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the problem of designing unordered or all unidirec-tional error detecting (AUED) codes [19] { such codesare also useful for unidirectional and asymmetric er-ror control. Some codes for correcting di�erent typesof errors and skews on asynchronous buses have alsobeen proposed (e.g., [3]). However, the past work hasnot explored the issues in VLSI implementations ofdecoders for the proposed codes. While we focus onasynchronous communication as the application of un-ordered [6] or delay-insensitive codes, the results of thispaper have implications for all applications of suchcodes.This paper deals with design of asynchronous de-coders for codes used for communication on asyn-chronous buses. Past work on decoders [2] implic-itly assumes synchronous hardware implementation ofthe decoder. There are at least two reasons why thestudy of asynchronous decoders is important. First,recently there have been promising results on asyn-chronous implementation of VLSI systems for high-performance and low-power applications [17, 13, 8].Such processors have many potential applications, forinstance, in mobile and wireless computing and com-munication. This calls for schemes to implementdelay-insensitive communication between various sub-modules e�ciently without the use of global clocking,under various gate and wire delay models. The as-sumptions in this paper are consistent with the mod-els used in asynchronous implementation of VLSI sys-tems. Second, in a synchronous implementation, thereceiver decodes the incoming data with the help ofa clock signal whose period is a function of the maxi-mum delay of the transmission medium and the logicinside the receiver. This is not always consistent withthe idea of delay-insensitive communication on asyn-chronous buses in applications such as those reportedin [5, 4].As noted above, unordered codes have been pro-posed for two types of problems: (i) detection of ar-



rival of data on the asynchronous bus, (ii) detectionand correction of various types of errors on the asyn-chronous bus. The problem of designing asynchronousdecoders for the type (ii) codes is strictly harder thanthat for type (i) codes. As a �rst step, this paperfocuses on design of asynchronous decoders that candetect when the transmitted information has been re-ceived, in the absence of any errors. As shown here,even this simple problem is hard to solve (in fact, im-possible under certain conditions). This implies that,implementation of asynchronous decoders for unidi-rectional error correcting codes is likely to be veryhard.The codes that are useful for detecting arrival ofdata on an asynchronous bus are said to be unordered[6, 3, 5] or delay-insensitive [19]. Mathematically,one can formalize unordered or delay-insensitive (DI)codes as follows. Consider a binary code C. A codeword u 2 C is said to be contained in a code wordv 2 C, if v has a 1 in each position where u has a1. This is denoted as u � v. A code C is said tobe unordered or delay-insensitive (DI) when no codeword is contained in another code word. When anunordered code is used, arrival of a code word canbe unambiguously recognized by the receiver, in pres-ence of arbitrary delays in the wires. It is easy to seethat one-hot and dual-rail (double-rail) codes enjoythis property [19]. Verhoe� [19], Varshavsky [18] andBlaum [2] discuss many DI codes and describe theirmathematical properties.VLSI implementation of decoders for systematicunordered (or DI) codes is the subject of this pa-per. We �rst describe a communication protocol calledthe four-phase protocol [11] for the exchange of dataon an asynchronous bus. Then we de�ne two possi-ble architectures for the decoders. The �rst is calledenumeration-based decoder which examines the entirecode word and determines if it is valid or not. It basi-cally implements the membership-test using combina-tional logic. We argue that it is often impractical (andalmost impossible given the VLSI technological lim-its) to implement asynchronous enumeration-baseddecoders for many realistic codes. We then presenta comparison-based decoder which detects the arrivalof a code word by recomputing the checkbits (usingthe received data bits) and comparing (or matching)them with the received checkbits. This is a practi-cal approach but it su�ers from the drawback of haz-ards, i.e., due to unpredictable gate and wire delaysthe decoder could signal a match even though thecode word is not yet received. To avoid such erro-neous detection of code words, the decoder needs to

be delay-insensitive.In this paper, we prove that it is impossible to de-sign a delay-insensitive comparison-based decoder forany systematic DI code that uses less redundancy thana dual-rail code. In other words, the encoded wordmust contain at least twice as many bits as the data.The comparison-based decoder architecture is practi-cal, therefore, our impossibility result is of interest.The paper also shows that comparison-based de-coders for appropriate codes (that have the requisitelevel of redundancy) can be implemented under theabove assumptions. Finally, we present some practicalconstraints on circuit delays under which comparison-based decoders could be implemented for codes withsmaller redundancy than dual-rail codes. We illustratethis with the implementation of a Berger code [1].The paper is organized as follows. Section 2 dis-cusses our system model. Section 3 discusses thevarious decoder architectures and their implementa-tion details. Section 4 shows that codes that arenot as redundant as dual-rail codes cannot be imple-mented. Section 5 shows the characteristics of theencoder block (logic which recomputes the checkbits)for a delay-insensitive realization of comparison-baseddecoders. Section 6 shows that decoders for appro-priate codes with requisite amount of redundancy canindeed be implemented (a design is presented). Sec-tion 7 shows that with some practical delay constraintsdecoders with smaller redundancy than dual-rail codescould be implemented. Section 8 discusses the impli-cations of the main result of the paper and providesdirections for future work.2 System ModelThere are two components to our model: (a) theprotocol used for communication on an asynchronousbus, and (b) the architecture of the decoder. We willdescribe the details of the communication protocol inthis section and the decoder architectures in Section 3.2.1 Asynchronous Communication Pro-tocolUnlike a synchronous system, an asynchronous sys-tem does not have a clock to validate data. Data com-munication in an asynchronous system is accomplishedby a handshake protocol [11]. There are two popu-lar handshake protocols: the four-phase (or return-to-zero) protocol and the two-phase (or non-return-to-zero) protocol. We will use the four-phase handshakeprotocol in this study. The organization of a system



with four-phase handshake protocol is shown in Fig-ure 1.
B

ack
(sender)

Block  R

(receiver)
Block  SFigure 1: Four-Phase Handshake Protocolack is the acknowledgment wire and B is the asyn-chronous bus (or set of wires) on which encoded datais transmitted by the sender. At the start of the fourphase protocol, the initial values are ack = 0 and B= (000...0). All-0 bus, B = (000...0), is knownas the spacer [19]. The four-phase protocol has thefollowing four steps (hence the name).(1) Block S (sender) encodes the data and transmitsthe code word on the asynchronous bus B. As thebus is initially in the spacer state, this step causes0! 1 transitions on the bus wires correspondingto non-zero bits of the code word. When this 0!1 transition arrives at the decoder, we say that thecorresponding non-zero (1) bit of the code wordhas arrived at the decoder.(2) After the code word is received by the receiverblock R, it drives the ack wire high (or sets tologic level 1). (Note that the non-zero bits onbus B may arrive in an arbitrary order because ofarbitrary delays on the wires.)(3) Block S waits for ack to go high and then resetsbus B, i.e., drives a logic value 0 on all wires ofbus B (spacer).(4) After an unbounded but �nite amount of time,block R detects the spacer, i.e., B = 000...0, andin turn drives the ack wire low which takes thesystem back to the initial state, ready for the nexttransaction.Basically, in a four-phase protocol, the data busstarts in an all-zero state (also known as the spacer)and transitions to whatever the code word is, and thengoes back to an all-zero state. The ack wire providesthe feedback to the sender so that a new piece of datais not sent unless the previous one has been received(or reliably latched) by the receiver. Our model isvery simple and does not include the idea of pipelineddata communication that was proposed by Blaum andBruck [4, 5].

3 Decoder ArchitecturesAssume that the code being used is an (n; k) sys-tematic unordered code. Thus, each code word con-tains k data bits, and r = n�k checkbits. The senderencodes k bits of data into a code word containing nbits, by appending r = n � k checkbits to the k databits. The function of the decoder at the receiver is todetect when a code word has arrived, so that the re-ceiver can latch the correct data into a register. (Theterm decoder is somewhat of a misnomer, because itonly needs to detect arrival of a code word. In a sys-tematic code word, the data is available without anyfurther decoding.)In this section, we present two generic architecturesfor the decoder, which can be used for any unorderedsystematic code.3.1 Enumeration-based DecoderAn enumeration-based decoder implements a mem-bership test to determine if a received word belongsto the code. The decoder looks at the input wordand produces a 1 if the received word is a code word.The decoder must be hazard-free, otherwise, it mayindicate that a code word has been received when thereceived word, in fact, is not a code word.Consider the (4,2) Berger code [1] with 2 data bits(k=2) and 2 checkbits (r=2). The four code words inthe (4,2) Berger code are:d1 d0 c1 c00 0 1 00 1 0 11 0 0 11 1 0 0where (d1,d0) are the data bits and (c1,c0) are thecheckbits. A direct two-level AND/OR (sum-of-products) implementation of the decoder that pro-duces a 1 on receiving a code word and a 0 otherwisewould result in glitches (hazards) at the output of thedecoder due to unpredictable order of the arrival ofthe bits and the distribution of delays in the gatesand wires inside the decoder [7, 16]. This is not ac-ceptable because we expect the decoder output to goto 1 only if we receive a code word.However, we can take advantage of the four-phaseprotocol to implement the circuit in a hazard-freemanner as follows. The protocol states that aftera spacer, each bit (data and checkbits) can makea 0 to 1 transition in any possible order, but oncethey reach the code word they stop changing, i.e., do



not change till the next spacer is sent (which marksthe beginning of a new transaction). So, the wiresundergo the following sequence: SPACER =)CODEWORD =) SPACER =)CODEWORD : : : This protocol, and the fact thatthe code is unordered, can be used to implement thedecoder function in a hazard-free manner as f =c1+ d1d0+ d0c0+ d1c0. Basically, the decoder imple-mentation will contain one AND gate for each codeword with the inputs of the AND gate being the bitswhich are 1 in the code word. Outputs of these ANDgates will be sent to an OR gate, whose output willbe the function f . Function f has the following char-acteristics:(1) It is positive and unate in all the variables: Afunction g(x1; x2; : : : ; xn) is said to be unate withrespect to a variable xi if only xi or its comple-ment xi appears in g but not both [9]. A functiong is said to be positive with respect to a variablexi if only the literal xi appears in g.(2) f is hazard-free for all the allowable transitionsunder the four-phase protocol that is being usedin this discussion. This is because, our implemen-tation of f consists of only AND and OR gates,and the output of an AND gate remains at zerotill all its inputs are 1 { all inputs of an ANDgate become 1 only when the corresponding codeword is received.(3) It can be shown that the minimal sum-of-products expression is unique [9] which meansthat all the prime-implicants are essential. So,f is the minimal hazard-free sum-of-products(SOP) realization of the enumeration-based de-coder for (4,2) Berger code.Therefore, f cannot be minimized any further in termsof a two-level logic implementation. However, thefunction can be optimized to minimize the numberof literals and fan-in at the expense of the number oflevels of logic.3.2 Complexity of Enumeration-basedDecodersWhat happens to the complexity (size, fan-in, etc.)of the enumeration-based decoder as the number ofthe data bits increases? Consider (36,31) Berger codewhich is close to a typical word in a computer. Thenumber of code words in this code is 231. In theenumeration-based implementation, one AND gate isrequired for each code word which means 2 � 109 (2

billion) AND gates and one OR gate with a fan-in of2 � 109 are required. The fan-in of a typical ANDgate in this implementation would be 19 (on an av-erage). In addition, as noted in the previous section,the function is unate which means that all its primeimplicants are essential so it cannot be minimized anyfurther in a sum-of-products realization. A multi-levellogic implementation is also impractical because thenumber of product terms (AND gates) is too large forany computer-aided design tool to handle and even ifthere were such a tool the number of levels of logicand the number of literals (wires) would be would betoo large for any practical VLSI implementation.3.3 Comparison-based Decoder Architec-tureFigure 2 illustrates the comparison-based decoderarchitecture. Input to the decoder are the n bits re-ceived on the asynchronous bus. The input begins asall-0 spacer (i.e., all n bits are 0). When the sendersends encoded data, the received n bits eventually be-come identical to the transmitted code word. ThePresent output of the decoder is initially 0 (when theinput is all-0). The output should remain 0 until acode word has been received on the asynchronous bus.When the code word is detected, the output should be-come equal to 1. The Present output of the decodercan be used to latch the correct data into a register.It is, therefore, critically important that the Presentoutput of the decoder should not become equal to 1 be-fore the correct data is received on the bus. (We willlater show that this condition is impossible to satisfyif r < k.)
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the checkbits for the received data bits. The com-parator compares these computed checkbits with thecheckbits received on the asynchronous bus. When thetwo match, arrival of the code word is detected (moreimportantly, arrival of the correct data is detected).This architecture is useful for all systematic codes.In the previous section we noted that anenumeration-based decoder for (36,31) Berger code isimpractical. So, it is interesting to see if a comparison-based decoder could be implemented for a (36,31)Berger code. A comparison-based decoder lends itselfto a divide-and-conquer algorithm. The architectureof a circuit to compute the checkbits of (36,31) Bergercode is shown in Figure 3.
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Figure 3: An Implementation of the (36,31) BergerCode EncoderUsing misII logic synthesis tools (from Universityof California, Berkeley) we found that (36,31) Bergercode can be implemented with 8 AND, 167 NAND,39 OR, 5 XOR, 17 XNOR, 93 NOR, and 79 invert-ers. All the gates except the inverters were restrictedto 2 inputs. Note that there are several possible im-plementations of Berger codes. The implementationshown in Figure 3 is reasonably e�cient and was opti-mized for a gate-level implementationusing multi-levellogic. If no constraints are placed on the gate and wiredelays, these implementations could have glitches atthe output. The issues in a hazard-free realization ofcomparison-based decoders is the main subject of thepaper and is discussed in the next section in detail.

4 Conditions for DI Decoder Imple-mentationIn this section we derive a necessary condition for adelay-insensitive VLSI implementation of comparison-based decoders. First we state our assumptions andthen present the main result of the paper and its proof.4.1 AssumptionsThe discussion in this section makes the followingtwo assumptions:A.1 The bus is asynchronous in that the delay on eachwire is arbitrary (but �nite). The delays on anypair of wires are independent.A.2 The encoder and the comparator in the decoderare implemented using gates and wires with arbi-trary (but �nite) delays. Thus, delays in produc-ing each output of the encoder are arbitrary andindependent.(In practice, it is sometimes possible to assumesome order relationship or bounds on delays, asdiscussed later Section 7.)4.2 Main ResultTheorem 1 Given assumptions A.1 and A.2, it isimpossible to implement a comparison-based decoderfor a systematic delay-insensitive code if r < k, wherek is the number of data bits and r is the number ofcheckbits.Proof: The theorem states an impossibility result.We present a proof by constructing a scenario whereinthe decoder will not work properly unless r � k.Recall that, in the four phase protocol, the input tothe decoder begins with all-0, that is, all n input bitsare 0. Let C(D) denote the r checkbits correspond-ing to k-bit data D. Also, let Ci(D) denote the i-thcheckbit corresponding to data D, 0 � i � r�1. Thus,initially, the output of the encoder will be C(00 � � �00).This implies that, initially, the two r-bit inputs to thecomparator must be C(00 � � �00) and 00 � � �00. Recallthat the code being used is a delay-insensitive (un-ordered) code, therefore, C(00 � � �00) cannot be iden-tical to 00 � � �00 (r bits). Thus, the initial value ofPresent output of the comparator will be 0 (indicat-ing a mismatch of its inputs). Figure 4 illustrates theinitial state.Now, let the code word transmitted by the senderon the asynchronous
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Present = 0Figure 4: Initial con�gurationbus be dk�1dk�2 � � �d1d0 br�1br�2 � � � b1b0; wheredk�1dk�2 � � �d1d0 = 11 � � �1 and br�1br�2 � � �b1b0 =C(11 � � �1): Thus, all the data bits transmitted by thesender are 1. To prove the impossibility result statedin the theorem, it is su�cient to construct one sce-nario where the stated result is true. We now buildone such scenario.Consider the scenario where all the non-zero bitsin br�1br�2 � � � b1b0 arrive at the decoder before anynon-zero bits in dk�1dk�2 � � �d1d0 arrive at the de-coder. Thus, now one input to the comparator isbr�1br�2 � � � b1b0 and the other input of the compara-tor is still C(00 � � �00).Now, the non-zero data bits start arriving atthe decoder. As the data input to the en-coder (within the decoder) changes, its outputwill change from initial value C(0 � � �0) to the �-nal value C(dk�1dk�2 � � �d1d0) = C(11 � � �1) =br�1br�2 � � � b1b0. Output of the encoder is an inputto the comparator.A \false match" is said to occur at the comparatorif the two r-bit inputs of the comparator are identi-cal but the data bits received by the decoder are notidentical to the data bits transmitted by the sender.A false match will result in the receiver accepting in-correct data.In the scenario under consideration, to avoid a falsematch at the comparator, we must guarantee that theoutput of the encoder will not become identical tobr�1br�2 � � � b1b0 until all the 1 (non-zero) bits of datadk�1dk�2 � � �d1d0 have arrived. We now show that afalse match can occur if r < k.The input to the encoder changes from initial value00 � � �0 (k bits) to �nal value dk�1dk�2 � � �d1d0 =11 � � �11. Therefore, as shown in Figure 5, the k-bit encoder input can potentially follow the chainD0 = 00 � � �0, D1, � � �, Dk�1,Dk = 11 � � �1. That is,encoder input may change from initial valueD0 to D1,then D2, and so on, �nally to Dk = 11 � � �1. While the

received data bits are changing, the checkbits receivedfrom the sender remain steady at br�1br�2 � � �b1b0.D0 = 0000 � � �0000D1 = 0000 � � �0001D2 = 0000 � � �0011D3 = 0000 � � �0111......Dk�3 = 0001 � � �1111Dk�2 = 0011 � � �1111Dk�1 = 0111 � � �1111Dk = 1111 � � �1111Figure 5: A chain from 00 � � �0 to 11 � � �1Let the initial output of the encoder C(D0) =C(00 � � �0) be denoted as ar�1ar�2 � � �a1a0. The �naloutput of the encoder will be C(Dk) = C(11 � � �11) =br�1br�2 � � �b1b0. Thus, output of the encoder changesfrom ar�1ar�2 � � �a1a0 to br�1br�2 � � �b1b0 as its inputchanges from D0 = 00 � � �0 to Dk = 11 � � �1. (Notethat, in our notation, Ci(D0) = ai and Ci(Dk) = bi.)Claim: To avoid a false match, there must exist an i,0 � i � r � 1, such that1. Ci(Dj) = Ci(D0), 0 � j � k � 1, and2. Ci(Dk) = Ci(D0).This claim implies that as the data input of theencoder changes from D0 to Dk�1, at least one check-bit computed by the encoder, say i-th, remains con-stant. This checkbit is �rst complemented only whenthe data input changes to Dk.Proof of the claim: The proof is by contradiction.Assume that the claim is false. This implies that, forall i (0 � i � r � 1), there exists ji (0 � ji � k � 1)such that Ci(Dk) = Ci(Dji):Assume that the encoder input has become equalto Dji , and the i-th checkbit computed by the en-coder has become equal to Ci(Dji ) = Ci(Dk) = bi.As the encoder is asynchronous (by assumption A.2),it is possible that its i-th output bit does not change(for a long time) even after the encoder input haschanged from Dji . In this manner, i-th output ofthe encoder, for all i, becomes equal to Ci(Dji ) (orCi(Dk)) and stays there, before the data input of theencoder becomes equal to Dk (recall that ji � k � 1,8i). Thus, when the encoder input is equal to Dmwhere m = maxi (ji), the encoder output will be



equal to C(Dk), although the data bits received by thereceiver are not Dk { this would cause a false matchat the comparator. Thus, the above claim is proved.2The above proof of the claim considers the casewhen Dk is the data being transmitted by the sender.The above proof can be repeated for each data Dl(l > 0) in the chain to conclude that, to avoid a falsematch, for each l (1 � l � k), there must exist i(l),0 � i(l) � r � 1, such that(condition B.1) Ci(l)(Dj) = Ci(l)(D0), 0 � j � l � 1,and(condition B.2) Ci(l)(Dl) = Ci(l)(D0).If the above conditions are not satis�ed, a false matchcan occur. It is obvious that, the above conditionscannot be satis�ed, unless r � k. This concludes theproof of Theorem 1. 25 Properties of the Encoder FunctionWe now present some properties that the encoderfunction should satisfy for the existence of a delay-insensitive comparison-based decoder implementationfor a systematic unordered code.5.1 Diagonal PropertyFigure 6(a) presents an example of a chain of dataand the corresponding checkbits that satisfy condi-tions B.1 and B.2 listed in the proof for Theorem 1.For this example k = r = 4, and using the notationused in conditions B.1 and B.2, we have: (i) for l = 1,i(1) = 2, (ii) for l = 2, i(2) = 1, (iii) for l = 3,i(3) = 3, and (iv) for l = 4, i(4) = 0. Observe that,
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(b) permuted checkbitsFigure 6: Example: The diagonal propertyas shown in Figure 6(b), the checkbit positions can bepermuted such that the least signi�cant k permutedcheckbits are complemented at a diagonal position, asmarked by the diagonal box in Figure 6(b). For the

decoder to be implemented, for each chain of data,there must exist a permutation of the checkbits suchthat the checkbits are complemented at diagonal po-sitions as illustrated above. We call this property the\diagonal property". Thus, for a DI decoder to beimplemented, the systematic code must satisfy the di-agonal property. It is interesting to note that, thedual-rail code satis�es the diagonal property. (In fact,the example in Figure 6 corresponds to the dual-railcode.)5.2 Initial ConditionAs the number of checkbits must be at least k, wenow focus on codes with exactly k checkbits. (As codeswith r > k are not of practical interest, generalizationof the next result to r > k is omitted here.) The theo-rem below and its proof use some notation developedin the proof of Theorem 1.Theorem 2 Given a systematic unordered code withk = r, for a comparison-based decoder to be imple-mented under assumptions A.1 and A.2, a necessarycondition is that C(00 � � �0) = 11 � � �1: That is, check-bits corresponding to all-0 data must be all-1.Proof: As stated in the theorem, r = k forthe code under consideration. Let the code wordtransmitted by the sender on the asynchronousbus be dk�1dk�2 � � �d1d0 br�1br�2 � � � b1b0; wheredk�1dk�2 � � �d1d0 = 11 � � �11 and br�1br�2 � � �b1b0 =C(11 � � �11): Thus, all the data bits transmitted bythe sender are 1. Let the data received by the encoderfollow the chainD0 throughDk, as de�ned in the proofof Theorem 1. Unlike the proof of Theorem 1, in thisproof, we do not assume that all non-zero checkbitsarrive before the data bits.Without loss of generality, assume that the check-bits are named such that c0 is the �rst to be com-plemented, followed by c1, c2, etc., in that order.That is, as the output of the encoder changes fromC(00 � � �0) to C(Dk), c0 output of the encoder is com-plemented �rst, then c1, etc. This assumption impliesthat, i(l) = l � 1 for 1 � l � k (using the nota-tion in conditions B.1 and B.2). More speci�cally, for1 � l � k,(condition P.1) Cl�1(Dj) = Cl�1(D0), 1 � j � l � 1,and(condition P.2) Cl�1(Dl) = Cl�1(D0).The proof of Theorem 2 is by contradiction. Thus,we assume that at least one checkbit in C(D0) =



C(00 � � �0) is 0. Now let l denote the largest integer,such that Cl�1(D0) = 0. By the above conditions,it follows that, Cl�1(Dl) = 1. Now assume that thedata transmitted by the sender is Dl (l is not necessar-ily equal to k). The data input to the decoder couldpotentially follow the chain D0; D1; � � � ; Dl.For future reference, let C(D0) = ar�1ar�2 � � �a0.From P.1 and P.2 it follows that the most signi�cant(r � l) checkbits of C(Dl) are identical to the mostsigni�cant (r � l) checkbits of C(D0).Now assume that the receiver receives the most sig-ni�cant (r � l) checkbits, before any other checkbitsor data bits are received. More speci�cally, the lowerr-bit input to the comparator is now assumed to bear�1ar�2 � � �al 0 0 � � �0. Additionally, in the scenariounder consideration, the least signi�cant l checkbitstransmitted by the sender are assumed to encountera large delay on the asynchronous bus (larger than allthe data bits and other checkbits). { Therefore, thosel checkbits will remain 0 at the receiver during thescenario under consideration here.Now, assume that the data input to the en-coder has changed from D0 to Dl�1, along the chainD0; D1; � � � ; Dl�1. By conditions P.1 and P.2, themost signi�cant (r � l + 1) bits of C(Dl�1) must beequal to ar�1ar�2 � � �al0. (Recall that Cl�1(D0) =Cl�1(Dl�1) = Cl�1(Dl) = 0.) Also, P.1 and P.2 im-ply that, for each i � l � 2, there exists mi � l � 1,such that Ci(Dmi ) = 0. Even though the data in-put of the encoder is Dl�1, it is possible (by as-sumption A.2) for the output of the encoder to equalar�1ar�2 � � �al 0 0 � � �0. This will occur if the mostsigni�cant r� l+1 checkbits produced by the encoderare from C(Dl�1), and each of the i-th least signi�-cant l � 1 checkbits (0 � i � l � 2) produced by theencoder lingers on from C(Dmi ). Thus, in this situ-ation, the encoder output and the checkbits receivedon the bus are both ar�1ar�2 � � �al 0 0 � � �0, while thedata bits received on the bus are Dl�1 (although databits transmitted are Dl). Thus, the comparator willproduce a false match, before the data has arrived.This concludes the proof. 2The diagonal property, C(00 � � �0) = 11 � � �1, andk = r are together su�cient conditions for a decoderto be implemented.6 Delay-Insensitive Decoder For Dual-Rail CodeWe now demonstrate that the bound in Theo-rem 1 is tight, by presenting a delay-insensitive (asyn-

chronous) comparison-based decoder, for the dual-railcode, based on the architecture shown in Figure 2.The dual-rail code is commonly used in asynchronoussystems, and for this code k = r. Our design is verysimilar to the implementations found in asynchronousliterature [11, 13]. Without loss of generality, let usassume that the number of data bits is 2. Therefore,r = k = 2. The table below shows the code wordswhere d1 and d0 are data bits and c1 and c0 are check-bits. It follows that, c1 = d1 and c0 = d0.d1 d0 c1 c00 0 1 10 1 1 01 0 0 11 1 0 0Figure 7 shows the circuit-level implementation ofthe decoder. The gate marked C denotes a Muller C-element [11, 10]. It is a special latch which has thefollowing behavior. The output of the C element ishigh (or logic 1) when all of its inputs are high andthe output is low (or logic 0) when all of its input golow; otherwise it retains its previous state.
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r=2Figure 7: DI Implementation of the Decoder for 2 bitDual-Rail CodeIt may seem that the XNOR gate inside the com-parator maybe prone to hazards (glitches) and henceresult in a false match. However, a close examinationof the possible transitions of the XNOR gate inputsreveals that it is not the case. The following is the in-formal justi�cation which can be veri�ed by inspect-ing the transition space of the XNOR function. Atthe beginning of the data transmission (refer to thedetails of the four-phase protocol in Section 2.1), thedecoder input is the all-0 spacer, and the two inputs



of each XNOR gate are 1 and 0 which results in anoutput of 0. After the code word arrives, one of theinputs of the XNOR will change resulting in the out-put changing monotonically to 1. Hence, the XNORgate will not glitch. This implementation of the de-coder for the dual-rail code is delay-insensitive. Thisproves that there exist codes with k = r for whichcomparison-based decoders can be implemented un-der assumptions A.1 and A.2 in Section 4.7 Decoders with Delay AssumptionsSection 4 proves that, if k > r, an asynchronouscomparison-based decoder cannot be implemented un-der assumptions A.1 and A.2. In this section, wedemonstrate that it may be possible to implement suchdecoders if we are allowed to place realistic restrictionson transmission and circuit delays. Speci�cally, wepresent an implementation of a decoder for the (5,3)Berger code that makes some assumptions regardingcircuit delays. Note that for this code, k = 3 andr = 2; thus, k > r.Figure 8 presents the code words from the (5,3)Berger code in the form of a \lattice". A code word uprecedes code word v in this lattice if the data bits incode word v cover the data bits in code word u, and thenumber of non-zero data bits in u and v di�ers by 1. InFigure 8, most signi�cant 3 bits of each code word arethe data bits d2d1d0, and the least signi�cant 2 bitsare the checkbits c1c0. (Note that only the data bitsare being compared here, not the whole code word.)
001  10        010  10        100  10

000  11

011  01        101  01        110  01

111  00Figure 8: Lattice representation of the (5,3) BergercodeIn Figure 8 observe that, if the sender is preventedfrom sending the code word 111 00 (corresponding todata 111), then all the remaining code words satisfy

the diagonal property stated previously. In particu-lar, the data received by the decoder must traverse achain starting from 000 to the actual data value. As111 is a forbidden data, the transmitted data can onlybe of weight � 2. The diagonal property is appar-ent from the observation that, the checkbit c0 is �rstcomplemented to 0 when a data with weight 1 is re-ceived, and checkbit c1 is complemented only when adata with weight 2 is received. Thus, from the discus-sion in Section 5 it follows that, the comparison-baseddecoder will function correctly under assumptions A.1and A.2, provided the sender is forbidden from trans-mitting the code word 111 00.Now, we suggest some assumptions on the circuitdelays to allow the sender to transmit code word111 00 as well. To allow this, we only have to ensurethat the output of the encoder (within the decoder inFigure 2) will not become equal to 00 unless the datareceived by the encoder is 111. This can be guaranteedas follows: (i) Partition the encoder into two circuitblocks S0 and S1 to independently produce c0 and c1,respectively, as a function of the received data. Thedata bits received from the bus are sent to both S0and S1. (ii) Ensure that, when a transition occurs onthe bus, the delay in producing the new output valueis smaller for S0 as compared to S1. (i.e., in responseto an input data change, the encoder computes thenew value of c0 faster than the new value of c1.)The above two conditions guarantee that the en-coder will not produce output 00, unless the input is111. To see why that is true, note that the encodercan possibly produce output 00 only if its data in-puts change from 000 to a data of weight 1 (e.g., 001),and then to a data of weight 2 (e.g., 101), and �nallyto 111. When data changes along this chain, the en-coder output can prematurely become 00 only if thec0 checkbit produced when data input was 001 staysat 0 even when the data has changed to 101 and, inresponse, c1 has changed to 0 (from 1). The circuitdelay assumption made above, ensures that c1 cannotchange to 0 (from 1) in response to an input changefrom 001 to 101, before c0 changes from 0 to 1. Thus,the encoder output cannot prematurely become equalto 00, and a false match cannot occur. This will en-sure that a false match cannot occur when the trans-mitted code word is 111 00. We already know that afalse match cannot occur when any other code word istransmitted. Thus, the decoder will function correctlyunder the circuit delay assumption stated above.It is worth noting that the circuit delay assumptionmade above is easy to implement in practice. We con-jecture that comparison-based decoders can be imple-



mented for all Berger codes under practical assump-tions on circuit delays. Design of decoders for largerBerger codes and other codes is a subject of on-goingwork.8 Discussion of the ResultsThe key contribution of the paper was the investi-gation into the VLSI implementation of decoders forunordered or delay-insensitive (DI) codes. We ob-served that enumeration-based decoders are imprac-tical for codes of any reasonable size. Comparison-based decoders are feasible but are prone to glitches ifthe underlying gate and wire delays are arbitrary (un-bounded but �nite). The key implication of this resultis the non-existence of delay-insensitive comparison-based decoders for systematic delay-insensitive codeswith redundancy less than 50%. In other words,comparison-based decoders for systematic DI codeswhich are more e�cient (in terms of number of wiresper data bit) than dual-rail codes cannot be imple-mented in delay-insensitive manner. However, if oneis prepared to make some delay assumptions in theunderlying implementation, codes with smaller redun-dancy could be implemented reliably, i.e., in a hazard-free manner. This was demonstrated in Section 7 byenumerating the conditions under which a decoder fora (5,3) Berger code could be implemented. This isan interesting result because it brings out a curiousrelationship between the timing (delay) assumptionsin the decoder implementation and the redundancyof the unordered (or delay-insensitive) code. An in-teresting problem is to determine the lower boundson the redundancy in the unordered (or DI) codesto implement comparison-based decoders with quasi-delay-insensitive (QDI) assumption [13, 10, 14] andthe speed-independent circuit theory [12].AcknowledgementsThe authors thank Janlung Sung for helpful discus-sions during the early part of this research.References[1] J. M. Berger. A Note on Error Detection Codesfor Asymmetric Channels. Information and Control,4:68{73, 1961.[2] M. Blaum, editor. Codes for Detecting and CorrectingUnidirectional Errors. IEEE Computer Society, 1993.[3] M. Blaum and J. Bruck. Unordered error-correctingcodes and their applications. In Digest of papers: The22th Int. Symp. Fault-Tolerant Comp., pages 486{493, July 1992.
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