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1 IntroductionIn a broadcast data delivery system, a server broadcasts data to a user community [3, 5,6, 10]. The data is organized and transmitted in units called items. The items may be ofdi�erent lengths and, certainly, of di�erent demands. Some items are requested frequently;we call them globally popular items. On the other hand, some items may only be requestedinfrequently.Since all the items contend for the use of broadcast channel, it is obvious that the allo-cation of bandwidth should favor the globally popular items because there are potentially(or actually) more pending requests for these items. In the past, several approaches fordetermining the actual broadcast schedule so as to reduce the global mean response timehave been studied (e.g., [3, 5, 6, 10]). Unfortunately, this mean response time is not experi-enced by any particular user. Instead, it is experienced by a \virtual" user whose demanddistribution is same as the demand distribution presented by the whole user population. Inthe real world, there may be a di�erence between the demand pattern of a particular userand the overall demand pattern. Therefore, the broadcast schedule, which is based on theoverall demand pattern, may not be optimal for an individual user. This may lead to theresponse time experienced by a single user worse than the global average. Needless to say,the response time from the perspective of an individual user is of more concern than theglobal average from the perspective of the server[4].To alleviate the impact of demand pattern di�erence between a single user and the usercommunity on the system performance, the use of local cache has been suggested [2]. A usermay prefetch and store in cache such items that are rarely broadcasted by the server (dueto their unpopularity among the user community), but are needed by this particular user.Hence, the future requests to this kind of items by this particular user are satis�ed by thecache. However, this method does not help when there is no cache in the user. In this case,the broadcast channel is the user's only source of information.In this paper, we address this problem by adjusting the server's broadcast schedule. Inessence, the process of scheduling broadcast is the process of allocating bandwidth resourceamong the items. As we mentioned before, minimizing the overall mean response timerequires allocating more bandwidth to globally popular items, and the globally unpopularitems end up being allocated less bandwidth, i.e., being scarcely broadcasted, which makesthe values of the response time of all requests fall into a larger range. To say in mathematicallanguage, the variance of response time becomes larger. From the perspective of the user, webelieve that a low variance of response time is preferable (perhaps at the cost of a somewhatlarger mean response time).With this in mind, we argue that a new performance metric, variance of response time,should be added to evaluate the broadcast schedule. Though the minimal mean and minimalvariance are both desirable, they cannot typically be achieved at the same time. Instead, wemay try to �nd a trade-o� between them.The rest of the paper is organized as follows. In Section 2, we introduce our model ofa pure push-based [2] data broadcast system and give the de�nition of variance of response3



time. Section 3 contains the analysis of a broadcast schedule and its relationship withmean and variance of response time. Our results are then used in Section 4 to proposescheduling algorithms which can minimize the mean response time or minimize the varianceof response time or implement a balance between these two objectives. Section 5 discussesour simulations and some numerical results. We summarizes this paper in Section 6.2 Model DescriptionLet M be the total number of available items in the system under consideration. These Mitems are stored in the database maintained by the server. We number these items from 1 toM and denote the length of item i with li. The time required to broadcast an item of unitlength is referred to as a unit time. So, li is just the amount of time taken by item i whenbroadcasted.We assume that there is only one broadcast channel in the system. The server cantransmit an item only when the channel is idle. Consequently, the items are continuouslybroadcasted by the server and appear on the channel in sequence. A sequence of items onchannel is called a schedule. The main task of a server is to �nd an appropriate scheduleaccording to some criteria.In a particular schedule, we assume that the �rst transmission of an item, say i, is giventhe sequence number 1. Subsequent transmissions of item i are given consecutive sequencenumbers. For item i, the spacing sij ; j = 1; 2; � � � is de�ned as the time between the beginningof the j-th transmission of item i and j + 1-th transmission of item i in the schedule.One performance measure of interest is the mean response time of requests which wedenote by �. Response time t of request r is de�ned as the elapsed time from when r is madeuntil the desired item starts transmission. (We assume that the requests for item i arrivingin the middle of a transmission of item i are not satis�ed until the next transmission of itemi.) Since we assume a pure push-based system, the server has no way to know the actualrequest stream generated by users.1 Both the request arrival and the item required in eachrequest are random events. So, t is a random variable and � is actually the expected valueof t. � = E(t) (1)The mean response time has long been the primary performance metric which, as wesaid, only reects the server's view of average quality of service (QOS) and what a singleuser experiences may be worse than expected. While a single user does need some globallypopular items, it may also have \special" interests in some globally unpopular items whichmay make the waiting time untolerable. A better broadcast system should restrict the1Algorithms presented in this paper can be easily adapted for a pull-based system where the server knowsthe number of requests pending for each item. In this case, the number of requests waiting for item i can beused as the current estimate of pi. The algorithms presented here can then be used to achieve low variancein a pull-based system as well. 4



response time of request for any item into an acceptable range while maintaining the meanvalue as low as possible.Therefore, we de�ne a new performance metric, namely, the variance of response time t,denoted by �2. �2 = E[(t� �)2] (2)The physical meaning of �2 is that the response time of any request for any item is verylikely to be within the range (� � �; � + �). Low variance means that small di�erence ofresponse time from the mean value can be expected. In the next section, we will show whatkind of schedules produce low variance of response time.An alternative approach may be specify an upper bound on response time of any request,and then to attempt minimization of the mean response time under this constraint. We donot consider this alternative in our current discussion.3 AnalysisIn the analysis to follow, we are concerned with deriving the properties of schedules whichpromise minimal mean response time and minimal variance of response time respectively.Our analysis is based on an important assumption about the user request generationprocess, which is that, from the viewpoint of the server, a request is equally likely to be madeat any time. Whereas this is not the case for a single user, i.e., both the time when a newrequest emerges and the item required in the new request may be related to previous requests,the consecutive requests from a large user population may be regarded as independent. Aspointed out in [8], when the user population is large enough, we may assume that theaggregate request generation process is Poisson with constant rate.Based on the assumption above, it has been observed that a \better" broadcast sched-ule has the Equal Spacing property which requires that the transmissions of each item onbroadcast channel must be equally spaced. This observation can be explained by intuition.Suppose the transmissions of a particular item, say i, are not conducted constantly. Instead,there are \bursts" of item i in some time and there are long periods of sleep between thebursts. Since the requests for a particular item i arrive constantly and are only satis�ed bythe nearest transmission of item i, the requests coming in the sleeping period would waita long time to be served and thus deteriorate the quality of service. In fact, the schedulesproduced by other schemes in [1], [8] all possess the \equal spacing" property, and we willconsider only the schedules with this property in the following analysis.In a particular schedule with Equal Spacing property, all transmissions of item i, 1 � i �M , are equally spaced by some constant si and sij = si; j = 1; 2; � � �. Now, a schedule canbe speci�ed by a vector, called schedule vector, < s1; s2; : : : ; sM > in which si; 1 � i � Mis the spacing for item i. We may regard the broadcast as the composition of M cyclictransmissions with each broadcasting an item in di�erent frequency. In other words, thisscenario is the generalization of Broadcast Disks scheme in [1]. While the latter applies only5
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Since t is a continuous random variable, cumulative distribution function for t is obtainedas: P [t � xjI = i] = Fi(x) = Z x�1 qi(t)dt xrealwhere Fi(x) is the cumulative distribution function for t given that I = i.Above is the conditional probability. Using the Multiplication Rule [7], we can derive thecumulative distribution function F (x) for t.P [t � x] = F (x) = MXi=1(Prob[I = i]Prob[t � xjI = i]) = MXi=1(piFi(x))Let g(t) be the probability density function of random variable t. It follows that,g(t) = MXi=1 piqi(t) (3)Having the density function of t, it is not di�cult to derive the expressions for �, theexpected value of t, and �2, the variance of t. The detailed derivation is given in AppendixI. Here we only report the results. � = 12 MXi=1 sipi (4)and �2 = 13 MXi=1 pis2i � (12 MXi=1 sipi)2 (5)or �2 = 13 MXi=1 pis2i � �2 (6)Note that expected (mean) response time and the variance of response time are onlydecided by the schedule vector (i.e., by si's). Using the expression for mean response time, [9]derives a law that must be obeyed by the schedule vector when the corresponding scheduleminimized the mean response time �. Speci�cally, to minimize the mean response time,spacing si of item i must be proportional to pli and inversely proportional to ppi, i.e.,si / plippiWe prefer another form of the law, i.es2i pili = constant;8i; 1 � i �M (7)7



[9] has shown that there is only one schedule vector existent which satis�es this conditionas well as exploiting the bandwidth resource to its maximum limit. The minimal value �would take in this case is given as [9]�optimal = 12  MXi=1qpili! (8)Minimizing Variance of Response TimeSimilar to the above result, we found that a schedule vector must hold the following propertyin order to minimize the variance of response time:pis2ili �23si � �� = constant;8i; 1� i �M (9)The proof of this result can be found in Appendix II.The above two results provide valuable insight in the relationship between the schedulevector and the quality of service, as well as the theoretical basis for designing the schedulingalgorithms. In the next section, we introduce a broadcast scheduling scheme which is basedon these observations.Notice that, in general, a schedule cannot achieve the equalities in Equation 7 and Equa-tion 9 simultaneously. This can be proved easily. Suppose there is such a schedule. Sinces2i pili is a constant, say c1, we may substitute the s2i pili in the equality pis2ili (23si��) = constant,which should also be satis�ed by this schedule. Now, we know that 23si � � is a constant,which cannot be true unless si = constant;8i; i = 1; 2; � � � ;M . si is a constant means thatall items have same broadcast frequencies. This can only be achieved by a at schedule. Fur-thermore, if si is a constant, pili must also be a constant to hold the equality s2i pili = constant.In another word, pi must be proportional to li, which is a restrictive condition for mostapplications. Therefore, if a schedule makes the mean response time to be minimal, thevariance of response time is usually not minimized and vice versa.4 AlgorithmIn our scheme, whenever the channel is idle, the server calls the proposed algorithm. Thealgorithm uses a decision mechanism to decide the item to be transmitted next[5]. Thedecision mechanism works like a \tra�c police" in front of a crowd of vehicles contendingthe use of a single lane. The \police" has the responsibilities of coordinating the use of theroad as well as keeping the road employed to full extent. In our system, the \road" is just thesingle broadcast channel and each item anxious to be broadcasted is a \vehicle". Actuallywe may �nd the role of \police" in many computer systems. For example, the scheduler inany multi-task operating system schedules the execution of processes with various strategiessuch as Round-Robin, First-Come-First-Serve, Small-Task-First, etc.8



The decision mechanism in our algorithm uses a heuristic to help making decision. Letus look at an example. As we know, to implement a schedule which can make the meanresponse time very small, Equation 7 has to be maintained (at least approximately, if notexactly). Speci�cally, for each item, the square of its inter-transmission time multiplied by itsdemand probability and then divided by its length should be at least close to some constant,if not equal. However, the inter-transmission time increases with time if the item does nothave the opportunity of being scheduled. So does the expression on the left side of Equation7, whose change could be monitored by assigning each item with an indicator. Let Q be thecurrent time and Ri be the time when item i was most recently transmitted.(If item i hasnever been broadcasted, Ri is initialized to -1.) A variable Fi can be de�ned as follows foritem i. Fi = (Q�Ri)2pi=li (10)Notice that Q changes continually and Ri is updated whenever item i is transmitted. Tokeep the values of all F-indicators as close with each other as possible, as stated by the law,the item j with maximum F-indicator is a suitable target because its broadcast can updateRj to Q and thus bring Fj back to 0.Algorithm for reducing mean response time :[9]Step 1. For each item i, 1 � i �M , update the value of F-indicator Fi.Step 2. Determine maximum F-indicator over all items.Let Fmax denote the maximum value.Step 3. Choose item j such that Fj = Fmax.If this equality holds for more than one item, choose any one of them arbitrarily.Step 4. Broadcast item j.Step 5. Rj = Q.The de�nition of F-indicator in this algorithm is inspired by Equation 7. [9] has showedthat it produces near-optimal result in regard to the mean response time. In the rest of thispaper, we will refer to it as Mean Optimal Algorithm.Reducing Variance of Response TimeWe may use the above algorithm to reduce the variance of response time by replacing thede�nition of F-indicator with the following one, motivated by Equations 9 and 4.Fi = pi(Q�Ri)2li �23(Q�Ri)� 12 MXi=1 pi(Q�Ri)�; 1 � i �M (11). With this de�nition, we are now trying to maintain the equality in Equation 9 to the extentpossible. We will refer to the new algorithm as Variance Optimal Algorithm in next section.Note that the name Variance Optimal may be a misnomer, as the algorithm is not provedto achieve near-optimal variance (as we do not know a tight lower bound on variance).9



As we pointed out in last section, minimal mean and minimal variance are usually im-possible to achieve simultaneously. When mean response time is reduced to minimal, thevariance of response time may climb to a height which is perceivable by users. But if we turnto minimize the variance, mean response time is sure to be large. Both situations are notwelcomed by users. The solution is to �nd an intermediate state between the two extremecases, i.e., trade-o� mean with variance of response time.We notice that the expressions of calculating F-indicators in Mean Optimal Algorithmand Variance Optimal Algorithm both are polynomials of Q� Ri. A quadratic polynomialis used in Mean Optimal Algorithm and a cubic polynomial in Variance Optimal Algorithm.Basically, every time the decision mechanism executes, it evaluates each item according todemand probability, length and the time since its last transmission, and chooses the mostsuitable one. Even for an extremely unpopular item, when it has long been neglected, thetime factor becomes so important that the e�ects of demand probability and length can beo�set and the opportunity of broadcasting is given to it. In Mean Optimal Algorithm, thetime of each item since last transmission is squared before evaluation. However, it is cubedin Variance Optimal Algorithm, which means that the time factor plays a more importantrole and is of advantage to globally unpopular items. We believe that a trade-o� existsbetween the two styles of using the time factor in evaluating the eligibilities of items. Morespeci�cally, we de�ne the F-indicator of item i as the polynomial of Q�Ri which is of degree� and � is between 2 and 3. The following is the new expression of calculating F-indicator.Fi = (Q�Ri)�pi=li; 2 � � � 3 (12)We call the corresponding algorithm the �-algorithm. When � = 2, it becomes theMean Optimal Algorithm. The �-algorithm was also evaluated by Su and Tassiulas [8].They simulated the �-algorithm for various values of �, and impirically showed that � = 2minimizes the mean response time. We obtained the same result analytically in our priorwork. Su and Tassiulas, however, did not consider the impact of varying � on the varianceof the response time. When � is picked close to 3, it is expected to produce a schedule whichcan make the variance of response time small. Although we cannot provide any analyticalevidence for this claim, the simulation results in next section support it indeed.Appendix III derives expressions for the lower bounds on mean and variance of responsetime achieved using the �-algorithm. The lower bounds for one set of length and demandprobability distributions are plotted in Figure 2.5 Performance EvaluationIn this section, we present some numerical results from our simulation of a broadcast datadelivery system. The server uses various algorithms we presented above to do scheduling.The request generation by users and request service process are also simulated. The dataof response time measured from the simulation is analyzed. From the results, all algorithmscan be seen clearly to be performing as expected.10



0 2 4 6 8
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

4

alpha

M
ea

n

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9
x 10

8

alpha

V
ar

ia
nc

e

Figure 2: The lower bounds on mean and variance of response time when �-algorithmis used as scheduling algorithm and other system parameter settings are: M = 250; � =0:75; Increasing Length distribution( � and length distribution are de�ned in Section5).
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item MFigure 3: Architecture of Simulator5.1 Simulation Model5.1.1 SimulatorWe developed an event-driven simulator. The architecture of the simulator is depicted inFigure 3. In real world, each user falls into a loop of making a request for an item, waitinguntil the request is served by broadcast, computing or thinking for a random time and makinga new request again. However, the server only \sees" a stream of requests owing out ofthe user community. In the �nite user population case, the ow rate of request stream willdrop as more users enter the waiting stage, and rebound if the broadcast of an item happensto resolve a large number of pending requests and free the users from sleeping. But withour assumption of large user population, the rate of request arrivals remains constant. Wemay just use a Request Generator, which produces a request series according to a Poissonprocess, to simulate the collective behavior of requests made by all users in the group. Inour simulations, the request arrival rate is 2 per time unit.All the newly generated requests enter into a data structure called Unsolved RequestQueue, which contains M queues each having in�nite capacity and holding all requests foran item. When an item is scheduled to broadcast, the corresponding queue is checked and allrequests in it are satis�ed together regardless of when these requests arrived, and the queuebecomes empty. In the process of resolving requests, the response time of each request ismeasured and sent to a module called Result Analyzer as well as other useful informationsuch as the item requested. The Result Analyzer stores, analyzes the experimental data andposts the results in windows immediately. Then the simulation process can be monitoredand controlled easily.The function of the server is implemented in the Server module, which accepts the12



demand probability distribution information of all items as the parameter and executes oneof the algorithms we introduced in last section. The result of every execution of the algorithmis the number of item to be transmitted right now, which is routed to the Unsolved RequestQueue to resolve the pending requests.Some auxiliary modules are not included in the �gure. For example, the Con�gurationmodule provides the interface for us to change system parameters such as M, the totalnumber of items, �, the trade-o� coe�cient in our �-algorithm, etc.5.1.2 Demand Probability Distribution Of ItemsIn our simulation, the demand probabilities of all items follow Zipf distribution, with item 1being the most frequently requested, and item M being the least frequently requested. TheZipf distribution may be expressed as follows:pi = c�1i�� ; 1 � i �Mwhere c = 1PMi=1( 1i )� is a normalizing factor, and � is a parameter named access skewcoe�cient. When � = 0, Zipf distribution reduces to a uniform distribution with each itemequally likely to be requested. However, the distribution becomes increasingly \skewed"as � increases(that is, the di�erence among items with respect to the degree of popularitybecomes more signi�cant.5.1.3 Length Distribution Of ItemsAs of length distribution, the following three special cases are considered in our simulation:1. Equal length case:All items are equally sized and the size is 1, without loss of generality.2. Unequal length case:� Increasing Length Distribution:li = lmin + (i� 1)(lmax � lmin + 1)M ; i = 1; 2; � � � ;M with lmin = 1 and lmax = 250In this case, the most popular item, i.e. item 1, is the longest item.� Decreasing Length Distribution:li = lmax � (i� 1)(lmax � lmin + 1)M ; i = 1; 2; � � � ;M with lmin = 1 and lmax = 250In this case, the most popular item, i.e. item 1, is the shortest item.13



M 250pi � = 0; 0:25; 0:5; 0:75; 1:0; 1:25; 1:5li Equal, Increasing, Decreasing� 2.2, 2.6, 3Table 1: Parameter Settings
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Figure 4: The dynamic changes of � and �2 during a simulation5.2 Numerical ResultsTable 1 shows the parameter settings for our simulations. We conducted a number ofexperiments under di�erent combinations of the parameter settings. The primary perfor-mance metrics are mean and variance of response time. We explored the trade-o�s betweenthe two performance goals. In addition to �-algorithm, we also measured the performancewhen Mean Optimal Algorithm and Variance Optimal Algorithm are used by the serverrespectively.The mean and variance results with respect to response time were obtained once 1 millionrequests are served. During the simulation, both the mean and variance of response time keepchanging as the number of requests served increases, starting from 0. Figure 4 shows howthese two metrics change in one of our experiments. At the beginning of the simulation, abig change of both mean and variance can be identi�ed. This phenomenon may be explained14



Mean Optimal Alg �-algorithm Variance Optimal Alg2.2 2.6 3Mean 125.005 125.005 125.005 125.005 125.005Variance 5214.04 5214.04 5214.04 5214.04 5214.04Table 2: Performance of di�erent algorithms in Experiment 1: Uniform Demand, EqualLengthas caused by bad settings of initial values. Remember that in each of our algorithms, thelast transmission time of any item plays a crucial role in the decision making process. Whenthe server starts working, the last transmission time of any item is initialized to -1, whichimplies that in the \race" of F-indicators, all items start from a same starting line despitethe fact that these items should be treated discriminately. Therefore, it can be imaginedthat the scheduling results worked out at that time is far away from the best, and the drasticchanges in regard to the mean and variance of response time can be anticipated. After thesystem is running for a while, both mean and variance uctuate only in a small range ofvalues. We may claim that the system has entered into steady state and it is providing thebest performance it could. We �nd that in all our experiments, the system had reachedsteady state when 1 million requests have been served (note that request arrival rate is 2per time unit). In order to eliminate the \warm-up" e�ects and make the experimental datareect the situation in steady state more accurately, we start measurements only after theserver has broadcasted 5000 items. From then on, the served requests are counted until thenumber reaches 1 million.In Figure 4, note that, the estimate of mean response time is initially smaller that theoptimal. This may seem counter-intuitive. The reason for this phenomenon is that, theestimate is calculated based on requests that have been served. Requests waiting to beserved are not taken into account. Initially, the more popular items tend to be broadcasted�rst, therefore, the initial estimate of mean response time, reects the response time for themore popular items. Over time, all items are broadcasted multiple time, and the estimateof mean approaches its real value.5.2.1 Experiment 1: Uniform Demand, Equal LengthIn the �rst experiment, we assumed that all the 250 items have length 1, and the value ofskew coe�cient � is 0, i.e., each item has the same chance of being required. The data inTable 2 shows that all algorithms produce same results.When all items are of same size and accessed equally likely by users, the server tendsto broadcast all items alternatively and actually uses the Round-Robin strategy becausethe demand probabilities and lengths of items are not considerable factors in the processof making scheduling decisions. By analyzing the trace of simulation, we found that all�ve algorithms produce same schedules, i.e at schedule. Needless to say, same mean and15
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The key observations are as follows. The lowest mean response time is achieved whenserver is using the Mean Optimal Algorithm, and the lowest variance of response time whenusing Variance Optimal Algorithm. Furthermore, the �-algorithms indeed implement thebalance between mean and variance of response time. When � changes from 2.2 to 2.6 andthen to 3, the measured mean response time is observed to increase gradually while varianceis dropping at the same time. This is consistent with the conjecture mentioned above.However, the e�ectiveness of �-algorithm and Variance Optimal Algorithm in reducingvariance of response time is challenged when the skew in user demands for items is small.When � = 0:25, mean and variance do not show any signi�cant change (when the algorithmis varied). Actually, the mean response time results produced by 5 algorithms are so closewith each other that the di�erence between the maximum value and the minimal value isless than 1 time unit and all are very close to the theoretically minimal value.When � increases but is still less than 1.25, the skew in user demands becomes a little largebut not too large. For instance, when � = 0:75 and the number of items is 250, about half userrequests are for top 33 items and the remaining 217 items take the burden of serving the otherhalf requests. However, to reduce the overall mean response time, most bandwidth is given toa few items by Mean Optimal Algorithm. The poor service for the \not most popular" itemsworsens the overall quality of service which is reected by the high variances of responsetime in these cases. Both �-algorithms and Variance Optimal Algorithm greatly improvethe situation. From the curves, the reduction of variance brought by those algorithms isconspicuous, and the unavoidable increase of mean is not very signi�cant.When � further increases to 1.5, we may �nd that the performance of Mean OptimalAlgorithm in regard to variance is not very bad. This phenomenon looks strange at �rst. Infact, when the skew in user demands becomes extremely large, the percentage of requestsattracted by a few hot items becomes very large. In the same example of 250 items, if � = 1:5,top 33 items are demanded by 91% user requests. To serve them well means to serve allwell. That is why Mean Optimal Algorithm does not add the variance very much while stillproviding the best mean response time. On the other hand, even though �-algorithms andVariance Optimal Algorithm reduce the variance of response time drastically as expected,they make a large sacri�ce with respect to mean response time. When most requests notonly from the whole user community but also from a particular user are for a few items, alittle increase of response time may give rise to a large increase of overall user waiting time.In summary, �-algorithms and Variance Optimal Algorithm perform best in the situationwith medium-skewed demand distribution, and when user demands are lightly skewed orseverely skewed, Mean Optimal Algorithm is still a good alternative.5.2.3 Experiment 3: Non-uniform Demand, Unequal LengthIn this experiment, Increasing Length distribution and Decreasing Length distribution wereassumed respectively. The results for increasing lengths are shown in Figure 6, Table 5 andTable 6, those for decreasing lengths in Figure 7, Table 7 and Table 8. Also, the skewcoe�cient � changes from 0.25 to 1.5 simulating various situations about how user demands17
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Figure 10: The change of Fmax (�-algorithm with � = 2:6)6 ConclusionIn this paper, we address the problem of adding user perspective to the server schedulingprocess. We argue that from a user's point of view, the variance of response time is alsoimportant. As bad experiences usually stay longer than good ones in a person's memory,variance of response time a�ects a user's impression about the quality of service a systemcan provide. In the so-called pure push-based data broadcast system where there is no directchannel for users to send requests explicitly, the server may reduce the variance of responsetime by making appropriate broadcast schedules. In particular, we found the property aschedule must possess in order to achieve minimal variance of response time. Based on our�nding, a scheduling algorithm was proposed for a server to construct such a schedule. Whileminimal mean and minimal variance are generally impossible to be achieved simultaneously,a trade-o� does exist. We evaluated an algorithm that can achieve such a trade-o�.The contributions of this paper are in two aspects. First, we introduced the new perfor-mance metric, i.e., variance of response time. Second, we evaluated scheduling algorithmswhich can minimize the variance, or trade the variance of response time with the meanresponse time.The evaluation presented in this report assumed a push-based system. Our algorithmscan be easily adapted to achieve low variance in pull-based systems. In this case, the numberof requests waiting for a particular item can be used in place of demand probability of the22
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Mean Optimal Alg �-algorithm Variance Optimal Alg2.2 2.6 3� = 0:25 123.255 123.305 123.522 123.596 123.832� = 0:5 115.233 115.278 115.912 116.731 117.931� = 0:75 98.4467 98.6771 100.047 101.67 104.692� = 1:0 74.7596 75.1937 77.1408 79.7116 84.5711� = 1:25 50.5683 51.0305 53.2272 56.3029 62.0131� = 1:5 31.3046 31.7905 34.133 37.2893 42.6269Table 3: Mean response time results measured in Experiment 2: Non-uniform Demand,Equal Length Mean Optimal Alg �-algorithm Variance Optimal Alg2.2 2.6 3� = 0:25 5352.67 5316.94 5260.15 5223.47 5196.8� = 0:5 5959.11 5733.29 5463.06 5296.69 5143.41� = 0:75 6762.51 6274.52 5667.94 5321.34 4950.00� = 1:0 6838.76 6137.74 5289.61 4827.42 4332.60� = 1:25 5815.16 5019.19 4091.45 3666.95 3252.81� = 1:5 4159.51 3404.48 2657.28 2325.43 2051.40Table 4: Variance of response time results measured in Experiment 2: Non-uniform Demand,Equal Lengthitem.One open problem that needs to be addressed is derivation of a good lower bound onthe achievable variance of response time. Another issue to be studied is the impact of localcache at a client on the client's variance of response time (or, how to use a local cache toreduce or trade variance with mean response time). Transmission errors were not consideredin this work. Such errors tend to adversely a�ect response time. Error control codes maybe used to correct and detect transmission errors. An interesting issue to investigate is howthe choice of error control code a�ects the mean-variance trade-o�.
24



Mean Optimal Alg �-algorithm Variance Optimal Alg2.2 2.6 3� = 0:25 13539.4 13571.1 13653.1 13791.0 14020.9� = 0:5 12661.5 12698.1 12816.7 12957.9 13262.5� = 0:75 10900.9 10929.1 11104.6 11341.2 11794.2� = 1:0 8389.08 8416.24 8685.9 9009.94 9648.67� = 1:25 5738.61 5790.42 6092.85 6478.46 7206.52� = 1:5 3619.92 3680 3973.95 4372.19 5080.71Table 5: Mean response time results measured in Experiment 3: Non-uniform Demand,Increasing LengthsMean Optimal Alg �-algorithm Variance Optimal Alg2.2 2.6 3� = 0:25 9.9772 9.4526 8.7698 8.3946 7.9514� = 0:5 10.426 9.7026 8.7773 8.2383 7.7046� = 0:75 10.904 9.8431 8.5747 7.8419 7.1803� = 1:0 10.450 9.1251 7.6477 6.8327 6.083� = 1:25 8.5892 7.2595 5.8089 5.1011 4.4578� = 1:5 6.0843 4.8865 3.7022 3.1868 2.8092Table 6: Variance of response time results measured in Experiment 3: Non-uniform Demand,Increasing Lengths (�107)Mean Optimal Alg �-algorithm Variance Optimal Alg2.2 2.6 3� = 0:25 13397.5 13439.3 13537.6 13651.9 13875.5� = 0:5 12516.1 12526.3 12662.5 12844.5 13158.7� = 0:75 10701.2 10728.1 10941.7 11172.7 11646.8� = 1:0 8138.74 8191.29 8433.63 8750.08 9409.92� = 1:25 5464.04 5516.43 5807.97 6172.63 6918.96� = 1:5 3355.76 3410.66 3685.77 4049.8 4742.75Table 7: Mean response time results measured in Experiment 3: Non-uniform Demand,Decreasing Lengths 25



Mean Optimal Alg �-algorithm Variance Optimal Alg2.2 2.6 3� = 0:25 10.006 9.5022 8.8298 8.3807 7.9251� = 0:5 10.461 9.7158 8.8018 8.2785 7.6950� = 0:75 10.835 9.8293 8.6360 7.8993 7.1786� = 1:0 10.303 9.1106 7.6816 6.9136 6.1047� = 1:25 8.2702 7.0962 5.8105 5.1400 4.5054� = 1:5 5.7515 4.6700 3.6636 3.2175 2.8632Table 8: Variance of response time results measured in Experiment 3: Non-uniform Demand,Decreasing Lengths (�107)A Appendix I: Mean and Variance of Response TimeA.1 Derive the expressions for �� is the expected value of random variable t. According to the de�nition of expected value,we have � = Z 10 tg(t)dt (13)>From Equation (3), we have� = Z 10 (t MXi=1(piqi(t)))dt= Z 10 MXi=1 pi(tqi(t))dt= MXi=1 pi Z 10 tqi(t)dt= MXi=1 pi Z si0 tsidt= 12 MXi=1 sipiA.2 Derive the expressions for �2By the de�nition in (2), �2 is the expected value of random variable (t� �)2. So, we have�2 = Z 1�1(t� �)2g(t)dt26



where g(t) is the density function of random variable t.By substitution, the above equation becomes that�2 = Z 1�1(t� �)2 MXi=1(piqi(t))dtThen the following derivation is easy to understand.�2 = Z 1�1 MXi=1(pi(t� �)2qi(t))dt= MXi=1 Z 1�1 pi(t� �)2qi(t)dt= MXi=1 Z si0 pi(t� �)2 1sidt= MXi=1 pisi Z si0 (t� �)2dt= MXi=1 pisi [13(t� �)3jsi0 ]= 13 MXi=1 pisi [(si � �)3 + �3]= 13 MXi=1 pisi (s3i � 3s2i� + 3si�2)= 13 MXi=1(pis2i � 3pisi�+ 3pi�2)= 13 MXi=1 pis2i � ( MXi=1 pisi)�+ ( MXi=1 pi)�2Since � = 12PMi=1 sipi and PMi=1 pi = 1, the above equation can be further simpli�ed as�2 = 13 MXi=1 pis2i � 2�2 + �2= 13 MXi=1 pis2i � �2Of course, it can be rewritten in another form without �, i.e�2 = 13 MXi=1 pis2i � (12 MXi=1 sipi)227



B Appendix II: Minimizing the VarianceTheorem 1 Given the demand probability pi of each item i, the minimal variance of re-sponse time, �2, is achieved when the schedule vector possesses the following property, as-suming that transmissions of each item i are equally spaced by si.pis2ili (23si � �) = constant;8i; 1 � i �MProof:From Equation 5, we know that the variance of response time �2 is a multi-variablefunction of a schedule vector's all elements s1; s2; � � � ; sM . However, only M-1 of the s0iscan be changed independently instead of M. To �nd this fact, let us look at the share ofbandwidth occupied by each item. For item i, we use the notation ri to denote the amountof time it takes during the broadcast. Since each transmission of item i takes li time anditem i is supposed to be transmitted every si time period, we have ri = lisi . As PMi=1 ri = 1,l1s1 + l2s2 + : : :+ lM�1sM�1 + lMsM = 1or sM = lM (1� l1s1 � l2s2 � : : :� lM�1sM�1 )�1 (14)Back to our objective of minimizing the �2, we have to �nd the schedule vector whichmakes @�2@si = 0;8i. We now solve these equations, beginning with 0 = @�2@s1 .0 = @�2@s1= @@s1 (13 MXi=1 pis2i � �2)= @@s1 [13 MXi=1 pis2i � (12 MXi=1 pisi)2]= @@s1 [13(p1s21 + p2s22 + : : :+ pM�1s2M�1 + pMs2M )� 14(p1s1 + p2s2 + : : :+ pM�1sM�1 + pMsM)2]= 23p1s1 + 23pMsM @sM@s1 � 14 � 2(p1s1 + p2s2 + : : :+ pM�1sM�1 + pMsM)(p1 + pM @sM@s1 )= p1[23s1 � 12( MXi=1 pisi)] + pM [23sM � 12( MXi=1 pisi)]@sM@s1 (15)From Equation 14, sM is a function of s1. So, it can be found that@sM@s1 = �s2Ms21 � l1lM28



By substitution, Equation 15 becomes that0 = p1[23s1 � 12( MXi=1 pisi)]� pMs2Ms21 � l1lM [23sM � 12( MXi=1 pisi)]which implies that p1s21l1 (23s1 � 12 MXi=1 pisi) = pMs2MlM (23sM � 12 MXi=1 pisi)Similarly, p2s22l2 (23s2 � 12 MXi=1 pisi) = pMs2MlM (23sM � 12 MXi=1 pisi): : :pM�1s2M�1lM�1 (23sM�1 � 12 MXi=1 pisi) = pMs2MlM (23sM � 12 MXi=1 pisi)In other words,p1s21l1 (23s1 � 12 MXi=1 pisi) = p2s22l2 (23s2 � 12 MXi=1 pisi) = : : : = pMs2MlM (23sM � 12 MXi=1 pisi)This is equivalent to saying thatpis2ili (23si � 12 MXi=1 pisi) = constant;8i; 1 � i �Mor pis2ili (23si � �) = constant;8i; 1 � i �MThus, we have proved Theorem 1.C Appendix III: Lower Bounds for the �-AlgorithmIn the ideal situation, �-algorithm can create a schedule making the equation s�i pili = C to betrue, where C is a constant. In the following, we will derive the value of C, and the valuesof si's when the ideal condition holds. Then, both the mean and variance of response timecan be obtained. They serve to be the lower bounds of mean and variance of response timerespectively, which can be attained by an �-algorithm.From the equation s�i pili = C; i = 1; 2; � � � ;M , it follows thatsi = (C � lipi ) 1� (16)29



Let ri be the share of bandwidth by item i during broadcast. Since each transmissionof item i takes li time and item i is transmitted every si time period, we have ri = lisi . AsPMi=1 ri = 1, MXi=1 lisi = 1 (17)Substituting the si in above equation with the expression in Equation 16, we haveMXi=1 li(C � lipi ) 1� = 1or PMi=1(p 1�i l1� 1�i )C 1� = 1 (18)Solving the equation above, we getC = � MXi=1(p 1�i l1� 1�i )�� (19)Substituting the value of C into Equation 16, we �nd the value of si for item i as follows,si = MXi=1(p 1�i l1� 1�i ) ( lipi ) 1� ; i = 1; 2; � � � ;MFinally, the values of mean � and variance �2 in this case can be derived by substituting theabove expression for si into Equations 4 and 5.References[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, \Broadcast disks - data manage-ment for asymmetric communications environment," in ACM SIGMOD Conference,May 1995.[2] S. Acharya, M. Franklin, and S. Zdonik, \Balancing push and pull for data broadcast,"in ACM SIGMOD Conference, May 1997.[3] S. Acharya, M. Franklin, and S. Zdonik, \Dissemination-based data delivery usingbroadcast disks," IEEE Personal Communication, pp. 50{60, Dec. 1995.[4] M. H. Ammar, \Response time in a teletext system: An individual user's perspective,"IEEE Transactions on Communications, Nov. 1987.30
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