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Abstract

In this work, we consider a generalized fault model that can be used to represent a wide range
of failure scenarios, including correlated failures and non-uniform node reliabilities. This fault
model is general in the sense that fault models studied in prior related work, such as f -total and
f -local models, are special cases of the generalized fault model. Under the generalized fault
model, we explore iterative approximate Byzantine consensus (IABC) algorithms in arbitrary
directed networks. We prove a necessary and sufficient condition for the existence of IABC
algorithms. The use of the generalized fault model helps to gain a better understanding of
IABC algorithms.
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1 Introduction

Dolev et al. [4] introduced the notion of approximate Byzantine consensus by relaxing the requirement
of exact consensus [12]. The goal in approximate consensus is to allow the fault-free nodes to agree
on values that are approximately equal to each other (and not necessarily exactly identical). In
presence of Byzantine faults, while exact consensus is impossible in asynchronous systems [5],
approximate consensus is achievable [4]. The notion of approximate consensus is of interest
in synchronous systems as well, since approximate consensus can be achieved using distributed
algorithms that do not require complete knowledge of the network topology [1]. The rest of the
discussion in this paper assumes a synchronous systems.

The fault model assumed in much of the work on Byzantine consensus allows up to f Byzantine
faulty nodes in the network. We will refer to this fault model as the “ f -total” fault model [16, 10,
4, 12]. In prior work, other fault models have been explored as well. For instance, in the “ f -local”
fault model, up to f neighbors of each node in the network may be faulty [8, 2, 16], and in the
f -fraction model [16], up to f fraction of the neighbors of each node may be faulty. In this paper,
we consider a generalized fault model (to be described in the next section). The generalized fault
model specifies a “fault domain”, which is a collection of feasible fault sets (a similar fault model is
recently presented in [9]). For example, in a system consisting of four nodes, namely, nodes 1, 2, 3
and 4, the fault domain could be specified as F = { {1}, {2, 3, 4} }. Thus, in this case, either node 1
may be faulty, or any subset of nodes in {2, 3, 4}may be faulty. However, node 1 may not be faulty
simultaneously with another node. The new fault model is general in the sense that the other fault
models studied in the literature, such as f -total, f -local and f -fraction models, are special cases of
the generalized fault model.

Analysis of consensus under the generalized fault model offers some new insights into how
the choice of the fault model affects algorithm design. In particular, we consider “iterative” algo-
rithms for achieving approximate Byzantine consensus in synchronous point-to-point networks
that are modeled by arbitrary directed graphs. The iterative approximate Byzantine consensus (IABC)
algorithms of interest have the following properties, which we will soon state more formally:

• Initial state of each node is equal to a real-valued input provided to that node.

• Validity condition: After each iteration of an IABC algorithm, the state of each fault-free node
must remain in the convex hull of the states of the fault-free nodes at the end of the previous
iteration.

• Convergence condition: For any ϵ > 0, after a sufficiently large number of iterations, the states
of the fault-free nodes are guaranteed to be within ϵ of each other.

This paper is a generalization of our recent work on IABC algorithms under the f -total fault
model [14, 13]. The contributions of this paper are as follows:

• We identify a necessary condition on the communication graph for the existence of a correct
IABC algorithm under the generalized fault model (Sections 3 and 4).

• We introduce a new IABC algorithm for the generalized fault model (Section 5) that uses
only “local” information.

• A transition matrix representation of the new IABC algorithm is presented (Section 6). This
representation is then used to prove the correctness of the proposed algorithm (Section 6.3).
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Since the results here generalize our prior results [14, 13], naturally the proof techniques used here
have some similarities to the prior work. The material in Section 6.3 bears the strongest similarity
to our prior work. The rest of the paper, however, presents results that provide new intuition on
the problem of approximate consensus. In particular, materials in Sections 4 and 5 shed light on
how the fault model influences the design of IABC algorithms.

2 Models

Communication Model: The system is assumed to be synchronous. The communication network
is modeled as a simple directed graph G(V,E), where V = {1, . . . , n} is the set of n nodes, and E
is the set of directed edges between the nodes in V. We assume that n ≥ 2, since the consensus
problem for n = 1 is trivial. Node i can reliably transmit messages to node j if and only if the
directed edge (i, j) is in E. Each node can send messages to itself as well, however, for convenience,
we exclude self-loops from set E. That is, (i, i) < E for i ∈ V. With a slight abuse of terminology,
we will use the terms edge and link interchangeably in our presentation.

For each node i, let N−i be the set of nodes from which i has incoming edges. That is, N−i =
{ j | ( j, i) ∈ E }. Similarly, define N+i as the set of nodes to which node i has outgoing edges. That
is, N+i = { j | (i, j) ∈ E }. Nodes in N−i and N+i are, respectively, said to be incoming and outgoing
neighbors of node i. Since we exclude self-loops from E, i < N−i and i < N+i . However, we note
again that each node can indeed send messages to itself.

Generalized Byzantine Failure Model: We consider the Byzantine failure model, with possible
faulty nodes specified using a “fault domain” F (defined below). A faulty node may misbehave
arbitrarily. Possible misbehavior includes transmitting incorrect and mismatching (or inconsistent)
messages to different neighbors. The faulty nodes may collaborate with each other. Moreover,
the faulty nodes are assumed to have a complete knowledge of the execution of the algorithm,
including the states of all the nodes, the algorithm specification, and the network topology.

The generalized fault model is characterized using fault domain F ⊆ 2V as follows: Nodes in
set F may fail during an execution of the algorithm only if there exists set F∗ ∈ F such that F ⊆ F∗.
Set F is then said to be a feasible fault set.

Definition 1 Set F ⊆ V is said to be a feasible fault set, if there exists F∗ ∈ F such that F ⊆ F∗.

Thus, each set in F specifies nodes that may all potentially fail during a single execution of the
algorithm (a similar fault model is also considered in [9]). This feature can be used to capture the
notion of correlated failures. For example, consider a system consisting of four nodes, namely,
nodes 1, 2, 3, and 4. Suppose that

F = { {1}, {2}, {3, 4} }
This definition of F implies that during an execution either (i) node 1 may fail, or (ii) node 2 may
fail, or (iii) any subset of {3, 4}may fail, and no other combination of nodes may fail (e.g., nodes 1
and 3 cannot both fail in a single execution). In this case, the reason that the set {3, 4} is in the fault
domain may be that the failures of nodes 3 and 4 are correlated.

The generalized fault model is also useful to capture variations in node reliability. For instance,
in the above example, nodes 1 and 2 may be more reliable than nodes 3 and 4. Therefore, while
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simultaneous failure of nodes 3 and 4 may occur, simultaneous failure of nodes 1 and 2 is less
likely. Therefore, {1, 2} < F .
Local knowledge of F : To implement our IABC Algorithm presented in Section 5, it is sufficient for
each node i to know N−i ∩ F, for each feasible fault set F. In other words, each node only needs to
know the set of its incoming neighbors that may fail simultaneously. Thus, the iterative algorithm
can be implemented using only “local” information regarding F .

3 Iterative Approximate Byzantine Consensus (IABC) Algorithms

In this section, we describe the structure of the IABC algorithms of interest, and state the validity
and convergence conditions that they must satisfy.

Each node i maintains state vi, with vi[t] denoting the state of node i at the end of the t-th
iteration of the algorithm. Initial state of node i, vi[0], is equal to the initial input provided to node
i. At the start of the t-th iteration (t > 0), the state of node i is vi[t − 1]. The IABC algorithms of
interest will require each node i to perform the following three steps in iteration t where t > 0.
Note that the faulty nodes may deviate from this specification.

1. Transmit step: Transmit current state, namely vi[t− 1], on all outgoing edges and self-loop (to
nodes in N+i and node i itself).

2. Receive step: Receive values on all incoming edges and self-loop (from nodes in N−i and itself).
Denote by ri[t] the vector of values received by node i from its incoming neighbors and itself.
The size of vector ri[t] is |N−i | + 1.

3. Update step: Node i updates its state using a transition function Zi as follows. Zi is a part of
the specification of the algorithm, and takes the vector ri[t] as the input.

vi[t] = Zi ( ri[t] ) (1)

The following conditions must be satisfied by an IABC algorithm when the set of faulty nodes (in
a given execution) is F:

• Validity: ∀t > 0, and all fault-free nodes i ∈ V − F,
vi[t] ≥ min j∈V−F v j[t − 1] and vi[t] ≤ max j∈V−F v j[t − 1].1

• Convergence: for all fault-free nodes i, j ∈ V − F, lim t→∞ (vi[t] − v j[t]) = 0

An IABC algorithm is said to be correct if it satisfies the above validity and convergence
conditions in the given graph G(V,E). For a given fault domain F for graph G(V,E), the objective
here is to identify the necessary and sufficient conditions for the existence of a correct IABC
algorithm.

4 Necessary Condition

In this section, we develop a necessary condition for the existence of a correct IABC algorithm.
The necessary condition will be proved to be also sufficient in Section 6.

1For sets X and Y, X − Y contains elements that are in X but not in Y. That is, X − Y = {i | i ∈ X, i < Y}.
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4.1 Preliminaries

To facilitate the statement of the necessary condition, we first introduce the notions of “source
component” and “reduced graph” using the following three definitions.

Definition 2 Graph Decomposition: Let H be a directed graph. Partition graph H into strongly
connected components, H1,H2, · · · ,Hh, where h is a non-zero integer dependent on graph H, such that

• every pair of nodes within the same strongly connected component has directed paths in H to each
other, and

• for each pair of nodes, say i and j, that belong to two different strongly connected components, either
i does not have a directed path to j in H, or j does not have a directed path to i in H.

Construct a graph Hd wherein each strongly connected component Hk above is represented by vertex ck, and
there is an edge from vertex ck to vertex cl if and only if the nodes in Hk have directed paths in H to the nodes
in Hl. Hd is called the decomposition graph of H.

It is known that for any directed graph H, the corresponding decomposition graph Hd is a directed
acyclic graph (DAG) [3].

Definition 3 Source Component: Let H be a directed graph, and let Hd be its decomposition graph as per
Definition 2. Strongly connected component Hk of H is said to be a source component if the corresponding
vertex ck in Hd is not reachable from any other vertex in Hd.

Definition 4 Reduced Graph: For a given graph G(V,E) and a feasible fault set F, a reduced graph
GF(VF,EF) is obtained as follows:

• Node set is obtained asVF =V− F.

• For each node i ∈ VF, a feasible fault set Fx(i) is chosen, and then the edge set EF is obtained as follows:

– remove from E all the links incident on the nodes in F, and

– for each i ∈ VF and each j ∈ Fx(i) ∩VF ∩N−i , remove link ( j, i) from E.

Feasible fault sets Fx(i) and Fx( j) chosen for i , j may or may not be identical.

Note that for a given G(V,E) and a given F, multiple reduced graphs GF may exist, depending
on the choice of Fx sets above.

4.2 Necessary Condition

For a correct IABC algorithm to exist, the network graph G(V,E) must satisfy the necessary
condition stated in Theorem 1 below.

Theorem 1 Suppose that a correct IABC algorithm exists for G(V,E). Then, any reduced graph GF,
corresponding to any feasible fault set F, must contain exactly one source component.
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Proof Sketch: A complete proof is presented in Appendix A. The proof is by contradiction. Let
us assume that a correct IABC algorithm exists, and for some feasible fault set F, and feasible sets
Fx(i) for each i ∈ V − F, the resulting reduced graph contains two source components. Let L and
R denote the nodes in the two source components, respectively. Thus, L and R are disjoint and
non-empty. Let C = (V − F − L − R) be the remaining nodes in the reduced graph. C may or may
not be non-empty. Assume that the nodes in F (if non-empty) are all faulty, and all the nodes in
L, R, and C (if non-empty) are fault-free. Suppose that each node in L has initial input equal to
m, each node in R has initial input equal to M, where M > m, and each node in C has an input
in the range [m,M]. As elaborated in Appendix A, the faulty nodes can behave in such a manner
that, in each iteration, nodes in L and R are forced to maintain their updated state equal to m and
M, respectively, so as to satisfy the validity condition. This ensures that, no matter how many
iterations are performed, the convergence condition cannot be satisfied. �

5 Algorithm 1

We will prove that there exists an IABC algorithm – particularly Algorithm 1 below – that satisfies
the validity and convergence conditions provided that the graph G(V,E) satisfies the necessary
condition in Theorem 1. This implies that the necessary condition in Theorem 1 is also sufficient.
Algorithm 1 has the three-step structure described in Section 3. This algorithm is a generalization –
to accommodate the generalized fault model – of iterative algorithms that were analyzed in prior
work [4, 12, 7, 11], including in our own prior work as well [14, 13]. The key difference from
previous algorithms is in the Update step below.
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Algorithm 1

1. Transmit step: Transmit current state vi[t − 1] on all outgoing edges and self-loop.

2. Receive step: Receive values on all incoming edges and self-loop. These values form vector
ri[t] of size |N−i |+ 1 (including the value from node i itself). When a fault-free node expects to
receive a message from an incoming neighbor but does not receive the message, the message
value is assumed to be equal to some default value.

3. Update step: Sort the values in ri[t] in an increasing order (breaking ties arbitrarily). Let D be
a vector of nodes arranged in an order “consistent” with ri[t]: specifically, D(1) is the node
that sent the smallest value in ri[t], D(2) is the node that sent the second smallest value in
ri[t], and so on. The size of vector D is also |N−i | + 1.

From vector ri[t], eliminate the smallest f1 values, and the largest f2 values, where f1 and f2
are defined as follows:

• f1 is the largest number such that there exists a feasible fault set F′ ⊆ N−i containing
nodes D(1),D(2), ...,D( f1). Recall that i < N−i .

• f2 is the largest number such that there exists a feasible fault set F′′ ⊆ N−i containing
nodes D(|N−i | − f2 + 2),D(|N−i | − f2 + 3), ...,D(|N−i | + 1).

F′ and F′′ above may or may not be identical.

Let N∗i [t] denote the set of nodes from whom the remaining |N−i | + 1 − f1 − f2 values in ri[t]
were received, and let w j denote the value received from node j ∈ N∗i [t]. Note that i ∈ N∗i [t].
Hence, for convenience, define wi = vi[t − 1] to be the value node i “receives” from itself.
Observe that if j ∈ N∗i [t] is fault-free, then w j = v j[t − 1].

Define

vi[t] = Zi(ri[t]) =
∑

j∈N∗i [t]

ai w j (2)

where
ai =

1
|N∗i [t]|

=
1

|N−i | + 1 − f1 − f2

The “weight” of each term on the right-hand side of (2) is ai, and these weights add to 1.
Also, 0 < ai ≤ 1. Although f1, f2 and ai may be different for each iteration t, for simplicity, we
do not explicitly represent this dependence on t in the notations.

Observe f1+ f2 nodes whose values are eliminated in the Update step above are all in N−i . Thus,
the above algorithm can be implemented by node i if it knows which of its incoming neighbors
may fail simultaneously; node i does not need to know the entire fault domain F as such.

The main difference between the above algorithm and IABC algorithms in prior work is in the
choice of the values eliminated from vector ri[t] in the Update step. The manner in which the values
are eliminated ensures that the values received from nodes D( f1 + 1) and D(|N−i | − f2 + 1) (i.e., the
smallest and largest values that survive in ri[t]) are within the convex hull of the state of fault-free
nodes, even if nodes D( f1 + 1) and D(|N−i | − f2 + 1) may not be fault-free. This property is useful in
proving algorithm correctness (as discussed below).
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6 Sufficiency

We will show that Algorithm 1 satisfies validity and convergence conditions, provided that G(V,E)
satisfies the condition below, which matches the necessary condition stated in Theorem 1.
Sufficient condition: Any reduced graph GF corresponding to any feasible fault set F contains exactly one
source component.

In the rest of this section, we assume that G(V,F ) satisfies the above condition. To prove its
sufficiency, we first develop a transition matrix representation of the Update step in Algorithm 1.

6.1 Transition Matrix Representation

In our discussion below, M[t] is a square matrix, Mi[t] is the i-th row of the matrix, and Mi j[t] is
the element at the intersection of the i-th row and j-th column of M[t].

For a given execution of Algorithm 1, let F denote the actual set of faulty nodes in that execution.
Let |F| = ψ. Without loss of generality, suppose that nodes 1 through (n − ψ) are fault-free, and if
ψ > 0, nodes (n − ψ + 1) through n are faulty. Denote by v[0] the column vector consisting of the
initial states of all the fault-free nodes. Denote by v[t], where t ≥ 1, the column vector consisting
of the states of all the fault-free nodes at the end of the t-th iteration. The i-th element of vector v[t]
is state vi[t]. The size of vector v[t] is (n − ψ).

We will show that the iterative update of the state of a fault-free node i (1 ≤ i ≤ n−ψ) performed
in (2) in Algorithm 1 can be expressed using the matrix form below.

vi[t] =Mi[t] v[t − 1] (3)

where Mi[t] is a stochastic row vector of size n − ψ. That is, Mi j[t] ≥ 0, for 1 ≤ j ≤ n − ψ, and∑
1≤ j≤n−ψ Mi j[t] = 1.2 By “stacking” (3) for different i, 1 ≤ i ≤ n − ψ, we will represent the Update

step of Algorithm 1 at all the fault-free nodes together using (4) below.

v[t] =M[t] v[t − 1] (4)

where M[t] is a (n − ψ) × (n − ψ) row stochastic matrix, with its i-th row being equal to Mi[t] in (3).
M[t] is said to be a transition matrix.

In the rest of this section, we will first “construct” a transition matrix M[t] that satisfies certain
desirable properties. Then, we will identify a connection between the transition matrix and the
sufficiency condition stated above, and use this connection to establish convergence property for
Algorithm 1. The validity property also follows from the transition matrix representation.

6.2 Construction of the Transition Matrix

We will construct a transition matrix with the property described in Lemma 1 below.

Lemma 1 The Update step of Algorithm 1 at the fault-free nodes can be expressed using row stochastic
transition matrix M[t], such that there exists a feasible fault set Fx(i) for each i ∈ V − F such that, for all
j ∈ {i} ∪ ((VF − Fx(i)) ∩N−i ),

2In addition to t, the row vector Mi[t] may depend on the state vector v[t − 1] as well as the behavior of the faulty
nodes in F. For simplicity, the notation Mi[t] does not explicitly represent this dependence.
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Mi j[t] ≥ β

where β is a constant (to be defined later), and 0 < β ≤ 1.

In [13] as well, we construct a transition matrix to prove correctness of an IABC algorithm under
the f -total fault model. However, the generalized fault model introduces additional complexity,
which is handled here using a new approach to construct the transition matrix.

Proof: We prove the correctness of Lemma 1 by constructing Mi[t] for 1 ≤ i ≤ n − ψ that satisfies
the conditions in Lemma 1. Recall that F is the set of faulty nodes, and |F| = ψ. As stated before,
without loss of generality, nodes 1 through n − ψ are assumed to be fault-free, and the remaining
ψ nodes faulty.

Consider a fault-free node i performing the Update step in Algorithm 1. In the Update step,
recall that the smallest f1 and the largest f2 values are eliminated from ri[t], where the choice of f1
and f2 is described in Algorithm 1. Let us denote by S and L, respectively, the set of nodes3 from
whom the smallest f1 and the largest f2 values were received by node i in iteration t. Define sets
Sg and Lg to be subsets of S and L that contain all the fault-free nodes in S and L, respectively.
That is, Sg = S ∩ (V− F) and Lg = L ∩ (V− F).

Construction of Mi[t] differs somewhat depending on whether sets Sg,Lg and N∗i [t] ∩ F are
empty or non-empty. We divide the possibilities into 6 separate cases. Due to space limitation,
here we present the construction for one of the cases (named Case I). The construction for the
remaining cases is presented in Appendix B.

In Case I, Sg , Φ,Lg , Φ, and N∗i [t]∩F , Φ. Let mS and mL be defined as shown below. Recall
that the nodes in Sg andLg are all fault-free, and therefore, for any node j ∈ Sg ∪Lg, w j = v j[t− 1]
(in the notation of Algorithm 1).

mS =

∑
j∈Sg

v j[t − 1]

|Sg|
and mL =

∑
j∈Lg

v j[t − 1]

|Lg|
Now, consider any node k ∈ N∗i [t]. By the definition of sets Sg and Lg, mS ≤ wk ≤ mL. Therefore,
we can find weights Sk ≥ 0 and Lk ≥ 0 such that Sk + Lk = 1, and

wk = Sk mS + Lk mL (5)

=
Sk

|Sg|
∑
j∈Sg

v j[t − 1] +
Lk

|Lg|
∑
j∈Lg

v j[t − 1] (6)

Clearly, at least one of Sk and Lk must be ≥ 1/2. We now define elements Mi j[t] of row Mi[t]:

• For j ∈ N∗i [t] ∩ (V − F) : In this case, j is either a fault-free incoming neighbor of i, or i itself.
For each such j, define Mi j[t] = ai. This is obtained by observing in (2) that the contribution
of such a node j to the new state vi[t] is ai w j = ai v j[t − 1].

The elements of Mi[t] defined here add up to

|N∗i [t] ∩ (V− F)| ai

3Although S and Lmay be different for each t, for simplicity, we do not explicitly represent this dependence on t in
the notations S and L.
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• For j ∈ Sg ∪ Lg : In this case, j is a fault-free node in S or L.

For each j ∈ Sg,

Mi j[t] = ai

∑
k∈N∗i [t]∩F

Sk

|Sg|

and for each node j ∈ Lg,

Mi j[t] = ai

∑
k∈N∗i [t]∩F

Lk

|Lg|

To obtain these two expressions, we represent value wk sent by each faulty node k in N∗i [t],
i.e., k ∈ N∗i [t] ∩ F, using (6). Recall that this node k contributes aiwk to (2). The above two
expressions are then obtained by summing (6) over all the faulty nodes in N∗i [t] ∩ F, and
replacing this sum by equivalent contributions by nodes in Sg and Lg.

The elements of Mi[t] defined here add up to

ai

∑
k∈N∗i [t]∩F

(Sk + Lk) = |N∗i [t] ∩ F| ai.

• For j ∈ (V − F) − (N∗i [t] ∪ Sg ∪ Lg) : These fault-free nodes have not yet been considered
above. For each such node j, define Mi j[t] = 0.

With the above definition of Mi[t], it should be easy to see that Mi[t] v[t − 1] is, in fact, identical
to vi[t] obtained using (2). Thus, the above construction of Mi[t] results in the contribution of the
faulty nodes in N∗i [t] to (2) being replaced by an equivalent contribution from fault-free nodes in
Lg and Sg.

Properties of Mi[t]: First, we show that M[t] is row stochastic. Observe that all the elements of
Mi[t] are non-negative. Also, all the elements of Mi[t] above add up to

|N∗i [t] ∩ (V− F)| ai + |N∗i [t] ∩ F| ai = |N∗i [t]| ai = 1

because ai = 1/|N∗i [t]| as defined in Algorithm 1. Thus, Mi[t] is a stochastic row vector.
Recall that from the above discussion, for k ∈ N∗i [t], one of Sk and Lk must be ≥ 1/2. Without

loss of generality, assume that Ss ≥ 1/2 for some s ∈ N∗i [t] ∩ F. Consequently, for each node j ∈ Sg,
Mi j[t] ≥ ai

|Sg|Ss ≥ ai
2|Sg| . Also, for each fault-free node j in N∗i [t], Mi j[t] = ai. Thus, if β is chosen such

that
0 < β ≤ ai

2|Sg|
(7)

and Fx(i) is defined to be equal to L, then the condition in the lemma holds for node i. That is,
Mi j[t] ≥ β for j ∈ {i} ∪ ((VF − Fx(i)) ∩N−i ).

All Cases Together: Using similar constructions in other cases as well (presented in Appendix
B) and a suitable choice of β (presented in Appendix C), we can obtain a row stochastic matrix
M[t], and for each i ∈ V − F identify a feasible fault set Fx(i), such that Mi j[t] ≥ β for all j ∈
{i} ∪ ((VF − Fx(i)) ∩N−i ). Thus, Lemma 1 can be proved correct.

�
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6.3 Validity and Convergence of Algorithm 1

The rest of the proof structure is derived from our previous work wherein we proved the correctness
of an IABC algorithm for the f -total fault model [13]. Let RF denote the set of all the reduced graphs
of G(V,E) corresponding to a feasible fault set F. Let τ = |RF|. τ depends on F and the underlying
network, and is finite.

In this discussion, let us denote a reduced graph by an italic upper case letter, and the cor-
responding “connectivity matrix” (defined below) using the same letter in boldface upper case.
Thus, H denotes the connectivity matrix for graph H ∈ RF.

Non-zero elements of connectivity matrix H are defined as follows: (i) for 1 ≤ i, j ≤ n − ψ,
Hi j = 1 if and only if ( j, i) ∈ H, and (ii) Hii = 1 for 1 ≤ i ≤ n − ψ. That is, non-zero elements of row
Hi correspond to the incoming links at node i, and the self-loop at node i. Thus, the connectivity
matrix for any reduced graph in RF has a non-zero diagonal.

Based on the sufficient condition stated at the start of Section 6 and Lemma 1, we can show the
following key lemmas. The proofs are presented in Appendix D and E.

Lemma 2 For any H ∈ RF,Hn−ψ has at least one non-zero column.

Lemma 3 For any t ≥ 1, there exists a graph H ∈ RF such that βH ≤M[t].

Theorem 2 Suppose that G(V,E) satisfies the sufficient condition stated above. Algorithm 1 satisfies both
the validity and convergence conditions.

Proof: A complete proof is presented in Appendix F. By repeated application of (4), we can
represent the Update step of Algorithm 1 at the t-th iterations (t ≥ 1) as:

v[t] =
(
Πt

i=1M[i]
)

v[0] (8)

where M[i] is constructed as described above. When presenting matrix products, for convenience
of presentation, we adopt the following convention: for a < b, Πb

i=aA[i] denotes the “backward”
product A[b]A[b − 1] · · ·A[a]. Thus, Πt

i=1M[i] in (8) above represents M[t]M[t − 1] · · ·M[1].
Since M[i] is row stochastic, then from (4), it follows that Algorithm 1 satisfies the validity

condition. Based on Lemmas 2 and 3, we can also show that the rows ofΠt
i=1M[i] become identical

in the limit (as elaborated in Appendix F). This observation and (8) together imply that the states
of the fault-free nodes satisfy the convergence condition too. �

7 Conclusions

This paper considers a generalized fault model, which can be used to specify more complex failure
patterns, such as correlated failures or non-uniform node reliabilities. Under this fault model,
we prove a tight necessary and sufficient condition for the existence of synchronous iterative ap-
proximate Byzantine consensus algorithms in arbitrary directed graphs. The analysis of consensus
under the generalized fault model sheds new light on how the fault model affects algorithm design.
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APPENDIX

A Necessity Proof in Section 4

Now, we present the proof for Theorem 1. The proof is by contradiction. Let us assume that a
correct IABC algorithm exists, and for some feasible fault set F, and feasible sets Fx(i) for each
i ∈ V − F, the resulting reduced graph contains two source components.

Let L and R denote the nodes in the two source components, respectively. Thus, L and R are
disjoint and non-empty. Let C = (V − F − L − R) be the remaining nodes in the reduced graph. C
may or may not be non-empty. Let us now assume that the nodes in F (if non-empty) are all faulty,
and all the nodes in L, R, and C (if non-empty) are fault-free.

Consider the case when (i) each node in L has initial input m , (ii) each node in R has initial
input M, such that M > m, and (iii) each node in C (if non-empty) has an input in the interval
[m,M].

In the Transmit step of iteration 1 of the IABC algorithm, suppose that the faulty nodes in F
(if non-empty) send m− < m on outgoing links to nodes in L, send M+ > M on outgoing links
to nodes in R, and send some arbitrary value in interval [m,M] on outgoing links to nodes in
C (if non-empty). This behavior is possible since nodes in F are Byzantine faulty. Note that
m− < m < M < M+. Each fault-free node k ∈ V − F sends to nodes in N+k value vk[0] in iteration 1.

Consider any node i ∈ L. Since L is a source component in the reduced graph, it must be true
that N−i ∩ (C ∪ R) ⊆ N−i ∩ Fx(i) ∩VF.4

Now, node i receives m− from the nodes in N−i ∩ F, and values in [m,M] from the nodes in
N−i ∩ (C ∪ R), and m from the nodes in {i} ∪ (N−i ∩ L). Figure 1 illustrates the behavior of faulty
nodes in F and the value received by node i.

Consider the following two cases:

• N−i ∩ F and N−i ∩ (C ∪ R) are both non-empty: In this case, (N−i ∩ F) ⊆ F and N−i ∩ (C ∪
R) = N−i ∩ Fx(i) ∩ VF ⊆ Fx(i). From node i’s perspective, consider two possible scenarios:
(a) nodes in N−i ∩ F are all faulty, and the other nodes are fault-free, and (b) nodes in
N−i ∩ (C ∪ R) = N−i ∩ Fx(i) ∩VF are all faulty, and the other nodes are fault-free. Note that,
since Fx(i) is a feasible fault set, N−i ∩ Fx(i) ∩VF is also a feasible fault set. Similarly, since F
is a feasible fault set, N−i ∩ F is also a feasible fault set.

In scenario (a), from node i’s perspective, the fault-free nodes have sent values in interval
[m,M], whereas the faulty incoming neighbors, i.e., nodes in N−i ∩ F, have sent value m−.
According to the validity condition, vi[1] ≥ m. On the other hand, in scenario (b), the fault-
free incoming neighbors have sent values m− and m, where m− < m; so vi[1] ≤ m, according
to the validity condition. Since node i does not know whether the correct scenario is (a) or
(b), it must update its state to satisfy the validity condition in both cases. Thus, it follows
that vi[1] = m.

4Explanation: In the reduced graph, there are no incoming links at i from nodes in N−i ∩ (C∪R). Thus, any incoming
links in E from the nodes in N−i ∩ (C∪ R) must have been removed when constructing EF for the reduced graph. Recall
that when constructing EF, incoming links from nodes in N−i ∩ Fx(i) ∩ VF are removed. It should be noted that the
algorithm is performed using the links in E, not the reduced graph. Thus, in the Transmit step, all links in E are used.
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Figure 1: Illustration of the behavior of faulty nodes in F and the value received at node i.

• At most one of N−i ∩ F and N−i ∩ (C∪R) is non-empty: Recall that N−i ∩ F and N−i ∩ (C∪R) =
N−i ∩ Fx(i)∩VF are both feasible fault sets. Since at least one of these two sets is empty, their
union, i.e., (N−i ∩ F) ∪ (N−i ∩ (C ∪ R)), is also a feasible fault set.

Then, from node i’s perspective, it is possible that all the nodes in (N−i ∩ F) ∪ (N−i ∩ (C ∪ R))
are faulty, and the rest of the nodes are fault-free. In this situation, the values sent to node i
by the fault-free nodes (which are all in {i} ∪ (N−i ∩ L)) are all m, and therefore, vi[1] must be
set to m as per the validity condition.

Hence, vi[1] = m for each node i ∈ L. Similarly, we can show that v j[1] =M for each node j ∈ R.

Now consider the nodes in set C (if non-empty). All the values received by the nodes in C are
in [m,M], therefore, their new state must also remain in [m,M], as per the validity condition.

The above discussion implies that, at the end of iteration 1, the following conditions hold true:
(i) state of each node in L is m , (ii) state of each node in R is M, and (iii) state of each node in C (if
non-empty) is in the interval [m,M]. These conditions are identical to the initial conditions listed
previously. Then, by a repeated application of the above argument (proof by induction), it follows
that for any t ≥ 0, vi[t] = m for all nodes i ∈ L, v j[t] =M for all nodes j ∈ R and vk[t] ∈ [m,M] for all
nodes k ∈ C.

Since L and R both contain fault-free nodes, and m , M, the convergence requirement is not
satisfied. This is a contradiction to the assumption that a correct iterative algorithm exists in
G(V,E).
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B Construction for other Cases in Section 6.2

When discussing Case I in Section 6.2, we deferred discussion of the other cases. We present the
construction for the rest of the cases here. There are six cases in total:

• Case I: Sg , Φ,Lg , Φ, and N∗i [t] ∩ F , Φ.

• Case II: Sg , Φ,Lg , Φ, and N∗i [t] ∩ F = Φ.

• Case III: Sg = Φ,Lg , Φ, and N∗i [t] ∩ F , Φ.

• Case IV: Sg , Φ,Lg = Φ, and N∗i [t] ∩ F , Φ.

• Case V: Sg = Φ,Lg = Φ, and N∗i [t] ∩ F , Φ.

• Case VI: at most one of Sg and Lg is non-empty, and N∗i [t] ∩ F = Φ.

Note that the choice of f1 and f2 in Algorithm 1 ensures that the value from node i itself is never
dropped from ri[t]; therefore, i ∈ N∗i [t], and N∗i [t] is always non-empty.

B.1 Case II

Now, we consider the case when Sg , Φ,Lg , Φ, and N∗i [t]∩F = Φ. That is, when each of S andL
contains at least one fault-free node, and N∗i [t] contains only fault-free node(s). In fact, the analysis
of Case II is very similar to the analysis presented in Section 6.2 for Case I when N∗i [t] does contain
a faulty node.

We now discuss how the analysis of Case I can be applied to Case II. Rewrite (2) as follows:

vi[t] =
ai

2
vi[t − 1] +

ai

2
vi[t − 1] +

∑
j∈N∗i [t]−{i}

aiw j (9)

= aiwz + aiwi +
∑

j∈N∗i [t]−{i}
aiw j (10)

In the above equation, z is to be viewed as a “virtual” incoming neighbor of node i, which
has sent value wz =

vi[t−1]
2 to node i in iteration t. With the above rewriting of state update, the

value received by node i from itself should be viewed as wi =
vi[t−1]

2 instead of vi[t − 1]. With this
transformation, Case II now becomes identical to Case I, with virtual node z being treated as an
incoming neighbor of node i.

In essence, a part of node i’s contribution (half, to be precise) is now replaced by equivalent
contribution by nodes in Lg and Sg. We now define elements Mi j[t] of row Mi[t]:

• For j = i: Mi j[t] =
ai
2 . This is obtained by observing in (2) that node i’s contribution to the

new state vi[t] is ai
vi[t−1]

2 .

15



• For j ∈ N∗i [t]− {i} : In this case, j is a fault-free incoming neighbor of i. For each such j, define
Mi j[t] = ai. This is obtained by observing in (2) that the contribution of node j to the new
state vi[t] is aiw j = aiv j[t − 1].

• For j ∈ Sg ∪ Lg : In this case, j is a fault-free node in S or L.

For each j ∈ Sg,

Mi j[t] =
ai

2
Sz

|Sg|
and for each node j ∈ Lg,

Mi j[t] =
ai

2
Lz

|Lg|

where Sz and Lz are chosen such that Sz + Lz = 1 and wz =
vi[t−1]

2 = Sz
2 mS +

Lz
2 mL. Note

that such Sz and Lz exist because by definition of Sg and Lg, vi[t − 1] ≥ w j, ∀ j ∈ Sg and
vi[t − 1] ≤ w j, ∀ j ∈ Lg. Then the two expressions above are obtained by replacing the
contribution of the virtual node z by an equivalent contribution by the nodes in Sg and Lg,
respectively.

• For j ∈ (V − F) − (N∗i [t] ∪ Sg ∪ Lg) : These fault-free nodes have not yet been considered
above. For each such node j, define Mi j[t] = 0.

By argument similar to that in Section 6.2, M[t] is row stochastic. Without loss of generality,
suppose that Sz ≥ 1/2. Then for each node j ∈ Sg, Mi j[t] =

ai
2|Sg|Sz ≥ ai

4|Sg| . Also, for fault-free node

j in N∗i [t] − {i}, Mi j[t] = ai, and Mii[t] =
ai
2 . Recall that by definition, |Sg| ≥ 1. Hence, if β is chosen

such that

0 < β ≤ ai

4|Sg|
(11)

and Fx(i) is defined to be equal to L, then the condition in the Lemma 1 holds for node i. That is,
Mi j[t] ≥ β for j ∈ {i} ∪ (VF − Fx(i)) ∩N−i .

B.2 Cases III and IV

Now, we describe the construction of Case III. The construction for Case IV is very similar, and
thus, is omitted here.

In Case III, Sg = Φ,Lg , Φ, and N∗i [t] ∩ F , Φ. Thus, S does not contain any fault-free
nodes (hence Sg is empty). This may be due to one of the following two reasons: (i) the set S is
non-empty, but all the nodes in S are faulty, or (ii) set S is empty.

Assume that l ∈ L is a fault-free node, and that all the nodes inS are faulty (i.e., Sg = Φ) or that
S is empty (i.e., f1 = 0). In this case, observe that node D( f1 + 1) must be fault-free (otherwise, f1
cannot be the largest value as defined in Algorithm 1). Now, consider any node k ∈ N∗i [t]. Similar
to the argument in Case I, we can find weights Sk ≥ 0 and Lk ≥ 0 such that

Sk + Lk = 1
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and
wk = Sk vD( f1+1)[t − 1] + Lk vl[t − 1] (12)

We now define Mi j[t] for all fault-free j.

• For j ∈ (N∗i [t]− {D( f1 + 1)})∩ (V− F). That is, j is a fault-free node in N∗i [t] with the exception
of D( f1 + 1).

For each such j, define Mi j[t] = ai. This is obtained by observing in (2) that the contribution
of node j to the new state vi[t] is aiw j = ai v j[t − 1].

The elements of Mi[t] defined here (including the case of j = i) add up to

(|N∗i [t] ∩ (V− F)| − 1) ai.

• For nodes D( f1 + 1) and l: Define

MiD( f1+1)[t] = ai +
∑

k∈N∗i [t]∩F

ai Sk

and

Mil[t] =
∑

k∈N∗i [t]∩F

ai Lk

Similar to Case I presented in Section 6.2, these two expressions are obtained by summing
up the contribution over the faulty nodes in N∗i [t], and replacing the sum by an equivalent
contribution by the nodes D( f1 + 1) and l, respectively, according to (12).

The above elements of Mi[t] add up to

ai

1 +
∑

k∈N∗i [t]∩F

(Sk + Lk)

 = (1 + |N∗i [t] ∩ F|) ai.

• For j ∈ (V−F)− (N∗i [t]∪ {l}): These fault-free nodes have not yet been considered above. For
each such j, define Mi j[t] = 0.

Similar to Case I, in Case III as well, it should be easy to see that

Mi[t] v[t − 1]

is identical to vi[t] obtained using (2).

Properties of Mi[t]: All the elements of Mi[t] are non-negative. The elements of Mi[t] defined in
Case II add up to

(|N∗i [t] ∩ (V− F)| − 1) ai + (1 + |N∗i [t] ∩ F|) ai = |N∗i [t]| ai = 1

Thus, Mi[t] is a stochastic row vector.

In Case III, recall that for any fault-free node j in N∗i [t] (including j = D( f1 + 1) and j = i),
Mi j[t] ≥ ai. Thus, if β is chosen such that

0 < β ≤ ai (13)

and Fx(i) is defined to be equal to L, then the condition in the Lemma 1 holds for node i.
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B.3 Case V

Consider Case V, where N∗i [t] ∩ F , Φ, and Sg = Lg = Φ. In this case, it should be easy to see
that N∗i [t] contains at least 3 nodes. In particular, D f1+1 must be fault-free (otherwise, f1 cannot
be maximum possible), D|N−i |− f2+1 must be fault-free (otherwise, f2 cannot be maximum possible),
and there is a faulty node in N∗i [t].

Now this case can be handled similar to Case III analyzed above. In particular, entries in Mi[t]
are defined similarly with l being defined equal to DN−i − f2+1. Also, define Fx(i) = Φ.

Hence, it is easy to see that the properties of Mi[t] are identical to Case III presented above.

B.4 Case VI

Here, we consider the case when at most one ofS andL contains a fault-free node and N∗i [t]∩F = Φ.
Without loss of generality, suppose thatS contains only faulty nodes, andLmay contain a fault-free
node.

In this case, define Mi j[t] = ai for j ∈ N∗i [t]; define Mi j = 0 for all other fault-free nodes j. Also,
define Fx(i) = L.

The properties of Mi[t] thus defined are identical to Case III above.

C Putting Cases Together

Now, let us consider Cases I-VI together. From the definition of ai in Algorithm 1, observe that
ai ≥ 1

|N−i |+1 (because f1, f2 ≥ 0). Let us define

α = min
i∈V

1
|N−i | + 1

Moreover, observe that |Sg| ≤ n and |Lg| ≤ n. Then define β as

β =
α
4n

(14)

This definition satisfies constraints on β in Cases I through VI (conditions (7), (11) and (13)). Thus,
Lemma 1 holds for all six cases with this choice of β.

D Proof of Lemma 2 in Section 6.3

Here, we present the proof of the first key lemma used in the sufficiency proof.

Lemma 2 For any H ∈ RF,Hn−ψ has at least one non-zero column.

18



Proof: G(V,E) satisfies the sufficient condition stated at the start of Section 6. Therefore, there
exists at least one non-faulty node k in the reduced graph H that has directed paths to all the nodes
in H (consisting of the edges in H). Since the length of the path from k to any other node in H is at
most n − ψ − 1, the k-th column of matrix Hn−ψ will be non-zero.5 �

E Proof of Lemma 3 in Section 6.3

Here, we present the proof of the second key lemma used in the sufficiency proof. We start with
two definitions:

Definition 5 For matrices A and B of identical size, and a scalar γ, γB ≤ A provided that γBi j ≤ Ai j for
all i, j.

We want to prove the following lemma.

Lemma 3 For any t ≥ 1, there exists a graph H ∈ RF such that βH ≤M[t].

Proof: Observe that the i-th row of the transition matrix M[t] corresponds to the state update
(in Algorithm 1) performed at fault-free node i. Recall from Lemma 1 that Mi j[t] ≥ β for j ∈
{i} ∪ ((VF − Fx(i)) ∩N−i ), where Fx(i) is a feasible fault set.

Let us obtain a reduced graph H by choosing Fx(i) for each i as defined in Lemma 1. Then from
the definition of connectivity matrix H, Lemma 3 then follows. �

F Correctness of Algorithm 1

When presenting matrix products, for convenience of presentation, we adopt the following con-
vention: for a < b, Πb

i=aA[i] denotes the “backward” product A[b]A[b − 1] · · ·A[a].

The proof below is similar to a proof for the f -total fault model in our previous work [13]. It is
included here for the convenience of the referees.

F.1 Matrix Preliminaries

In the discussion below, we use boldface upper case letters to denote matrices, rows of matrices,
and their elements. For instance, H denotes a matrix, Hi denotes the i-th row of matrix H, and Hi j
denotes the element at the intersection of the i-th row and the j-th column of matrix H.

Definition 6 A vector is said to be stochastic if all the elements of the vector are non-negative, and the
elements add up to 1. A matrix is said to be row stochastic if each row of the matrix is a stochastic vector.

5That is, all the elements of the column will be non-zero. Also, such a non-zero column will exist in Hn−ψ−1, too. We
use the loose bound of n − ψ to simplify the presentation.
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For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are defined as follows
[15]:

δ(A) = max
j

max
i1,i2
|Ai1 j −Ai2 j|

λ(A) = 1 −min
i1,i2

∑
j

min(Ai1 j ,Ai2 j)

It is easy to show that 0 ≤ δ(A) ≤ 1 and 0 ≤ λ(A) ≤ 1, and that the rows of A are all identical if and
only if δ(A) = 0. Also, λ(A) = 0 if and only if δ(A) = 0.

The next result from [6] establishes a relation between the coefficient of ergodicity δ(·) of a
product of row stochastic matrices, and the coefficients of ergodicity λ(·) of the individual matrices
defining the product.

Lemma 4 For any p square row stochastic matrices Q(1),Q(2), . . .Q(p),

δ(Q(p)Q(p − 1) · · ·Q(1)) ≤ Πp
i=1 λ(Q(i)).

Lemma 4 is proved in [6]. It implies that if, for all i, λ(Q(i)) ≤ 1−γ for some γ, where 0 < γ ≤ 1,
then δ(Q(p)Q(p − 1) · · ·Q(1)) will approach zero as p approaches ∞. We now define a scrambling
matrix [6, 15].

Definition 7 A row stochastic matrix H is said to be a scrambling matrix if λ(H) < 1.

The following lemma follows easily from the above definition of λ(· ).

Lemma 5 If any column of a row stochastic matrix H contains only non-zero elements that are all lower
bounded by some constant γ, where 0 < γ ≤ 1, then H is a scrambling matrix, and λ(H) ≤ 1 − γ.

F.2 Correctness of Algorithm 1

Lemma 6 For any z ≥ 1, in the product below of H[t] matrices for consecutive τ(n−ψ) iterations, at least
one column is non-zero.

Π
z+τ(n−ψ)−1
t=z H[t]

Proof: Since the above product consists of τ(n−ψ) connectivity matrices corresponding to graphs
in RF , at least one of the connectivity matrices corresponding to the τ distinct graphs in RF , say
matrix H∗ , will appear in the above product at least n − ψ times.

Now observe that: (i) By Lemma 2, Hn−ψ
∗ contains a non-zero column, say the k-th column

is non-zero, and (ii) all the H[t] matrices in the product contain a non-zero diagonal. These two
observations together imply that the k-th column in the above product is non-zero. �

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these matrices is a
product of τ(n − ψ) of the M[t] matrices. Specifically,

Q(i) = Π
iτ(n−ψ)
t=(i−1)τ(n−ψ)+1 M[t] (15)
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From (8) and (15) observe that

v[kτ(n − ψ)] =
(
Πk

i=1 Q(i)
)

v[0] (16)

Lemma 7 For i ≥ 1, Q(i) is a scrambling row stochastic matrix, and

λ(Q(i)) ≤ 1 − βτ(n−ψ).

Proof: Q(i) is a product of row stochastic matrices (M[t]); therefore, Q(i) is row stochastic. From
Lemma 3, for each t ≥ 1,

βH[t] ≤ M[t]

Therefore,
βτ(n−ψ) Π

iτ(n−ψ)
t=(i−1)τ(n−ψ)+1 H[t] ≤ Πiτ(n−ψ)

t=(i−1)τ(n−ψ)+1 M[t] = Q(i)

By using z = (i − 1)(n − ψ) + 1 in Lemma 6, we conclude that the matrix product on the left side of
the above inequality contains a non-zero column. Therefore, Q(i) on the right side of the inequality
also contains a non-zero column.

Observe that τ(n − ψ) is finite, and hence, βτ(n−ψ) is non-zero. Since the non-zero terms in H[t]
matrices are all 1, the non-zero elements in Πiτ(n−ψ)

t=(i−1)τ(n−ψ)+1H[t] must each be ≥ 1. Therefore, there

exists a non-zero column in Q(i) with all the elements in the column being ≥ βτ(n−ψ). Therefore, by
Lemma 5, λ(Q(i)) ≤ 1 − βτ(n−ψ), and Q(i) is a scrambling matrix. �

Theorem 2 Suppose that G(V,E) satisfies the sufficient condition stated above. Algorithm 1 satisfies both
the validity and convergence conditions.

Proof: Since v[t] = M[t] v[t − 1], and M[t] is a row stochastic matrix, it follows that Algorithm 1
satisfies the validity condition.

Using Lemma 4 and the definition of Q(i), and using the inequalities λ(M[t]) ≤ 1 and λ(Q(i)) ≤
(1 − βτ(n−ψ)) < 1, we get

lim
t→∞

δ(Πt
i=1M[i]) = lim

t→∞
δ

((
Πt

i=(⌊ t
τ(n−ψ) ⌋)τ(n−ψ)+1

M[i]
) (
Π
⌊ t
τ(n−ψ) ⌋

i=1 Q(i)
))

≤ lim
t→∞
Π
⌊ t
τ(n−ψ) ⌋

i=1 λ(Q(i)) = 0

Thus, the rows of Πt
i=1M[i] become identical in the limit. This observation, and the fact that

v[t] = (Πt
i=1M[i])v[0] together imply that the states of the fault-free nodes satisfy the convergence

condition. �
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