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Abstract

Data broadcast has been suggested as a promising method of information dissemination in
the communication environment with asymmetric characteristic. In such an environment,
the information server cannot afford to serve the requests from a large population of users
individually. Instead, the server uses a broadcast channel to deliver information to all users.
A single transmission of a data item will satisfy all pending requests for that item.

However, the quality of service experienced by a single user turns out to be unpredictable
and unstable. The response time of a request depends on the broadcast of the desired data
item, which is scheduled by the server according to the overall demands for various data
items. Therefore, the response time may vary in a large range, which may hinder a user
subscribing to this service. We argue that, in addition to mean response time, the variance
of response time should also be taken into account by the broadcast scheduler.

In this paper, we address the issue of variance optimization in regard to response time.
Building on our previous research on mean response time optimization, we propose an al-
gorithm which can minimize the variance of response time. Furthermore, we evaluate an
algorithm that facilitates a trade-off between the mean and variance of response time. Nu-
merical examples that illustrate the performances of our algorithms are also presented.

*This research is supported in part by Texas Advanced Technology Program under grants 009741-052-C
and 010115-248-C.
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1 Introduction

In a broadcast data delivery system, a server broadcasts data to a user community [3, 5,
6, 10]. The data is organized and transmitted in units called items. The items may be of
different lengths and, certainly, of different demands. Some items are requested frequently;
we call them globally popular items. On the other hand, some items may only be requested
infrequently.

Since all the items contend for the use of broadcast channel, it is obvious that the allo-
cation of bandwidth should favor the globally popular items because there are potentially
(or actually) more pending requests for these items. In the past, several approaches for
determining the actual broadcast schedule so as to reduce the global mean response time
have been studied (e.g., [3, 5, 6, 10]). Unfortunately, this mean response time is not experi-
enced by any particular user. Instead, it is experienced by a “virtual” user whose demand
distribution is same as the demand distribution presented by the whole user population. In
the real world, there may be a difference between the demand pattern of a particular user
and the overall demand pattern. Therefore, the broadcast schedule, which is based on the
overall demand pattern, may not be optimal for an individual user. This may lead to the
response time experienced by a single user worse than the global average. Needless to say,
the response time from the perspective of an individual user is of more concern than the
global average from the perspective of the server[4].

To alleviate the impact of demand pattern difference between a single user and the user
community on the system performance, the use of local cache has been suggested [2]. A user
may prefetch and store in cache such items that are rarely broadcasted by the server (due
to their unpopularity among the user community), but are needed by this particular user.
Hence, the future requests to this kind of items by this particular user are satisfied by the
cache. However, this method does not help when there is no cache in the user. In this case,
the broadcast channel is the user’s only source of information.

In this paper, we address this problem by adjusting the server’s broadcast schedule. In
essence, the process of scheduling broadcast is the process of allocating bandwidth resource
among the items. As we mentioned before, minimizing the overall mean response time
requires allocating more bandwidth to globally popular items, and the globally unpopular
items end up being allocated less bandwidth, i.e., being scarcely broadcasted, which makes
the values of the response time of all requests fall into a larger range. To say in mathematical
language, the variance of response time becomes larger. From the perspective of the user, we
believe that a low variance of response time is preferable (perhaps at the cost of a somewhat
larger mean response time).

With this in mind, we argue that a new performance metric, variance of response time,
should be added to evaluate the broadcast schedule. Though the minimal mean and minimal
variance are both desirable, they cannot typically be achieved at the same time. Instead, we
may try to find a trade-off between them.

The rest of the paper is organized as follows. In Section 2, we introduce our model of
a pure push-based[2] data broadcast system and give the definition of variance of response



time. Section 3 contains the analysis of a broadcast schedule and its relationship with
mean and variance of response time. Our results are then used in Section 4 to propose
scheduling algorithms which can minimize the mean response time or minimize the variance
of response time or implement a balance between these two objectives. Section 5 discusses
our simulations and some numerical results. We summarizes this paper in Section 6.

2 Model Description

Let M be the total number of available items in the system under consideration. These M
items are stored in the database maintained by the server. We number these items from 1 to
M and denote the length of item ¢ with [;. The time required to broadcast an item of unit
length is referred to as a unit time. So, [; is just the amount of time taken by item ¢ when
broadcasted.

We assume that there is only one broadcast channel in the system. The server can
transmit an item only when the channel is idle. Consequently, the items are continuously
broadcasted by the server and appear on the channel in sequence. A sequence of items on
channel is called a schedule. The main task of a server is to find an appropriate schedule
according to some criteria.

In a particular schedule, we assume that the first transmission of an item, say ¢, is given
the sequence number 1. Subsequent transmissions of item ¢ are given consecutive sequence
numbers. For item ¢, the spacing s;5,7 = 1,2, -+ is defined as the time between the beginning
of the j-th transmission of item ¢ and j + 1-th transmission of item ¢ in the schedule.

One performance measure of interest is the mean response time of requests which we
denote by p. Response time ¢ of request r is defined as the elapsed time from when r is made
until the desired item starts transmission. (We assume that the requests for item ¢ arriving
in the middle of a transmission of item ¢ are not satisfied until the next transmission of item
i.) Since we assume a pure push-based system, the server has no way to know the actual
request stream generated by users.! Both the request arrival and the item required in each
request are random events. So, ¢ is a random variable and p is actually the expected value
of t.

p=E(t) (1)

The mean response time has long been the primary performance metric which, as we
said, only reflects the server’s view of average quality of service (QOS) and what a single
user experiences may be worse than expected. While a single user does need some globally
popular items, it may also have “special” interests in some globally unpopular items which
may make the waiting time untolerable. A better broadcast system should restrict the

! Algorithms presented in this paper can be easily adapted for a pull-based system where the server knows
the number of requests pending for each item. In this case, the number of requests waiting for item ¢ can be
used as the current estimate of p;. The algorithms presented here can then be used to achieve low variance
in a pull-based system as well.



response time of request for any item into an acceptable range while maintaining the mean
value as low as possible.

Therefore, we define a new performance metric, namely, the variance of response time ¢,
denoted by 2.

o® = E|(t — p)’] (2)
The physical meaning of ¢? is that the response time of any request for any item is very
likely to be within the range (4 — o,p + o). Low variance means that small difference of
response time from the mean value can be expected. In the next section, we will show what
kind of schedules produce low variance of response time.
An alternative approach may be specify an upper bound on response time of any request,
and then to attempt minimization of the mean response time under this constraint. We do
not consider this alternative in our current discussion.

3 Analysis

In the analysis to follow, we are concerned with deriving the properties of schedules which
promise minimal mean response time and minimal variance of response time respectively.

Our analysis is based on an important assumption about the user request generation
process, which is that, from the viewpoint of the server, a request is equally likely to be made
at any time. Whereas this is not the case for a single user, i.e., both the time when a new
request emerges and the item required in the new request may be related to previous requests,
the consecutive requests from a large user population may be regarded as independent. As
pointed out in [8], when the user population is large enough, we may assume that the
aggregate request generation process is Poisson with constant rate.

Based on the assumption above, it has been observed that a “better” broadcast sched-
ule has the Equal Spacing property which requires that the transmissions of each item on
broadcast channel must be equally spaced. This observation can be explained by intuition.
Suppose the transmissions of a particular item, say ¢, are not conducted constantly. Instead,
there are “bursts” of item z in some time and there are long periods of sleep between the
bursts. Since the requests for a particular item ¢ arrive constantly and are only satisfied by
the nearest transmission of item 2, the requests coming in the sleeping period would wait
a long time to be served and thus deteriorate the quality of service. In fact, the schedules
produced by other schemes in [1], [8] all possess the “equal spacing” property, and we will
consider only the schedules with this property in the following analysis.

In a particular schedule with Equal Spacing property, all transmissions of item z, 1 < ¢ <
M, are equally spaced by some constant s; and s;; = s;,7 = 1,2,---. Now, a schedule can
be specified by a vector, called schedule vector, < si,8s,...,8y > in which s;,1 < ¢ < M
is the spacing for item . We may regard the broadcast as the composition of M cyclic
transmissions with each broadcasting an item in different frequency. In other words, this
scenario is the generalization of Broadcast Disks scheme in [1]. While the latter applies only
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Figure 1: The relationship between ¢;,T" and ¢,

to items of identical size, ours applies to items of differing sizes. Note that it is not always
possible to construct a schedule strictly spacing the transmissions of each item as designated
in a given schedule vector. But it is still of interest to us because it represents an ideal
situation from which a theoretical lower bound can be achieved for reference. On the other
hand, our simulation results show that the ideal results can be approached approximately in
implementation, and even achieved exactly in some special configurations.

In the previous section, we stated that the response time ¢ of any a request is a random
variable whose distribution is determined by other two random variables: T, the issue time
of the request, and I, the item required in the request. Iis a discrete random variable taking
integer values from 1 to M. The probability of I being ¢ is called demand probability of item
i

p; = Prob[ltem 1 is requested in any request], 1<i<M

Obviously, it holds that > p; = 1.

As for T, notice that if the request is for item ¢, only the schedule of item 2 is of significance
to it. Assume that when the request arrives at time T, item ¢ has been broadcasted for j
times where j is zero or a positive integer.

Let t; be the beginning time of j-th transmission of item ¢ and t;4; be that of j 4 1-
th transmission which would be the transmission to serve the request (see Figure 1). The
response time ¢ is just the difference of T from ¢;;4, i.e.,

t:tj_|_1—T

As we mentioned before, an item is equally likely to be needed at any time (request arrival
is governed by a Poisson process). So, T, as a random variable, is uniformly distributed in
the range (¢;,t;+1], and hence the response time ¢ for item ¢ is also uniformly distributed in
the range (0,t;41 — ¢;]. For a schedule with Equal Spacing property, ¢;11 — t; is always a
constant s; (for item ¢), independent of j. Therefore, t is uniformly distributed over (0, s;]
when I = ¢ (independent of j). Thus, the probability density function, say g;(t) for ¢ given

I=zis: .
= ,0<t<s;
(t) =9 & .
a(?) { 0 , otherwise



Since t is a continuous random variable, cumulative distribution function for ¢ is obtained
as:

Pt <z|l =i = Fi(z) = /m g(t)dt zreal
where F;(z) is the cumulative distribution function for ¢ given that I = <.
Above is the conditional probability. Using the Multiplication Rule [7], we can derive the
cumulative distribution function F(z) for t.
M M
Plt <z]=F(z) = _(Probll =i]Probt < z|I =1]) => _(p:;Fi(z))

Let g(t) be the probability density function of random variable ¢. It follows that,

g(t) = ;pi(ﬁ(t) (3)

Having the density function of ¢, it is not difficult to derive the expressions for y, the
expected value of ¢, and o2, the variance of t. The detailed derivation is given in Appendix
I. Here we only report the results.

1M
H = ) Z Sip; (4)
=1
and
2 1Y 2 1Y 2
=3 > pisi — (5 D> sipi) (5)
=1 =1
or
1Y 2 2
02:§ZPi3i —H (6)
=1

Note that expected (mean) response time and the variance of response time are only
decided by the schedule vector (i.e., by s;’s). Using the expression for mean response time, [9]
derives a law that must be obeyed by the schedule vector when the corresponding schedule
minimized the mean response time p. Specifically, to minimize the mean response time,
spacing s; of item ¢ must be proportional to 1//; and inversely proportional to /p;, i.e.,

/A
N

8; X

We prefer another form of the law, i.e

2
S, Di

l;

= constant,Vi,1 <1 < M (7)



[9] has shown that there is only one schedule vector existent which satisfies this condition
as well as exploiting the bandwidth resource to its maximum limit. The minimal value p
would take in this case is given as [9]

i = & (3 ®

Minimizing Variance of Response Time

Similar to the above result, we found that a schedule vector must hold the following property
in order to minimize the variance of response time:

2
lesi <§sZ — ,u> = constant,Vi,1 <i < M (9)
The proof of this result can be found in Appendix II.

The above two results provide valuable insight in the relationship between the schedule
vector and the quality of service, as well as the theoretical basis for designing the scheduling
algorithms. In the next section, we introduce a broadcast scheduling scheme which is based
on these observations.

Notice that, in general, a schedule cannot achieve the equalities in Equation 7 and Equa-

tion 9 simultaneously. This can be proved easily Suppose there is such a schedule. Since

1p1 lpl
l;

which should also be satisfied by this schedule. Now, we know that gsz {4 is a constant,
which cannot be true unless s; = constant,Vi,2 = 1,2,---, M. s; is a constant means that
all items have same broadcast frequencies This can only be achieved by a flat schedule. Fur-

is a constant, say c¢;, we may substitute the in the equality = e (231 p) = constant,

thermore, if s; is a constant, l : must also be a constant to hold the equality - 5P constant.
In another word, p; must be proportional to [I;, which is a restrictive condltlon for most
applications. Therefore, if a schedule makes the mean response time to be minimal, the
variance of response time is usually not minimized and vice versa.

4 Algorithm

In our scheme, whenever the channel is idle, the server calls the proposed algorithm. The
algorithm uses a decision mechanism to decide the item to be transmitted next[5]. The
decision mechanism works like a “traffic police” in front of a crowd of vehicles contending
the use of a single lane. The “police” has the responsibilities of coordinating the use of the
road as well as keeping the road employed to full extent. In our system, the “road” is just the
single broadcast channel and each item anxious to be broadcasted is a “vehicle”. Actually
we may find the role of “police” in many computer systems. For example, the scheduler in
any multi-task operating system schedules the execution of processes with various strategies
such as Round-Robin, First-Come-First-Serve, Small-Task-First, etc.



The decision mechanism in our algorithm uses a heuristic to help making decision. Let
us look at an example. As we know, to implement a schedule which can make the mean
response time very small, Equation 7 has to be maintained (at least approximately, if not
exactly). Specifically, for each item, the square of its inter-transmission time multiplied by its
demand probability and then divided by its length should be at least close to some constant,
if not equal. However, the inter-transmission time increases with time if the item does not
have the opportunity of being scheduled. So does the expression on the left side of Equation
7, whose change could be monitored by assigning each item with an indicator. Let ) be the
current time and R; be the time when item ¢ was most recently transmitted.(If item ¢ has
never been broadcasted, R; is initialized to -1.) A variable F; can be defined as follows for
item .

Fi=(Q - R)pi/l (10)
Notice that Q) changes continually and R; is updated whenever item 2 is transmitted. To
keep the values of all F-indicators as close with each other as possible, as stated by the law,
the item j with maximum F-indicator is a suitable target because its broadcast can update

R; to Q and thus bring F; back to 0.

Algorithm for reducing mean response time :[9]

Step 1. For each item ¢, 1 <:¢ < M, update the value of F-indicator F;.
Step 2. Determine maximum F-indicator over all items.
Let F,,,. denote the maximum value.
Step 3. Choose item j such that F; = F4,.
If this equality holds for more than one item, choose any one of them arbitrarily.
Step 4. Broadcast item j.

Step 5. R; = Q.

The definition of F-indicator in this algorithm is inspired by Equation 7. [9] has showed
that it produces near-optimal result in regard to the mean response time. In the rest of this
paper, we will refer to it as Mean Optimal Algorithm.

Reducing Variance of Response Time

We may use the above algorithm to reduce the variance of response time by replacing the
definition of F-indicator with the following one, motivated by Equations 9 and 4.

. _ R.\2 M
Fi— M(%(Q—Ri) ~ Y m@-R))1<i<M (11)

. With this definition, we are now trying to maintain the equality in Equation 9 to the extent
possible. We will refer to the new algorithm as Variance Optimal Algorithm in next section.
Note that the name Variance Optimal may be a misnomer, as the algorithm is not proved
to achieve near-optimal variance (as we do not know a tight lower bound on variance).



As we pointed out in last section, minimal mean and minimal variance are usually im-
possible to achieve simultaneously. When mean response time is reduced to minimal, the
variance of response time may climb to a height which is perceivable by users. But if we turn
to minimize the variance, mean response time is sure to be large. Both situations are not
welcomed by users. The solution is to find an intermediate state between the two extreme
cases, i.e., trade-off mean with variance of response time.

We notice that the expressions of calculating F-indicators in Mean Optimal Algorithm
and Variance Optimal Algorithm both are polynomials of ¢) — R;. A quadratic polynomial
is used in Mean Optimal Algorithm and a cubic polynomial in Variance Optimal Algorithm.
Basically, every time the decision mechanism executes, it evaluates each item according to
demand probability, length and the time since its last transmission, and chooses the most
suitable one. Even for an extremely unpopular item, when it has long been neglected, the
time factor becomes so important that the effects of demand probability and length can be
offset and the opportunity of broadcasting is given to it. In Mean Optimal Algorithm, the
time of each item since last transmission is squared before evaluation. However, it is cubed
in Variance Optimal Algorithm, which means that the time factor plays a more important
role and is of advantage to globally unpopular items. We believe that a trade-off exists
between the two styles of using the time factor in evaluating the eligibilities of items. More
specifically, we define the F-indicator of item ¢ as the polynomial of () — R; which is of degree
o and «a is between 2 and 3. The following is the new expression of calculating F-indicator.

Fi == (Q — Ri)api/li,2 S a S 3 (12)

We call the corresponding algorithm the a-algorithm. When a = 2, it becomes the
Mean Optimal Algorithm. The a-algorithm was also evaluated by Su and Tassiulas [8].
They simulated the a-algorithm for various values of a, and impirically showed that o = 2
minimizes the mean response time. We obtained the same result analytically in our prior
work. Su and Tassiulas, however, did not consider the impact of varying o on the variance
of the response time. When «a is picked close to 3, it is expected to produce a schedule which
can make the variance of response time small. Although we cannot provide any analytical
evidence for this claim, the simulation results in next section support it indeed.

Appendix III derives expressions for the lower bounds on mean and variance of response
time achieved using the a-algorithm. The lower bounds for one set of length and demand
probability distributions are plotted in Figure 2.

5 Performance Evaluation

In this section, we present some numerical results from our simulation of a broadcast data
delivery system. The server uses various algorithms we presented above to do scheduling.
The request generation by users and request service process are also simulated. The data
of response time measured from the simulation is analyzed. From the results, all algorithms
can be seen clearly to be performing as expected.

10
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Figure 2: The lower bounds on mean and variance of response time when a-algorithm
is used as scheduling algorithm and other system parameter settings are: M = 250,80 =
0.75, Increasing Length distribution( 6 and length distribution are defined in Section
5).
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Figure 3: Architecture of Simulator

5.1 Simulation Model
5.1.1 Simulator

We developed an event-driven simulator. The architecture of the simulator is depicted in
Figure 3. In real world, each user falls into a loop of making a request for an item, waiting
until the request is served by broadcast, computing or thinking for a random time and making
a new request again. However, the server only “sees” a stream of requests flowing out of
the user community. In the finite user population case, the flow rate of request stream will
drop as more users enter the waiting stage, and rebound if the broadcast of an item happens
to resolve a large number of pending requests and free the users from sleeping. But with
our assumption of large user population, the rate of request arrivals remains constant. We
may just use a Request Generator, which produces a request series according to a Poisson
process, to simulate the collective behavior of requests made by all users in the group. In
our simulations, the request arrival rate is 2 per time unit.

All the newly generated requests enter into a data structure called Unsolved Request
Queue, which contains M queues each having infinite capacity and holding all requests for
an item. When an item is scheduled to broadcast, the corresponding queue is checked and all
requests in it are satisfied together regardless of when these requests arrived, and the queue
becomes empty. In the process of resolving requests, the response time of each request is
measured and sent to a module called Result Analyzer as well as other useful information
such as the item requested. The Result Analyzer stores, analyzes the experimental data and
posts the results in windows immediately. Then the simulation process can be monitored
and controlled easily.

The function of the server is implemented in the Server module, which accepts the

12



demand probability distribution information of all items as the parameter and executes one
of the algorithms we introduced in last section. The result of every execution of the algorithm
is the number of item to be transmitted right now, which is routed to the Unsolved Request
Queue to resolve the pending requests.

Some auxiliary modules are not included in the figure. For example, the Configuration
module provides the interface for us to change system parameters such as M, the total
number of items, a, the trade-off coefficient in our a-algorithm, etc.

5.1.2 Demand Probability Distribution Of Items

In our simulation, the demand probabilities of all items follow Zipf distribution, with item 1
being the most frequently requested, and item M being the least frequently requested. The
Zipf distribution may be expressed as follows:

6
pi:c<—,> 1< <M

where ¢ = —gf—

— is a normalizing factor, and 6 is a parameter named access skew

coefficient. When 6 = 0, Zipf distribution reduces to a uniform distribution with each item
equally likely to be requested. However, the distribution becomes increasingly “skewed”
as 6 increases(that is, the difference among items with respect to the degree of popularity
becomes more significant.

5.1.3 Length Distribution Of Items

As of length distribution, the following three special cases are considered in our simulation:

1. Equal length case:
All items are equally sized and the size is 1, without loss of generality.

2. Unequal length case:

o Increasing Length Distribution:

 — 1 lmam_lmin 1 . .
A Gt - 1) 1.9 M with L, = 1 and I, — 250

In this case, the most popular item, i.e. item 1, is the longest item.

o Decreasing Length Distribution:

I = lpaw — (i - 1)(lmaj\4_ min + 1) ,t0=1,2,---, M with l,,;, = 1 and [,,4, = 250

In this case, the most popular item, i.e. item 1, is the shortest item.

13



M | 250
p; | 6=0,0.25,0.5,0.75,1.0,1.25,1.5
[; | Equal, Increasing, Decreasing

a | 22,263

Table 1: Parameter Settings
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Figure 4: The dynamic changes of 4 and ¢? during a simulation

5.2 Numerical Results

Table 1 shows the parameter settings for our simulations. We conducted a number of
experiments under different combinations of the parameter settings. The primary perfor-
mance metrics are mean and variance of response time. We explored the trade-offs between
the two performance goals. In addition to a-algorithm, we also measured the performance
when Mean Optimal Algorithm and Variance Optimal Algorithm are used by the server
respectively.

The mean and variance results with respect to response time were obtained once 1 million
requests are served. During the simulation, both the mean and variance of response time keep
changing as the number of requests served increases, starting from 0. Figure 4 shows how
these two metrics change in one of our experiments. At the beginning of the simulation, a
big change of both mean and variance can be identified. This phenomenon may be explained

14



Mean Optimal Alg a-algorithm Variance Optimal Alg
22 | 26 | 3
Mean 125.005 125.005 | 125.005 | 125.005 125.005
Variance 5214.04 5214.04 | 5214.04 | 5214.04 5214.04

Table 2: Performance of different algorithms in Experiment 1: Uniform Demand, Equal

Length

as caused by bad settings of initial values. Remember that in each of our algorithms, the
last transmission time of any item plays a crucial role in the decision making process. When
the server starts working, the last transmission time of any item is initialized to -1, which
implies that in the “race” of F-indicators, all items start from a same starting line despite
the fact that these items should be treated discriminately. Therefore, it can be imagined
that the scheduling results worked out at that time is far away from the best, and the drastic
changes in regard to the mean and variance of response time can be anticipated. After the
system is running for a while, both mean and variance fluctuate only in a small range of
values. We may claim that the system has entered into steady state and it is providing the
best performance it could. We find that in all our experiments, the system had reached
steady state when 1 million requests have been served (note that request arrival rate is 2
per time unit). In order to eliminate the “warm-up” effects and make the experimental data
reflect the situation in steady state more accurately, we start measurements only after the
server has broadcasted 5000 items. From then on, the served requests are counted until the
number reaches 1 million.

In Figure 4, note that, the estimate of mean response time is initially smaller that the
optimal. This may seem counter-intuitive. The reason for this phenomenon is that, the
estimate is calculated based on requests that have been served. Requests waiting to be
served are not taken into account. Initially, the more popular items tend to be broadcasted
first, therefore, the initial estimate of mean response time, reflects the response time for the
more popular items. Over time, all items are broadcasted multiple time, and the estimate
of mean approaches its real value.

5.2.1 Experiment 1: Uniform Demand, Equal Length

In the first experiment, we assumed that all the 250 items have length 1, and the value of
skew coeflicient 6 is 0, i.e., each item has the same chance of being required. The data in
Table 2 shows that all algorithms produce same results.

When all items are of same size and accessed equally likely by users, the server tends
to broadcast all items alternatively and actually uses the Round-Robin strategy because
the demand probabilities and lengths of items are not considerable factors in the process
of making scheduling decisions. By analyzing the trace of simulation, we found that all
five algorithms produce same schedules, i.e flat schedule. Needless to say, same mean and

15
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Figure 5: Performance of different algorithms in Experiment 2: Non-uniform Demand, Equal
Length (1:Mean Optimal Algorithm, 2:a-algorithm with o = 2.2, 3:a-algorithm with o =
2.6, 4:a-algorithm with a = 3, 5:Variance Optimal Algorithm)

variance results can be expected. In fact, the quality of service cannot be better. As we have
proved in Section 3, when demand probability of each item happens to be proportional to
its length, which is just the case in Experiment 1, the flat schedule is the best schedule in
the sense that the minimal mean response time and the minimal variance of response time
can be achieved simultaneously.

5.2.2 Experiment 2: Non-uniform Demand, Equal Length

In this experiment, we kept our Equal Length assumption about length distribution of all
items. But the demand distribution of all items was no longer uniform. Instead, the skew
coeflicient § changes from 0.25 to 1.5 gradually. We measured the performance of all algo-
rithms in different cases. The results are shown in Figure 5, Table 3 and Table 4. In the
figure whose y-axis is labeled “Mean”, a curve demonstrates the change of means caused by
using different scheduling algorithms in a particular environment. The number marked on
the curve is the value of skew coefficient # in that situation. From left to right along the
x-axis, the algorithms we used in our experiment are numbered consecutively from 1 to 5 and
they are Mean Optimal Algorithm, a-algorithm with o = 2.2,2.6,3 and Variance Optimal
Algorithm, respectively.
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The key observations are as follows. The lowest mean response time is achieved when
server is using the Mean Optimal Algorithm, and the lowest variance of response time when
using Variance Optimal Algorithm. Furthermore, the a-algorithms indeed implement the
balance between mean and variance of response time. When a changes from 2.2 to 2.6 and
then to 3, the measured mean response time is observed to increase gradually while variance
is dropping at the same time. This is consistent with the conjecture mentioned above.

However, the effectiveness of a-algorithm and Variance Optimal Algorithm in reducing
variance of response time is challenged when the skew in user demands for items is small.
When 6 = 0.25, mean and variance do not show any significant change (when the algorithm
is varied). Actually, the mean response time results produced by 5 algorithms are so close
with each other that the difference between the maximum value and the minimal value is
less than 1 time unit and all are very close to the theoretically minimal value.

When 6 increases but is still less than 1.25, the skew in user demands becomes a little large
but not too large. For instance, when 8 = 0.75 and the number of items is 250, about half user
requests are for top 33 items and the remaining 217 items take the burden of serving the other
half requests. However, to reduce the overall mean response time, most bandwidth is given to
a few items by Mean Optimal Algorithm. The poor service for the “not most popular” items
worsens the overall quality of service which is reflected by the high variances of response
time in these cases. Both a-algorithms and Variance Optimal Algorithm greatly improve
the situation. From the curves, the reduction of variance brought by those algorithms is
conspicuous, and the unavoidable increase of mean is not very significant.

When 6 further increases to 1.5, we may find that the performance of Mean Optimal
Algorithm in regard to variance is not very bad. This phenomenon looks strange at first. In
fact, when the skew in user demands becomes extremely large, the percentage of requests
attracted by a few hot items becomes very large. In the same example of 250 items, if § = 1.5,
top 33 items are demanded by 91% user requests. To serve them well means to serve all
well. That is why Mean Optimal Algorithm does not add the variance very much while still
providing the best mean response time. On the other hand, even though a-algorithms and
Variance Optimal Algorithm reduce the variance of response time drastically as expected,
they make a large sacrifice with respect to mean response time. When most requests not
only from the whole user community but also from a particular user are for a few items, a
little increase of response time may give rise to a large increase of overall user waiting time.

In summary, a-algorithms and Variance Optimal Algorithm perform best in the situation
with medium-skewed demand distribution, and when user demands are lightly skewed or
severely skewed, Mean Optimal Algorithm is still a good alternative.

5.2.3 Experiment 3: Non-uniform Demand, Unequal Length

In this experiment, Increasing Length distribution and Decreasing Length distribution were
assumed respectively. The results for increasing lengths are shown in Figure 6, Table 5 and
Table 6, those for decreasing lengths in Figure 7, Table 7 and Table 8. Also, the skew

coeflicient # changes from 0.25 to 1.5 simulating various situations about how user demands
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Figure 6: Performance of different algorithms in Experiment 3: Non-uniform Demand, In-
creasing Length (1:Mean Optimal Algorithm, 2:a-algorithm with a = 2.2, 3:a-algorithm
with a = 2.6, 4:a-algorithm with a = 3, 5:Variance Optimal Algorithm)

are distributed among the items.

From the curves, the performance of these scheduling algorithms seems to be insensitive
to the length distribution of items. As in Experiment 2, in which all items have equal sizes,
the a-algorithms and Variance Optimal Algorithm reduce the variance of response time in
all cases without exception. The parameter a in an a-algorithm takes the effect of adjusting
the balance between minimal mean and minimal variance. When « is closer to 2, the power
of minimizing the mean becomes stronger and the a-algorithm performs more similar to the
Mean Optimal Algorithm. When « is closer to 3, the factor of minimizing variance weighs
more heavily in the schedule making process.

Also, as in Experiment 2, the results show that the system environment with user de-
mands for items medium-skewed is the most suitable one for a-algorithm and Variance
Optimal Algorithm to work, where the variance of response time drops greatly but mean
response time rises only a little.

5.2.4 Equal Spacing property

In this section, we examine the actual inter-transmission time of items in simulation and see
if the Equal Spacing condition can be achieved (or approximated) by our algorithms. Figure
8 shows how the broadcast spacing of item 1 changes in its first 500 transmissions. Along the
x-axis, the transmissions of item 1 are numbered from 1 to 500. The y-coordinate of a point
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Figure 7: Performance of different algorithms in Experiment 3: Non-uniform Demand, De-
creasing Length (1:Mean Optimal Algorithm, 2:a-algorithm with a = 2.2, 3:a-algorithm
with a = 2.6, 4:a-algorithm with a = 3, 5:Variance Optimal Algorithm)
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Figure 8: The broadcast spacing of item 1

on curve with x-coordinate ¢ is the time interval between i-th transmission of item 1 and
its (i-1)-th transmission, i.e spaing so;. The curve labeled “Mean Optimal Algorithm” plots
the spacing data measured in a simulation with the server using Mean Optimal Algorithm
as its scheduling algorithm. Keeping all other system parameters unchanged and replacing
the scheduling algorithm with Variance Optimal Algorithm at first and a-algorithm with
o = 2.6 then, we conducted the simulation again. The other two curves illustrate the results
in the two simulations respectively.

Look at the curve labeled “Mean Optimal Algorithm”. The specific values of spacings
are not important. What’s important is the fact that the broadcast spacings of item 1 are
bounded and the curve turns out to fluctuate around a horizontal line, which implies that
the spacings are nearly same with each other and item 1 is broadcasted almost constantly
spaced. Same conclusion may be drawn from other two curves too. As a matter of fact,
the broadcasts of all other items demonstrate this fact as well, which indicates that our
scheduling algorithms do create schedules with Equal Spacing property approximately true.
The relative position of the three curves in Figure 8 is also very interesting. Compared with
the situation when Mean Optimal Algorithm is used, item 1, the most globally popular item,
occupies less bandwidth with Variance Optimal Algorithm, which means that the broadcast
frequency of item 1 is lower and the spacing is larger as illustrated. a-algorithm with a = 2.6
is the trade-off of those two extremes. So, it is quite reasonable that the curve of a-algorithm
stays between the other two.
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Figure 9: The change of F,,4, (Mean Optimal Algorithm)

5.2.5 F,,.. in simulation

In simulation, we tracked the change of F,,,, in each algorithm. The performance of each
algorithm depends greatly on whether the F-indicators for all items are maintained close to
each other. Figures 9, 10 and 11 plot the values of F,,,, against the number of items
scheduled for three scheduling algorithms. These simulations use the Increasing Length
distribution and skew coefficient § = 0.75.

From Figure 9, where Mean Optimal Algorithm is used as scheduling algorithm, it can
be clearly seen that F,,, fluctuates around a constant. Same phenomenons are also observed
in the other two figures where a-algorithm with a = 2.6 and Variance Optimal Algorithm
are used respectively. Therefore, it appears that each algorithm maintains the stability of
maximal F-indicator reasonably well, which is an important condition to make the algorithm
perform near-optimally.

In theory, if the maximal F-indicators (i.e., Fin4) can always be kept constant, optimal
performance (with respect to mean or variance) can be expected. Equation 8 provides the
minimal mean response time which can be achieved by Mean Optimal Algorithm in theory.
For the a-algorithm, the theoretical values for optimal mean and variance of response time
can also be obtained (as shown in Appendix III). Unfortunately, as illustrated in Figure 10,
the equation F; = constant was not held strictly by the algorithm. So, the real performance
is bound to be a little worse than the theoretical optimal.

21



16 T T T T T T T T T

12 b

10

Fmax
(o]
T
1

O | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2

Number of Iltems Scheduled % 10°

Figure 10: The change of F,,,, (a-algorithm with o = 2.6)

6 Conclusion

In this paper, we address the problem of adding user perspective to the server scheduling
process. We argue that from a user’s point of view, the variance of response time is also
important. As bad experiences usually stay longer than good ones in a person’s memory,
variance of response time affects a user’s impression about the quality of service a system
can provide. In the so-called pure push-based data broadcast system where there is no direct
channel for users to send requests explicitly, the server may reduce the variance of response
time by making appropriate broadcast schedules. In particular, we found the property a
schedule must possess in order to achieve minimal variance of response time. Based on our
finding, a scheduling algorithm was proposed for a server to construct such a schedule. While
minimal mean and minimal variance are generally impossible to be achieved simultaneously,
a trade-off does exist. We evaluated an algorithm that can achieve such a trade-off.

The contributions of this paper are in two aspects. First, we introduced the new perfor-
mance metric, i.e., variance of response time. Second, we evaluated scheduling algorithms
which can minimize the variance, or trade the variance of response time with the mean
response time.

The evaluation presented in this report assumed a push-based system. Our algorithms
can be easily adapted to achieve low variance in pull-based systems. In this case, the number
of requests waiting for a particular item can be used in place of demand probability of the
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Mean Optimal Alg a-algorithm Variance Optimal Alg
22 | 26 | 3
6 =0.25 123.255 123.305 | 123.522 | 123.596 123.832
=05 115.233 115.278 | 115.912 | 116.731 117.931
6 =0.75 98.4467 98.6771 | 100.047 | 101.67 104.692
6 =1.0 74.7596 75.1937 | 77.1408 | 79.7116 84.5711
6 =1.25 50.5683 51.0305 | 53.2272 | 56.3029 62.0131
=15 31.3046 31.7905 | 34.133 | 37.2893 42.6269

Table 3: Mean response time results measured in Experiment 2: Non-uniform Demand,

Equal Length

Mean Optimal Alg a-algorithm Variance Optimal Alg
22 | 26 | 3
6 =10.25 5352.67 5316.94 | 5260.15 | 5223.47 5196.8
=05 5959.11 5733.29 | 5463.06 | 5296.69 5143.41
6 =0.75 6762.51 6274.52 | 5667.94 | 5321.34 4950.00
6 =1.0 6838.76 6137.74 | 5289.61 | 4827.42 4332.60
6 =1.25 5815.16 5019.19 | 4091.45 | 3666.95 3252.81
6=1.5 4159.51 3404.48 | 2657.28 | 2325.43 2051.40

Table 4: Variance of response time results measured in Experiment 2: Non-uniform Demand,

Equal Length

item.

One open problem that needs to be addressed is derivation of a good lower bound on
the achievable variance of response time. Another issue to be studied is the impact of local
cache at a client on the client’s variance of response time (or, how to use a local cache to
reduce or trade variance with mean response time). Transmission errors were not considered
in this work. Such errors tend to adversely affect response time. Error control codes may
be used to correct and detect transmission errors. An interesting issue to investigate is how
the choice of error control code affects the mean-variance trade-off.
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Mean Optimal Alg a-algorithm Variance Optimal Alg
22 | 26 | 3
6 =0.25 13539.4 13571.1 | 13653.1 | 13791.0 14020.9
6=0.5 12661.5 12698.1 | 12816.7 | 12957.9 13262.5
6 =0.75 10900.9 10929.1 | 11104.6 | 11341.2 11794.2
6=1.0 8389.08 8416.24 | 8685.9 | 9009.94 9648.67
6 =1.25 5738.61 5790.42 | 6092.85 | 6478.46 7206.52
=15 3619.92 3680 | 3973.95 | 4372.19 5080.71

Table 5: Mean response time results measured in Experiment 3: Non-uniform Demand,
Increasing Lengths

Mean Optimal Alg a-algorithm Variance Optimal Alg
22 | 26 | 3
6 =10.25 9.9772 9.4526 | 8.7698 | 8.3946 7.9514
6=0.5 10.426 9.7026 | 8.7773 | 8.2383 7.7046
6 =0.75 10.904 9.8431 | 8.5747 | 7.8419 7.1803
6=1.0 10.450 9.1251 | 7.6477 | 6.8327 6.083
6 =1.25 8.5892 7.2595 | 5.8089 | 5.1011 4.4578
6=1.5 6.0843 4.8865 | 3.7022 | 3.1868 2.8092

Table 6: Variance of response time results measured in Experiment 3: Non-uniform Demand,
Increasing Lengths (x107)

Mean Optimal Alg a-algorithm Variance Optimal Alg
22 [ 26 | 3
6 =10.25 13397.5 13439.3 | 13537.6 | 13651.9 13875.5
6=0.5 12516.1 12526.3 | 12662.5 | 12844.5 13158.7
6 =0.75 10701.2 10728.1 | 10941.7 | 11172.7 11646.8
6 =1.0 8138.74 8191.29 | 8433.63 | 8750.08 9409.92
6 =1.25 5464.04 5516.43 | 5807.97 | 6172.63 6918.96
=15 3355.76 3410.66 | 3685.77 | 4049.8 4742.75

Table 7: Mean response time results measured in Experiment 3: Non-uniform Demand,
Decreasing Lengths
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Mean Optimal Alg a-algorithm Variance Optimal Alg
22 | 26 | 3
6 =10.25 10.006 9.5022 | 8.8298 | 8.3807 7.9251
6=0.5 10.461 9.7158 | 8.8018 | 8.2785 7.6950
6 =0.75 10.835 9.8293 | 8.6360 | 7.8993 7.1786
6 =1.0 10.303 9.1106 | 7.6816 | 6.9136 6.1047
6 =1.25 8.2702 7.0962 | 5.8105 | 5.1400 4.5054
=15 5.7515 4.6700 | 3.6636 | 3.2175 2.8632

Table 8: Variance of response time results measured in Experiment 3: Non-uniform Demand,
Decreasing Lengths (x107)

A Appendix I: Mean and Variance of Response Time

A.1 Derive the expressions for p

p is the expected value of random variable t. According to the definition of expected value,
we have

§ = / tg(t)dt (13)
0
;From Equation (3), we have

M

po= [T ma)a

=1

I

= [T it
= Z:pi/oootqi(t)dt
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M
= sz/ —dt
=1 0

S5
1 M
= 9 Z S:iPi
=1

A.2 Derive the expressions for o?

By the definition in (2), o? is the expected value of random variable (¢ — p)?. So, we have

ot = [~ (- wglt)at
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where g(t) is the density function of random variable t.
By substitution, the above equation becomes that

o —/ (t—n (pzqz(t))dt

Then the following derivation is easy to understand.
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Since p = %Zf‘il s;ip; and M p; = 1, the above equation can be further simplified as
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Of course, it can be rewritten in another form without p, i.e
1 ¥ 1 ¥
2 2
= 3 ZPiSi - (5 Z 5:pi)
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B Appendix II: Minimizing the Variance

Theorem 1 Given the demand probability p; of each item ¢, the minimal variance of re-

2

sponse time, o*, 1s achieved when the schedule vector possesses the following property, as-

suming that transmissions of each item 1 are equally spaced by s;.

2
%(331' - M) = constant,Vi,1 <1 < M

Proof:

From Equation 5, we know that the variance of response time o? is a multi-variable
function of a schedule vector’s all elements s;,s3,---,sy. However, only M-1 of the sis
can be changed independently instead of M. To find this fact, let us look at the share of
bandwidth occupied by each item. For item ¢, we use the notation r; to denote the amount
of time it takes during the broadcast. Since each transmission of item ¢ takes /; time and
item ¢ is supposed to be transmitted every s; time period, we have r; = i—‘l As Y M =1,

l l Inv— l
|
S1 So SM-1 SM
or
L1 Iy—1
sy =Iy(l————— ce.— 14
M M( S1 S2 3M—1) ( )
Back to our objective of minimizing the o2, we have to find the schedule vector which
makes % = 0,V:. We now solve these equations, beginning with 0 = g‘::.
, o
631
o 1 ,
- 6—31(§ ;pi i M )
o1y , 1X R
= 6—31[§ ;pisi - (5 ;Pisi) ]
—i[l( 4 pass+ .. Mot T 2)—1( +pasa+...+ + )?]
T 55,3 P18] T P28y T ... T PM-1Sp_1 T PMSM 4 P181 T p2S2 T ... T PM-1SM-1 T PMSM
2 2 Osy 1 0sy
_ 4 2 IM_Z g _1SM-—
317151 + 3PM3M B, 1 (p181 + pasa + + pm-1Sm—1 + pmsm)(pr + pm B, )
2 1 ¥ 2 1Y dsm
=pi|581 — = 58 =SM — = 5 8i)|—— 15
p1[331 2(;p3)]+pM|:3sM 2(21)3)] 631 ( )
From Equation 14, sps is a function of s;. So, it can be found that
Osm 2 L
sy s Iy
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By substitution, Equation 15 becomes that

2 1M PMSH l1
0=pi|z81— ¢ E i8i)| — .
p1[331 2(z:1p S )] 3% lM

which implies that

M__szz
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Similarly,
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In other words,

2
LTS T RS R

This is equivalent to saying that

or

i '3

Thus, we have proved Theorem 1.
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pis; sz ;) = constant,Vi,1 <i < M

—s; — p) = constant,Vi,1 <i < M

C Appendix III: Lower Bounds for the a-Algorithm

In the ideal situation, a-algorithm can create a schedule making the equation
true, where C' is a constant. In the following, we will derive the value of C, and the values
of s;’s when the ideal condition holds. Then, both the mean and variance of response time
can be obtained. They serve to be the lower bounds of mean and variance of response time

respectively, which can be attained by an a-algorithm.

l

From the equation 35;?” =(C,1=1,2,---,M, it follows that

li 1
Si: O-— E
@)
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Let r; be the share of bandwidth by item ¢ during broadcast. Since each transmission
of item ¢ takes [; time and item ¢ is transmitted every s; time period, we have r; = i—‘ As

M
Zi:l Ty = 17

l

| -

=1 (17)

1

M
2
=1

Substituting the s; in above equation with the expression in Equation 16, we have

»n

or

(18)

= (XL ) (19)

Finally, the values of mean p and variance o2 in this case can be derived by substituting the
above expression for s; into Equations 4 and 5.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast disks - data manage-
ment for asymmetric communications environment,” in ACM SIGMOD Conference,

May 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik, “Balancing push and pull for data broadcast,”
in ACM SIGMOD Conference, May 1997.

[3] S. Acharya, M. Franklin, and S. Zdonik, “Dissemination-based data delivery using
broadcast disks,” IEEE Personal Communication, pp. 50-60, Dec. 1995.

4] M. H. Ammar, “Response time in a teletext system: An individual user’s perspective,”
’ |Y y persp ’
IEEE Transactions on Communications, Nov. 1987.

30



[5] S. Hameed and N. H. Vaidya, “Log-time algorithms for scheduling single and multiple
channel data broadcast,” in ACM/IEEFE International Conference on Mobile Computing
and Networking (MOBICOM), Sept. 1997.

[6] T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Data on the air - organization
and access,” IEEE Transactions of Data and Knowledge Engineering, July 1996.

[7] J. Milton and J. C. Arnold, Introduction to Probability and Statistics. McGraw-Hill,
Inc., 1995.

[8] C.-J. Su and L. Tassiulas, “Broadcast scheduling for the distribution of information
items with unequal length,” Technical Report, 1997.

[9] N. H. Vaidya and S. Hameed, “Data broadcast in asymmetric wireless environments,”

in Workshop on Satellite Based Information Services (WOSBIS), Rye, NY, Nov. 1996.

[10] J. W. Wong, “Broadcast delivery,” in Proceedings of IEEE, pp. 1566—1577, Dec. 1988.

31



