts and the com-
munication links between them. Some of the fixed
hosts, called base stations (BS) are augmented with
a wireless interface, and, they provide a gateway for
communication between the wireless network and the
static network. There are different types of wireless
networks, namely, cellular (analog and digital cellular
phones), wireless LAN, and unused portions of FM
radio or satellite services (paging) [6]. The same mo-
bile host can interact with all three different types of
wireless networks at different points of time. Due to
the limited range of the wireless transreceivers, a mo-
bile host can communicate with a base station only
within a limited geographical region around it. This
region is referred to as a base station’s cell. The ge-
ographical area covered by a cell is a function of the
medium used for wireless communication. Currently,
the average size of a cell is of the order of 1-2 miles
in diameter [6]. In future, the cells are expected to be
nano-cellular (less than 10 meters in diameter) cover-
ing the interior of a building [7]. A mobile host can
reside in the cell of only one base station at any given
time. Due to mobility, the mobile host may cross the

T

BS3

Base Station

~

BS1— BS2

Mobile Host

& iz

Figure 1: Model of a distributed system with mobile
hosts

boundary between two cells while being active. Thus,
the task of forwarding data between the static network
and the mobile host must be transferred to the new
cell’s base station. This process, known as handoff is



transparent to the mobile user [7]. Tt, thus, maintains
end-to-end connectivity in the dynamically reconfig-
ured network topology.

3 Modes of Failure

In this paper we will be mainly dealing with the
recovery of the mobile computing system upon the
failure of a mobile unit'. Mobile systems are more
often subject to environmental adversities which can
cause loss of communications or data. There are sev-
eral modes of mobile unit “failure”, namely, 1) failure
of the mobile host, 2) disconnection of the mobile host,
and 3) message loss due to weak wireless link. In this
paper we develop strategies to tolerate failure of the
mobile host, i.e. mode 1. This is because it 1s this
mode that affects the system state, whereas failure
modes 2 and 3 mainly delay the system response.

e Failure of the mobile host : In this mode the
mobile host fails resulting in a loss of its volatile
state. The mobile host is assumed to be fail-stop
1.e., the base station 1s able to detect the failure
of the mobile host. One way to detect the failure,
is to make the active mobile host send a “I am
alive” message at regular intervals of time to the
base station.

e Disconnection of the mobile host : Mobile units
run on batteries. Smaller units run on AA bat-
teries; larger units run on Ni-Cd packs [6]. Due to
battery power restrictions, the mobile units will
be frequently disconnected (powered off). The
difference between disconnection and failure is its
elective nature. Disconnections can be treated as
planned failures which can be anticipated and pre-

pared for [6].

o Weak wireless link : The base station and the mo-
bile hosts are connected by a slow and often unre-
liable wireless link. This is equivalent to an inter-
mittently faulty link, which transmits the correct
message during fault-free conditions, and stops
transmitting upon a failure.

4 Motivation

A distributed system with mobile units can be con-
sidered to have a two tier structure: reliable static net-
work with fixed hosts and a number of mobile units
connected by a slow and often unreliable wireless link.
The new style brought about by mobile computing,
poses new challenges to the fault-tolerant data man-
agement community.

Consider Figure 2 as an example, where base sta-
tions BS1 and BS2 are a part of a static network. BS1
and BS2 cover the cells which contain mobile hosts
ml and m2 respectively. Hosts ml and m2 may be
taking part in a distributed algorithm, or a critical
transaction, or may be querying each other. If the mo-
bile hosts were taking part in a critical task, the task
might have to be aborted due to the absence of fault-
tolerance. For instance, let m2 perform critical data

1In the following section we will briefly explain the recovery
of the system upon the failure of a base station.

processing, and it requires some updated data from
m1 before it can proceed. If m1 fails, m2 will have to
abort the data processing. A mechanism for recover-
ing an intermediate consistent state of the system may
be useful to avoid loosing all the work performed by a
task.

BS1— BS2

Figure 2: Distributed processing between mobile hosts

Over the past couple of years there has been a
lot of literature dealing with locating strategies, and
modifying distributed algorithms for “reliable” mobile
hosts [6, 13, 2, 3]. But how do we recover the execution
(with or without real-time deadlines) without user in-
tervention, when one of the participants (i.e. mobile
host) fails? Is the cost of incorporating fault-tolerance,
during normal fault-free execution, high? What are
the tradeoffs? We are trying to answer these ques-
tions, and this paper presents some preliminary ideas.

Traditional fault-tolerance schemes like checkpoint-
ing and message logging [8, 4, 11, 12, 9] would have
served the purpose, without any modification, if the
mobile hosts restricted their movements within one
cell. But, that is not the case - because the whole
concept of mobile computing revolves around the fact
that the computing environment does not require a
user to maintain a fixed position in the network and
it allows almost unrestricted user mobility. Due to
the mobility, the mobile users cross cells, and handoff
occurs. In addition to the mobility of the user, we
must keep in mind the battery power restrictions of
the mobile hosts, and also the limited bandwidth of
the wireless connection. The bandwidth limitations
restrict the volume of data that can be transferred
over the wireless link. Keeping in mind these new re-
source limitations, we have tried to develop strategies
for “energy efficient” fault-tolerant data management
in a distributed mobile computing environment.

5 Base Station
Strategies

In the following subsections we are going to present
two strategies for saving the state, and two strategies
for handoff. The strategies for saving the state are
similar to the traditional fault-tolerance strategies.

5.1 State Saving

We present two strategies to back-up the process
state: (1) Synchronous and (ii) Asynchronous. In both
strategies, basically, the base station of the cell in
which the mobile host currently resides, serves as a
back-up for that host. For recovery purposes, it is not
a good idea to store the log of transactions or mes-
sages on the mobile host, as mobile host state is lost
on its failure. Hence we will require that the process
image and the log be backed up on the base station.

Driven Recovery



As stated earlier, the mobile hosts might be tak-
ing part in some distributed application. Such ap-
plications require messages to be transferred between
the mobile hosts, and might also require user inputs.
While the user inputs may go directly to the mobile
host, the messages will first reach the base station in
charge of the cell in which the mobile host currently
resides. The base station, then forwards it to the cor-
responding mobile host. Likewise, all the messages
sent by a mobile host, will be first sent to its base
station, which will forward it over the static network
to the base station which is in charge of the cell in
which the destination mobile host currently resides.
Figure 3 presents the message types and transfers that
may take place in a distributed mobile environment.

Messages sent to
or received from
the static network.

Logging information,
Process Image, and
M essages.

User Input

Figure 3: Message transfer between the fixed and the
mobile host

The process image is backed up periodically at a
stable storage - in our case it is the base station, since
we assume the base station to be fault-tolerant. Sav-
ing the state periodically has been one of the tradi-
tional fault-tolerance measures, to avoid recomput-
ing/reexecuting from the initial state. Upon a fail-
ure, the process rolls back to the most recent back-up
process 1mage and continues execution; thus resulting
in loss of execution only from the most recent back-
up process image. Systems with hard real-time con-
straints require a recovery mechanism that minimizes
the loss of computation. Thus, the question “how fre-
quently do we back-up the process image on the base
station?” arises. We present two strategies for back-
ing up the process image - depending upon the ap-
plication requirements, the user might want to choose
one of them. The two strategies are described below.
(Note: Instead of backing up the whole process image,
we might just want to save the “incremental” process
image - thereby saving some bandwidth.) Both the
strategies allow each mobile host to fail and recover
independently. Also, the processes are assumed to be
deterministic.

5.1.1 Synchronous Approach

The state of the process can get altered either upon
receipt of a message from another mobile host or upon
an user input. The messages or inputs that modify the

state are called write® events. In the synchronous ap-
proach, the “incremental” process image of the mobile
host is backed up at the base station upon every write
event on the mobile host data.

Upon a failure of the mobile host, the base station
loads the latest backed up process image. Thus, the
recovery will be quick and totally transparent to the
external environment (which comprises of other hosts
taking part in the distributed algorithm or transaction
etc.). Upon repair, the mobile host sends a message
to the base station, which then loads the latest process
image onto the mobile host, and allows the mobile host
to continue from that point.

As stated earlier, handoff occurs only when an ac-
tiwve mobile host crosses cells. Failure after handoff can
be recovered using the strategies described in the next
section. But there can be a situation where a host
fails, then goes to another cell, and then recovers. In
this case, handoff does not happen, thus, the new cell’s
base station does not know the last cell of the mobile
host. So recovery is not possible. This situation can
be avoided if the base station of the cell in which the
mobile host fails notifies the home location server[6] of
the mobile host. Thus when the mobile host recovers
in a new cell, its base station, if it does not know the
last cell, asks the home location server of the mobile
host. Thus upon knowing the last cell, the base sta-
tion sends a message requesting the process image of
the mobile host from the last cell’s base station. Some
variations of this scheme also exist.

Synchronous approach 1s most suited for systems
with mobile hosts having a very high failure rate.
In addition to this, this approach will be suited for
systems having hard real-time deadlines, thus requir-
ing a quick recovery upon failure. But, the current
state of art for wireless communications supports lim-
ited bandwidth, thereby restricting the volume of data
that can be transferred over the wireless medium [6].
Therefore, instead of backing up the process image
synchronously (i.e. after every write event), we might
want to do the back-up asynchronously — as explained
in the next section.

5.1.2 Asynchronous Approach

In this strategy we back-up the process image after
regular intervals. The intervals can be determined ei-
ther by certain number of (a) write events, or (b) time
units. As defined earlier, the messages or inputs that
modify the state of the mobile host are called write
events. The length of the interval is to be determined
from the application requirements and the failure rate
of the mobile host. If the failure rate is high, we might
want to back-up more frequently. Likewise, if we have
real-time constraints we must ensure a quick recovery
- thus back-up more frequently.

Backing up the process image is not enough for re-
covery. In addition, we will have to log the messages
or transaction (depending on the application type). If

2If semantics of the message is not known, in the worst case,
we might have to assume that the process image gets altered
upon receipt of every message or an user input.



a write message is received from another mobile host,
the base station first logs it and then forwards it to
the mobile host for execution. Likewise, upon an user
input (write event), the mobile host first forwards a
copy of the user input to the base station for logging.
After logging, the base station sends an acknowledge-
ment back to the mobile host. The mobile host can
process the input, while waiting for the acknowledge-
ment, but not send a response to the user. Only upon
receipt of the acknowledgement, the mobile host sends
its response.

The above procedure ensures that no messages or
user inputs are lost due to a failure of the mobile host.
The logging of the write events continue till a new
process 1mage is backed up at the base station. The
base station then purges the log of the old write events.

Upon failure of the mobile host, the base station
loads the latest backed up process image of the mo-
bile host and restarts executing by replaying the write
requests from its logs, thus reaching the state of the
mobile host before failure.

5.2 Handoff

Till now, the recovery strategy seems to be very
similar to the traditional fault-tolerance schemes. But,
for mobile systems, in addition to above we have to
deal with handoff process. What should happen when
the mobile user moves to a new cell in the middle of
a distributed algorithm’s execution or a transaction’s
execution?

=

(9
<
&

NETWORK

Figure 4: Handoff in the middle of an execution

Consider Figure 4 as an example. Here, mobile
hosts mhl and mh2 are executing a distributed al-
gorithm. In the middle of the execution, mh2 moves
through the cell of BS3 and settles in the cell of BS4.
Handoff occurs at the boundaries of BS2 and BS3,
and, BS3 and BS4. The mobile host mh2 fails on
reaching the cell of BS4. If mh2 had remained in the
cell of BS2 the system would have recovered because
the process image and the logs are backed up at BSZ2.
But since no back-up took place at BS3 or BS4, and
since BS4 does not know where the last back-up of mh2
is stored, recovery cannot take place. Thus, the exe-
cution has to be aborted. We tackle this problem by
basically transferring some information corresponding
to the mobile host during the handoff process. There
are two ways in which data can be transferred during
the handoff process, (i) Pessimistic and (ii) Lazy.

5.2.1 Pessimistic Strategy

The process image and log of write requests are trans-
ferred immediately to the new cell’s base station.
Upon receipt of the process image and the log, the
new cell’s base station sends an acknowledgement to
the old base station. The old base station, on receiving
the acknowledgement, deletes its copy of the process
image and the log, since the mobile host is no longer in
its cell. This is done to save space on the base station.
Consider Figure 5 as an example.

Figure 5: Pessimistic handoff

When mh2 crosses the boundary of BS2 and BS3,
handoff occurs. BS2 sends the process image and logs
corresponding to mh2 (1). BS3, on receiving the data,
sends back an acknowledgement to BS2 (2). BS2
then, deletes the process image and the logs of mh2.
Likewise, when mh2 crosses the boundary of BS3 and
BS54, at the end of steps (3,4), the process image and
logs corresponding to mh2 is present at BS4. Thus, if
mh?2 fails in this cell, successful and quick recovery is
attained.

This strategy will be suited for distributed systems
where the failure rate of the mobile hosts are very high,
and for applications where long service disruptions are
not tolerated. The disadvantage with this approach is
that there will be heavy volume of data transfer during
each handoff. This can be avoided if we use the Lazy
strategy, as explained in the next section.

5.2.2 Lazy Strategy

With Lazy strategy, during handoff, there is no trans-
fer of process image and the log. Consider Figure 6
as an example. Upon a handoff of mh2 from BS2 to
BS3, BS2 sends a message to BS3 indicating the last
cell location of mh2 i.e. the cell of BS2 (1). Simi-
larly, when mh2 moves into the cell of BS4, BS3 sends
an indication to BS4 (2). The new cell’s base station
just remembers the mobile host’s last cell. Thus, as a
mobile host moves from cell to cell, the corresponding
base stations effectively form a linked list. One such
linked list needs to be maintained for each mobile host.

This strategy might lead to a problem, because, the
process image and logs of mh2 may be unnecessarily
saved at different base stations. Thus to avoid this,
after a handoff, if a back-up is done at the new base
station, it sends a notification to the last cell’s base



Figure 6: Lazy handoff

station to delete the process image and logs of mh2, if
present. If not present, this base station forwards the
notification to predecessor’s base station in the linked
list. This process continues, till a base station with a
old process image and logs of mh2 is encountered or
the starting cell of mh2is reached. In Figure 6, after a
back-up operation at BS4 (B), BS4 sends a notification
to BS3 (L1), which in turn forwards the notification
to BS2 (L2) (because there was no back-up or logging
done at BS3). Incidentally, there was a back-up done
at BS2. Thus, BS2 deletes the process image and log
corresponding to mh2.

The Lazy strategy saves a lot of time during hand-
off as compared to the Pessimistic strategy. But the
recovery 1s more complicated. Upon a failure, if the
base station does not have a back-up of the process im-
age, 1t gets the logs and the process image from the
base stations in the linked list. The base station then
loads the process image and replays the messages from
the logs to reach the state of the mobile host just be-
fore failure. The recovery is presented in the form of
a pseudo-code in Figure 7.

Recovery()

If Current BS has the latest process image
Load process image and replay messages from the
log to recover.

else
Request the BS’s in the linked list for the process
image and log.
Load process image and replay messages from the
logs to recover.

Figure 7: Recovery when using Lazy(} handoff

5.3 Tradeoff Parameters

Depending on the system specifications and re-
quirements, the appropriate recovery and handoff
strategy will be chosen. The tradeoff will depend on
the following factors, (i) failure rate of the mobile host,
il) communication/mobility ratio, (iii) message size
energy efficiency), (iv) memory constraints on the
base station and (v) time available for recovery.

e Failure rate of the host : System failures are
caused by defects introduced in manufacturing or
by transient or permanent faults occurring during
operation. Moreover the mobile systems are sub-
ject to environmental conditions which can cause
loss of communications or data. For systems with
a high failure rate, a Synchronous state saving
strategy may be preferred, if a quick recovery is
required.

e Communication/Mobility ratio : Communication
refers to the number of messages sent /received by
the mobile host and mobility refers to the number
of moves the mobile host makes in a given period
of time. For mobile hosts having low communica-
tion/mobility ratio (a very mobile user), the Lazy
handoff strategy may be preferred.

e Message Size : The constraint of limited avail-
able energy will require “energy efficient” data
management strategies. Transmitting and receiv-
ing data consumes additional power. In gen-
eral, transmitting a given amount of data con-
sumes twice as much power as receiving the same
amount of data [6]. Thus, systems having se-
vere energy constraints, Asynchronous state sav-
ing strategy may be preferred.

e Memory constraints : A base station generally has
many mobile hosts in its cell. Storing the process
image and the log of each mobile host at the base
station might use up a lot of memory space on
the base station. It is necessary to evaluate av-
erage memory requirements based on statistical
data and the recovery schemes used. Generally,
the process image, logs, and the linked list for
each mobile host will be stored in the base sta-
tion memory.

e Recovery time : This is essentially the time re-
quired to recover a process upon failure. If
the process has hard real-time deadlines, or re-
quires high availability, the recovery upon a fail-
ure should be quick. For quick recovery, a com-
bination of Synchronous state saving and Pes-
stmustic handoff strategy may be preferred.

We are currently studying the strategies using these
tradeoff parameters to find out the environments
where a particular combination of recovery and hand-
off strategy will be best suited.

5.4 Failure of the Base Station

Till now, we have been assuming the base station
to be fault-free. How do we recover the system if
a base station fails? We assume the base station to
be fail-stop [10]. Since the base stalion is a part of
the static network, traditional fault-tolerance schemes
like checkpointing and logging can be used with mi-
nor modifications to support the communication with
the mobile hosts. A simple solution to this problem
i1s “replication”. Recovery due to the failure of a base
station can be achieved by switching in a back-up base
station (similar to the “cold-spare” approach of Tan-

dem [5]).



6 Conclusion

Mobile computing is a rapidly emerging trend in
distributed computing. The new mobile computing
environment presents many challenges due to the re-
quirements of the mobile nature of the hosts. In
this paper we have presented preliminary ideas for
fault-tolerant data management in a distributed mo-
bile computing environment. These strategies need
to be different from the traditional fault-tolerance ap-
proaches, because of the resource limitations of mobile
computing environment. We have also identified the
tradeoff parameters to evaluate the recovery scheme.
We are currently studying the strategies using these
tradeoff parameters to determine the environments
where a particular combination of recovery and hand-
off strategy will be best suited.

References

[1] B. R. Badrinath and T. Imielinski, “Replication
and Mobility,” Proc. of Second Workshop on the
Management of Replicated Data, November 1992.

[2] B. R. Badrinath, A. Acharya and T. Imielin-
ski, “Structuring distributed algorithms for mo-
bile hosts,” Technical Report, WINLAB/Rutgers
Tech. Rept DCS-TR-298/WINLAB TR-55.

[3] P. Bhagwat and C. E. Perkins, “A mobile net-
working system based on internet protocol(IP),”
Proc. of the USENIX Symposium on Mobie
and Location-Independent Computing, Cambridge,
Massachussets, August 1993.

[4] B. Bhargava and S. R. Lian, “Independent check-
pointing and concurrent rollback recovery for re-
covery - An optimistic approach,” Proc. IEEE
Symp. on Reliable Distributed Systems, pp. 3-12,
1988.

[5] C. 1. Dimmer, “The Tandem non-stop system,”
Resilient Computing Systems, edited by T. An-
derson, chapter 10, pp. 178-196, Collins, London,
1985.

[6] T. Imielinski and B. R. Badrinath, “Mobile wire-
less computing: solutions and challenges in data

management,” Technical Report, Rutgers DCS-
TR-296/WINLAB TR-49, Feb. 1993.

[7] K. Keeton et.al., “Providing connection-oriented
network services to mobile hosts,” Proc. of the
USENIX Symposium on Mobile and Location-
Independent Computing, Cambridge, Massachus-
sets, August 1993.

[8] R. Koo and S. Toueg, “Checkpointing and
rollback-recovery for distributed systems,” [EEFE
Trans. on Software Engineering, Vol. SE-13, No.
1, pp. 23-31, Jan. 1987.

[9] P. Krishna, Nitin H. Vaidya and D. K. Prad-
han, “Independent checkpointing and recovery
scheme for fail-slow processors,” Tech. Rep. 93-
028, Dept. of Computer Science, Texas A&M Uni-
versity, 1993.

[10] R. D. Schlichting and F. B. Schneider, “Fail-
stop processors : An approach to designing fault-
tolerant distributed computing systems,” ACM
Trans. on Computer Systems, Vol. 1, No. 3, pp.
222-238, Aug. 1983.

[11] R. E. Strom and S. Yemini, “Optimisitic recovery
in distributed systems,” ACM Trans. on Comp.
Sys., pp. 204-226, Aug. 1985.

[12] Nitin H. Vaidya, “Dynamic cluster-based recov-
ery: Pessimistic and Optimistic Schemes,” Tech.
Rep. 93-027, Dept. of Computer Science, Texas
A&M University, 1993.

[13] T. Watson and B. N. Bershad, “Local area mo-
bile computing on stock hardware and mostly
stock software,” Proc. of the USENIX Symposium
on Mobile and Location-Independent Computing,
Cambridge, Massachussets, August 1993.



