A Distributed K-Mutual Exclusion Algorithm ¥

Shailaja Bulgannawar Nitin H. Vaidyal
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112

E-mail: vaidya@cs.tamu.edu

Technical Report 94-066
November 1994

Abstract

This report presents a token-based K-mutual exclusion algorithm. The algorithm
uses K tokens and a dynamic forest structure for each token. This structure is used to
forward token requests. The algorithm is designed to minimize the number of messages
and also the delay in entering the critical section, at low as well as high loads.

The report presents simulation results for the proposed algorithm and compares
them with three other algorithms. Unlike previous work, our simulation model assumes
that a finite (non-zero) overhead is encountered when a message is sent or received. The
simulation results show that, as compared to other algorithms, the proposed algorithm
achieves lower delay in entering critical section as well as lower number of messages,

without a serious increase in the size of the messages.

*This report is an abbreviated version of [1]
TDirect all correspondence to Nitin Vaidya.

1 Introduction

This report presents a token-based algorithm for K-mutual exclusion in a distributed envi-
ronment wherein different nodes (processes) communicate via message passing. The problem
requires that at most K nodes be in a eritical section (CS) at any given time. The proposed
algorithm achieves this using K tokens; only a process in possession of a token may enter
the critical section. Although there has been extensive research on distributed 1-mutual
exclusion [13, 18, 4, 11, 10, 16, 15, 2, 3, 5, 6,9, 7, 12, 17], research on distributed K-mutual
exclusion (K > 1) is limited [19, 20, 21, 22].

Our approach for K-mutual exclusion is derived by improving and extending the 1-
mutual exclusion algorithm by Trehel and Naimi [12]. The proposed algorithm is compared
with three other distributed K-mutual exclusion algorithms [20, 21, 22]. It is shown that

the proposed algorithm performs better than the existing algorithms under heavy as well as

light load.

The report is organized as follows. Section 2 presents our algorithm for distributed
K-mutual exclusion. Section 3 discusses the performance parameters. Section 4 presents
a simulation model and Section 5 presents simulation results. The report concludes with

Section 6.

2 Proposed Algorithm

The nodes (or processes) in the system are numbered 1 through N. There are K tokens in
the system, numbered 1 through K. Each node can have at most one outstanding request to
enter the critical section at any given time. All the nodes are assumed to be fully connected.
The nodes and the network are assumed to be reliable. Also, the network is assumed to
deliver messages in first-in-first-out (FIFO) order on each channel. Initially, token ¢ is

possessed by node ¢, 1 <t < K.

Each node maintains a pointer array with one entry for each token. These pointers

define K forests corresponding to the K tokens, a forest being a collection of trees. By “¢-th

forest” we refer to the forest corresponding to token ¢ formed by pointer[t] at each node.

In each forest, the out-degree of a node is at most one, but the in-degree can be larger than

one.

Note: Actually, the forest structure is sometimes violated by the formation of a
cycle. However, as explained later, the cycles are formed temporarily under very specific
circumstances, and they do not affect the correctness of the algorithm. Therefore, we will

continue to use the term forest for the structure defined by the pointers.

pointer[t] of node j contains identifier of the parent of node j in the ¢-th forest;
pointer[t] at node j being equal to j means that node j is at the root of a tree in the ¢-th
forest. Initially, pointer[t] for each node is set equal to ¢, 1 < ¢ < K. Thus, initially, each
forest contains just one tree, with node ¢ being at the root of the tree for token ¢. In general,
for token ¢, the nodes waiting to receive token ¢ and the node holding token ¢ are at roots

of the trees in the forest for token t.
Data structures maintained at each node:
o token: boolean; TRUE if the node has some token, FALSFE otherwise.
o token_id: integer; indicates the identifier of the token, if a token is present at the node.

o holding: boolean; TRUE if the node is in the CS5, FALSE otherwise.

o waiting_for_token: integer; indicates the identifier of the token that the node is waiting

for.

o pointer: array[l..K] of integer; pointer[:] indicates the path towards token .
o node-queve: FIFO queue; if a node A waiting for token ¢ receives a a request of node
B for token ¢, then identifier B is stored in the node-queue of node A.
Data structures associated with each token

Every token is associated with a data structure that is always sent with the token. The data

structure is as follows:

o token-queue: FIFO queue; contains the identifiers of the nodes to which the token
must be forwarded in a FIFO order.

o request-modifier tags: A tag is attached to each entry in the token-queue. The tag
may often be NULL (—). The use of these tags will be clearer later. Figure 1 shows

a typical token-queue and its associated tags.

queue front queue rear

token-queie —=|3 |5 |7 | 6/8 |9 |15/14

request-modifier ——= 2|2
tags

Figure 1: Token-queue for token 2 and associated request-modifier tags

Message types: Three types of messages are used by the proposed algorithm.

e REQUEST(Y,?) message: Indicates that node Y has requested token ¢. The re-
quest of a node for a token typically gets forwarded through a few nodes, the RE-
QUEST message is used for this purpose. Thus, YV is not necessarily the sender of the
REQUEST(Y,?) message, Y is the originator of the request.

e TOKEN(?) message: This message is used to send a token ¢ and its associated data

structures.

e INFORM(X,?) message: A node X sends this message to another node to inform
them that X has token t.

2.1 Proposed algorithm

Pseudo-code for the algorithm is presented first, followed by a verbal explanation of the five
procedures in the algorithm. Note that in the pseudo-code below, ‘I’ denotes identifier of

the node executing the procedures. In the pseudo-code the comments are presented as /*

comment */.

Procedure Entry_CS:

{
if (token = TRUE) then
holding = TRULE

else

{

Choose token ¢ using some heuristics;
send REQUEST(/,t) to pointer|[t];
waiting_for_token := t;

wait while holding ZTRUE; /* procedure Handle_TOKEN sets holding = TRUE */
}

Enter Critical Section

Procedure Exit_CS:
/* Let t be the token possessed by this node */
{

holding := FALSE;

dest := First node on the token-queue;

if (dest # NULL) then

{
token := FALSE;

if request-modifier of any node in token t’s token-queue is NULL

then pointer[t] := the last node on the token-queue whose
request-modifier tag is NULL.
else pointer[t] := first node on the token-queue

send TOKEN(Z,t) to dest;

else /* dest = NULL */
send INFORM(/,t) message to any v nodes; /* v is a design parameter */

Procedure Handle REQUEST(Y,t):
/* Y denotes the node where the request for token t originated */
{

if (token = TRUE) and (holding = TRUE) then /* node Iis in CS */
{

}

}

enqueue Y into the token-queue;
if (token.id # t) then
set request-modifier tag of Y equal to I;
else
set request-modifier tag of Y equal to NULL;

else if (token = TRUE) and (holding = FALSE) then /* node I has a token */

{

}

enqueue Y into the token-queue;
if (token.id # t) then
set request-modifier tag of Y equal to I;
else
set request-modifier tag of Y equal to NULL;
send TOKEN(token_id) to Y;
pointer[token_id] := Y;
token := FALSE;

else if (waiting_for_token = t) then

else

enqueue Y into the node-queue;

{
send REQUEST(Y,t) to pointer|[t];
pointer[t] = Y;

Procedure Handle TOKEN(t):

{

if (waiting_for_token # t) then

{

}

else

{

}

pointer[waiting_for_token] := tag for node I on token-queue;

Append the node-queue to the token-queue of token t;

For all the nodes that were in the node-queue, set their request-modifier
tags equal to pointer[waiting_for_token];

Append the node-queue to the token-queue of token t;
For all the nodes that were in the node-queue, set their tags equal to NULL;

de-queue node I and its tag from the token-queue;
waiting_for_token := NULL;

token := TRUE;

token_d := t;

pointer[t] := I;
holding := TRUL;
}

Procedure Handle_ INFORM(Y,t):
{

if (waiting_for_token # t)
pointer[t] := Y;

The procedures are explained below. To aid in the explanation, we first elaborate
on the significance of the request-modifier tags associated with the token-queue entries.
Ordinarily, a node that has requested token ¢ eventually receives token ¢. However, if the
request of a node, say A, arrives at some node B that possesses token u (u # t), then node B
adds A’s request to the token-queue of token u. This essentially modifies node A’s request
for token t into a request for token u. The fact that node B modified the request is recorded
by setting the request-modifier tag for node A’s entry in the token-queue equal to B. This
information is used by node A (when it receives token u) to maintain the forest structure

for token ¢ (i.e., to avoid creation of cycles in the ¢-th forest).

There are five procedures in all. Entry_CS and Exit_CS are called when a node wants
to enter or exit the critical section, respectively. The remaining three procedures are message

handlers for the three types of messages.

Entry_CS: This procedure is invoked by node I when it wants to enter the critical section
(CS). If node I has a token then it can enter CS without any delay. Otherwise, using some
heuristic, it chooses a token ¢ (1 < ¢t < K), and sends a request for token t to its parent
in the t-th forest (i.e., pointer[t]). In Figure 2, if node 4 wants to request token 1, it sends
REQUEST(4,1) message to node 3.

Exit_CS: This procedure is executed when a node exits the CS. Assume that node [has
token t.

If the token-queue is empty, then node [continues to possess token ¢, but sends

INFORM(/,t) messages to any v nodes (where v is a design parameter). INFORM messages

a node 1: pointer[1] =3
node 2: pointer[1] =2

e e node 3: pointer[1] =5
node 4: pointer[1] =3
node 5: pointer[1] =5

@ G @ node 6: pointer[1] =2
Figure 2: Example: Forest structure for token 1

are useful to reduce the distance of a node from a token (in its forest).

If the token-queue is not empty when node [exits the critical section, I sends the
token to the node, say A, at the head of token ¢’s token-queue. The pointer[t] of node [
is modified appropriately to ensure that the forest structure is maintained. Specifically,
pointer|[t] is set equal to the last node on the token-queue that has its tag field NULL(—).
If none of the tag fields are NULL, then pointer[t] of node [is set equal to A, which is at
the head of the token-queue.

Example: It node I has token 2 with the token-queue shown in Figure 1, then it sends the
token to node 3 and sets pointer[2] equal to 9 (the last node on the token-queue that has its
tag field NULL). If none of the tag fields were NULL then, node I would have set pointer|[2]
equal to 3 (the node at the head of the token-queue).

Handle INFORM(Y,t): This procedure is executed when the node receives an INFORM
message from some node Y. This message implies that node Y possessed token ¢ at the time
the message was sent. In response to this message, pointer[t] is set equal to Y. INFORM

messages help reduce the distance of a node from a token.

Handle_ TOKEN(¢): This procedure is executed when a node receives a token t, i.e.,
receives TOKEN(?) message. Before entering the CS, node I checks if token ¢ is the same
as the token it requested. The action taken by the node depends on the token received.

Case 1: Node I had requested token ¢: (In this case, the tag of node I in the token-queue
of token ¢ is guaranteed to be NULL.) Node I sets pointer[t] equal to I to indicate that [

7

is now the root of a tree, and appends the requests in its node-queue to t’s token-queue,

setting their tags equal to NULL.

Case 2: Node [had requested token u (u # t): Here, the request-modifier tag (say A) of
node [in token t’s token-queue indicates that the request of node I was modified by node
A. In this case, the requests waiting in the node-queue of node [are also considered to have
been effectively modified by node A. Therefore, in this case, node I appends its node-queue

to token t’s token-queue, and sets the tags (for the newly added nodes) equal to A.

To maintain the forest structures for token ¢, node I sets pointer[t] equal to A (the

node that modified I’s request).

Referring to Figure 1, if node 3 receives the token 2, but had requested token 1, node
3 sets pointer[1] to 2, which is its tag in the token-queue.

Handle REQUEST(Y,¢): When a node receives a request for a token this procedure is
invoked. Y is the node that is requesting token . The REQUEST message may be sent by
Y, or may have been forwarded by some other node. On receiving the request, the action

taken by node I depends on the state of the node.

Case 1: node I does not possess a token and is waiting to enter the CS. The action taken

by node I depends on the token requested by node 1.

o case a: If node [is waiting for token ¢ then, Y is stored in the node-queue.

e case b: If node [is waiting for token p (p # t) then, REQUEST(Y,?) is sent to
pointer[t] and pointer[t] set to Y.

Case 2: node I does not possess a token and is not waiting to enter the CS. The request
is forwarded to pointer[t] and pointer[t] is set equal to Y. Referring to Figure 2, if node 3
receives a request from node 4 for token 1, node 3 forwards the request to node 5 (as at

node 3, pointer[l] = 5) and changes pointer[l] to 4.

Case 3: node I possesses a token u (u may or may not be equal to ¢) and is not in the CS.

This implies that the token-queue of u is empty.

Node [sets pointer[t] to Y and adds node Y to the token-queue. The request-modifier
tag of Y is set equal to I if t # u, else the tag is set to NULL.

Case 4: node I possesses a token and is in the CS. Let the token possessed by I be w.

Node Y is added to the token-queue of token u. The request-modifier tag for node Y
is set to [if ¢ # u, else set to NULL.

Proof of Correctness

We present a brief sketch of the proof here [1].

K-Mutual exclusion

A node can be in critical section only if it has a token. As there are only K tokens, at most

K nodes can be in the critical section at a time. Hence, K-mutual exclusion is achieved.

Deadlock free

The proof of freedom from deadlock is in two parts: First, we show that for a deadlock to
occur, it should be possible for a request from some node X to travels back to node X. Next,

we show that this situation is impossible with the given algorithm.

Part I: We say that node A is blocked at node B, if the request of node A for some token
is in the node-queue of node B. Consider a graph formed by drawing an arc from node A to
node B, if node A is blocked at node B. For a deadlock to occur, this graph must contain
a cycle. (Note that each node can have only one outgoing arc, as a node can have at most
one outstanding request at any time.) Assume that nodes X1, X2, ... , Xm form a cycle,
such that X1 is blocked at X2, X2 is blocked at X3, ..., and Xm is blocked at X1. Note that
at node X1, some nodes other than Xm may also be blocked. Similarly, some nodes may
be blocked at X2, X3, ... , Xm. Consider the set S of nodes containing X1, ... , Xm and
all the nodes blocked at X1, ..., Xm. Consider a scenario that is similar to the deadlocked

scenario, except that nodes in set S—{X1} do not make their last request that is blocked in
the deadlocked scenario. In this modified scenario, the REQUEST from X1 will reach X2
as before. However, now instead of blocking the request, X2 will forward the request, the
REQUEST will then reach X3 (possibly through some intermediate nodes). Applying this
argument repetitively, the REQUEST will reach nodes X4, X5,... ; Xm and subsequently
back to X1.

The above implies that, for a deadlock to occur, the algorithm must allow a request

from some node X1 to return to itself.

Part II: For the above REQUEST to return to its originator, a cycle must exist in the
structure formed by the pointers. The K-mutual exclusion algorithm modifies the pointers
at many places. It can be easily shown that only one modification made to the pointers

can create a cycle. We will discuss only this modification to the pointers.

Specifically, when the request of a node A for token ¢ is modified by some node B
by adding A to the token-queue of token u (u #), a cycle can be created in the structure
formed by pointer[u]. Originally, paths may exist from node A to node B in the ¢-th forest
as well as the u-th forest. The request from A for token ¢ travels the links in the ¢-th forest.
Node A’s request is added to u’s token-queue at node B. If node B, on exiting from its
critical section, finds that no node on its token-queue has its request-modifier tag NULL
and node A is the first node on the token-queue, then node B will send token u to node A
and set pointer[u] = A. As a path already exists from A to B in the u-th forest, a cycle is

now formed. This cycle is broken as soon as token u reaches node A.

Now observe that the REQUEST from node A above cannot return to node A itself
because the request is added by node B to the token-queue of token u. Thus, the condition

necessary for deadlock (as stated in part I above) cannot occur. Therefore, deadlock cannot

occur.

Starvation free

When a request from a node Y for token ¢ is forwarded by some node 7, node 7 sets its

pointer[t] equal to Y. This implies that, in the absence of a cycle, a request can visit a

10

node at most once. When a cycle, as described above, is formed, a request may visit a node
at most twice. This property, along with the deadlock free property, guarantees that a node

that has sent a request will eventually receive a token.

3 Performance

The performance parameters of interest are the average time to enter the critical section,
the average number of messages per critical section entry and the average information per
message. The existing papers on K-mutual exclusion typically present an analytical estimate
of the average number of messages required per CS entry. The average number of messages
is inadequate to measure the algorithm performance, because (as shown later) an algorithm
that requires small number of messages may result in large delays in entering the CS. In this

report, we present simulation results rather than analysis.

Under light load (i.e., small A), there is a good chance that the token-queue will be
empty when a node, say A, exits from the critical section. Whenever the token-queue is
empty, the Exit_CS procedure informs v nodes that node A has a token, say ¢. This reduces
the average delay in entering the critical section at the cost of v extra messages. This also
reduces the average distance of a node from from token ¢, which in turn results in a reduction
in the average number of messages required per CS entry. The net effect of the INFORM

messages is often to reduce the average number of messages required.

Under high load, there is a good chance that the token-queue is not empty when the
Exit_CS procedure is performed. In such a case, our algorithm does not send the INFORM
messages. Thus the algorithm improves the performance by sending INFORM messages

only when beneficial.

Updates made to pointers in Exit_CS and Handle REQUEST are also designed to

reduce the distance between the nodes and the tokens. This in turn results in smaller CS

entry delays and smaller number of messages.

When a node i requesting token ¢ receives a request message of another node j for
the same token #, then node ¢ will put node j’s request in its node-queue, rather than

propagating the request as in the I-mutual exclusion algorithm by Trehel and Naimi [12].

11

Hence, unnecessary message transmission is avoided. This reduces the average number of

messages.

Heuristics for choosing a token in Entry_CS

Performance of the algorithm is dependent on the decision mechanism used by each node to
decide which token to send the request for (in Entry_CS). One possibility is to choose the
token randomly. The other possibility is to use a heuristic to choose a token that is likely to
be reached with a small number of hops. The heuristic that we experimented with chooses

the “last seen token”. i is the last seen token if:

e The node recently received token ¢.

e The node recently received an INFORM message from a node possessing token 7.

If node ¢ remembers that it had last seen the token ¢ and makes a request for that
token, there is a better chance of node 7’s request reaching the token ¢ with a small number
of hops. The INFORM messages help in updating the last seen token with the most current

information.

4 Simulation Model

The simulation model used here is a refinement of the model presented by Singhal [9]. There
are N nodes in the system where each node may request an entry into critical section 7 time
units after completing the previous execution of the critical section, 7 being exponentially
distributed with mean 1/A. X is called the rate of arrival of CS requests. The time spent by
each node in the critical section is £ units. Each node spends T time units when sending a
message (time spent in the network layer). Similarly, each node spends T, time units when
receiving a message. Ty is the transmission time between two nodes. If the same message
is sent simultaneously to multiple destinations (multicast), a cost of T is encountered for

each message copy. This assumption holds on many present implementations.

12

The simulation model presented by Singhal [9] assumes that T = T, = 0. Essentially,
his model assumes that Ts and T, are negligible compared to the transmission delay 7.
However Ts and T, are no longer insignificant when the communication medium becomes
fast. For example, when a high-speed network such as FDDI is used for communication, the
time spent executing the network layer software may not be negligible as compared to the
transmission delay. We have shown by our simulations that T and T, can affect the results

significantly and cannot be neglected.

5 Simulation Results

We simulated our algorithm and compared it with three other K-mutual exclusion algorithms

proposed by Raymond [20], Srimani and Reddy [21] and Makki et al. [22].

We modified the algorithm by Srimani and Reddy [21] to improve its performance.
The original algorithm assumes finite counters. By removing that restriction, we reduce the

number of messages required by their algorithm.

For T,, Ty # 0, Makki’s algorithm [22] does not work correctly as such. We simulated
a slightly modified version that yields optimistic results for Makki’s algorithm when T,
Ts # 0. In particular, Makki’s algorithm assumes that time required for a message to
reach its destination and to receive the response takes 27; time units. This is true when
T, =T, =0, and not valid when T, and T} are non-zero. In such situations, we “accelerate”
the response messages to reach within 27}, resulting in optimistic estimates of CS entry delay
and number of messages. Any adaptation of [22] that will work correctly for non-zero 7T, and
Ts will perform worse than what our results indicate. The results presented for T, =T, =0

are obtained by simulating the original algorithm by Makki.

Simulations were carried out for a system of thirty nodes (N = 30) and three tokens
(K = 3), for various values of A\. The number of nodes v to which INFORM messages are
sent was fixed at 2. We simulated using various values of T, T}, T}, and F. For various non-
zero Ty and T, the result trends were similar, therefore we present only one set of results.

Similarly, result trends for different values of E were similar, so we present results only for

one value of . Specifically, results are presented for Ts = T, = 0.1, T; = 0.8, £ = 0.0002.

13

FE = 0.0002 is identical to that used by Singhal [9]. (Results for larger F are also similar
[1].) For comparison, some results for Ty = T, = 0, T; = 1, ¥ = 0.0002 are also presented.
(This set of parameters implies that all the message communication delay is encountered in

transmission alone.).

The simulations were performed for 5000 critical section entries. This number was
chosen because we observed that the results of the simulation converged by 5000 entries into

the critical section.

Figure 3(a) shows the average time taken to enter the critical section, by the four
different algorithms for T, = Ty = 0.1 and T} = 0.8. In the graph, ‘new+heuristic’ refers to
our algorithm with the heuristic in the previous section and ‘new-random token’ refers to
our algorithm where a token is chosen randomly (in Entry_CS procedure). Our algorithm
performed better than the other algorithms for most values of A. (The heuristic has improved
the performance by only a small amount.) As A increases, the number of requests for entry
into critical section increase, which causes a larger delay for each node. Hence, the curves
show a steady rise initially. The curve gradually flatten out for greater values of A. The
intuitive reasoning is as follows: The rate at which each node enters CS is identical (on
average). The message communication delay is 1 unit time (75 + T, + T, therefore, sending
the token from one node to another requires 1 unit time. Therefore, the maximum rate at
which a node can enter CS (with K = 3 and N = 30) is upper bounded by 1/10, independent
of the value of A. The delay in entering the CS is determined by the rate at which the nodes
enter CS (which is almost independent of A when X is large). Therefore, for large A, the

curve flattens (“system saturation”).

Figure 3(b) shows the average time taken to enter the critical section, for T, = T, = 0
and Ty = 0.8. Observe that here Raymond’s algorithm [20] performs better than us for small
A and equally well for large A\. When a node wants to enter CS, Raymond’s algorithm sends
multiple request messages in parallel to other nodes. When T = 0, the overhead of sending
all these messages is zero (for the sender). When T is non-zero, the overhead of sending
multiple messages can be substantial. Therefore, Raymond algorithm performs well when

Ts = 0, but performs poorly with the realistic assumption that T # 0.

14

Avg. Tine

Avg. Tine

35

30

25

20

15

35

| | | | | | | | |
1. newrheuristics —
30 .-2:--newsr andom t okan ---- 7
3. makki -----
25 - 7 4. srimani - -
g 5. raynond ---
20 .
15 - ‘_(__/__;___,/_..-/---::'_:'_:'_';"_"_".';':'_'_':';'Z'_'_".';".';'I';".';'i';".‘;'i___.
O | | | | | | | | |
0 0.10.20.30.40.50.60.70.80.9 1
Lanbda
(a) T, =Ts;=0.1 and T; = 0.8
| | | | | | | | |
1. newtheuristics — ..
_.-2:--newfrandom t oken ---- 7]
3. makki -----
4. srimani - -
5. raynond ---

0 0.10.20.30.40.50.60.70.80.9 1

Lanmbda

(b) T, =Ts=0and T; = 1.0

Figure 3: Average time to enter the critical section

15

The time to enter the critical section is maximum for Makki’s algorithm [22]. This
algorithm uses a RELEASE message to maintain the correctness of the algorithm. At high
load, the RELEASE message is propagated through all other nodes before reaching the
same node again. This causes the system to behave similar to a system with a single token,

resulting in significant delays.

Figure 4 plots the average number of messages required per CS entry versus A. Our

60 T T T T S S — —
newt+heuri stics —
50 2. new+random t oken -----
3. makki -----
o 4. srimani -
> 40 5. raynond --- -
%
g 30 T 5
o 20 _
% ‘\\
10 _‘\\ _
0 s B s s e

0 0.10.20.30.40.50.60.70.80.9 1
Lanmbda

Figure 4: Average number of messages per critical section entry for 7, = 0.1, Ts = 0.1 and

T, =0.8

algorithm requires smaller number of messages compared to the other algorithms, for most
values of A\. Applying the heuristics for choosing a token has reduced the number of messages

at high load.

Raymond’s algorithm has a lower bound of 2N — K — 1 on number of messages
required and an upper bound of 2 % (N — 1) [20]. With the simulation values of N = 30
and K = 3, the lower bound is 56 and the upper bound is 58. The graph shows that this

is indeed true and the number of messages average around 57 messages per critical section

16

entry.

Srimani’s algorithm has an upper bound of N + K — 1 messages. Their analysis
suggests that the average number of messages per critical section entry is close to (N — 1)
[21]. With the simulation values of N and K, the upper bound turns out to be 32 messages
per critical section entry. The graph shows that the average number of messages needed is

around 31 messages agreeing with the analysis.

For Makki’s algorithm [22] at low load, the number of messages required is quite
large. The number of messages required becomes smaller with increasing A, with only three
messages being required at heavy load. Although the number of messages required is small,
as seen before, with large A, Makki’s algorithm results in longer delays. (This shows that

number of messages, by itself, is inadequate to evaluate algorithm performance.)

Doing the measurements for the average number of messages for T, = 0.05, T, = 0.05
and T; = 0.9 and also with T, = 0, T, = 0 and T} = 1.0 it was found that the number of
messages is practically the same for all the cases. This suggests that the average number

of messages per critical section entry is not affected by the sending and receiving times (7

and T,).

Figure 5 plots the average information that is passed in the messages by various
algorithms. The information content of a messages was calculated by taking into account all
the fields of the message. For example, the TOKEN message contains the token identifier,
token-queue, request-modifier tags, and message source. As in most implementations, each
message, by default, contains message source, destination and message type. The average
information for our algorithm is same with and without the heuristicc. When A = 1, the
average information is about 9 words for our algorithm, 4 words for Raymond’s algorithm,
6.5 words for Srimani’s algorithm, and 8 words for Makki’s algorithm. All messages in
Raymond’s algorithm are of the same size (4 words), therefore, that curve is simply a
horizontal line. For our algorithms the average message size is about 1.5 to 2 times larger
than the other algorithms. By sending more information in each message, our algorithm
reduces the number of messages. As the messages are still quite small, the overhead is

proportional to the number of messages, and quite independent of the size of the message.

17

9 I T I f
8.5 F newtheuri stics — 4
ne"\’"’_r__a!"_d_Qm_t__Qk_en__tiff;__
S 81 N 3. makki ----- 7
= 7.5 | 4. srimni - -
‘é . 5. raynmond ---
o 6.5 F [4
C
— 6 i
o 5.5 F i
Z 5 [|
4.5 .
4 / 1 1 L L L 1 1 1 1
0 0.10.20.30.40.50.60.70.80.9 1

Lanmbda

Figure 5: Average information (in words) per message for T, = 0.1, T, = 0.1 and 7T; = 0.8

Sanity Checks: One sanity check of our simulations was to verify that the average number
of messages from the simulation results matched approximately with that obtained by an
analysis of some of the algorithms. Another check was to verify that all the nodes in the
system entered the critical section roughly equal number of times and the average delay for

entering CS for every node was comparable.

6 Conclusions

This report presents a token-based K-mutual exclusion algorithm. The algorithm uses K
tokens and a dynamic forest structure for each token. This structure is used to forward
token requests. The algorithm is designed to minimize the number of messages and also the

delay in entering the critical section, at low as well as high loads.

The report presented simulation results for our algorithm and compared them with

three other algorithms. Unlike previous work, our simulation model assumes that a finite

18

(non-zero) overhead is encountered when a message is sent or received. The simulation

results show that, as compared to other algorithms, the proposed algorithm achieves lower

delay in entering CS as well as lower number of messages, without a serious increase in the

size of the messages.

References

[1]

[10]

[11]

[12]

S. Bulgannawar, A Distributed K-Mutual Exclusion Algorithm, M. S. Thesis, Dept. of Elec-
trical Eng., Texas A&M University, August 1994.

M. Raynal, Algorithms for Mutual Fxclusion. Cambridge, MA: MIT Press, 1st ed., 1986.

G. Ricart and A. K. Agrawala, “An optimal algorithm for mutual exclusion in computer
networks,” Comm. ACM, vol. 24, pp. 9-17, January 1981.

M. Maekawa, “A v/N algorithm for mutual exclusion in decentralised systems,” ACM Trans.
Comp. Syst., vol. 3, pp. 145-159, May 1985.

B. A. Sanders, “The information structure of distributed mutual exclusion algorithms,” ACM
Trans. Comp. Syst., vol. 5, pp. 284-299, August 1987.

M. Singhal, “A dynamic information-structure mutual exclusion algorithm for distributed sys-
tems,” in International Conf. Distributed Computing Systems, (Newport Beach, CA), pp. 70—
78, June 1989.

I. Suzuki and T. Kasami, “A distributed mutual exclusion algorithm,” ACM Trans. Comp.
Syst., vol. 3, pp. 344-349, November 1985.

G. Ricart and A. K. Agrawala, “Author’s response to ‘On mutual exclusion in computer
networks’ by Carvalho and Roucairol,” Comm. ACM, vol. 26, no. 2, pp. 147148, 1983.

M. Singhal, “A heuristically-aided algorithm for mutual exclusion in distributed systems,”
IEEE Trans. Computers, vol. 38, pp. 651-662, May 1989.

M. Mizuno, M. L. Neilsen, and R. Rao, “A token based distributed mutual exclusion algo-
rithm based on quorum agreements,” in International Conf. Distributed Computing Systems,
(Arlington, TX), pp. 361-368, 1991.

K. Makki, N. Pissinou, and Y. Yesha, “A new token based distributed mutual exclusion
algorithm,” in International Conf. Distributed Computing Systems, (Pittsburgh, Pa), pp. 164—
169, 1993.

M. Trehel and M. Naimi, “A distributed algorithm for mutual exclusion based on data struc-

tures and fault tolerance,” in 6th Annual International Phoenix Conference on Computers
and Communications, (Scottdale, AZ), pp. 35-39, 1987.

19

[13]

J. M. Bernabeu-Auban and M. Ahamad, “Applying path compression techniques to obtain
an efficient distributed mutual exclusion algorithm,” in Lecture Notes in Computer Science,
vol. 392, pp. 33-44, 1989.

D. Ginat, D. D. Sleator, and R. E. Tarjan, “A tight amortized bound for path reversal,”
Information Processing Letters, vol. 31, pp. 3-5, April 1989.

K. Raymond, “A tree-based algorithm for distributed mutual exclusion,” ACM Trans. Comp.
Syst., vol. 7, pp. 61-77, February 1989.

M. L. Neilsen and M. Mizuno, “A dag-based algorithm for distributed mutual exclusion,” in
International Conf. Distributed Computing Systems, (Arlington, TX), pp. 354-360, 1991.

T. K. Woo and R. Newman-Wolfe, “Huffman trees as a basis for a dynamic mutual exclusion
algorithm for distributed systems,” in International Conf. Distributed Computing Systems,
(Yokohama, Japan), pp. 126-133, June 1992.

H. Koch, “An efficient replication protocol exploiting logical tree structure,” in Digest of
papers: The 23" Int. Symp. Fault-Tolerant Comp., (Toulouse, France), pp. 382-391, June
1993.

S.-T. Huang, J.-R. Jiang, and Y.-C. Kuo, “k-coteries for fault-tolerant k£ entries to a critical
section,” in International Conf. Distributed Computing Systems, pp. 74-81, 1993.

K. Raymond, “A distributed algorithm for multiple enteries to a critical section,” Information
Processing Letters, vol. 30, pp. 189-193, February 1989.

P. K. Srimani and R. L. Reddy, “Another distributed algorithm for multiple enteries to a
critical section,” Information Processing Letters, vol. 41, pp. 51-57, January 1992.

K. Makki, P. Banta, K. Been, N. Pissinou, and E. Park, “A token based distributed k mutual
exclusion algorithm,” in IEEE Proceedings of the Symposium on Parallel and Distributed
Processing, (Arlington, TX), pp. 408-411, December 1992.

20

