
Recovery in Multicomputers with Finite Error Detection Latency�P. Krishna N. H. Vaidya D. K. PradhanComputer Science DepartmentTexas A&M UniversityCollege Station, TX 77843-3112AbstractIn most research on checkpointing and re-covery, it has been assumed that the processorhalts immediately in response to any internalfailure (fail-stop model). This paper presentsa recovery scheme (independent checkpoint-ing and message logging) for a multicomputersystem consisting of processors having a non-zero error detection latency. Our scheme tol-erates bounded error detection latencies, thus,achieving a higher fault coverage. The simu-lation results show that for typical detectionlatency values, the recovery overhead is almostindependent of the detection latency.1 IntroductionNumerous approaches to checkpointing and roll-back recovery have been proposed in the literaturefor fail-stop processors (e.g., [1]). While the notionof a fail-stop processor is a useful abstraction, it isexpensive to implement [7]. In real systems, many er-ror detection mechanisms have non-zero detection la-tency [2, 3, 4]. In this paper, we deal with a multicom-puter consisting of processors whose built-in error de-tection mechanism can detect errors within a boundederror detection latency. These processors are named asfail-slow processors. A recovery scheme that toleratesa non-zero detection latency � will be able to tolerateall faults that have a detection latency less than orequal to �. The fault coverage increases with an in-crease in �. For � = 0, the fault coverage of the schemeis equal to a scheme that assumes fail-stop operation.Depending on the fault coverage requirements, the de-tection latency value can be provided as an input bythe system designer. This paper presents an inde-pendent checkpointing and message logging techniquetaking the detection latency into consideration.A coordinated checkpointing scheme that toleratesbounded error detection latency is presented by Silvaand Silva [2]. In this scheme, a processor's clock isused to estimate when an error could have occurred.However, during the detection latency period, the pro-cessor is in a spurious state, and a corrupt clock mightlead to an incorrect recovery. Therefore, the schemein [2] works only if a faulty processor's clock is alwaysfault-free and a faulty processor timestamps messages�Research reported is supported in part by AFOSR undergrant F49620-92-J-0383.

correctly. Our approach does not depend on the pro-cessor clock for determining when an error could haveoccurred. Instead, the clock at the stable storage isused. Extensive simulations are carried out to evalu-ate the e�ects of error detection latency on recoverytime.This paper is organized as follows. Section 2presents the system model. Section 3 presents someterminology and the data structures used in ourscheme. Section 4 presents some de�nitions. Section5 presents the recovery algorithm, Section 6 presentsthe simulation results, and conclusions are presentedin Section 7.2 System ModelWe consider a system consisting of processes thatcommunicate by sending messages to each other. Weassume deterministic execution of each process in thesystem. Communication channels are assumed to bereliable and FIFO. A stable storage is provided, whichis accessible to all the processes, and is una�ected byany kind of failures1. The stable storage also hasthe capability to timestamp received log entries us-ing its local clock. We assume that there is an upperbound 4 on the message transmission time betweenany two processors [8]. Figure 1 illustrates opera-
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XFigure 1: Operation of a fail-slow processortion of a fail-slow processor. A failure occurs at timetF , and gets detected by the detection mechanism attime tD after a latency period. The operating char-acteristics of the fail-slow processor are as follows :(i) t < tF : Normal execution. (ii) tF � t < tD :Spurious mode. This is the detection latency periodduring which the processor may behave arbitrarily.(iii) t � tD : The failure is detected at tD, and allother processors are informed of the failure. Thus, allother processors will detect the failure by time tD+4.1Realistically, the stable storage only needs to be signi�-cantly less likely to fail as compared to rest of the system.



The proposed recovery scheme requires that the pe-riod between two adjacent checkpoints be larger thanthe sum of the detection latency � and the worst casemessage transmission time4. For simplicity, the pro-posed recovery scheme is designed to tolerate only asingle process failure.During recovery, the system must assess the dam-age caused by the error. The detection latency ofthe existent error detection mechanisms can be mea-sured by fault-injection tools (e.g., FERRARI [3], RI-FLE [4]).After a failure has occurred, during the detectionlatency period, a processor may behave arbitrarily.Messages sent by the faulty process during the latencyperiod could be contaminated and thus cause the er-ror to be propagated to other processes. Messagesreceived by the faulty process during the latency pe-riod could be corrupted before they are logged. Also,checkpoints taken by the faulty process during the la-tency period could be corrupted. Thus, the recoveryalgorithm should undo the damage done by the mes-sages sent, discard the messages received, and discardthe checkpoints taken, by the faulty process duringthe latency period.3 Terminologies and Data StructuresCPik denotes the k-th checkpoint of process i withk � 0. CPik .time denotes the local time at the stablestorage, when k-th checkpoint of process i is receivedby the stable storage. This timestamp is also savedin the stable storage. Send sequence number (SSN) ofa message indicates position of the message in the se-quence of outgoing messages. Receive sequence num-ber (RSN) of a message indicates position of the mes-sage in the sequence of incoming messages. SenderLog is a log of messages sent by the process, main-tained at the stable storage. For each message sent,this includes message data, destination process iden-ti�cation, SSN, and local time at the stable storageat which the message is received by the stable stor-age. Receiver Log contains information about themessages received by the process, and is maintainedat the stable storage. For each message received, thisincludes sender process identi�cation, SSN of the mes-sage, RSN of the message, and local time at the stablestorage at which the message is received by the stablestorage. For process i, the jth element of the Max-SSN-Senti vector, Max-SSN-Sentij , denotes the SSNof the most recent message, sent by process i to pro-cess j, in the sender log of process i. For process i,the jth element of Max-SSN-Recdi vector, Max-SSN-Recdij , denotes the SSN of the most recent message,received by process i from process j, in the receiverlog of process i.The Sender Log, Receiver Log, Max-SSN-Sent vec-tor, and Max-SSN-Recd vector must be included inthe checkpoint of a process.4 De�nitionsMessages to be logged on stable storage are storedin local bu�ers before they are logged to the stablestorage. When the bu�ers get full, the messages arelogged by writing these bu�ers to the stable storage. If

any message is present in the bu�er during the detec-tion latency period, the message may be corrupted. Amessage m0 is said to \depend on" message m if mes-sage m is received by a process before it sends messagem0.De�nition 1 Let the local time at the stable storageat which a message M was logged by process i be tM . �is the time at the stable storage when failure of processi is detected by the stable storage. If (��4��) � tM �� , message m is unsafe, else the message is safe. Inaddition, a message dependent on an unsafe messageis also unsafe.(� �4 � �) gives the \pessimistic" earliest time (ac-cording to the stable storage clock) when the errorcould have occurred. Therefore, some uncorruptedmessages that were logged before the failure actu-ally occurred, may also be declared unsafe. The pes-simistic behavior occurs because the stable storageclock is used to determine the unsafe messages. Pro-cessor clock cannot be used because it can be faultywhen the processor fails (including during the latencyperiod).During recovery, the logs should �rst be made safe.This is done in our scheme using a procedure calledsafe(� , p); � and p are the time of error detectionaccording to the stable storage clock, and the processidenti�er, respectively. The safe(� , p) �nds the unsafemessages (using De�nition 1) and deletes them fromthe logs. Thus, only safe messages are used during therecovery.De�nition 2 Let � be the local time at the stable stor-age when a failure of process i is detected by the sta-ble storage. A checkpoint CPin of process i is unsafeif (� �4� �) � CPin:time � � , otherwise, the check-point is safe.The recovery algorithm should discard an unsafecheckpoint, as it could be erroneous.5 Recovery AlgorithmMessage logging is performed asynchronously. Eachprocess checkpoints independently with the constraintthat time interval between two consecutive check-points of a process is at least � +42.Upon a failure, recovery is initiated to determinethe recovery line to which the processes should roll-back. The recovery algorithm �rst assesses the dam-age done by the latency of the detection mechanism.Basing on the knowledge of the time of error detec-tion (according to the stable storage's clock) and �(provided by the system designer3), the recovery al-gorithm determines the earliest time instant when theerror could have occurred, and then begins the recov-ery.2This assumption makes sure that at most one checkpointgets a�ected by an error.3If not, � can be de�ned to be the maximum latency overall the error detection mechanisms. In those systems where theerror detection mechanism can be identi�ed, � can be de�nedto be the worst case latency of that detection mechanism.



Case I : The simplest case occurs when only acheckpoint operation takes place during the error la-tency period, but there are no messages in the localbu�er waiting to be logged on the stable storage. Thiscase is illustrated in Figure 2. � is the time by stablestorage's clock at which the stable storage detectedfailure of process P. Since the transmission delay up-per bound is 4, and the error detection latency is �,the earliest instant when the error could have occurredaccording to the stable storage clock is � � (4+�). In
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δFigure 2: Unsafe Checkpointthis case, as CPP2:time > (� � (� +4)), the recoveryalgorithm detects that CPP2 is an unsafe checkpoint.Therefore, CPP2 is discarded. As shown in Figure 2,process P logged some messages at time L (i.e. the sta-ble storage received them at L). As L < (� � (�+4)),these messages could not have been corrupted by P'sfailure. Since no messages are logged by P after timeL, safe(� , P) does not �nd any unsafe messages. Pro-cess P rolls back to CPP1 . The sender log and re-ceiver log of process P is used during the recompu-tation to recover process P's state before the failure.The Max-SSN-Sent vector inferred from the updatedsender log is used to avoid the resending of safe mes-sages. Curr SSNi is de�ned to be the maximum SSNof the safe messages in the sender log for process i,i.e., Curr SSNi = 8j MAX(Max-SSN-Sentij ). Dur-ing the recomputation of the checkpoint interval, theresending of messages whose SSN value is less thanthe Curr SSN is avoided. Messages are received in thesame order as indicated by the receiver log. Since thefaulty process has not propagated the error to otherprocesses, other processes do not rollback.Case II : In this case only message transfers takeplace during the latency period. This case is illus-trated in Figure 3. In this case, as CPP1:time <(� � (� + 4)), there are no unsafe checkpoints. Wede�ne the phrase \logged at time t" as \received bythe stable storage at time t". The logging of messagescould have taken place sometime before the error hadoccurred, at time L1, or during the detection latencyperiod at time L2. In both cases, the messages m3and m4 will be in the local bu�er during the latencyperiod. If logging took place at L2, all the messagessent or received after CPP1 will be unsafe, becauseL2 > (� � (� + 4)). The safe(� , P) operation willremove the entries in the logs corresponding to theunsafe messages, and update the Max-SSN-Sent and
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τFigure 3: Unsafe MessagesMax-SSN-Recd vectors. On the other hand, if log-ging took place at time L1, only m3 and m4 will bein the local bu�er. Thus, m3 and m4 are unsafe mes-sages. The safe(� , P) operation will not detect them,as they have not been logged. As explained later, theseunsafe messages are detected by requesting the otherprocesses to perform a logging operation upon receiptof the rollback request message from P.Since the destination of the unsafe messages sent byprocess Pmay not be correctly stored in the sender logor the local bu�er, process P sends a rollback requestmessage to every other process in the system. Max-SSN-SentPi and Max-SSN-RecdPi, vector elements ofP corresponding to a process i are tagged along withthe rollback request message to process i. Process i,upon receipt of the rollback request message from P,performs a logging operation, i.e., it logs the messagespresent in its local bu�er, and updates its Max-SSN-Sent and Max-SSN-Recd vectors.The Max-SSN-SentPi value is compared with theMax-SSN-RecdiP value of process i. One of the twocases might occur:1. Max-SSN-RecdiP = Max-SSN-SentPi : This im-plies that process i did not receive any unsafemessages from process P. Hence, no rollback isnecessary.2. Max-SSN-RecdiP > Max-SSN-SentPi : Incon-sistency. Messages have been sent to process iby process P during the detection latency pe-riod. This will require process i to rollback to acheckpoint where the value of Max-SSN-RecdiP� Max-SSN-SentPi.The entries in the receiver log of process i cor-responding to those messages from P whose SSNvalues are greater than Max-SSN-SentPi are re-moved. Process i starts recomputing from a pre-vious checkpoint using the messages in its senderand the receiver log.If process i sends messages to any other process af-ter it had received an unsafe message, those mes-sages will also be unsafe. Process i sends rollbackrequest message to the processes it had sent un-safe messages. Process i then waits for the roll-back ack message to arrive from those processes.



For example, in Figure 3, messagem5 sent to pro-cess R, by process Q, is such an unsafe message,caused due to error propagation. Thus process Qwill send a rollback request message to process R.Process Q then waits for the rollback ack messageto arrive from process R.Since we assume a reliable network and FIFO chan-nels, the case ofMax-SSN-RecdiP < Max-SSN-SentPiwill not occur.The value of Max-SSN-RecdPi is compared withthe Max-SSN-SentiP value of process i. One of thetwo cases might occur:1. Max-SSN-RecdPi = Max-SSN-SentiP : This im-plies that process P did not receive any messagesfrom process i during the detection latency pe-riod. Hence, there is no inconsistency.2. Max-SSN-RecdPi < Max-SSN-SentiP : Inconsis-tency. Messages sent by process i have been re-ceived by process P during the latency period.This will require the process i to resend thosemessages whose SSN > Max-SSN-RecdPi.Each process i sends back a rollback ack messageback to the failed process P. A noti�cation is also sentto process P along with the rollback ack message asto whether process i has to resend the messages thatwere discarded by process P during the safe(� , P) op-eration. Upon receipt of rollback ack message fromevery other process, process P restarts from the previ-ous checkpoint. It resends those messages whose SSNvalue is greater than Curr SSNP to the respective pro-cesses. It requests the processes (which had taggedthe noti�cation along with the rollback ack message)to resend the messages.Case III : In this case, both unsafe messages andunsafe checkpoints are present. The recovery schemeis a combination of the recovery schemes for cases Iand II. The details of the algorithm are presented in[8].6 SimulationsSimulations were performed to evaluate the e�ectsof detection latency on recovery. Each process com-municates with others by passing messages. The timeat which a process sends a message is assumed tofollow an exponential distribution with mean of tm.Identity of the destination process is determined ran-domly (uniformly distributed). The values of the pa-rameters used in the simulation are shown in Table1. The performance parameters of interest are (i)max-imum recovery overhead, (ii) average recovery over-head, (iii) number of processes rolled back due to errorpropagation and (iv) overhead due to checkpointingand logging. As stated earlier, due to detection la-tency, error is propagated to processes other than thefailed one. Thus, during recovery, more than one pro-cess could be rolled back, and, the rollback distancecould be more than one checkpoint interval. Recov-ery overhead for a process is de�ned as the period of

Table 1: Simulation ParametersParameter Value(s) chosenMessage frequency(tm) 1 message/secNumber of processes 10Checkpoint interval 2, 5, 10 minutesCheckpoint state size 100 KbytesMessage size 2 KbytesLog bu�er size 16, 32 KbytesDetection latency (�) 0 (fail-stop) to 1 secMax. Comm. latency (4) 1 msDisk transfer rate [5] 12.5 Mbytes/secDisk seek time [6] 12.5 msDisk rotate time [6] 13.9 mscomputation lost (rollback distance) due to the fail-ure. Maximum recovery overhead and average recov-ery overhead are computed as the maximumand aver-age of recovery overheads of all the processes, respec-tively.6.1 ResultsThe detection latency (�) was varied from 0 to 1sec. Zero detection latency corresponds to a fail-stopprocessor [7]. Typical latencies are less than 1 sec [3].The average and maximum recovery overheads werecomputed for di�erent latency values.Figure 4 demonstrates the average overhead (com-puted as a percentage of the total runtime), for di�er-ent checkpoint interval sizes, and for a log size of 16Kb. As seen, there is an increase in the average recov-ery overhead as the latency increases. This is because,as the latency increases, the probability of unsafe mes-sages being sent is high. Thus, the number of unsafeprocesses are higher. By unsafe processes we mean theprocesses which have received unsafe message(s). Fig-ure 5 shows the number of processes rolled back due topossible error propagation, for di�erent checkpoint in-terval sizes, and for a log size of 16 Kb. With non-zerolatency value, some processes are rolled back due topossible error propagation. Figure 6 demonstrates themaximum overhead (computed as a percentage of thetotal runtime), for di�erent checkpoint interval sizes,and for a log size of 16 Kb. As seen, the maximumrecovery overhead is not much a�ected by the latencyvalue used. The value of latency is typically small tobring about signi�cant variation in the maximum re-covery overhead. Since the detection latency is smallcompared to the checkpoint interval, the probabilityof a checkpoint operation taking place during errordetection is small. Therefore, the maximum recoveryoverhead is relatively independent of latency. Figure 7shows the failure-free overhead due to checkpointingand logging (computed as a percentage of the totalruntime) for di�erent checkpoint interval sizes and forlog sizes of 16 Kb and 32 Kb. The overhead dependson the checkpoint size, checkpoint interval size, logsize, message size and the I/O bandwidth. The failure-free overhead is quite low for realistic parameter val-
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Figure 4: Average overhead
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Figure 5: Unsafe Processes
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Figure 6: Maximum overhead7 ConclusionsThis paper presents an independent checkpointingand message logging scheme that tolerates error de-tection latency up to �. The proposed scheme allowsthe system designer to provide � as an input. Typicalerror detection latencies are small (less than 1 sec.),therefore � is expected to be small. Larger the chosenvalue of �, higher is the fault coverage provided by thescheme. For typical values, an increase in � causes onlya marginal increase in the average recovery overhead,due to possible error propagation. However, when �
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