
A Distributed K-Mutual Exclusion Algorithm �.Shailaja Bulgannawar Nitin H. VaidyayDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112E-mail: vaidya@cs.tamu.eduTechnical Report 94-066November 1994AbstractThis report presents a token-based K-mutual exclusion algorithm. The algorithmuses K tokens and a dynamic forest structure for each token. This structure is used toforward token requests. The algorithm is designed to minimize the number of messagesand also the delay in entering the critical section, at low as well as high loads.The report presents simulation results for the proposed algorithm and comparesthem with three other algorithms. Unlike previous work, our simulation model assumesthat a �nite (non-zero) overhead is encountered when a message is sent or received. Thesimulation results show that, as compared to other algorithms, the proposed algorithmachieves lower delay in entering critical section as well as lower number of messages,without a serious increase in the size of the messages.�This report is an abbreviated version of [1]yDirect all correspondence to Nitin Vaidya.



1 IntroductionThis report presents a token-based algorithm for K-mutual exclusion in a distributed envi-ronment wherein di�erent nodes (processes) communicate via message passing. The problemrequires that at most K nodes be in a critical section (CS) at any given time. The proposedalgorithm achieves this using K tokens; only a process in possession of a token may enterthe critical section. Although there has been extensive research on distributed 1-mutualexclusion [13, 18, 4, 11, 10, 16, 15, 2, 3, 5, 6, 9, 7, 12, 17], research on distributed K-mutualexclusion (K > 1) is limited [19, 20, 21, 22].Our approach for K-mutual exclusion is derived by improving and extending the 1-mutual exclusion algorithm by Trehel and Naimi [12]. The proposed algorithm is comparedwith three other distributed K-mutual exclusion algorithms [20, 21, 22]. It is shown thatthe proposed algorithm performs better than the existing algorithms under heavy as well aslight load.The report is organized as follows. Section 2 presents our algorithm for distributedK-mutual exclusion. Section 3 discusses the performance parameters. Section 4 presentsa simulation model and Section 5 presents simulation results. The report concludes withSection 6.2 Proposed AlgorithmThe nodes (or processes) in the system are numbered 1 through N . There are K tokens inthe system, numbered 1 through K. Each node can have at most one outstanding request toenter the critical section at any given time. All the nodes are assumed to be fully connected.The nodes and the network are assumed to be reliable. Also, the network is assumed todeliver messages in �rst-in-�rst-out (FIFO) order on each channel. Initially, token t ispossessed by node t, 1 � t � K.Each node maintains a pointer array with one entry for each token. These pointersde�ne K forests corresponding to the K tokens, a forest being a collection of trees. By \t-th1



forest" we refer to the forest corresponding to token t formed by pointer[t] at each node.In each forest, the out-degree of a node is at most one, but the in-degree can be larger thanone. Note: Actually, the forest structure is sometimes violated by the formation of acycle. However, as explained later, the cycles are formed temporarily under very speci�ccircumstances, and they do not a�ect the correctness of the algorithm. Therefore, we willcontinue to use the term forest for the structure de�ned by the pointers.pointer[t] of node j contains identi�er of the parent of node j in the t-th forest;pointer[t] at node j being equal to j means that node j is at the root of a tree in the t-thforest. Initially, pointer[t] for each node is set equal to t, 1 � t � K. Thus, initially, eachforest contains just one tree, with node t being at the root of the tree for token t. In general,for token t, the nodes waiting to receive token t and the node holding token t are at rootsof the trees in the forest for token t.Data structures maintained at each node:� token: boolean; TRUE if the node has some token, FALSE otherwise.� token id: integer; indicates the identi�er of the token, if a token is present at the node.� holding: boolean; TRUE if the node is in the CS, FALSE otherwise.� waiting for token: integer; indicates the identi�er of the token that the node is waitingfor.� pointer: array[1..K] of integer; pointer[i] indicates the path towards token i.� node-queue: FIFO queue; if a node A waiting for token t receives a a request of nodeB for token t, then identi�er B is stored in the node-queue of node A.Data structures associated with each tokenEvery token is associated with a data structure that is always sent with the token. The datastructure is as follows: 2



� token-queue: FIFO queue; contains the identi�ers of the nodes to which the tokenmust be forwarded in a FIFO order.� request-modi�er tags: A tag is attached to each entry in the token-queue. The tagmay often be NULL (�). The use of these tags will be clearer later. Figure 1 showsa typical token-queue and its associated tags.
3 6 8 9 15 145

2 2 - 4 - 1 1

7

4request-modifier
tags

token-queue

queue front queue rearFigure 1: Token-queue for token 2 and associated request-modi�er tagsMessage types: Three types of messages are used by the proposed algorithm.� REQUEST(Y; t) message: Indicates that node Y has requested token t. The re-quest of a node for a token typically gets forwarded through a few nodes, the RE-QUEST message is used for this purpose. Thus, Y is not necessarily the sender of theREQUEST(Y; t) message, Y is the originator of the request.� TOKEN(t) message: This message is used to send a token t and its associated datastructures.� INFORM(X; t) message: A node X sends this message to another node to informthem that X has token t.2.1 Proposed algorithmPseudo-code for the algorithm is presented �rst, followed by a verbal explanation of the �veprocedures in the algorithm. Note that in the pseudo-code below, `I' denotes identi�er ofthe node executing the procedures. In the pseudo-code the comments are presented as /*comment */. 3



Procedure Entry CS:f if (token = TRUE) thenholding = TRUEelsef Choose token t using some heuristics;send REQUEST(I; t) to pointer[t];waiting for token := t;wait while holding 6=TRUE; /* procedure Handle TOKEN sets holding = TRUE */gEnter Critical SectiongProcedure Exit CS:/* Let t be the token possessed by this node */f holding := FALSE;dest := First node on the token-queue;if (dest 6= NULL) thenf token := FALSE;if request-modi�er of any node in token t's token-queue is NULLthen pointer[t] := the last node on the token-queue whoserequest-modi�er tag is NULL.else pointer[t] := �rst node on the token-queuesend TOKEN(I; t) to dest;gelse /* dest = NULL */send INFORM(I; t) message to any � nodes; /* � is a design parameter */gProcedure Handle REQUEST(Y,t):/* Y denotes the node where the request for token t originated */f if (token = TRUE) and (holding = TRUE) then /* node I is in CS */f 4



enqueue Y into the token-queue;if (token id 6= t) thenset request-modi�er tag of Y equal to I;else set request-modi�er tag of Y equal to NULL;gelse if (token = TRUE) and (holding = FALSE) then /* node I has a token */f enqueue Y into the token-queue;if (token id 6= t) thenset request-modi�er tag of Y equal to I;else set request-modi�er tag of Y equal to NULL;send TOKEN(token id) to Y;pointer[token id] := Y;token := FALSE;gelse if (waiting for token = t) thenenqueue Y into the node-queue;else fsend REQUEST(Y,t) to pointer[t];pointer[t] = Y;ggProcedure Handle TOKEN(t):f if (waiting for token 6= t) thenf pointer[waiting for token] := tag for node I on token-queue;Append the node-queue to the token-queue of token t;For all the nodes that were in the node-queue, set their request-modi�ertags equal to pointer[waiting for token];gelsef Append the node-queue to the token-queue of token t;For all the nodes that were in the node-queue, set their tags equal to NULL;gde-queue node I and its tag from the token-queue;waiting for token := NULL;token := TRUE;token id := t; 5



pointer[t] := I;holding := TRUE;gProcedure Handle INFORM(Y,t):f if (waiting for token 6= t)pointer[t] := Y;g The procedures are explained below. To aid in the explanation, we �rst elaborateon the signi�cance of the request-modi�er tags associated with the token-queue entries.Ordinarily, a node that has requested token t eventually receives token t. However, if therequest of a node, say A, arrives at some node B that possesses token u (u 6= t), then node Badds A's request to the token-queue of token u. This essentially modi�es node A's requestfor token t into a request for token u. The fact that node B modi�ed the request is recordedby setting the request-modi�er tag for node A's entry in the token-queue equal to B. Thisinformation is used by node A (when it receives token u) to maintain the forest structurefor token t (i.e., to avoid creation of cycles in the t-th forest).There are �ve procedures in all. Entry CS and Exit CS are called when a node wantsto enter or exit the critical section, respectively. The remaining three procedures are messagehandlers for the three types of messages.Entry CS: This procedure is invoked by node I when it wants to enter the critical section(CS). If node I has a token then it can enter CS without any delay. Otherwise, using someheuristic, it chooses a token t (1 � t � K), and sends a request for token t to its parentin the t-th forest (i.e., pointer[t]). In Figure 2, if node 4 wants to request token 1, it sendsREQUEST(4,1) message to node 3.Exit CS: This procedure is executed when a node exits the CS. Assume that node I hastoken t.If the token-queue is empty, then node I continues to possess token t, but sendsINFORM(I; t) messages to any � nodes (where � is a design parameter). INFORMmessages6



5

3

4 1

2

6

node 1: pointer[1] = 3

node 2: pointer[1] = 2

node 3: pointer[1] = 5

node 4: pointer[1] = 3

node 5: pointer[1] = 5

node 6: pointer[1] = 2Figure 2: Example: Forest structure for token 1are useful to reduce the distance of a node from a token (in its forest).If the token-queue is not empty when node I exits the critical section, I sends thetoken to the node, say A, at the head of token t's token-queue. The pointer[t] of node Iis modi�ed appropriately to ensure that the forest structure is maintained. Speci�cally,pointer[t] is set equal to the last node on the token-queue that has its tag �eld NULL(�).If none of the tag �elds are NULL, then pointer[t] of node I is set equal to A, which is atthe head of the token-queue.Example: If node I has token 2 with the token-queue shown in Figure 1, then it sends thetoken to node 3 and sets pointer[2] equal to 9 (the last node on the token-queue that has itstag �eld NULL). If none of the tag �elds were NULL then, node I would have set pointer[2]equal to 3 (the node at the head of the token-queue).Handle INFORM(Y; t): This procedure is executed when the node receives an INFORMmessage from some node Y . This message implies that node Y possessed token t at the timethe message was sent. In response to this message, pointer[t] is set equal to Y . INFORMmessages help reduce the distance of a node from a token.Handle TOKEN(t): This procedure is executed when a node receives a token t, i.e.,receives TOKEN(t) message. Before entering the CS, node I checks if token t is the sameas the token it requested. The action taken by the node depends on the token received.Case 1: Node I had requested token t: (In this case, the tag of node I in the token-queueof token t is guaranteed to be NULL.) Node I sets pointer[t] equal to I to indicate that I7



is now the root of a tree, and appends the requests in its node-queue to t's token-queue,setting their tags equal to NULL.Case 2: Node I had requested token u (u 6= t): Here, the request-modi�er tag (say A) ofnode I in token t's token-queue indicates that the request of node I was modi�ed by nodeA. In this case, the requests waiting in the node-queue of node I are also considered to havebeen e�ectively modi�ed by node A. Therefore, in this case, node I appends its node-queueto token t's token-queue, and sets the tags (for the newly added nodes) equal to A.To maintain the forest structures for token t, node I sets pointer[t] equal to A (thenode that modi�ed I's request).Referring to Figure 1, if node 3 receives the token 2, but had requested token 1, node3 sets pointer[1] to 2, which is its tag in the token-queue.Handle REQUEST(Y; t): When a node receives a request for a token this procedure isinvoked. Y is the node that is requesting token t. The REQUEST message may be sent byY , or may have been forwarded by some other node. On receiving the request, the actiontaken by node I depends on the state of the node.Case 1: node I does not possess a token and is waiting to enter the CS. The action takenby node I depends on the token requested by node I.� case a: If node I is waiting for token t then, Y is stored in the node-queue.� case b: If node I is waiting for token p (p 6= t) then, REQUEST(Y; t) is sent topointer[t] and pointer[t] set to Y .Case 2: node I does not possess a token and is not waiting to enter the CS. The requestis forwarded to pointer[t] and pointer[t] is set equal to Y . Referring to Figure 2, if node 3receives a request from node 4 for token 1, node 3 forwards the request to node 5 (as atnode 3, pointer[1] = 5) and changes pointer[1] to 4.Case 3: node I possesses a token u (u may or may not be equal to t) and is not in the CS.This implies that the token-queue of u is empty.8



Node I sets pointer[t] to Y and adds node Y to the token-queue. The request-modi�ertag of Y is set equal to I if t 6= u, else the tag is set to NULL.Case 4: node I possesses a token and is in the CS. Let the token possessed by I be u.Node Y is added to the token-queue of token u. The request-modi�er tag for node Yis set to I if t 6= u, else set to NULL.Proof of CorrectnessWe present a brief sketch of the proof here [1].K-Mutual exclusionA node can be in critical section only if it has a token. As there are only K tokens, at mostK nodes can be in the critical section at a time. Hence, K-mutual exclusion is achieved.Deadlock freeThe proof of freedom from deadlock is in two parts: First, we show that for a deadlock tooccur, it should be possible for a request from some node X to travels back to node X. Next,we show that this situation is impossible with the given algorithm.Part I: We say that node A is blocked at node B, if the request of node A for some tokenis in the node-queue of node B. Consider a graph formed by drawing an arc from node A tonode B, if node A is blocked at node B. For a deadlock to occur, this graph must containa cycle. (Note that each node can have only one outgoing arc, as a node can have at mostone outstanding request at any time.) Assume that nodes X1, X2, ... , Xm form a cycle,such that X1 is blocked at X2, X2 is blocked at X3, ..., and Xm is blocked at X1. Note thatat node X1, some nodes other than Xm may also be blocked. Similarly, some nodes maybe blocked at X2, X3, ... , Xm. Consider the set S of nodes containing X1, ... , Xm andall the nodes blocked at X1, ..., Xm. Consider a scenario that is similar to the deadlocked9



scenario, except that nodes in set S�fX1g do not make their last request that is blocked inthe deadlocked scenario. In this modi�ed scenario, the REQUEST from X1 will reach X2as before. However, now instead of blocking the request, X2 will forward the request, theREQUEST will then reach X3 (possibly through some intermediate nodes). Applying thisargument repetitively, the REQUEST will reach nodes X4, X5,... , Xm and subsequentlyback to X1.The above implies that, for a deadlock to occur, the algorithm must allow a requestfrom some node X1 to return to itself.Part II: For the above REQUEST to return to its originator, a cycle must exist in thestructure formed by the pointers. TheK-mutual exclusion algorithmmodi�es the pointersat many places. It can be easily shown that only one modi�cation made to the pointerscan create a cycle. We will discuss only this modi�cation to the pointers.Speci�cally, when the request of a node A for token t is modi�ed by some node Bby adding A to the token-queue of token u (u 6= t), a cycle can be created in the structureformed by pointer[u]. Originally, paths may exist from node A to node B in the t-th forestas well as the u-th forest. The request from A for token t travels the links in the t-th forest.Node A's request is added to u's token-queue at node B. If node B, on exiting from itscritical section, �nds that no node on its token-queue has its request-modi�er tag NULLand node A is the �rst node on the token-queue, then node B will send token u to node Aand set pointer[u] = A. As a path already exists from A to B in the u-th forest, a cycle isnow formed. This cycle is broken as soon as token u reaches node A.Now observe that the REQUEST from node A above cannot return to node A itselfbecause the request is added by node B to the token-queue of token u. Thus, the conditionnecessary for deadlock (as stated in part I above) cannot occur. Therefore, deadlock cannotoccur.Starvation freeWhen a request from a node Y for token t is forwarded by some node Z, node Z sets itspointer[t] equal to Y. This implies that, in the absence of a cycle, a request can visit a10



node at most once. When a cycle, as described above, is formed, a request may visit a nodeat most twice. This property, along with the deadlock free property, guarantees that a nodethat has sent a request will eventually receive a token.3 PerformanceThe performance parameters of interest are the average time to enter the critical section,the average number of messages per critical section entry and the average information permessage. The existing papers onK-mutual exclusion typically present an analytical estimateof the average number of messages required per CS entry. The average number of messagesis inadequate to measure the algorithm performance, because (as shown later) an algorithmthat requires small number of messages may result in large delays in entering the CS. In thisreport, we present simulation results rather than analysis.Under light load (i.e., small �), there is a good chance that the token-queue will beempty when a node, say A, exits from the critical section. Whenever the token-queue isempty, the Exit CS procedure informs � nodes that node A has a token, say t. This reducesthe average delay in entering the critical section at the cost of � extra messages. This alsoreduces the average distance of a node from from token t, which in turn results in a reductionin the average number of messages required per CS entry. The net e�ect of the INFORMmessages is often to reduce the average number of messages required.Under high load, there is a good chance that the token-queue is not empty when theExit CS procedure is performed. In such a case, our algorithm does not send the INFORMmessages. Thus the algorithm improves the performance by sending INFORM messagesonly when bene�cial.Updates made to pointers in Exit CS and Handle REQUEST are also designed toreduce the distance between the nodes and the tokens. This in turn results in smaller CSentry delays and smaller number of messages.When a node i requesting token t receives a request message of another node j forthe same token t, then node i will put node j's request in its node-queue, rather thanpropagating the request as in the 1-mutual exclusion algorithm by Trehel and Naimi [12].11



Hence, unnecessary message transmission is avoided. This reduces the average number ofmessages.Heuristics for choosing a token in Entry CSPerformance of the algorithm is dependent on the decision mechanism used by each node todecide which token to send the request for (in Entry CS). One possibility is to choose thetoken randomly. The other possibility is to use a heuristic to choose a token that is likely tobe reached with a small number of hops. The heuristic that we experimented with choosesthe \last seen token". t is the last seen token if:� The node recently received token t.� The node recently received an INFORM message from a node possessing token t.If node i remembers that it had last seen the token t and makes a request for thattoken, there is a better chance of node i's request reaching the token t with a small numberof hops. The INFORMmessages help in updating the last seen token with the most currentinformation.4 Simulation ModelThe simulation model used here is a re�nement of the model presented by Singhal [9]. Thereare N nodes in the system where each node may request an entry into critical section � timeunits after completing the previous execution of the critical section, � being exponentiallydistributed with mean 1=�. � is called the rate of arrival of CS requests. The time spent byeach node in the critical section is E units. Each node spends Ts time units when sending amessage (time spent in the network layer). Similarly, each node spends Tr time units whenreceiving a message. Tt is the transmission time between two nodes. If the same messageis sent simultaneously to multiple destinations (multicast), a cost of Ts is encountered foreach message copy. This assumption holds on many present implementations.12



The simulation model presented by Singhal [9] assumes that Ts = Tr = 0. Essentially,his model assumes that Ts and Tr are negligible compared to the transmission delay Tt.However Ts and Tr are no longer insigni�cant when the communication medium becomesfast. For example, when a high-speed network such as FDDI is used for communication, thetime spent executing the network layer software may not be negligible as compared to thetransmission delay. We have shown by our simulations that Ts and Tr can a�ect the resultssigni�cantly and cannot be neglected.5 Simulation ResultsWe simulated our algorithm and compared it with three otherK-mutual exclusion algorithmsproposed by Raymond [20], Srimani and Reddy [21] and Makki et al. [22].We modi�ed the algorithm by Srimani and Reddy [21] to improve its performance.The original algorithm assumes �nite counters. By removing that restriction, we reduce thenumber of messages required by their algorithm.For Tr, Ts 6= 0, Makki's algorithm [22] does not work correctly as such. We simulateda slightly modi�ed version that yields optimistic results for Makki's algorithm when Tr,Ts 6= 0. In particular, Makki's algorithm assumes that time required for a message toreach its destination and to receive the response takes 2Tt time units. This is true whenTr = Ts = 0, and not valid when Tr and Ts are non-zero. In such situations, we \accelerate"the response messages to reach within 2Tt, resulting in optimistic estimates of CS entry delayand number of messages. Any adaptation of [22] that will work correctly for non-zero Tr andTs will perform worse than what our results indicate. The results presented for Ts = Tr = 0are obtained by simulating the original algorithm by Makki.Simulations were carried out for a system of thirty nodes (N = 30) and three tokens(K = 3), for various values of �. The number of nodes � to which INFORM messages aresent was �xed at 2. We simulated using various values of Ts, Tt, Tr and E. For various non-zero Ts and Tr, the result trends were similar, therefore we present only one set of results.Similarly, result trends for di�erent values of E were similar, so we present results only forone value of E. Speci�cally, results are presented for Ts = Tr = 0:1, Tt = 0:8, E = 0:0002.13



E = 0:0002 is identical to that used by Singhal [9]. (Results for larger E are also similar[1].) For comparison, some results for Ts = Tr = 0, Tt = 1, E = 0:0002 are also presented.(This set of parameters implies that all the message communication delay is encountered intransmission alone.).The simulations were performed for 5000 critical section entries. This number waschosen because we observed that the results of the simulation converged by 5000 entries intothe critical section.Figure 3(a) shows the average time taken to enter the critical section, by the fourdi�erent algorithms for Tr = Ts = 0:1 and Tt = 0:8. In the graph, `new+heuristic' refers toour algorithm with the heuristic in the previous section and `new+random token' refers toour algorithm where a token is chosen randomly (in Entry CS procedure). Our algorithmperformed better than the other algorithms for most values of �. (The heuristic has improvedthe performance by only a small amount.) As � increases, the number of requests for entryinto critical section increase, which causes a larger delay for each node. Hence, the curvesshow a steady rise initially. The curve gradually 
atten out for greater values of �. Theintuitive reasoning is as follows: The rate at which each node enters CS is identical (onaverage). The message communication delay is 1 unit time (Ts+Tt+Tr), therefore, sendingthe token from one node to another requires 1 unit time. Therefore, the maximum rate atwhich a node can enter CS (withK = 3 and N = 30) is upper bounded by 1=10, independentof the value of �. The delay in entering the CS is determined by the rate at which the nodesenter CS (which is almost independent of � when � is large). Therefore, for large �, thecurve 
attens (\system saturation").Figure 3(b) shows the average time taken to enter the critical section, for Tr = Ts = 0and Tt = 0:8. Observe that here Raymond's algorithm [20] performs better than us for small� and equally well for large �. When a node wants to enter CS, Raymond's algorithm sendsmultiple request messages in parallel to other nodes. When Ts = 0, the overhead of sendingall these messages is zero (for the sender). When Ts is non-zero, the overhead of sendingmultiple messages can be substantial. Therefore, Raymond algorithm performs well whenTs = 0, but performs poorly with the realistic assumption that Ts 6= 0.14



0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
 
T
i
m
e

Lambda

1. new+heuristics
2. new+random tokan

3. makki
4. srimani
5. raymond

(a) Tr = Ts = 0:1 and Tt = 0:8
0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
 
T
i
m
e

Lambda

1. new+heuristics
2. new+random token

3. makki
4. srimani
5. raymond

(b) Tr = Ts = 0 and Tt = 1:0Figure 3: Average time to enter the critical section15



The time to enter the critical section is maximum for Makki's algorithm [22]. Thisalgorithm uses a RELEASE message to maintain the correctness of the algorithm. At highload, the RELEASE message is propagated through all other nodes before reaching thesame node again. This causes the system to behave similar to a system with a single token,resulting in signi�cant delays.Figure 4 plots the average number of messages required per CS entry versus �. Our
0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
 
M
e
s
s
a
g
e
s

Lambda

1. new+heuristics
2. new+random token

3. makki
4. srimani
5. raymond

Figure 4: Average number of messages per critical section entry for Tr = 0:1, Ts = 0:1 andTt = 0:8algorithm requires smaller number of messages compared to the other algorithms, for mostvalues of �. Applying the heuristics for choosing a token has reduced the number of messagesat high load.Raymond's algorithm has a lower bound of 2N � K � 1 on number of messagesrequired and an upper bound of 2 � (N � 1) [20]. With the simulation values of N = 30and K = 3, the lower bound is 56 and the upper bound is 58. The graph shows that thisis indeed true and the number of messages average around 57 messages per critical section16



entry. Srimani's algorithm has an upper bound of N + K � 1 messages. Their analysissuggests that the average number of messages per critical section entry is close to (N � 1)[21]. With the simulation values of N and K, the upper bound turns out to be 32 messagesper critical section entry. The graph shows that the average number of messages needed isaround 31 messages agreeing with the analysis.For Makki's algorithm [22] at low load, the number of messages required is quitelarge. The number of messages required becomes smaller with increasing �, with only threemessages being required at heavy load. Although the number of messages required is small,as seen before, with large �, Makki's algorithm results in longer delays. (This shows thatnumber of messages, by itself, is inadequate to evaluate algorithm performance.)Doing the measurements for the average number of messages for Tr = 0:05, Ts = 0:05and Tt = 0:9 and also with Tr = 0, Ts = 0 and Tt = 1:0 it was found that the number ofmessages is practically the same for all the cases. This suggests that the average numberof messages per critical section entry is not a�ected by the sending and receiving times (Tsand Tr).Figure 5 plots the average information that is passed in the messages by variousalgorithms. The information content of a messages was calculated by taking into account allthe �elds of the message. For example, the TOKEN message contains the token identi�er,token-queue, request-modi�er tags, and message source. As in most implementations, eachmessage, by default, contains message source, destination and message type. The averageinformation for our algorithm is same with and without the heuristic. When � = 1, theaverage information is about 9 words for our algorithm, 4 words for Raymond's algorithm,6.5 words for Srimani's algorithm, and 8 words for Makki's algorithm. All messages inRaymond's algorithm are of the same size (4 words), therefore, that curve is simply ahorizontal line. For our algorithms the average message size is about 1.5 to 2 times largerthan the other algorithms. By sending more information in each message, our algorithmreduces the number of messages. As the messages are still quite small, the overhead isproportional to the number of messages, and quite independent of the size of the message.17



4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
 
I
n
f
o
r
m
a
t
i
o
n

Lambda

1. new+heuristics
2. new+random token

3. makki
4. srimani
5. raymond

Figure 5: Average information (in words) per message for Tr = 0:1, Ts = 0:1 and Tt = 0:8Sanity Checks: One sanity check of our simulations was to verify that the average numberof messages from the simulation results matched approximately with that obtained by ananalysis of some of the algorithms. Another check was to verify that all the nodes in thesystem entered the critical section roughly equal number of times and the average delay forentering CS for every node was comparable.6 ConclusionsThis report presents a token-based K-mutual exclusion algorithm. The algorithm uses Ktokens and a dynamic forest structure for each token. This structure is used to forwardtoken requests. The algorithm is designed to minimize the number of messages and also thedelay in entering the critical section, at low as well as high loads.The report presented simulation results for our algorithm and compared them withthree other algorithms. Unlike previous work, our simulation model assumes that a �nite18



(non-zero) overhead is encountered when a message is sent or received. The simulationresults show that, as compared to other algorithms, the proposed algorithm achieves lowerdelay in entering CS as well as lower number of messages, without a serious increase in thesize of the messages.References[1] S. Bulgannawar, A Distributed K-Mutual Exclusion Algorithm, M. S. Thesis, Dept. of Elec-trical Eng., Texas A&M University, August 1994.[2] M. Raynal, Algorithms for Mutual Exclusion. Cambridge, MA: MIT Press, 1st ed., 1986.[3] G. Ricart and A. K. Agrawala, \An optimal algorithm for mutual exclusion in computernetworks," Comm. ACM, vol. 24, pp. 9{17, January 1981.[4] M. Maekawa, \A pN algorithm for mutual exclusion in decentralised systems," ACM Trans.Comp. Syst., vol. 3, pp. 145{159, May 1985.[5] B. A. Sanders, \The information structure of distributed mutual exclusion algorithms," ACMTrans. Comp. Syst., vol. 5, pp. 284{299, August 1987.[6] M. Singhal, \A dynamic information-structure mutual exclusion algorithm for distributed sys-tems," in International Conf. Distributed Computing Systems, (Newport Beach, CA), pp. 70{78, June 1989.[7] I. Suzuki and T. Kasami, \A distributed mutual exclusion algorithm," ACM Trans. Comp.Syst., vol. 3, pp. 344{349, November 1985.[8] G. Ricart and A. K. Agrawala, \Author's response to `On mutual exclusion in computernetworks' by Carvalho and Roucairol," Comm. ACM, vol. 26, no. 2, pp. 147{148, 1983.[9] M. Singhal, \A heuristically-aided algorithm for mutual exclusion in distributed systems,"IEEE Trans. Computers, vol. 38, pp. 651{662, May 1989.[10] M. Mizuno, M. L. Neilsen, and R. Rao, \A token based distributed mutual exclusion algo-rithm based on quorum agreements," in International Conf. Distributed Computing Systems,(Arlington, TX), pp. 361{368, 1991.[11] K. Makki, N. Pissinou, and Y. Yesha, \A new token based distributed mutual exclusionalgorithm," in International Conf. Distributed Computing Systems, (Pittsburgh, Pa), pp. 164{169, 1993.[12] M. Trehel and M. Naimi, \A distributed algorithm for mutual exclusion based on data struc-tures and fault tolerance," in 6th Annual International Phoenix Conference on Computersand Communications, (Scottdale, AZ), pp. 35{39, 1987.19



[13] J. M. Bernabeu-Auban and M. Ahamad, \Applying path compression techniques to obtainan e�cient distributed mutual exclusion algorithm," in Lecture Notes in Computer Science,vol. 392, pp. 33{44, 1989.[14] D. Ginat, D. D. Sleator, and R. E. Tarjan, \A tight amortized bound for path reversal,"Information Processing Letters, vol. 31, pp. 3{5, April 1989.[15] K. Raymond, \A tree-based algorithm for distributed mutual exclusion," ACM Trans. Comp.Syst., vol. 7, pp. 61{77, February 1989.[16] M. L. Neilsen and M. Mizuno, \A dag-based algorithm for distributed mutual exclusion," inInternational Conf. Distributed Computing Systems, (Arlington, TX), pp. 354{360, 1991.[17] T. K. Woo and R. Newman-Wolfe, \Hu�man trees as a basis for a dynamic mutual exclusionalgorithm for distributed systems," in International Conf. Distributed Computing Systems,(Yokohama, Japan), pp. 126{133, June 1992.[18] H. Koch, \An e�cient replication protocol exploiting logical tree structure," in Digest ofpapers: The 23rd Int. Symp. Fault-Tolerant Comp., (Toulouse, France), pp. 382{391, June1993.[19] S.-T. Huang, J.-R. Jiang, and Y.-C. Kuo, \k-coteries for fault-tolerant k entries to a criticalsection," in International Conf. Distributed Computing Systems, pp. 74{81, 1993.[20] K. Raymond, \A distributed algorithm for multiple enteries to a critical section," InformationProcessing Letters, vol. 30, pp. 189{193, February 1989.[21] P. K. Srimani and R. L. Reddy, \Another distributed algorithm for multiple enteries to acritical section," Information Processing Letters, vol. 41, pp. 51{57, January 1992.[22] K. Makki, P. Banta, K. Been, N. Pissinou, and E. Park, \A token based distributed k mutualexclusion algorithm," in IEEE Proceedings of the Symposium on Parallel and DistributedProcessing, (Arlington, TX), pp. 408{411, December 1992.
20


