Limitations of VLSI Implementation of Delay-Insensitive Codes*

Venkatesh Akella
ECE Department
University of California
Davis, CA 95616

akella@ece.ucdavis.edu

Abstract

Implementation of delay-insensitive (DI} or un-
ordered codes is the subject of this paper. We
present two different architectures for decoding sys-
tematic DI codes: (a) enumeration-based decoder,
and (b) comparison-based decoder. We argue that
enumeration-based decoders are often impractical for
many realistic codes. Comparison-based decoders that
detect arrival of a code word by comparing the recetved
checkbits with checkbits evaluated using the recerved
data are practical but suffer from the following limita-
tion. If the decoder is to be implemented using asyn-
chronous logic, i.e., if the gate and wire delays are
arbitrary (unbounded but finite), then it is impossible
to destgn a comparison-based decoder for any code that
1s more effictent than a dual-rail code. In other words,
the encoded word must contain at least twice as many
bits as the data. The paper shows that comparison-
based decoders for codes that have the requisite level of
redundancy can be implemented using asynchronous
logic. The paper also shows that, by relaxing the de-
lay assumptions, it is possible to implement decoders
for delay-insensitive codes that are more efficient than
dual-rail codes.

1 Introduction

In the past, significant effort has been spent in de-
signing efficient codes for detection and correction of
unidirectional and asymmetric errors [2]. Application
of such codes to asynchronous buses has also been ex-
plored [3, 15, 5, 4, 19]. An asynchronous bus consists
of wires whose transmission delays are unpredictable.
The problem of detecting the arrival of information
on such a bus has been shown to be equivalent to

*Research reported in this paper is supported in part by Na-
tional Science Foundation grants MIP-930868 at UC Davis and
MIP-9423735 at Texas A&M University, and Texas Advanced
Technology Program grant 009741-052-C.

Nitin H. Vaidya
Computer Science Department
Texas A&M University
College Station, TX 77843-3112

vaidya@cs.tamu.edu

G. Robert Redinbo
ECE Department
University of California
Davis, CA 95616

redinbo@ece.ucdavis.edu

the problem of designing unordered or all unidirec-
tional error detecting (AUED) codes [19] — such codes
are also useful for unidirectional and asymmetric er-
ror control. Some codes for correcting different types
of errors and skews on asynchronous buses have also
been proposed (e.g., [3]). However, the past work has
not explored the issues in VLSI implementations of
decoders for the proposed codes. While we focus on
asynchronous communication as the application of un-
ordered [6] or delay-insensitive codes, the results of this
paper have implications for all applications of such
codes.

This paper deals with design of asynchronous de-
coders for codes used for communication on asyn-
chronous buses. Past work on decoders [2] implic-
itly assumes synchronous hardware implementation of
the decoder. There are at least two reasons why the
study of asynchronous decoders is important. First,
recently there have been promising results on asyn-
chronous implementation of VLSI systems for high-
performance and low-power applications [17, 13, 8].
Such processors have many potential applications, for
instance, in mobile and wireless computing and com-
munication. This calls for schemes to implement
delay-insensitive communication between various sub-
modules efficiently without the use of global clocking,
under various gate and wire delay models. The as-
sumptions in this paper are consistent with the mod-
els used in asynchronous implementation of VLSI sys-
tems. Second, in a synchronous implementation, the
receiver decodes the incoming data with the help of
a clock signal whose period is a function of the maxi-
mum delay of the transmission medium and the logic
inside the receiver. This is not always consistent with
the idea of delay-insensitive communication on asyn-
chronous buses in applications such as those reported

in [5, 4].

As noted above, unordered codes have been pro-
posed for two types of problems: (i) detection of ar-

rival of data on the asynchronous bus, (ii) detection
and correction of various types of errors on the asyn-
chronous bus. The problem of designing asynchronous
decoders for the type (ii) codes is strictly harder than
that for type (i) codes. As a first step, this paper
focuses on design of asynchronous decoders that can
detect when the transmitted information has been re-
ceived, in the absence of any errors. As shown here,
even this simple problem is hard to solve (in fact, im-
possible under certain conditions). This implies that,
implementation of asynchronous decoders for unidi-
rectional error correcting codes is likely to be very

hard.

The codes that are useful for detecting arrival of
data on an asynchronous bus are said to be unordered
[6, 3, 5] or delay-insensitive [19]. Mathematically,
one can formalize unordered or delay-insensitive (DI)
codes as follows. Consider a binary code C. A code
word u € C'is said to be contained in a code word
v € C, if v has a 1 in each position where u has a
1. This is denoted as u C v. A code C' is said to
be unordered or delay-insensitive (DI) when no code
word is contained in another code word. When an
unordered code is used, arrival of a code word can
be unambiguously recognized by the receiver, in pres-
ence of arbitrary delays in the wires. It is easy to see
that one-hot and dual-rail (double-rail) codes enjoy
this property [19]. Verhoeff [19], Varshavsky [18] and
Blaum [2] discuss many DI codes and describe their
mathematical properties.

VLSI implementation of decoders for systematic
unordered (or DI) codes is the subject of this pa-
per. We first describe a communication protocol called
the four-phase protocol [11] for the exchange of data
on an asynchronous bus. Then we define two possi-
ble architectures for the decoders. The first is called
enumeration-based decoder which examines the entire
code word and determines if it is valid or not. It basi-
cally implements the membership-test using combina-
tional logic. We argue that it is often impractical (and
almost impossible given the VLSI technological lim-
its) to implement asynchronous enumeration-based
decoders for many realistic codes. We then present
a comparison-based decoder which detects the arrival
of a code word by recomputing the checkbits (using
the received data bits) and comparing (or matching)
them with the received checkbits. This is a practi-
cal approach but it suffers from the drawback of haz-
ards, 1.e., due to unpredictable gate and wire delays
the decoder could signal a match even though the
code word is not yet received. To avoid such erro-
neous detection of code words, the decoder needs to

be delay-insensitive.

In this paper, we prove that it is impossible to de-
sign a delay-insensitive comparison-based decoder for
any systematic DI code that uses less redundancy than
a dual-rail code. In other words, the encoded word
must contain at least twice as many bits as the data.
The comparison-based decoder architecture is practi-
cal, therefore, our impossibility result is of interest.

The paper also shows that comparison-based de-
coders for appropriate codes (that have the requisite
level of redundancy) can be implemented under the
above assumptions. Finally, we present some practical
constraints on circuit delays under which comparison-
based decoders could be implemented for codes with
smaller redundancy than dual-rail codes. We illustrate
this with the implementation of a Berger code [1].

The paper is organized as follows. Section 2 dis-
cusses our system model. Section 3 discusses the
various decoder architectures and their implementa-
tion details. Section 4 shows that codes that are
not as redundant as dual-rail codes cannot be 1imple-
mented. Section 5 shows the characteristics of the
encoder block (logic which recomputes the checkbits)
for a delay-insensitive realization of comparison-based
decoders. Section 6 shows that decoders for appro-
priate codes with requisite amount of redundancy can
indeed be implemented (a design is presented). Sec-
tion 7 shows that with some practical delay constraints
decoders with smaller redundancy than dual-rail codes
could be implemented. Section 8 discusses the impli-
cations of the main result of the paper and provides
directions for future work.

2 System Model

There are two components to our model: (a) the
protocol used for communication on an asynchronous
bus, and (b) the architecture of the decoder. We will
describe the details of the communication protocol in
this section and the decoder architectures in Section 3.

2.1 Asynchronous Communication Pro-
tocol

Unlike a synchronous system, an asynchronous sys-
tem does not have a clock to validate data. Data com-
munication in an asynchronous system is accomplished
by a handshake protocol [11]. There are two popu-
lar handshake protocols: the four-phase (or return-to-
zero) protocol and the two-phase (or non-return-to-
zero) protocol. We will use the four-phase handshake
protocol in this study. The organization of a system

with four-phase handshake protocol i1s shown in Fig-
ure 1.

Block R

(receiver)

Figure 1: Four-Phase Handshake Protocol

ack is the acknowledgment wire and B is the asyn-
chronous bus (or set of wires) on which encoded data
is transmitted by the sender. At the start of the four
phase protocol, the initial values are ack = 0 and B
= (000...0). AIll-0 bus, B = (000...0), is known
as the spacer [19]. The four-phase protocol has the
following four steps (hence the name).

(1) Block S (sender) encodes the data and transmits
the code word on the asynchronous bus B. As the
bus is initially in the spacer state, this step causes
0 — 1 transitions on the bus wires corresponding
to non-zero bits of the code word. When this 0 —
1 transition arrives at the decoder, we say that the
corresponding non-zero (1) bit of the code word
has arrived at the decoder.

(2) After the code word is received by the receiver
block R, it drives the ack wire high (or sets to
logic level 1). (Note that the non-zero bits on
bus B may arrive in an arbitrary order because of
arbitrary delays on the wires.)

(3) Block S waits for ack to go high and then resets
bus B, i.e., drives a logic value 0 on all wires of
bus B (spacer).

(4) After an unbounded but finite amount of time,
block R detects the spacer,i.e.,B = 000...0, and
in turn drives the ack wire low which takes the
system back to the initial state, ready for the next
transaction.

Basically, in a four-phase protocol, the data bus
starts in an all-zero state (also known as the spacer)
and transitions to whatever the code word is, and then
goes back to an all-zero state. The ack wire provides
the feedback to the sender so that a new piece of data
is not sent unless the previous one has been received
(or reliably latched) by the receiver. Our model is
very simple and does not include the idea of pipelined
data communication that was proposed by Blaum and

Bruck [4, 5].

3 Decoder Architectures

Assume that the code being used is an (n, k) sys-
tematic unordered code. Thus, each code word con-
tains k data bits, and » = n — k checkbits. The sender
encodes k bits of data into a code word containing n
bits, by appending r = n — k checkbits to the k data
bits. The function of the decoder at the receiver is to
detect when a code word has arrived, so that the re-
ceiver can latch the correct data into a register. (The
term decoder is somewhat of a misnomer, because it
only needs to detect arrival of a code word. In a sys-
tematic code word, the data is available without any
further decoding.)

In this section, we present two generic architectures
for the decoder, which can be used for any unordered
systematic code.

3.1 Enumeration-based Decoder

An enumeration-based decoder implements a mem-
bership test to determine if a received word belongs
to the code. The decoder looks at the input word
and produces a 1 if the received word is a code word.
The decoder must be hazard-free, otherwise, it may
indicate that a code word has been received when the
received word, in fact, 1s not a code word.

Consider the (4,2) Berger code [1] with 2 data bits
(k=2) and 2 checkbits (r=2). The four code words in
the (4,2) Berger code are:

[d1]do | cl]cO |
oo t|o

0 1 0 1
1 0 0 1
1 1 0 0

where (d1,d0) are the data bits and (cl,c0) are the
checkbits. A direct two-level AND/OR (sum-of-
products) implementation of the decoder that pro-
duces a 1 on receiving a code word and a 0 otherwise
would result in glitches (hazards) at the output of the
decoder due to unpredictable order of the arrival of
the bits and the distribution of delays in the gates
and wires inside the decoder [7, 16]. This is not ac-
ceptable because we expect the decoder output to go
to 1 only if we receive a code word.

However, we can take advantage of the four-phase
protocol to implement the circuit in a hazard-free
manner as follows. The protocol states that after
a spacer, each bit (data and checkbits) can make
a 0 to 1 transition in any possible order, but once
they reach the code word they stop changing, i.e., do

not change till the next spacer is sent (which marks
the beginning of a new transaction). So, the wires
undergo the following sequence: SPACER =
CODEWORD = SPACER =
CODEWORD ... This protocol, and the fact that
the code is unordered, can be used to implement the
decoder function in a hazard-free manner as f =
¢l 4+ d1d0 + d0c0 + d1c0. Basically, the decoder imple-
mentation will contain one AND gate for each code
word with the inputs of the AND gate being the bits
which are 1 in the code word. Qutputs of these AND
gates will be sent to an OR gate, whose output will
be the function f. Function f has the following char-
acteristics:

(1) Tt is positive and unate in all the variables: A
function g(z1, z2, . .., &) is said to be unate with
respect to a variable x; if only x; or its comple-
ment Z; appears in g but not both [9]. A function
g 1s said to be positive with respect to a variable
x; if only the literal z; appears in g.

(2) f is hazard-free for all the allowable transitions
under the four-phase protocol that is being used
in this discussion. This is because, our implemen-
tation of f consists of only AND and OR gates,
and the output of an AND gate remains at zero
till all its inputs are 1 — all inputs of an AND
gate become 1 only when the corresponding code
word is received.

(3) It can be shown that the minimal sum-of-
products expression is unique [9] which means
that all the prime-implicants are essential. So,
f 1s the minimal hazard-free sum-of-products
(SOP) realization of the enumeration-based de-
coder for (4,2) Berger code.

Therefore, f cannot be minimized any further in terms
of a two-level logic implementation. However, the
function can be optimized to minimize the number
of literals and fan-in at the expense of the number of
levels of logic.

3.2 Complexity of Enumeration-based
Decoders

What happens to the complexity (size, fan-in, etc.)
of the enumeration-based decoder as the number of
the data bits increases? Consider (36,31) Berger code
which is close to a typical word in a computer. The
number of code words in this code is 23'. In the
enumeration-based implementation, one AND gate is
required for each code word which means 2 x 10? (2

billion) AND gates and one OR gate with a fan-in of
2 x 10° are required. The fan-in of a typical AND
gate in this implementation would be 19 (on an av-
erage). In addition, as noted in the previous section,
the function is unate which means that all its prime
implicants are essential so it cannot be minimized any
further in a sum-of-products realization. A multi-level
logic implementation 1s also impractical because the
number of product terms (AND gates) is too large for
any computer-aided design tool to handle and even if
there were such a tool the number of levels of logic
and the number of literals (wires) would be would be
too large for any practical VLSI implementation.

3.3 Comparison-based Decoder Architec-
ture

Figure 2 illustrates the comparison-based decoder
architecture. Input to the decoder are the n bits re-
ceived on the asynchronous bus. The input begins as
all-0 spacer (i.e., all n bits are 0). When the sender
sends encoded data, the received n bits eventually be-
come identical to the transmitted code word. The
Present output of the decoder is initially 0 (when the
input is all-0). The output should remain 0 until a
code word has been received on the asynchronous bus.
When the code word is detected, the output should be-
come equal to 1. The Present output of the decoder
can be used to latch the correct data into a register.
It is, therefore, critically important that the Present
output of the decoder should not become equal to 1 be-
fore the correct data is received on the bus. (We will
later show that this condition 1s impossible to satisfy

ifr < k)

checkbits

... DbecoDER

I

I

|

n k

: encoder
fromthe | data r
asynchronous,
bus !

I

I

I

I

I

I

Figure 2: Comparison-based Decoder Architecture

The architecture of the decoder is simple and quite
general. The decoder is implemented by means of an
encoder and a comparator. The encoder receives the
k data bits from the asynchronous bus, and computes

the checkbits for the received data bits. The com-
parator compares these computed checkbits with the
checkbits received on the asynchronous bus. When the
two match, arrival of the code word is detected (more
importantly, arrival of the correct data is detected).
This architecture is useful for all systematic codes.

In the previous section we noted that an
enumeration-based decoder for (36,31) Berger code is
impractical. So, it is interesting to see if a comparison-
based decoder could be implemented for a (36,31)
Berger code. A comparison-based decoder lends itself
to a divide-and-conquer algorithm. The architecture
of a circuit to compute the checkbits of (36,31) Berger
code is shown in Figure 3.

data ¢3 data ¢ 8

‘ (12,8) Berger (12,8) Berger

data«iv> 8

‘ (12,8) Berger

data ¢ 8

‘ (10,7) Berger

Code Encoder Code Encoder Code Encoder Code Encoder

4-bit Ripple
Carry Adder

4-bit Ripple
Carry Adder
5-bit Ripple
Carry Adder

Figure 3: An Implementation of the (36,31) Berger
Code Encoder

Using mislT logic synthesis tools (from University
of California, Berkeley) we found that (36,31) Berger
code can be implemented with 8 AND, 167 NAND,
39 OR, 5 XOR, 17 XNOR, 93 NOR, and 79 invert-
ers. All the gates except the inverters were restricted
to 2 inputs. Note that there are several possible im-
plementations of Berger codes. The implementation
shown in Figure 3 is reasonably efficient and was opti-
mized for a gate-level implementation using multi-level
logic. If no constraints are placed on the gate and wire
delays, these implementations could have glitches at
the output. The issues in a hazard-free realization of
comparison-based decoders is the main subject of the
paper and 1s discussed in the next section in detail.

4 Conditions for DI Decoder Imple-
mentation

In this section we derive a necessary condition for a
delay-insensitive VLSI implementation of comparison-
based decoders. First we state our assumptions and
then present the main result of the paper and its proof.

4.1 Assumptions

The discussion in this section makes the following
two assumptions:

A.1 The bus is asynchronous in that the delay on each
wire is arbitrary (but finite). The delays on any
pair of wires are independent.

A.2 The encoder and the comparator in the decoder
are implemented using gates and wires with arbi-
trary (but finite) delays. Thus, delays in produc-
ing each output of the encoder are arbitrary and
independent.

(In practice, it is sometimes possible to assume
some order relationship or bounds on delays, as
discussed later Section 7.)

4.2 Main Result

Theorem 1 Given assumptions A.1 and A.2, it is
impossible to implement a comparison-based decoder
for a systematic delay-insensitive code if r < k, where
k is the number of data bits and r is the number of
checkbits.

Proof: The theorem states an impossibility result.
We present a proof by constructing a scenario wherein
the decoder will not work properly unless r > k.

Recall that, in the four phase protocol, the input to
the decoder begins with all-0, that is, all n input bits
are 0. Let C'(D) denote the r checkbits correspond-
ing to k-bit data D. Also, let C3(D) denote the i-th
checkbit corresponding to data D, 0 < i < r—1. Thus,
initially, the output of the encoder will be C(00 - - - 00).
This implies that, initially, the two r-bit inputs to the
comparator must be C'(00---00) and 00---00. Recall
that the code being used is a delay-insensitive (un-
ordered) code, therefore, C'(00---00) cannot be iden-
tical to 00---00 (r bits). Thus, the initial value of
Present output of the comparator will be 0 (indicat-
ing a mismatch of its inputs). Figure 4 illustrates the
initial state.

Now, let the code word transmitted by the sender
on the asynchronous

k ©(00..00)
7L 7§ encoder _‘
" r

Present =0

comparator

00..00 r

Figure 4: Initial configuration

bus be dk—ldk—Z . 'dldo br—lbr—Z s blbo, where
dk—ldk—Z . 'dldo = 11---1 and br—lbr—Z . 'blbo =
C(11---1). Thus, all the data bits transmitted by the
sender are 1. To prove the impossibility result stated
in the theorem, it is sufficient to construct one sce-
nario where the stated result is true. We now build
one such scenario.

Consider the scenario where all the non-zero bits
in b._1b._5---b1by arrive at the decoder before any
non-zero bits in dp_i1di_=---didy arrive at the de-
coder. Thus, now one input to the comparator is
by_10._9---b1bg and the other input of the compara-
tor is still C'(00 - --00).

Now, the non-zero data bits start arriving at
the decoder. As the data input to the en-
coder (within the decoder) changes, its output
will change from initial value C'(0---0) to the fi-
nal value C(dp_1dp_o---didy) = C(11---1) =
by_10._9---b1bg. Output of the encoder is an input
to the comparator.

A “false match” is said to occur at the comparator
if the two r-bit inputs of the comparator are identi-
cal but the data bits received by the decoder are not
identical to the data bits transmitted by the sender.
A false match will result in the receiver accepting in-
correct data.

In the scenario under consideration, to avoid a false
match at the comparator, we must guarantee that the
output of the encoder will not become identical to
bp_1bp_o---b1bg until all the 1 (non-zero) bits of data
dy_1di_9 -+ -didy have arrived. We now show that a
false match can occur if r < k.

The input to the encoder changes from initial value
00---0 (k bits) to final value dp_1dg_o---didy =
11---11. Therefore, as shown in Figure 5, the k-
bit encoder input can potentially follow the chain
Dy =00---0, Dy, -+, Dy_1,Dp = 11---1. That is,
encoder input may change from initial value Dy to Dy,
then Dj, and so on, finally to Dy = 11---1. While the

received data bits are changing, the checkbits received
from the sender remain steady at b._1b,_5---b1bg.

Dy = 0000 ---0000
Dy =0000---0001
Dy =0000---0011
D3 =0000---0111

Dyp_3=0001---1111
Dyp_»=0011---1111
Dyp_y=0111---1111
Dy =1111---1111

Figure 5: A chain from 00---0 to 11---1

Let the initial output of the encoder C(Dy) =
C(00---0) be denoted as ay_1a,_2 - -ajag. The final
output of the encoder will be C(Dy) = C(11---11) =
br_1b,_5 - -b1by. Thus, output of the encoder changes
from a,_1a,_o - -a1ag to b._1b,._o -+ -b1bg as its input
changes from Dy = 00---0 to Dy = 11---1. (Note
that, in our notation, C;(Dy) = a; and C;(Dy) = b;.)
Claim: To avoid a false match, there must exist an ¢,
0 <i<r—1,such that

1. Ci(Dj) = Ci(Do), 0<j <k —1,and

2. CZ'(Dk) = Ci(D0)~

This claim implies that as the data input of the

encoder changes from Dy to Dy_1, at least one check-
bit computed by the encoder, say ¢-th, remains con-
stant. This checkbit 1s first complemented only when
the data input changes to Dy.
Proof of the claim: The proof is by contradiction.
Assume that the claim is false. This implies that, for
all ¢ (0 < ¢ <r—1), there exists j; (0 < j; <k—1)
such that CZ(Dk) = CZ(D],)

Assume that the encoder input has become equal
to D;,, and the i-th checkbit computed by the en-
coder has become equal to Ci(D;,) = Ci(Dy) = b;.
As the encoder is asynchronous (by assumption A.2),
it 1s possible that its i-th output bit does not change
(for a long time) even after the encoder input has
changed from D,;,. In this manner, ¢-th output of
the encoder, for all ¢, becomes equal to C;(D;,) (or
C;(Dy)) and stays there, before the data input of the
encoder becomes equal to Dy (recall that j; < k — 1,
Vi). Thus, when the encoder input is equal to D,
where m = max (j;), the encoder output will be

i

equal to C'(Dy), although the data bits received by the
receiver are not D — this would cause a false match
at the comparator. Thus, the above claim 1s proved.
O
The above proof of the claim considers the case
when Dy 1s the data being transmitted by the sender.
The above proof can be repeated for each data D
(I > 0) in the chain to conclude that, to avoid a false
match, for each { (1 <[< k), there must exist i(/),
0 <i(l) <r—1,such that

(condition B.1) Cyp(Dj) = Cyy(Do), 0 < j <1 =1,
and

(COHditiOH B2) Cz(l)(Dl) = Cz(l)(DO)

If the above conditions are not satisfied, a false match
can occur. It is obvious that, the above conditions
cannot be satisfied, unless r > k. This concludes the

proof of Theorem 1. a

5 Properties of the Encoder Function

We now present some properties that the encoder
function should satisfy for the existence of a delay-
insensitive comparison-based decoder implementation
for a systematic unordered code.

5.1 Diagonal Property

Figure 6(a) presents an example of a chain of data
and the corresponding checkbits that satisfy condi-
tions B.1 and B.2 listed in the proof for Theorem 1.
For this example & = r = 4, and using the notation
used in conditions B.1 and B.2, we have: (i) for [= 1,
i(l)y = 2, (ii) for { = 2, 42) = 1, (iii) for | = 3,
i(3) = 3, and (iv) for { = 4, i(4) = 0. Observe that,

data checkbits data checkbits

d3d2d1do c3c2clco d3d2d1do c0c3cle2

Do 0 00O 1111 Do 0 0 00 1111
D; 0100 101 1 D; 0100 11

D, 0110 100 1 D, 0110 1 0

Dg 1110 000 1 Dz 1110 00

Dy 1111 000 O Dy 1111 000
@ (b) permuted checkbits

Figure 6: Example: The diagonal property

as shown in Figure 6(b), the checkbit positions can be
permuted such that the least significant k& permuted
checkbits are complemented at a diagonal position, as
marked by the diagonal box in Figure 6(b). For the

decoder to be implemented, for each chain of data,
there must exist a permutation of the checkbits such
that the checkbits are complemented at diagonal po-
sitions as illustrated above. We call this property the
“diagonal property”. Thus, for a DI decoder to be
implemented, the systematic code must satisfy the di-
agonal property. It is interesting to note that, the
dual-rail code satisfies the diagonal property. (In fact,
the example in Figure 6 corresponds to the dual-rail

code.)
5.2 Initial Condition

As the number of checkbits must be at least k, we
now focus on codes with exactly k checkbits. (As codes
with » > k are not of practical interest, generalization
of the next result to » > k is omitted here.) The theo-
rem below and its proof use some notation developed
in the proof of Theorem 1.

Theorem 2 Given a systematic unordered code with
k = r, for a comparison-based decoder to be imple-
mented under assumptions A.1 and A.2, a necessary
condition is that C(00---0) = 11---1. That is, check-

bits corresponding to all-0 data must be all-1.

Proof: As stated in the theorem, r = &k for
the code under consideration. Let the code word
transmitted by the sender on the asynchronous
bus be dk—ldk—Z s d1d0 br—lbr—Z s blbo, where
dk—ldk—Z . 'dldo = 11---11 and br—lbr—Z . 'blbo =
C(11---11). Thus, all the data bits transmitted by
the sender are 1. Let the data received by the encoder
follow the chain Dy through Dy, as defined in the proof
of Theorem 1. Unlike the proof of Theorem 1, in this
proof, we do not assume that all non-zero checkbits
arrive before the data bits.

Without loss of generality, assume that the check-
bits are named such that ¢y 1s the first to be com-
plemented, followed by ¢, ¢g, etc., in that order.
That is, as the output of the encoder changes from
C(00---0) to C(Dy), co output of the encoder is com-
plemented first, then ¢y, etc. This assumption implies
that, ¢({) = [— 1 for 1 < | < k (using the nota-
tion in conditions B.1 and B.2). More specifically, for
1<l <k,

(condition P.1) Ci_1(D;) = Ci—1(Dy), 1 < j <1 -1,
and

(condition P.2) C1_1(D;) = Ci_1(Dy).

The proof of Theorem 2 i1s by contradiction. Thus,
we assume that at least one checkbit in C(Dy) =

C(00---0) is 0. Now let [denote the largest integer,
such that Cj_1(Dy) = 0. By the above conditions,
it follows that, C;_1(D;) = 1. Now assume that the
data transmitted by the sender is D; (is not necessar-
ily equal to k). The data input to the decoder could
potentially follow the chain Dy, Dy, -+, Dj.

For future reference, let C(Dy) = ar_1ar_2---ag.
From P.1 and P.2 it follows that the most significant
(r — 1) checkbits of C'(D;) are identical to the most
significant (r — {) checkbits of C'(Dy).

Now assume that the receiver receives the most sig-
nificant (r — {) checkbits, before any other checkbits
or data bits are received. More specifically, the lower
r-bit input to the comparator is now assumed to be
Gp_10r_o---a; 0 0---0. Additionally, in the scenario
under consideration, the least significant [checkbits
transmitted by the sender are assumed to encounter
a large delay on the asynchronous bus (larger than all
the data bits and other checkbits). — Therefore, those
[checkbits will remain 0 at the receiver during the
scenario under consideration here.

Now, assume that the data input to the en-
coder has changed from Dy to D;_1, along the chain
Do, Dq,--+-,D;_1. By conditions P.1 and P.2, the
most significant (r — [+ 1) bits of C'(D;—1) must be
equal to ay_1a,_2---a;0. (Recall that Ci_1(Dg) =
Ci—1(Di—1) = Ci—1(D;) = 0.) Also, P.1 and P.2 im-
ply that, for each ¢ < [— 2, there exists m; < [— 1,
such that C;(Dy,,) = 0. Even though the data in-
put of the encoder is Dj_y1, it is possible (by as-
sumption A.2) for the output of the encoder to equal
Ap_1@p_o---a; 0 0---0. This will occur if the most
significant » — [+ 1 checkbits produced by the encoder
are from C(D;_1), and each of the i-th least signifi-
cant { — 1 checkbits (0 < i <! —2) produced by the
encoder lingers on from C(D,,,). Thus, in this situ-
ation, the encoder output and the checkbits received
on the bus are both a,_1a,_5---a; 0 0---0, while the
data bits received on the bus are D;_; (although data
bits transmitted are D;). Thus, the comparator will
produce a false match, before the data has arrived.
This concludes the proof. a

The diagonal property, C(00---0) = 11---1, and
k = r are together sufficient conditions for a decoder
to be implemented.

6 Delay-Insensitive Decoder For Dual-
Rail Code

We now demonstrate that the bound in Theo-
rem 1 is tight, by presenting a delay-insensitive (asyn-

chronous) comparison-based decoder, for the dual-rail
code, based on the architecture shown in Figure 2.
The dual-rail code is commonly used in asynchronous
systems, and for this code & = r. Our design is very
similar to the implementations found in asynchronous
literature [11, 13]. Without loss of generality, let us
assume that the number of data bits is 2. Therefore,
r = k = 2. The table below shows the code words
where d; and dg are data bits and ¢; and ¢g are check-
bits. It follows that, ¢y = dy and ¢ = dp.

[[do[[e1 [o]
010 111

011 110
110 011
171 010

Figure 7 shows the circuit-level implementation of
the decoder. The gate marked C denotes a Muller C-
element [11, 10]. Tt is a special latch which has the
following behavior. The output of the C element is
high (or logic 1) when all of its inputs are high and
the output is low (or logic 0) when all of its input go
low; otherwise it retains its previous state.

i
! I
I w I s0 COMPARATOR !
data : ! :
I
—/—+I I XNOR :
| |
I I
I

XNOR

Q
:
@
7]
@
ES

Figure 7: DI Implementation of the Decoder for 2 bit
Dual-Rail Code

It may seem that the XNOR gate inside the com-
parator maybe prone to hazards (glitches) and hence
result in a false match. However, a close examination
of the possible transitions of the XNOR gate inputs
reveals that it is not the case. The following is the in-
formal justification which can be verified by inspect-
ing the transition space of the XNOR function. At
the beginning of the data transmission (refer to the
details of the four-phase protocol in Section 2.1), the
decoder input is the all-0 spacer, and the two inputs

of each XNOR gate are 1 and 0 which results in an
output of 0. After the code word arrives, one of the
inputs of the XNOR will change resulting in the out-
put changing monotonically to 1. Hence, the XNOR
gate will not glitch. This implementation of the de-
coder for the dual-rail code is delay-insensitive. This
proves that there exist codes with k& = r for which
comparison-based decoders can be implemented un-
der assumptions A.1 and A.2 in Section 4.

7 Decoders with Delay Assumptions

Section 4 proves that, if k& > r, an asynchronous
comparison-based decoder cannot be implemented un-
der assumptions A.1 and A.2. In this section, we
demonstrate that it may be possible to implement such
decoders if we are allowed to place realistic restrictions
on transmission and circuit delays. Specifically, we
present an implementation of a decoder for the (5,3)
Berger code that makes some assumptions regarding
circuit delays. Note that for this code, ¥ = 3 and
r=2; thus, k > r.

Figure 8 presents the code words from the (5,3)
Berger code in the form of a “lattice”. A code word u
precedes code word v in this lattice if the data bits in
code word v cover the data bits in code word u, and the
number of non-zero data bits in w and v differs by 1. In
Figure 8, most significant 3 bits of each code word are
the data bits dodidy, and the least significant 2 bits
are the checkbits c¢icg. (Note that only the data bits
are being compared here, not the whole code word.)

000 11
T
001 10 010 10 100 10
¢
01f 01 101 01 110 01
111 00

Figure 8: Lattice representation of the (5,3) Berger
code

In Figure 8 observe that, if the sender is prevented
from sending the code word 111 00 (corresponding to
data 111), then all the remaining code words satisfy

the diagonal property stated previously. In particu-
lar, the data received by the decoder must traverse a
chain starting from 000 to the actual data value. As
111 1s a forbidden data, the transmitted data can only
be of weight < 2. The diagonal property is appar-
ent from the observation that, the checkbit ¢q is first
complemented to 0 when a data with weight 1 is re-
ceived, and checkbit ¢; i1s complemented only when a
data with weight 2 is received. Thus, from the discus-
sion in Section b it follows that, the comparison-based
decoder will function correctly under assumptions A.1
and A.2, provided the sender is forbidden from trans-
mitting the code word 111 00.

Now, we suggest some assumptions on the circuit
delays to allow the sender to transmit code word
111 00 as well. To allow this, we only have to ensure
that the output of the encoder (within the decoder in
Figure 2) will not become equal to 00 unless the data
received by the encoder is 111. This can be guaranteed
as follows: (i) Partition the encoder into two circuit
blocks S0 and S1 to independently produce ¢y and ¢y,
respectively, as a function of the received data. The
data bits received from the bus are sent to both S0
and S1. (ii) Ensure that, when a transition occurs on
the bus, the delay in producing the new output value
is smaller for SO as compared to S1. (i.e., in response
to an input data change, the encoder computes the
new value of ¢y faster than the new value of ¢;.)

The above two conditions guarantee that the en-
coder will not produce output 00, unless the input is
111. To see why that is true, note that the encoder
can possibly produce output 00 only ¢f its data in-
puts change from 000 to a data of weight 1 (e.g., 001),
and then to a data of weight 2 (e.g., 101), and finally
to 111. When data changes along this chain, the en-
coder output can prematurely become 00 only if the
co checkbit produced when data input was 001 stays
at 0 even when the data has changed to 101 and, in
response, ¢ has changed to 0 (from 1). The circuit
delay assumption made above, ensures that ¢; cannot
change to 0 (from 1) in response to an input change
from 001 to 101, before ¢y changes from 0 to 1. Thus,
the encoder output cannot prematurely become equal
to 00, and a false match cannot occur. This will en-
sure that a false match cannot occur when the trans-
mitted code word is 111 00. We already know that a
false match cannot occur when any other code word 1s
transmitted. Thus, the decoder will function correctly
under the circuit delay assumption stated above.

It 1s worth noting that the circuit delay assumption
made above is easy to implement in practice. We con-
jecture that comparison-based decoders can be imple-

mented for all Berger codes under practical assump-
tions on circuit delays. Design of decoders for larger
Berger codes and other codes is a subject of on-going
work.

8 Discussion of the Results

The key contribution of the paper was the investi-
gation into the VLSI implementation of decoders for
unordered or delay-insensitive (DI) codes. We ob-
served that enumeration-based decoders are imprac-
tical for codes of any reasonable size. Comparison-
based decoders are feasible but are prone to glitches if
the underlying gate and wire delays are arbitrary (un-
bounded but finite). The key implication of this result
is the non-existence of delay-insensitive comparison-
based decoders for systematic delay-insensitive codes
with redundancy less than 50%. In other words,
comparison-based decoders for systematic DI codes
which are more efficient (in terms of number of wires
per data bit) than dual-rail codes cannot be imple-
mented in delay-insensitive manner. However, if one
is prepared to make some delay assumptions in the
underlying implementation, codes with smaller redun-
dancy could be implemented reliably, i.e., in a hazard-
free manner. This was demonstrated in Section 7 by
enumerating the conditions under which a decoder for
a (5,3) Berger code could be implemented. This is
an interesting result because it brings out a curious
relationship between the timing (delay) assumptions
in the decoder implementation and the redundancy
of the unordered (or delay-insensitive) code. An in-
teresting problem is to determine the lower bounds
on the redundancy in the unordered (or DI) codes
to implement comparison-based decoders with quasi-
delay-insensitive (QDI) assumption [13, 10, 14] and
the speed-independent circuit theory [12].

Acknowledgements

The authors thank Janlung Sung for helpful discus-

sions during the early part of this research.

References

[1] J. M. Berger. A Note on Error Detection Codes
for Asymmetric Channels. Information and Control,
4:68-73, 1961.

[2] M. Blaum, editor. Codes for Detecting and Correcting
Unidirectional Errors. IEEE Computer Society, 1993.

[3] M. Blaum and J. Bruck. Unordered error-correcting
codes and their applications. In Digest of papers: The
22" Int. Symp. Fault-Tolerant Comp., pages 486—
493, July 1992.

[4] M. Blaum and J. Bruck. Coding for Skew-Tolerant

Parallel Asynchronous Communications. IFFE
Transactions on Information Theory, 39(2):379-388,
March 1993.

[5] M. Blaum and J. Bruck. Delay-Insensitive Pipelined
Communication on Parallel Buses. [FEF Transac-
tions on Computers, 44(5):660-668, May 1995.

[6] B. Bose. On Unordered Codes. IEEFE Transactions
on Computers, 40:125-131, February 1991.

[7] E. B. Eichelberger. Hazard Detection in Combina-
tional and Sequential Switching Circuits. IBM Jour-
nal of Research, (9):90-99, mar 1965.

[8] S. Furber. Computing without Clocks: Micropipelin-
ing the ARM Processor. In G. Birtwistle and
A. Davis, editors, Asynchronous Digital Circuit De-
sign, pages 211-262. Springer Verlag, 1995.

[9] Z. Kohavi. Switching and Finite Automata Theory.
Tata McGraw-Hill, 1978. Chapter 4 and Chapter 6.

[10] A. J. Martin. The Limitations to Delay-insensitivity
in Asynchronous Circuits. In Advanced Research in
VLSI : Proceedings of the Sizth MIT Conference. MIT
Press, Mar. 1990.

[11] C. A. Mead and L. Conway. An Introduction to VLSI
Systems. Addison Wesley, 1980. Chapter 7, entitled
“System Timing”.

[12] R. E. Miller. Switching Theory Volume II: Sequential
Circuits and Machines. John Wiley & Sons, 1965.
Chapter 10: Speed Independent Switching Circuit
Theory.

[13] T. Nanya, Y. Ueno, H. Kayotomi, M. Kuwako, and
A. Takamura. TITAC: Design of a Quasi-Delay-
Insensitive Microprocessor. IFEE Design and Test
of Computers, 11(2):50-63, June 1994.

[14] S. J. Piestrak and T. Nanya. Towards totally self-
checking delay-insensitive systems. In Digest of pa-
pers: The 25 Int. Symp. Fault-Tolerant Comp.,
pages 228-237, 1995.

[15] L. Tallini, .. Merani, and B. Bose. Balanced codes
for noise reductionin VLSI systems. In Digest of
papers: The 24'" Int. Symp. Fault-Tolerant Comp.,
pages 212-218, June 1994.

[16] S. H. Unger. Asynchronous Sequential Switching Cir-
cuits. Wiley-Interscience, New York, 1969.

[17] K. van Berkel, R. Burges, J. Kessels, M. Roncken,
F. Schalij, and A. Peeters. Asynchronous Circuits for
Low Power: A DCC Error Corrector. IFEE Design
and Test of Computers, 11(2):22-32, June 1994.

[18] V. Varshavsky, M. Kishnivsky, V. Markhovsky,
V. Peschansky, L. Rosenblum, A. Taubin, and
B. Tzirlin. Self-Timed Control of Concurrent Pro-
cesses. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1990.

[19] T. Verhoeff. Delay-insensitive codes - an overview.
Distributed Computing, (3):1-8, 1988.

