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Abstract

Performance and reliability achieved by a modular re-
dundant system depend on the recovery scheme used.
Typically, gain wn performance using comparable re-
sources results in reduced reliability. Several high-
performance computers are noted for small mean time
to failure. Performance is measured here in terms of
mean and variance of the task completion time, relia-
bility being a task-based measure defined as the prob-
ability that a task is completed correctly.

Two roll-forward schemes are compared with two roll-
back schemes for achieving recovery in dupler sys-
tems. The roll-forward schemes discussed here are
based on a roll-forward checkpointing concept pro-
posed in [5-8]. Roll-forward recovery schemes achieve
significantly better performance than rollback schemes
by avoiding rollback in most common fault scenarios.
It is shown that the roll-forward schemes improve per-
formance with only a small loss in reliability as com-
pared to rollback schemes.

1. Introduction

Performance and reliability achieved by a modular re-
dundant system depend on the recovery scheme used.
Different recovery schemes achieve a different combi-
nation of performance and reliability. Given com-
parable resources, typically gain in performance is
achieved with a sacrifice in reliability. In this pa-
per, performance is measured in terms of mean and
variance of the task completion time and reliability is
a task-based measure defined as the probability that
a task is completed correctly.

This paper compares two roll-forward schemes, based
on our earlier work [5-8], with two roll-back schemes
for achieving recovery in duplex systems. It is shown
that the roll-forward schemes achieve better perfor-
mance compared to the rollback schemes, with only
a marginal loss in reliability.

Figure 1 illustrates an organization that can imple-
ment the roll-forward and rollback schemes. FEach
processing module (PM) is assumed to consist of a
processor and a volatile storage (VS). It is assumed
that each PM can access a stable storage (SS) which
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is also readable by the other modules. A reliable
Checkpoint Processor is assumed available which de-
tects module failures by comparing the state of each
pair of processing modules (PMs) that perform the
same task. Each pair of processing modules executing
an identical task forms a duplex system. Besides the
processing modules executing duplicated tasks, it is
assumed that a small number of non-dedicated spare
modules are available to be utilized for performing
diagnosis and recovery when a duplex system experi-
ences a failure.

VS VS

Proc coo Proc

Checkpoint
Processor

Proc ooo Proc

VS VS

SS: Stable Storage
VS: Volatile Storage

Spare

Figure 1: System architecture [6]

Whenever a task checkpoints its state in the stable
storage, the state is sent to the Checkpoint Processor.
When the Checkpoint Processor receives a state from
both of the modules executing a task, it compares
the two states. In an implementation, the compar-
ison may be performed using checkpoint signatures.
If the two states match, the new checkpoint is con-
sidered correct and the old checkpoint discarded. If
a mismatch occurs, recovery is initiated.

The initial discussion below makes an implicit as-
sumption that two faulty modules will always produce
different checkpoints, which in fact is not always valid.
However, this assumption primarily affects system re-
liability and not performance. This issue is therefore
considered only when evaluating system reliability.



2. Preliminaries

It is assumed that a processing module may have
built-in error detection capability such as parity and
other checks. This built-in detection mechanism al-
lows a module to detect its own failure with proba-
bility ¢ (coverage). Our earlier work [5-7] as well as
related work in [3] and [1] assumed coverage ¢ as 0.
It may be noted that most real world systems have
c> 0.

A spare is shared by multiple duplex systems to per-
form “concurrent retry”. It is important to note that
the spare is not dedicated, therefore, the spare and a
duplex system may not be used to form a TMR, sys-
tem. Though the spare is shared by multiple duplex
systems, the likelihood is small that the spare will be
needed by multiple duplex systems at the same time
[6, 8]. Hence, for the discussion here, it is assumed
that the spare is available to any duplex system when
necessary. The two processing modules in the duplex
system under consideration are termed A and B. The
spare module 1s termed S.

The state of the PMs at each checkpoint is saved on
stable storage under program control. Checkpointing
under program control enables two replicas of a task
executed on two PMs to checkpoint at the same points
during their execution. The checkpoints are assumed
to be equidistant, i.e., the time duration between two
consecutive checkpoints is fixed. ([4] presents a tech-
nique for inserting approximately equidistant check-
points.)

The checkpoint intervals are denoted as Iy, Io, - - -, I,
Ij41, -+, In. The checkpoint of processing module ()
at the end of interval I 1s termed C'Pro. A mod-
ule failure is said to be a self-detected failure if it
is detected by the error detection mechanism within
the module; the failure is said to be a self-undetected
failure otherwise. A self-undetected failure may be
detected through checkpoint comparison at the end
of the checkpoint interval. In the diagrams illustrat-
ing various fault scenarios, a boz notation, shown in
Figure 2, is used. The different operations listed in
Figure 2 are described later when they are used.

Length of the computation between two consecutive
checkpoints is denoted by t,. The time taken for
checkpointing is denoted by t.,. The time required
for a rollback (i.e. the time required to make state
of the two modules consistent with a previous check-
point) is ¢,.. The time required for initiating a restart
is ts. The time required for making the state of the
modules in the duplex consistent with the state saved
by one of the modules is %.,.

Rollback schemes: When no failure occurs in a
checkpoint interval, no rollback is necessary. When a
single self-undetected failure occurs, checkpoint com-
parison only detects the fault. Without the knowl-
edge of the faulty module, only option is to rollback
both modules to the previous checkpoint. However,
when ¢ > 0, some of the failures are self-detected.
Figures 3(a) and 3(b) depict a scenario where a self-
detected failure occurs in module B during checkpoint
interval [;, while A does not have a self-detected fail-
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Figure 2: Box notation

ure. Two actions are possible when such a failure
occurs: (i) As shown in Figure 3(c), one may as-
sume that module A is fault-free and make the state
of B consistent with the state of module A. In this
case, no rollback is required. However, this scheme
results in an erroneous outcome if module A had a
self-undetected failure in interval I;. The scheme tak-
ing this action is termed ROLLBACK-T scheme. (ii)
As shown in Figure 3(b), the system may rollback to
the previous checkpoint. The scheme that takes this
action is termed ROLLBACK-II scheme.
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Figure 3: Rollback in duplex systems

3. Roll-Forward Checkpointing Scheme I

This section discusses the first of the two roll-forward
checkpointing schemes, named RFCS-I. (The second
scheme, RFCS-II, which achieves higher relhiability
than RFCS-T is discussed in Section 4.) Depending
on how the failures occur, there are seven possible
types of fault situations in RFCS-I. If failure occurs
during the last two checkpoint intervals (I,_; and
I,), ROLLBACK-T is used for recovery rather than



RFCS-1, RFCS-I does not improve performance in
these cases.

Let ¢y denote the beginning of a checkpoint interval
denoted as I;. Let the previous interval completed
at to be denoted as I;_1. CFj_1y)4 and CF;_1)g,
checkpoints of A and B at the end of I;_;, are as-
sumed to be identical. It is further assumed that the
spare 18 not permanently faulty. The seven possible
fault situations are denoted as (A) through (G). For
brevity, only (B) and (D) are discussed in detail, oth-
ers are briefly summarized. (The reader is referred to

[8] for further details.)

The discussion here assumes that the failures may be
detected only at the end of each checkpoint interval.
The recovery schemes can be easily modified when
self-detected failures are detected before the end of a
checkpoint interval.

(B) Single self-detected failure: There is no roll-
back in this situation. This situation occurs when a
single module has a self-detected failure in interval
I;. For example, Figure 3(a) illustrates a situation
where module B has a self-detected failure in inter-
val I;. In this case, the state of module B is made
consistent with the state of module A, and the two
modules then execute interval [;;;. This situation
would result in an unreliable outcome if module A
had a self-undetected failure in interval I;. (RFCS-II
handles this fault situation differently.)

(D) Concurrent retry without rollback: This
situation occurs when a single module has a self-
undetected failure in interval I;. Furthermore, no
other module fails in intervals I; and I;4,. With-
out loss of generality, assume that processing module
B has a self-undetected failure during interval [; and
modules A and S remain fault-free in intervals I; and
I;41. This case is illustrated in Figure 4.

When a failure occurs in interval I;, checkpoints
CP;ja and CP;jp of A and B are not identical, and
the failure is detected at time t; (see Figure 4).
When a failure is detected, checkpoint C'P(;_1)4 and
CP_1)p are retained in the stable storage. Also,
checkpoints C'P; 4 and C'P;p are saved for use during
concurrent retry. Concurrent retry is performed to
determine which processing module, A or B, failed in
I; and to attempt to mask the failure without roll-
back. The following steps are carried out.

Step 1: To use spare module S for concurrent retry,
make state of S consistent with the state C'P;_; of
modules A and B. Copy the task’s executable code
to S. The time required for this step is ¢,.. Now, the
spare module S is ready to perform computation in
interval I;. Concurrently, A and B continue execution
of the next interval I; 1.

Step 2: When S completes the computation in in-
terval I;, its state C'P; g is compared with both C'P; 4
and CF;p. CPF;s Wiﬁ be identical to C'P; 4 and dif-
ferent from C'Fjp, as A and S were both assumed
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Figure 4: Situation (D) — Concurrent retry without
rollback

fault-free in interval I;. When C'FP;4 and C'P;s are
found identical, module A is considered fault-free in
interval I;. The time required for this state compari-
son step 18 t...

While S completes interval [;, A and B complete in-
terval ;1 and take a checkpoint. Note that A and
B were in different states at the beginning of ;4.
A and B wait for state C'P;g to be compared with
CPj4 and CP;p. The length of this wait is termed
ty.! Once it is determined that CPj4 and CPF;5 are
identical, states of A and B both are made consistent
with checkpoint C'P(j +1)4. The time required for this
operation is termed %.,.

Step 3: It is not yet known whether A failed during
interval I; 11 and whether C'P;11)4 was erroneous or
correct. Only C'Pj4 is known to be correct. After
completing the state comparison in step 2, spare S
executes interval [; ;. Concurrently, modules A and
B execute interval I; 2. When S completes [, its
state C'Pj11)s is compared with C'Pj11)4. As A and
S are both assumed fault-free during Ij 41, CP;11)4
and C'Pj11)s will be found identical. C'FP;11)4 and
CPj41)s being identical implies that A was fault-free
until the end of interval ;1. Thus, it is determined
that processing modules A and B were in correct state
at the start of interval I; ». With this, the concurrent
retry initiated by failure of module B in interval I;
is completed. Any failures in interval ;o can be
treated similar to the failures in interval ;. Also, the
spare 1s now free to perform any other computation.

As seen above, RFCS-I scheme avoided rollback in
spite of a failure of B. The overhead incurred is only
(tw +1top). The traditional rollback scheme requires a

much larger overhead, at least (¢, + t.n + tr).

1 T = maximum(tpr + tce — ten, 0)'
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Figure 5: Situation (E)

Other fault situations: In situation (A), neither of
the two duplex modules fails in a checkpoint interval.
No recovery is, therefore, necessary. In situation (C),
both modules have self-detected failures in checkpoint
interval [;; therefore, the modules are rolled back to

the previous checkpoint (CP;_1)4).

In situation (E), rollback occurs after the spare has
executed one checkpoint interval. This happens when
module B(A) has a self-undetected failure during I,
spare S is fault-free during I;, and A(B) has a self-
detected failure during ;4. In this case, the system
rolls back to CPjg (CP;4), the most recent check-
point that is identified as correct. Figure 5 illustrates
one such scenario where B has a self-undetected fail-
urein I; and A has a self-detected failure during 7; 4.

Situation (F) occurs when either (i) A and B both
have self-undetected failures in interval I;, or (ii)
when one of A and B has a self-undetected failure
in I; and the spare also fails in I;. Figure 6 illus-
trates one such scenario in which B and S both have
self-undetected failures while executing I;.

In situation (G), module B(A) and spare S are fault-
free during I; and A(B) has a self-undetected failure
during [;. Additionally, either the spare fails in ;4
or B(A) has a self-undetected failure in I;4,. Fig-
ure 7 illustrates one such scenario in which B has a
self-undetected failure in I; and the spare fails while
executing ;1.
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4. Roll-Forward Checkpointing Scheme II

In RFCS-I scheme presented in Section 3, the task
is not completed reliably if in a checkpoint interval
both the modules fail and exactly one of them detects
its own failure. The cause for this unreliability is
Situation (B) of RFCS-I. To overcome this cause of
unreliability, another scheme (RFCS-II) is presented
below that is a variant of RFCS-I. RFCS-II achieves
higher reliability compared to RFCS-T (see Section 6),
at the cost of some performance degradation.

The essential difference between RFCS-T and RFCS-I1
is in the treatment of the fault scenario just described.
The treatment of all other fault scenarios in RFCS-
IT is identical to that in RFCS-I. Specifically, situa-
tion (A) and situations (C) through (G) are handled
identically in RFCS-I and RFCS-II. Instead of situ-
ation (B) in RFCS-I, two situations named (H) and
(T) (described below) may occur in RFCS-II. In this
scheme, concurrent retry is initiated even when a sin-
gle self-undetected failure occurs during an interval.
If failure occurs during the last checkpoint interval
(I), then ROLLBACK-II is used for recovery rather
than RFCS-II (since, in this case, RFCS-IT does not
improve performance).

(H) No rollback required: Table below describes
the fault scenarios possible in situation (H). Figure 8
illustrates scenario H.1. As illustrated in Figure 8,
assume that module B has a self-detected failure in
I; and module A is not faulty in I;. Also, module 5
d]oes not fail in [; during the concurrent retry.

det.
undet.

self-detected
self-undetected

) don’t care )
Fault scenarios possible in situation (H)

Status in interval [;
A [ B [ S
H.1 || fault-free | det. fault | fault-free
H.2 || det. fault | fault-free | fault-free

Fault scenarios possible in situation (I)

Status in interval [;
A [ B [ S
I.1 fault-free det. fault faulty
1.2 det. fault fault-free faulty
1.3 || undet. fault det. fault X
1.4 det. fault undet. fault X

After the failure in B is detected, initiate concurrent
retry of interval I; on spare S. Also, make the state
of module B consistent with C'P; 4. While the spare
completes interval [;, module A completes interval
I;41. State C'P;s of the spare is then compared with
CPja. As A and S are both fault-free in I;, the two
checkpoints will match. Thus, it is verified that mod-
ule A did not fail in interval [;, and the concurrent
retry is completed.

(I) Rollback required: The above table describes
all the fault scenarios possible in situation (I). The
steps described in situation (H) are carried out here
also. However, in situation (I), the state comparison
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Figure 8: Situation (H)

results in a mismatch. The system is therefore rolled
back to state C'P;_1)a (or CP;_1)B).

5. Performance Analysis

The analysis assumes that failures of any two modules
are independent. Occurrence of a transient failure of
a module is assumed to be a Poisson process with
failure rate A. The notations used here are summa-
rized now. (Some of the notations were introduced in
earlier sections.) Ty, denotes execution time of a task
without failures and checkpointing. n i1s the num-
ber of equidistant checkpoints and ¢, denotes T, /n.
Tn, denotes the expected (i.e., mean or average) task
completion time. 7,7 denotes the expected comple-
tion time of a task given that at least one failure oc-
curred during task execution. v, is variance of the
task completion time. t.; denotes the time required
to checkpoint the two modules in a duplex system. .5
includes the time required to compare the two check-
points. %, is the time required for a rollback and #; is
the time required for a restart. ?., denotes the time
required for rolling back to a previous state of one of
the modules. %.. is the time required for comparing
state of the spare with checkpoints of the processing
modules in a duplex system. ?,, is the time required
to initiate a concurrent retry. 7' denotes ¢, + t.p. ty
denotes idle time equal to maximum(t,,+t.. —t.5, 0).

For brevity, the details of performance analysis are
omitted here [8]. Instead, closed form expressions for
RFCS-T scheme are presented. (Similar expressions
can be obtained for RFCS-II and rollback schemes,
too.) Let pa through pr be the likelihood of oc-



currence of situations (A) through (I), respectively,
enumerated in Sections 3 and 4. For example, situa-
tion (B) occurs when one module has a self-detected
failure in an interval and the other module does not
have a self-detected failure. The probability of this
event is pp = 2 xc(1 — e ) x (1 — ¢(1 — e 7)),
Similarly, the following expressions can be obtained,

where f(t) = e~ and g(t) = 1 — f(1).
pa = f(27)
pe = 2cg(T)(1 —cy(T))
pe = g*(T)
pp = 2(1—c) g(T) S(T) J(T + tpr + 2ty + 2tcc)
pe = 2(1—c) g(I) (1) cg(T)f(tpr +tu +tee)
pr = (1=¢)°¢*(T)+
2(1=c) g(T) fF(T)g(tpr +tu +tec)
pe = 2(1—1c) g(T) f(T) f(tpr +tu+tec)
X(g(T 4ty + tee) — cg(T))
pa = 2eg(T)f(T)f(tpr +tu +1tec)

pr = 2¢(1—e)g*(T) + 2eq(T)F(T)g(tpr +tu +tce)
As should be expected, pg + pr = pp and ps +
pe +pc +pp +pE+pr+pe =1 Let pron =
l—pa—pp—pc=2(1—c)(1—e )y e M4 (1~
)?(1—e M2 Letty =T, tp = T+tep, te = T+,
tp = 2041, +tcpa tp = 2T+, +tcpa tp = 2T+, +t,,
tag = 2T+t +1y +tcc+tcpa and tyon =T+t = tc.

When n < 2, the RFCS-I scheme is identical to
ROLLBACK-I scheme. For n > 3, the following ex-
pressions for expected completion time 7, and vari-

ance v, for RFCS-T can be obtained [8].

4D (En - 2)‘1D1 + il)l_?qu;L )
b ( QABEGTl) (QBl +(—gp)"7?)

The expression for v, is given in Figure 9, where

qx = pX/(l—pc—pF)’ forX:A’...’G’
JABEG = (4 +9B +9E + qq,
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= (pc+pron)tc patatpsle

- l—poc—pron l-pc—pron’

T2 = 2 71,

P (pc+pron)ts + pati+psiy (PAtA+PBtB)2
(1—pc—pronr)? 1—po—pronl (1—pc—pron)?”’

Vo = 2 V1,

S1o= v+ (7)),

52 = U3y + (T_Z)za and

S = Z 2.
m X=4B,Cc,DEFG 9XlXx

Recall that 7,77 is the average task completion time,
given that at least one failure occurred during task

execution. Using the expression for 7, 7,5 can be
obtained.
_ Tn—pPanT
Talf = 1 n : (1)
-

Performance of RFCS-I and RFCS-II schemes is
compared with ROLLBACK-I and ROLLBACK-II
schemes, respectively. Parameters for a hypothetical
task, named Task 1, are listed below. Results pre-
sented here for Task 1 are also valid over a range of
task parameters. For brevity, we have chosen only
one set of parameter values.

(T [ len [ & [ & | lee | Lop | Loy |
[50 [ 0.50 10.30 J0.30 [ 0.70 [ 0.30 | 0.40 |
Note that when coverage ¢ is 0, ROLLBACK-I and

ROLLBACK-II schemes become identical.  Also,
RFCS-1 and RFCS-II schemes become identical.

Comparison of 7,;

Tn7 1s the expected task completion time, given that
at least one failure occurs during the execution of the
task. In the absence of failures, RFCS and ROLL-
BACK schemes perform identically; 7,7 is a good
measure of how a scheme performs when failures oc-
cur. The minimum possible task completion time
given n checkpoints is n(ty 4 t.p). Numerical re-
sults indicated that for the RFCS schemes, 7,7 is
closer to n (¢, + t.n) compared to the ROLLBACK
schemes. Essentially, this is because of the fact that
the RFCS schemes avoid rollback in the presence
of a single failure, and therefore complete the task
in about the same time as a failure-free execution.
Let g denote the “relative gain” in 7,7 achieved by
an RFCS scheme with respect to the corresponding
ROLLBACK scheme. Define

77 (ROLLBACK-I) — 75, |7 (RFCS-I)
(Tu/n)

g(RFcs-1I) is defined similarly. In Table 1, relative
gains of the two RFCS schemes are listed for vari-
ous values of n. When c is large, the relative gain
of RFCS-I seems to decrease; however, the relative
gain of RFCS-II remains high. 77 is defined as the
expected task completion time conditional to a fail-
ure occurring during task execution, and not condi-
tional to undetected failures. When c¢ is large, most
faults tend to be detected. As ROLLBACK-I and
RFCS-1I both treat self-detected faults identically, the
average performance of RFCS-I approaches that of
ROLLBACK-I. Therefore, the relative gain decreases
as ¢ approaches 1. Observe that the performance
of RFCS schemes remains better over a wide range
of failure rate A. Table 1 lists the relative gain for
A = 107310751072, However, to minimize the
number of graphs the following assumes A = 1073,

¢(RFCS-T) =

Mean and variance comparison

In Figure 10, variance v, is plotted versus the mean
completion time 7, for the example task. FEach
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Figure 9: Expression for v,, n > 3, for RFCS-T (see Section 5 for details)

Table 1: Relative gain achieved by RFCS schemes

Task 1
c=10
n
RFCS A 3 5} 8 12

1,11 1073 | .325 | .590 | .747 | .834
1,11 1076 | .331 | .594 | .738 | .813
1,11 10712 | 331 | 594 | .738 | .813

RFCS A 3 5} 8 12
I 103 | .062 | .116 | .148 | .166
I 10=% | .066 | .118 | .147 | .162
I 1012 | 066 | .118 | .147 | .162
II 103 | .627 | .814 | .938 | 1.02
II 10=5 | 615 | .790 | .903 | .984
II 1012 | 615 | .790 | .903 | .984

point on the mean-variance plot corresponds to a spe-
cific number of checkpoints. By varying the number
of checkpoints, different mean and variance can be
achieved. Observe that for any mean and variance
pair achieved using a ROLLBACK scheme, a pair
with lower mean and variance can be achieved us-
ing the corresponding RFCS scheme. For example,
in Figure 10, observe that if ROLLBACK-II scheme
with n = 7 is used, then one may use the RFCS-II
scheme with n = 5, 6 or 7 and achieve lower mean
completion time with lower variance. In general, the
RFCS schemes can achieve a lower minimum average
task completion time compared to the ROLLBACK
schemes. For smaller values of A, the absolute im-
provement achieved by RFCS schemes in 7, becomes
smaller, as failures are less likely and all schemes per-
form equally well when there are no failures.

In Figure 10 note that the mean completion time is
minimized when n is small. When the size of a task is
much smaller compared to the mean time to module
failure (1/A), the mean completion time is minimized
by using a small number of checkpoints. However, the
variance is not minimized with small n. Additionally,
the reliability is also not minimized with small n. In
fact, reliability increases monotonically with increas-
ing n. With smaller checkpoint intervals, the proba-

bility of multiple failures becomes smaller, increasing
the likelihood of reliable outcome.

6. Reliability of RFCS and ROLLBACK
Schemes

Our discussion has thus far ignored the possibility
that two faulty modules with self-undetected faults
may produce the same checkpoint. While the likeli-
hood of this situation may be small, it is instructive
to consider this possibility when comparing reliabal-
ity of the RFCS and ROLLBACK schemes presented
earlier. Reliability of recovery scheme M, denoted as
R(M), is defined as the likelihood that a task will

complete correctly when recovery scheme M is used.

Our analysis assumes a symmetric error model. (Thls
model may not always hold in practice; however, sim-
ilar analysis can also be performed for other error
models.) Let S, be the set of all checkpoints a fault-
free module may produce. Assume that a faulty mod-
ule with a self-undetected failure produces each of the
(|S | — 1) incorrect checkpoints with equal likelihood,

EAE | 7. Then, the likelihood that two faulty modules
with self-undetected failures (in the same duplex sys-
tem) may produce the same checkpoint can be seen?
to be # Let Ri(M) denote the probability that
a task will complete its last k intervals reliably using

scheme M. Then, R, (M) is the same as R(M). Also,
let y denote 1/(]S:| — 1).

Reliability of ROLLBACK-I Scheme:

ROLLBACK-I scheme produces an erroneous output
if (a) during a checkpoint interval, both the mod-
ules have self-undetected failures and also produce
the same checkpoint, or (b) one module has a self-
detected failure and the other module has a self-
undetected failure. The following recursion is ob-
tained, where r = pa + 2¢(1 — e )e=?T.

R1(ROLLBACK-I) = r +

2There are (|S¢| — 1) incorrect checkpoints, and each mod-
ule produces each with probability 1/(|Sc| — 1). Therefore,
the probability that both modules produce the same incor-
rect checkpoint is (|Sc| — 1) X (1/(|Sc| = 1)) x (1/(|Sc] = 1)) =
1/(15: - 1).



( ! _j2;(>1<(—1 c_)(cl)z_(le:\(}_)f)z ) R, (ROLLBACK-I)

R, (ROLLBACK-I) = R}(ROLLBACK-I).
Solving the above recursion, we get R, (ROLLBACK-I)

equal to

r

(r +x(1 =) (L —e72)? +2¢(1 —¢)(1 — e‘”)z))n

Reliability of ROLLBACK-II Scheme:

ROLLBACK-II scheme produces an erroneous output
only if, during a checkpoint interval, both the mod-
ules have self-undetected failures and also produce the
same checkpoint. The following recursion is obtained.

R1(ROLLBACK-II) = py +
(1=pa—x(1—-c)*(1-

R?(ROLLBACK-II).

e *)?)R; (ROLLBACK-II)
R, (ROLLBACK-II) =

Solving the above recursion, we get

Pa

(pA +x(1—¢)*(1 - 6‘”)2)n '

Observe that when 0 < ¢ < 1 and [S.| = o0, i.e. x =
0, R,(ROLLBACK-II) = 1 while R,(ROLLBACK-I) < 1.

R, (ROLLBACK-II) =

Reliability of RFCS-I Scheme: For X
A,--- I, define rx = Probability that situation

occurs and is completed reliably. Let f(t) = e~
and g(¢) = 1 — f(t). Then,

|

r, = p;, forz=AC D E
2c9(T)f(T)

V2% (1) f(tpr + tu + tec)

(1) eg(tpr +tu +tec)

M) e gtpr + tu +Lec)

M) (1= e)g(lpr + tu + Lee)(1 = x

T)g(tpr + by + toe) LT =3)

T) f(T) f(tpr + tu + tcc) X

tu +tee) + f(T)g(tu +tee)

12 0)2g(Tg(t + o)1= X) )
(T)cg(tu + tcc)

Similar to the recursions for ROLLBACK schemes,

the following recursion for RFCS-1 scheme is ob-

tained. Recall that ROLLBACK-I is used when fail-

1 or Ip.

ﬁ
oo}
l

ures occur during [, _

Rq(RFCS-I) = R;i(ROLLBACK-I)

Ry(RFCS-I) = Ry(ROLLBACK-I)
For & > 3,

Ry(RFcs-1) = (ra + rB +
re + Tg)Rk_l(RFCS—I) + rpRi_

2(RFCS-1) 4+ (r¢ +

rr) Ry (RFCS-I).
the recursion.
Reliability of RFCS-II Scheme: The proba-
bilities 74 through rg were stated above. Similarly,
rg = pg and

rr = QCg( ) (T)g( pr +tu +tcc)

+26g( )(1 - C)g(T) ( pr + tu +tcc)

+26g( )(1 - C)g(T)C ( pr +tu + tcc)

+2cg(T)(1 = )g(T)(1 = c)g(tpr +tu + tec)(1 = X)
Also, define rron = 2(1 — )g(T)f(T) + (1 —
¢)?g*(T)(1 — x). The following recursion for RFCS-
IT scheme is obtained. Recall that ROLLBACK-II is

used when failures occur during I,,.

R, (RFCs-I) is obtained by solving

Rq(RFCS-1I) = R;(ROLLBACK-II)
(ra + 7m)R1(RFCS-II)
+(rc + r1)Ro(RFCS-1I)

+ 7rot1 R2(RFCS-1I)

Ry(RFCS-1I) =

For k£ > 3:

Ri(RFCs-11) = (ra+rg+rg+ rg)Ry_1(RFCS-II)

+7p Rip—2(RFCS-1I) +
(r¢ + rp + r7)Ri(RFCS-II)

R, (RFCs-II) is obtained using above recursion.
Reliability Comparison

The following observations can be made from the dis-
cussion and analysis presented above.

e When |S;] = oo and 0 < ¢ < 1,
R(ROLLBACK-II) = R(RFcs-11) = 1. Also,
R(ROLLBACK-1) < 1 and R(RFcs-1) < 1. To
analytically verify that R(RFcs-11) = 1, ob-
serve the following: Under the given conditions,
R1(ROLLBACK-II) = R»(ROLLBACK-II) = 1 and
px = rx, for X = A/C,D,FE, F,G,H 1. The
rest follows from the recursion for Rj(RFCS-II).

e As c¢ approaches 1, reliability of all the four
schemes approaches 1.

e When ¢ = 0, ROLLBACK-I and ROLLBACK-II
schemes are identical, also RFCS-I1 and RFCS-I1
schemes are identical. Therefore, their reliabili-
ties are also identical.

Figure 11 plots unreliabilities for A = 1073, Similar
curves are obtained for smaller values of A, as well
[8]. Note that unreliability of scheme M is defined
as 1 — R(M), i.e. 1 = R,(M). Two extreme values
for |S.| have deliberately been chosen to demonstrate
the effect of the variation in |S,|. In practice, |S,| is
expected to be large. The following observations can
be made from Figure 11 and other unreliability plots
omitted here due to lack of space.



With ¢ > 0, R(RFcs-11) > R(RFcs-1), i.e., RFCS-
IT is more reliable than RFCS-I.

For most values of coverage ¢,
R(RFcs-1) < R(ROLLBACK-I) and
R(RFcs-11) < R(ROLLBACK-II).

For large values of |S.|, R(RFcs-1) is almost
equal to R(ROLLBACK-I) while R(ROLLBACK-II)
remains marginally better than
R(rFcs-11).  However, as |S.| approaches oo,
both R(ROLLBACK-II) and R(RFcS-II) approach

R(RFcs-1) and R(ROLLBACK-I) actually decrease
as the coverage ¢ increases from 0 and approaches
0.5. A similar phenomenon has been observed
before with regards to safety in reconfigurable
duplication [2]. This phenomenon is due to the
fact that with moderately low fault coverage, the
likelihood that an unreliable action is taken in
situation (B) is high. That is, when one of the
modules in the duplex system has a self-detected
failure, the likelihood that the failure in the other
module is self-undetected remains high (due to
low coverage). This may result in the duplex
system being restored to an incorrect state.

e For a range of parameters, R(ROLLBACK-II) >
R(RFCs-11) > R(ROLLBACK-I) > R(RFCS-I).

One approach for improving the reliability of the
RFCS schemes is using more than two modules to
perform the task and multiple spares for concurrent
retry, rather than just one. For example, one may use
three modules to perform the task and require that
all the three modules produce an identical checkpoint
[6]. This choice of a conservative (safe) strategy for
checkpoint comparison results in a higher reliability
of the recovery scheme. The RFCS schemes presented
in this chapter for duplex systems can be generalized,
with reasonable hardware overhead, for all modular
redundant systems by using one or more spares for
concurrent retry, and two or more modules for nor-
mal execution.

7. Summary

This paper has presented two roll-forward check-
pointing schemes (RFCS) for duplex systems. These
schemes are useful in a multiprocessor environment
where multiple duplex systems share a small num-
ber of spares to achieve recovery. The RFCS schemes
improve performance of duplex systems by avoiding
rollback, in most common fault scenarios.

A trade-off exists between performance and reliabil-
ity achievable, given comparable resources — typically
performance gain is achieved with a loss in reliability.
Here, performance is measured in terms of the mean
and variance of the task completion time, reliability
defined as the probability that a task is completed
correctly.

Because a small number of spares is shared by mul-
tiple duplex systems, the resource requirement of
the RFCS schemes is comparable with ROLLBACK
schemes. Comparison of the reliability and perfor-
mance of RFCS checkpointing schemes and ROLL-
BACK schemes suggests that the RFCS schemes
achieve significant improvements in performance by
trading small amounts of reliability. Quantitative re-
sults indicate that the trade-off achieved by the RFCS
schemes remains favorable provided that the likeli-
hood of two faulty modules producing the same in-
correct checkpoint is not large.
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Figure 10: Mean completion time versus variance for
task 1 with A = 1072 and ¢ = 0.8
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Figure 11: Unreliability versus coverage with A =






