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Abstract

In most research on checkpointing and re-
covery, it has been assumed that the processor
halts immediately in response to any internal
failure (fail-stop model). This paper presents
a recovery scheme (independent checkpoint-
ing and message logging) for a multicomputer
system consisting of processors having a non-
zero error detection latency. Our scheme tol-
erates bounded error detection latencies, thus,
achieving a higher fault coverage. The simu-
lation results show that for typical detection
latency values, the recovery overhead is almost
independent of the detection latency.

1 Introduction

Numerous approaches to checkpointing and roll-
back recovery have been proposed in the literature
for fail-stop processors (e.g., [1]). While the notion
of a fail-stop processor is a useful abstraction, it is
expensive to implement [7]. In real systems, many er-
ror detection mechanisms have non-zero detection la-
tency [2, 3, 4]. In this paper, we deal with a multicom-
puter consisting of processors whose built-in error de-
tection mechanism can detect errors within a bounded
error detection latency. These processors are named as
fail-slow processors. A recovery scheme that tolerates
a non-zero detection latency ¢ will be able to tolerate
all faults that have a detection latency less than or
equal to 8. The fault coverage increases with an in-
crease in 6. For 6 = 0, the fault coverage of the scheme
is equal to a scheme that assumes fail-stop operation.
Depending on the fault coverage requirements, the de-
tection latency value can be provided as an input by
the system designer. This paper presents an inde-
pendent checkpointing and message logging technique
taking the detection latency into consideration.

A coordinated checkpointing scheme that tolerates
bounded error detection latency is presented by Silva
and Silva [2]. In this scheme, a processor’s clock is
used to estimate when an error could have occurred.
However, during the detection latency period, the pro-
cessor is in a spurious state, and a corrupt clock might
lead to an incorrect recovery. Therefore, the scheme
in [2] works only if a faulty processor’s clock is always
fault-free and a faulty processor timestamps messages
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correctly. Qur approach does not depend on the pro-
cessor clock for determining when an error could have
occurred. Instead, the clock at the stable storage is
used. Extensive simulations are carried out to evalu-
ate the effects of error detection latency on recovery
time.

This paper is organized as follows. Section 2
presents the system model. Section 3 presents some
terminology and the data structures used in our
scheme. Section 4 presents some definitions. Section
b presents the recovery algorithm, Section 6 presents
the simulation results, and conclusions are presented
in Section 7.

2 System Model

We consider a system consisting of processes that
communicate by sending messages to each other. We
assume deterministic execution of each process in the
system. Communication channels are assumed to be
reliable and FIFO. A stable storage is provided, which
is accessible to all the processes, and is unaffected by
any kind of failures’. The stable storage also has
the capability to timestamp received log entries us-
ing its local clock. We assume that there is an upper
bound A on the message transmission time between
any two processors [8]. Figure 1 illustrates opera-
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Figure 1: Operation of a fail-slow processor

tion of a fail-slow processor. A failure occurs at time
tp, and gets detected by the detection mechanism at
time tp after a latency period. The operating char-
acteristics of the fail-slow processor are as follows :
(i) t < tp : Normal execution. (ii) tp < ¢ < tp:
Spurious mode. This is the detection latency period
during which the processor may behave arbitrarily.
(i) t > tp : The failure is detected at ¢p, and all
other processors are informed of the failure. Thus, all
other processors will detect the failure by time {p +A.

1Realistically, the stable storage only needs to be signifi-
cantly less likely to fail as compared to rest of the system.



The proposed recovery scheme requires that the pe-
riod between two adjacent checkpoints be larger than
the sum of the detection latency é and the worst case
message transmission time A. For simplicity, the pro-
posed recovery scheme is designed to tolerate only a
single process failure.

During recovery, the system must assess the dam-
age caused by the error. The detection latency of
the existent error detection mechanisms can be mea-
sured by fault-injection tools (e.g., FERRARI [3], RI-
FLE [4]).

After a failure has occurred, during the detection
latency period, a processor may behave arbitrarily.
Messages sent by the faulty process during the latency
period could be contaminated and thus cause the er-
ror to be propagated to other processes. Messages
received by the faulty process during the latency pe-
riod could be corrupted before they are logged. Also,
checkpoints taken by the faulty process during the la-
tency period could be corrupted. Thus, the recovery
algorithm should undo the damage done by the mes-
sages sent, discard the messages received, and discard
the checkpoints taken, by the faulty process during
the latency period.

3 Terminologies and Data Structures

CP;). denotes the k-th checkpoint of process i with
k > 0. CP; .time denotes the local time at the stable
storage, when k-th checkpoint of process i is received
by the stable storage. This timestamp is also saved
in the stable storage. Send sequence number (SSN) of
a message indicates position of the message in the se-
quence of outgoing messages. Receilve sequence num-
ber (RSN) of a message indicates position of the mes-
sage in the sequence of incoming messages. Sender
Log is a log of messages sent by the process, main-
tained at the stable storage. For each message sent,
this includes message data, destination process iden-
tification, SSN, and local time at the stable storage
at which the message is received by the stable stor-
age. Receiver Log contains information about the
messages received by the process, and is maintained
at the stable storage. For each message received, this
includes sender process identification, SSN of the mes-
sage, RSN of the message, and local time at the stable
storage at which the message is received by the stable
storage. For process ¢, the jth element of the Max-
SSN-Sent; vector, Max-SSN-Sent;;, denotes the SSN
of the most recent message, sent by process ¢ to pro-
cess 7, in the sender log of process i. For process i,
the jth element of Max-SSN-Recd; vector, Max-SSN-
Recd;;, denotes the SSN of the most recent message,
received by process ¢ from process j, in the receiver
log of process 1.

The Sender Log, Receiver Log, Max-SSN-Sent vec-
tor, and Max-SSN-Recd vector must be included in
the checkpoint of a process.

4 Definitions

Messages to be logged on stable storage are stored
in local buffers before they are logged to the stable
storage. When the buffers get full, the messages are
logged by writing these buffers to the stable storage. If

any message 1s present in the buffer during the detec-
tion latency period, the message may be corrupted. A
message m’ 1s said to “depend on” message m if mes-
sage m is received by a process before it sends message
m’.

Definition 1 Let the local time at the stable storage
at which a message M was logged by process 1 be tar. T
1s the time at the stable storage when fatlure of process
iis detected by the stable storage. If (T—A—=6) <ty <
T, message m is unsafe, else the message is safe. In
addition, a message dependent on an unsafe message
1s also unsafe.

(1 — A — 8) gives the “pessimistic” earliest time (ac-
cording to the stable storage clock) when the error
could have occurred. Therefore, some uncorrupted
messages that were logged before the failure actu-
ally occurred, may also be declared unsafe. The pes-
simistic behavior occurs because the stable storage
clock is used to determine the unsafe messages. Pro-
cessor clock cannot be used because it can be faulty
when the processor fails (including during the latency
period).

During recovery, the logs should first be made safe.
This 18 done in our scheme using a procedure called
safe(t, p); T and p are the time of error detection
according to the stable storage clock, and the process
identifier, respectively. The safe(r, p)finds the unsafe
messages (using Definition 1) and deletes them from
the logs. Thus, only safe messages are used during the
recovery.

Definition 2 Let T be the local time at the stable stor-
age when a failure of process ¢ is detected by the sta-
ble storage. A checkpoint CP;, of process i is unsafe
if (1= A =6) < CPy time < 7, otherwise, the check-
point is safe.

The recovery algorithm should discard an wunsafe
checkpoint, as it could be erroneous.

5 Recovery Algorithm

Message logging is performed asynchronously. Each
process checkpoints independently with the constraint
that time interval between two consecutive check-
points of a process is at least § + AZ.

Upon a failure, recovery is initiated to determine
the recovery line to which the processes should roll-
back. The recovery algorithm first assesses the dam-
age done by the latency of the detection mechanism.
Basing on the knowledge of the time of error detec-
tion (according to the stable storage’s clock) and 6
(provided by the system designer®), the recovery al-
gorithm determines the earliest time instant when the
error could have occurred, and then begins the recov-
ery.

2This assumption makes sure that at most one checkpoint
gets affected by an error.

3If not, § can be defined to be the maximum latency over
all the error detection mechanisms. In those systems where the
error detection mechanism can be identified, § can be defined
to be the worst case latency of that detection mechanism.



Case I : The simplest case occurs when only a
checkpoint operation takes place during the error la-
tency period, but there are no messages in the local
buffer waiting to be logged on the stable storage. This
case 1s illustrated in Figure 2. 7 is the time by stable
storage’s clock at which the stable storage detected
failure of process P. Since the transmission delay up-
per bound is A, and the error detection latency is 6,
the earliest instant when the error could have occurred
according to the stable storage clock is 7— (A +6). In
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Figure 2: Unsafe Checkpoint

this case, as C'Ppg.time > (1 — (6§ + A)), the recovery
algorithm detects that C'Pps is an unsafe checkpoint.
Therefore, C'Pps 1s discarded. As shown in Figure 2,
process P logged some messages at time L (i.e. the sta-
ble storage received them at L). As L < (71— (§+A)),
these messages could not have been corrupted by P’s
failure. Since no messages are logged by P after time
L, safe(r, P) does not find any unsafe messages. Pro-
cess P rolls back to CPp;. The sender log and re-
ceiver log of process P 1s used during the recompu-
tation to recover process P’s state before the failure.
The Max-SSN-Sent vector inferred from the updated
sender log 1s used to avoid the resending of safe mes-
sages. Curr_SSN; is defined to be the maximum SSN
of the safe messages in the sender log for process i,
ie., Curr_SSN; = Vj M AX(Max-SSN-Sent;;). Dur-
ing the recomputation of the checkpoint interval, the
resending of messages whose SSN value is less than
the Curr_SSN is avoided. Messages are received in the
same order as indicated by the receiver log. Since the
faulty process has not propagated the error to other
processes, other processes do not rollback.

Case II  : In this case only message transfers take
place during the latency period. This case is illus-
trated in Figure 3. In this case, as C'Ppy.time <
(1 — (6 + A)), there are no unsafe checkpoints. We
define the phrase “logged at time t” as “received by
the stable storage at time t”. The logging of messages
could have taken place sometime before the error had
occurred, at time LI, or during the detection latency
period at time L2. In both cases, the messages mgs
and my will be in the local buffer during the latency
period. If logging took place at L2, all the messages
sent or received after CPpy will be unsafe, because
L2 > (r = (6 + A)). The safe(r, P} operation will
remove the entries in the logs corresponding to the
unsafe messages, and update the Max-SSN-Sent and
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Figure 3: Unsafe Messages

Max-SSN-Recd vectors. On the other hand, if log-
ging took place at time L1, only ms and my4 will be
in the local buffer. Thus, ms and my are unsafe mes-
sages. The safe(r, P) operation will not detect them,
as they have not been logged. As explained later, these
unsafe messages are detected by requesting the other
processes to perform a logging operation upon receipt
of the rollback request message from P.

Since the destination of the unsafe messages sent by
process P may not be correctly stored in the sender log
or the local buffer, process P sends a rollback request
message to every other process in the system. Max-
SSN-Sentp; and Max-SSN-Recdp;, vector elements of
P corresponding to a process 1 are tagged along with
the rollback request message to process i. Process i,
upon receipt of the rollback request message from P,
performs a logging operation, i.e., it logs the messages
present in its local buffer; and updates its Max-SSN-
Sent and Max-SSN-Recd vectors.

The Max-SSN-Sentp; value is compared with the
Max-SSN-Recd;p value of process 1. One of the two
cases might occur:

1. Max-SSN-Recd;p = Max-SSN-Sentp; : This im-
plies that process 1 did not receive any unsafe
messages from process P. Hence, no rollback is
necessary.

2. Max-SSN-Recd;p > Max-SSN-Sentp; : Incon-
sistency. Messages have been sent to process i
by process P during the detection latency pe-
riod. This will require process 1 to rollback to a
checkpoint where the value of Max-SSN-Recd;p
< Max-SSN-Sentp;.

The entries in the receiver log of process i cor-
responding to those messages from P whose SSN
values are greater than Max-SSN-Sentp; are re-
moved. Process istarts recomputing from a pre-
vious checkpoint using the messages in its sender
and the receiver log.

If process i sends messages to any other process af-
ter it had received an unsafe message, those mes-
sages will also be unsafe. Process i sends rollback
request message to the processes it had sent un-
safe messages. Process i then waits for the roll-
back ack message to arrive from those processes.



For example, in Figure 3, message ms sent to pro-
cess R, by process @, is such an unsafe message,
caused due to error propagation. Thus process Q
will send a rollback request message to process R.
Process @ then waits for the rollback ack message
to arrive from process R.

Since we assume a reliable network and FIFO chan-
nels, the case of Max-SSN-Recd;p < Max-SSN-Sentp;
will not occur.

The value of Max-SSN-Recdp; 1s compared with
the Max-SSN-Sent;p value of process 1. One of the
two cases might occur:

1. Max-SSN-Recdp; = Max-SSN-Sent;p : This im-
plies that process P did not receive any messages
from process 1 during the detection latency pe-
riod. Hence, there is no inconsistency.

2. Max-SSN-Recdp; < Max-SSN-Sent;p : Inconsis-
tency. Messages sent by process i have been re-
ceived by process P during the latency period.
This will require the process i to resend those
messages whose SSN > Max-SSN-Recdp;.

Each process i sends back a rollback ack message
back to the failed process P. A notification is also sent
to process P along with the rollback ack message as
to whether process i has to resend the messages that
were discarded by process P during the safe(r, P) op-
eration. Upon receipt of rollback ack message from
every other process, process P restarts from the previ-
ous checkpoint. It resends those messages whose SSN
value is greater than Curr_SSNp to the respective pro-
cesses. It requests the processes (which had tagged
the notification along with the rollback ack message)
to resend the messages.

Case IIT  : In this case, both unsafe messages and
unsafe checkpoints are present. The recovery scheme
is a combination of the recovery schemes for cases I
and II. The details of the algorithm are presented in

[8].

6 Simulations

Simulations were performed to evaluate the effects
of detection latency on recovery. Each process com-
municates with others by passing messages. The time
at which a process sends a message 1s assumed to
follow an exponential distribution with mean of #,,.
Identity of the destination process is determined ran-
domly (uniformly distributed). The values of the pa-
rameters used in the simulation are shown in Table
1.

The performance parameters of interest are (i) maz-
imum recovery overhead, (il) average recovery over-
head, (iii) number of processes rolled back due to error
propagation and (iv) overhead due to checkpointing
and logging. As stated earlier, due to detection la-
tency, error 1s propagated to processes other than the
failed one. Thus, during recovery, more than one pro-
cess could be rolled back, and, the rollback distance
could be more than one checkpoint interval. Recov-
ery overhead for a process is defined as the period of

Table 1: Simulation Parameters

Parameter Value(s) chosen
Message frequency(t,,) 1 message/sec
Number of processes 10

Checkpoint interval 2,5, 10 minutes
Checkpoint state size 100 Kbytes
Message size 2 Kbytes

Log buffer size 16, 32 Kbytes
Detection latency (4) 0 (fail-stop) to 1 sec
Max. Comm. latency (A) | 1 ms

Disk transfer rate [5] 12.5 Mbytes/sec
Disk seek time [6 12.5 ms

Disk rotate time [6] 13.9 ms

computation lost (rollback distance) due to the fail-
ure. Mazimum recovery overhead and average recov-
ery overhead are computed as the maximum and aver-
age of recovery overheads of all the processes, respec-
tively.

6.1 Results

The detection latency (8) was varied from 0 to 1
sec. Zero detection latency corresponds to a fail-stop
processor [7]. Typical latencies are less than 1 sec [3].
The average and maztmum recovery overheads were
computed for different latency values.

Figure 4 demonstrates the average overhead (com-
puted as a percentage of the total runtime), for differ-
ent checkpoint interval sizes, and for a log size of 16
Kb. As seen, there 1s an increase in the average recov-
ery overhead as the latency increases. This is because,
as the latency increases, the probability of unsafe mes-
sages being sent is high. Thus, the number of unsafe
processes are higher. By unsafe processes we mean the
processes which have received unsafe message(s). Fig-
ure 5 shows the number of processes rolled back due to
possible error propagation, for different checkpoint in-
terval sizes, and for a log size of 16 Kb. With non-zero
latency value, some processes are rolled back due to
possible error propagation. Figure 6 demonstrates the
mazimum overhead (computed as a percentage of the
total runtime), for different checkpoint interval sizes,
and for a log size of 16 Kb. As seen, the mazimum
recovery overhead is not much affected by the latency
value used. The value of latency is typically small to
bring about significant variation in the mazimum re-
covery overhead. Since the detection latency is small
compared to the checkpoint interval, the probability
of a checkpoint operation taking place during error
detection is small. Therefore, the mazimum recovery
overhead 1s relatively independent of latency. Figure 7
shows the failure-free overhead due to checkpointing
and logging (computed as a percentage of the total
runtime) for different checkpoint interval sizes and for
log sizes of 16 Kb and 32 Kb. The overhead depends
on the checkpoint size, checkpoint interval size, log
size, message size and the I/O bandwidth. The failure-
free overhead is quite low for realistic parameter val-
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7 Conclusions

This paper presents an independent checkpointing
and message logging scheme that tolerates error de-
tection latency up to 6. The proposed scheme allows
the system designer to provide é as an input. Typical
error detection latencies are small (less than 1 sec.),
therefore é i1s expected to be small. Larger the chosen
value of é, higher is the fault coverage provided by the
scheme. For typical values, an increase in é causes only
a marginal increase in the average recovery overhead,
due to possible error propagation. However, when §

Ckp. Intl.
§ 2mins 5mins 10 mins
Log Size
16 Kb 4.63% 451% 4.49%
32Kb 2.44% 2.35% 2.3%

Figure 7: Checkpointing and Logging overhead

is comparable with the checkpoint interval, the maz:-
mum and average recovery overhead is expected to in-
crease. Thus, a tradeoff exists between the fault cover-
age and the recovery overhead. Depending on the sys-
tem requirements the system designer may choose an
appropriate value for §. The simulation results show
that for typical error detection latencies and check-
point interval sizes, the proposed scheme provides a
higher fault coverage (by allowing non-zero latencies)
at almost no additional cost, than schemes that as-
sume zero detection latency.
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