
Using End-to-End Statistics toDistinguish Congestion and Corruption Losses:A Negative Result �Saad Biaz Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112, USAE-mail: fsaadb,vaidyag@cs.tamu.eduWeb: http://www.cs.tamu.edu/faculty/vaidya/mobile.htmlTechnical Report 97-009August 18, 1997AbstractOn wireless links, the rate of corruption losses can be signi�cant, leading to poorTCP performance. The performance gets worse when these losses are mistaken for con-gestion losses, unduly triggering the TCP congestion control algorithms. To avoid this,techniques to distinguish between corruption and congestion losses without any explicitinformation from the network (routers or switches) are of interest.In the past, several proposals require TCP sender to reduce its window size whencongestion is detected. These schemes use heuristics to detect congestion by using somesimple statistics on round-trip delays and/or throughput.If the heuristics developed in the past are good (i.e., accurate much of the time), thenone possible mechanism for distinguishing between errors and congestion are as follows:(a) Use a good heuristic that asks TCP sender to reduce window size when congestion is�Research reported is supported in part by Texas Advanced Technology Program grant 009741-052-C,National Science Foundation grant CDA-9529442 and the Fulbright Program.1



detected. (b) If a packet loss occurs, see what the heuristic said just before the packetwas sent. (c) If the heuristic had said reduce window (because congestion was detected),assume that the packet loss is due to congestion, otherwise assume that packet loss isdue to transmission error. Take appropriate action depending on the nature of packetloss.The above scheme will work well, if the heuristic is very accurate. Unfortunately,our preliminary measurements suggest that three such heuristics proposed previously donot perform well in practice. The reason, essentially, is that to a well-behaved TCPconnection, packet losses seem to appear almost random, without much correlation tothe window size or round-trip delays. This is true (and intuitive) when an individualconnection represents only a small fraction of load at a router on the path.Key Words: TCP { Congestion Avoidance { Packet losses1 IntroductionThe TCP protocol can adapt to very di�erent network bandwidth and conditions. But therestill exists the problem of recovering from losses other than congestion. All losses are allassumed, by TCP, to be congestion losses [9] and TCP reacts to all losses with congestioncontrol mechanisms. On wired networks, this assumption is good. But on wireless links, lossesoccur more frequently due to corruption or for reasons other than congestion [3, 4]. This canlead to a very poor performance. Fast Recovery and Fast Retransmit [10, 14] alleviate theproblem but do not solve it completely. It is then natural to try to distinguish congestionfrom corruption losses. This can be done by receiving explicit messages from the routerswhen congestion occurs or is imminent [12, 8]. This approach has two main drawbacks : �rst,there may be an additional message overhead, and second, the explicit scheme is protocol-dependent. The second approach would be to consider the network as a black box and try tocollect implicit information on the state of the network. There is one fundamental di�erencebetween corruption losses and the congestion losses: a user, at the transport layer, does nothave and cannot have any inuence on the losses due to corruption. In other words, a usermay be able to provoke congestion losses, but not corruption losses.This second approach which considers the network as a black box was introduced byJain in the excellent paper [11]. Jain observes the changes in the round trip delay resultingfrom changes in the congestion window size. Jain used this approach to develop a congestionavoidance scheme. But there is a natural extension of this approach to develop a tool todistinguish a corruption from a congestion loss. The task seems easier in the sense that youdo not have to exactly predict congestion. You have only to diagnose the source of a loss.The idea is to look at what a congestion avoidance scheme would have done just before theloss : if the appropriate action was \decrease the window size" then the loss should be with ahigh probability a congestion loss. Wang [16] and Brakmo (Vegas) [6] look at changes in thethroughput to detect congestion. We study the criteria developed by these researchers. Whilethey have pointed out limitations of their schemes under real network conditions, there does



not appear to be any work (that we are aware of) which shows how good or how bad thesecriteria behave on a real network.We measured the changes of congestion losses rate versus congestion window variationsand also evaluated Jain's, Wang's and Vegas criteria through measurements on TCP connec-tions. In Section 2, we present the tools and techniques to perform our measurements andthe parameters measured. The experiments performed are described in Section 3.The resultson the congestion predictors are presented in Section 4 Section 5 is dedicated to the resultsobtained. We interpret these results in Section 6.2 MeasurementsThe measurements were done using Free BSD. We modi�ed tcp debug to collect the informa-tion. This data was processed with a modi�ed version of trpt [14].2.1 Modi�cations to tcp debug and trptThe main function in tcp debug is the function tcp trace.This function can be called from many other tcp procedures (e.g tcp input, tcp output,tcp usrreq,..). When called, tcp trace records the time (in ms), the kind of call (user, input,output, drop..) and the tcp control block in the array tcp debug. Since the tcp control blocktakes too much space, we log it for all events except when sending. When a packet is sent,we log a smaller structure which mainly contains the time of transmission (in ms), the packetsequence number and the congestion window. At the end of a connection, we have in thememory all information which can then be processed or just stored on disk.We modi�ed the trpt program to process the information and extract some parameters.2.2 Parameters measured� Vm; RTTm : For each window sent, a packet Pm is monitored. We log the time Pm issent and the volume Vm (in bytes) sent until Pm is acknowledged. When packet Pm isacked, we compute the round trip time RTTm for Pm. Vm is most of the time close tothe congestion window. The di�erence comes from the fact that Vm is always a multipleof the mss (maximum segment size) while the congestion window is not.� Thgtm : Throughput Thgtm is computed as VmRTTm . Of course, if the monitored packetPm has to be retransmitted, then we do not log the measurements for it. But, we log thefact that a packet is lost. 3



� Information log : For every monitored packet, we have then its round trip time RTTm,the congestion window size Cwndm and the throughput Thgtm. When a loss occurs, welog the window size used to send the last unacknowledged packets.� Ni and Li : Since the acks in TCP are cumulative, when a timeout occurs or somedupacks are received, we do not know exactly the number of packets lost. We know onlythat at least one packet is lost. With the data collected, we can count the number ofwindows Ni which were sent with a given window of size i. We also know the number oflosses Li which occurred when sending with a given window size i.� Pi and qi : For each window size i, we can compute the probability Pi that at least onepacket was lost. Pi is equal to LiNi . If qi is the probability of loosing a given packet atwindow size i, then Pi = 1 � (1 � qi)i, assuming independent packet losses. Clearly,packet losses are not independent of each other. However, qi does provide a measure tocompare the rate of packet losses for a given window size.� FDLi : To investigated how congestion loss probability correlates with congestion win-dow size, we calculated the Frequency Distribution of Losses FDLi, de�ned as the frac-tion of packet losses occurring at congestion window size of i MSS (maximum segmentsize) { in fact, the congestion window size Cwnd is not always an integral multiple ofthe mss (Maximum Segment Size). For the purpose of calculating FDLi, we consider awindow of size Cwnd to be of size bCwndmss c MSS.� FDWi : We also calculated the Frequency Distribution of congestion Window size FDWide�ned as the fraction of windows sent with a size of i MSS.We must observe that for 10% of the packets monitored, the congestion window is largerthan the volume sent. The di�erence is smaller that two packets. This is due to the fact thatthe packet monitored is not the �rst packet of the window. This bias does not a�ect ourresults.The FDL and FDW measurements should reveal if losses occur more frequently at agiven window size or for windows larger than some threshold. Besides these measurements, itis natural to think that when a loss occurs, we can use some criterion developed for congestionavoidance to diagnose the source of the loss. If these criteria are predicting congestion, wecould then identify the loss as a congestion loss, otherwise, we identify it as a corruption loss.Jain's [11], Wang and Crowcroft [16] and Vegas [6] criteria were devised for congestionavoidance : these schemes try to optimize the network usage while avoiding congestion. Theseschemes are based on the idea that there will be some response from the network to a congestionwindow size change. The response is measured as a function of round-trip times and/orthroughput. Jain bases his approach on changes in the round trip delay as a response tocongestion window variations. Wang and Crowcroft base their approach on the changes inthroughput as response to congestion window variations.4
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Figure 1: Throughput and RTT vs Network loadThe idea of monitoring round trip time changes due to window variations was suggestedby Jain [11]. The idea stems from the relation between the load on the network and theobserved throughput. If the load is low, throughput will be low. Suppose that you putonly one packet at a time on the network. In this case, you send a packet and wait for theacknowledgement. You will spend much of your time waiting. Hence, throughput will be low.On the other hand, if you put many packets in the network, you could almost spend all of yourtime sending without any wait. The throughput will be then high. But, if you put too manypackets, you can overow some intermediary bu�er node, resulting in packet loss. In this case,you have to retransmit the lost packets. Thus, your throughput decreases .So, in some interval, if you increase the load, you will get a signi�cant increase inyour throughput. But, at some point, you reach the limit of the network capability (bu�ers,computation power of the switches : : :). You reach what is called the knee. From this point,if you increase the load, your gain in throughput is smaller than in the previous phase. If youcontinue the load increase, the throughput reaches the cli� where you experience a collapse ofthe performance (\severe" congestion).With the information collected, Jain's criterion (J), the Wang and Crowcroft's Normal-ized Throughput Gradient (NTG) and the Vegas criteria are computed easily.Jain's criterion is as follows [11]:J = (Wi �Wi�1) � (RTTn �RTTn�1)where Wi and Wi�1 are respectively the current and the previous congestion window sizes.RTTi and RTTi�1 are respectively the current and the previous round trip times. J 's sign isused to increase or decrease the window size : if J > 0, the congestion window size is decreased,otherwise it is increased. Jain proved that this approach is valid for deterministic network,i.e., for networks where service time in the switches is not random. This assumption is nottrue for real networks. We did not �nd any work which evaluates Jain's criteria under real5



network conditions. So it was not clear as to what extent Jain's criteria is good/bad underreal network conditions.Wang's Normalized Throughput Gradient NTG is de�ned as [16]:NTG = T (Wi)� T (Wi�1)T (W1)where T (Wi) = Wi=RTTi is the throughput of the connection with the ith window, whose sizeis denoted asWi. Hence, T (W1) is the throughput with the �rst window of size one packet. Thecongestion avoidance scheme is based on evaluating how much throughput increase is obtainedfrom a congestion window increase. With this technique, the TCP connection tries to detectthe attening of throughput increase. Every RTT , the congestion window is increased by onepacket. If the di�erence in the throughput is less than T (W1)2 , then the congestion window isdecreased. Using NTG, if NTG < 12 then decrease the window size.In Vegas [6], Brakmo et al. maintain a variable BaseRTT which is the minimum ofRTT 's measured during the connection. BaseRTT allows the authors to compute the ExpectedThroughput which is given by :Expected throughput = Current Window SizeBaseRTTThe Expected throughput changes only if a packet experiences a smaller RTT than the cur-rent BaseRTT . Every window, Vegas computes the Actual Throughput which is equal toCurrentWindowSizeCurrentRTT (one packet per window is monitored). The di�erence Diff = Expected �Actual is then compared to two thresholds � and � with � < �. If Diff < � then Vegasincreases the congestion window. If Diff > �, Vegas decreases the congestion window size.Otherwise, if � < Diff < � then the congestion window size is left unchanged.MeasurementsTo use above criteria as congestion \predictors", whenever the criterion results in the conclusion\decrease the congestion window size", this means that congestion will occur if you continueto increase the congestion window size. We measured two parameters for each criteria.� Accuracy of Prediction AP computed by dividing the number of times the predictor said\decrease the congestion window" just before a loss occurred by the total number oflosses.� Frequency of Congestion Prediction FCP computed by dividing the number of times thepredictor said \decrease the congestion window" by the total number of predictions.One expects a good predictor to have signi�cantly greater AP, as compared to FCP. That is, alarge accuracy (AP) is not necessarily good, if the predictor always says \decrease the windowsize" (i.e., also large FCP). 6



3 ExperimentsWe establish two simultaneous connections from two di�erent hosts ravel.cs.tamu.edu andverdi.cs.tamu.edu to the same discard server (TCP port 9). We run one set of tests withthe host \Daedalus.crosslink.net" as a destination and another set of tests with the host \all-purpose-gunk.near.net" as a destination. The discard servers on these two machines have areceive window limited to 32 Kbytes. \Daedalus.crosslink.net" is at 13 hops and \all-purpose-gunk.near.net" is at 19 hops.On ravel.cs.tamu.edu, we run TCP-Reno. On verdi.cs.tamu.edu, we run TCP-Renowith a slight modi�cation in the congestion avoidance algorithm. When TCP-Reno leaves theslow-start phase, it increases the congestion window size by mss2cw after each acknowledgementwhere mss is the maximum segment size and cw is the current congestion window size. Onverdi.cs.tamu.edu, we modify the rate of increase: we increase by � � mss2cw with � taking thevalues from 0.5, 1, 2, 3, 5 and 10 in di�erent experiments. With the variation of �, we wantto investigate how a more aggressive increase policy a�ects congestion losses.For each set of measurements, we establish two simultaneous connections from raveland verdi to the same destination and send the same amount of data (1.5 MBytes or 5MBytes). Each set of measurements consists of 25 connections from \ravel.cs.tamu.edu" and\verdi.cs.tamu.edu" to the same destination. When the destination is \daedalus.cs.tamu.edu",the connections are initiated every two minutes: on the average, a transfer of 5 MBytes takesless than 1 minute (on the average 40 s). When the destination is \all-purpose-gunk.near.net",the connections were initiated every 5 minutes: a transfer of 1.5 MBytes takes less than 5minutes (on average 3 minutes).4 Results for the congestion predictorsIn this section, we present two sets of measurements with \all-purpose-gunk.near.net" and\Daedalus.cross.link" as the destinations, respectively. We present the Accuracy of Prediction(AP) and the Frequency of Congestion Prediction (FCP) for Jain's, Wang's and Vegas criteria.The results presented here are averaged over all runs. Recall that ravel is running normal TCP-Reno during all connections, while verdi had a di�erent increment of the congestion windowsize depending on the parameter � taking the values 0.5, 1, 2, 3, 5 and 10.We observe that the Accuracy of Prediction (AP) is typically a little higher than theFrequency of Congestion Prediction (FCP). But, both curves have the same patterns. Thismeans that higher the frequency of congestion prediction, higher is the accuracy of prediction.Note that a random predictor (\coin tossing") with frequency of congestion predictionof x will give an accuracy of prediction of x. For the three predictors we evaluated, AP isonly marginally better than FCP. Thus, these predictors do not perform much better than arandom predictor. 7



In Figures 2 through 7 the plot on left(a) corresponds to host ravel, and plot onright (b) corresponds to host verdi. Figures 2, 3 and 4 present results for Jain, Wangand Vegas, respectively, with the destination being \all-purpose-gunk.near.net". Figures 5,6 and 7 present results for Jain, Wang and Vegas, respectively, with the destination being\Daedalus.crosslink.net". For Daedalus, the measurements are averaged overs runs that use �values 1, 2, 3, 5 and 10.
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(b) Jain's predictor on VerdiFigure 5: Jain's predictor with destination Daedalus.crosslink.net9
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(b) Wang's predictor on VerdiFigure 6: Wang's predictor with destination Daedalus.crosslink.net
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5 Results: losses versus window sizeCongestion was so low from our hosts to \Daedalus.crosslink.net" (4 losses on the averagefor a 5 MBytes transfer) that the frequency distribution of losses can not be used with muchcon�dence. We present here results only for the connection to \all-purpose-gunk.near.net.However, the measurements for \daedalus.crosslink.net" also follow the same general patternas the measurements for \all-purpose-gunk.near.net".Since the connections from ravel.cs.tamu.edu are all using normal TCP-Reno, we aver-aged all the runs (6 x 25 connections) and present a synthesis of the results in one subsection.It must be noted that the 6 sets of measurements were taken at di�erent times of the day.Despite this di�erence, the results with respect the frequency distribution losses FDL or ofthe windows size FDW , or probability of losses versus window size are similar.For \verdi.cs.tamu.edu", we present the results for six values of � in a di�erent sub-sections. Recall that � is the rate of congestion window increase in the congestion avoidancephase on verdi.cs.tamu.edu.5.1 RavelFigure 8 presents (a) the probabilty of packet loss qi for congestion window of size i and, (b)frequency distribution of window size FDW .
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(b) Frequency distribution of Window sizes(FDW)Figure 8: qi and FDWObserve that, for these connections, probability of packet loss is slightly decreasingwhen the congestion window size increases. 11
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(a) Probability Pi 0
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(b) Frequency distribution of losses(FDL)Figure 9: Pi and FDLIn Figure 9, we compute then the probability Pi = LiNi , where Ni is the number ofwindows sent with size i and Li the number of losses detected for windows of size i. Wecomputed this probability only when FDWi is greater then 0:02. When FDWi is too small,the proportion of losses is not signi�cative because there is not enough data.5.2 Verdi : � = 0:5With � = 0:5, verdi host increases the congestion window size slower than ravel host. Thesemeasurements can reveal how a less agressive policy of congestion window increase a�ectscongestion losses. The performance of ravel was similar to that of verdi, in terms of losses andoverall throughput.5.3 Verdi : � = 1With � = 1, verdi host runs TCP-Reno, same as the ravel host. Notice that the verdi curvesare similar to those for ravel, as may be expected.5.4 Verdi : � = 2With � = 2, verdi host increases the congestion window size faster than ravel host. Theperformance of ravel remains similar to that of verdi, in terms of losses and overall throughput.We start to notice valleys on the frequency distribution curves (see Figure 14). This is dueto the fact the congestion window is increased by larger increments. Hence, some values forthe congestion window are unlikely to happen. We will see that this phenomenon is ampli�ed12
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(b) Frequency distribution of windowsizes(FDW)Figure 10: qi and FDW: � = 0:5
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(b) Frequency distribution of losses(FDL)Figure 11: Pi and FDL: � = 0:513
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(b) Frequency distribution of windowsizes(FDW)Figure 12: qi and FDW: � = 1
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(b) Frequency distribution of losses(FDL)Figure 13: Pi and FDL: � = 114



when � increases. We must also notice that coincidentaly, we have \irregularities" on the othercurves corresponding with these valleys : we do not have enough losses or windows at a givensize.
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(a) Probability of packet loss 0
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(b) Frequency distribution of windowsizes(FDW)Figure 14: qi and FDW: � = 2
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(b) Frequency distribution of losses(FDL)Figure 15: Pi and FDL: � = 25.5 Verdi : � = 3With � = 3, verdi host increases the congestion window size much faster than ravel host.The simultaneous performance of ravel remains similar to that of verdi, in terms of losses and15



overall throughput. We can observe that the valley at window size 6 in Figure 16b is ampli�ed,and interestingly enough, the distribution of losses in Figure 17 follows the same pattern.
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(a) Probability of packet loss 0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20 22

F
D
W

Window Size

Verdi
Ravel

(b) Frequency distribution of windowsizes(FDW)Figure 16: qi and FDW: � = 3
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(b) Frequency distribution of losses(FDL)Figure 17: Pi and FDL: � = 35.6 Verdi : � = 5With � = 5, verdi host increases the congestion window size much faster than ravel host. Thephenomenon of valleys is more ampli�ed. Irregularities on the probability and probabilitiescurves coincide with the valleys. 16
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(b) Frequency distribution of windowsizes(FDW)Figure 18: qi and FDW
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(b) Frequency distribution of losses(FDL)Figure 19: Pi and FDL: � = 517



5.7 Verdi : � = 10With � = 10, verdi host increases the congestion window size much faster than ravel host.The window size jumps rapidly around size 12 packets without intermediate size. We can stillnotice the loss pattern follows the window size distribution.
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(b) Frequency distribution of windowsizes(FDW)Figure 20: qi and FDW: � = 10
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(b) Frequency distribution of losses(FDL)Figure 21: Pi and FDL: � = 1018



6 InterpretationWe must provide an explanation of the results above that the probability of packet loss slightlydecreases with window size, and that the congestion predictors in the literature do not seemmuch better than a random predictor.Let us assume, �rst, that the congestion losses are random and independent of ONEuser's action, and second, that the probability of loosing one packet increases with the timespent by the outstanding packets on the network. If we accept these two facts then our resultswould be justi�ed. We will try to justify these two assumptions and then discuss our results.Congestion PredictorsFor the three congestion predictors, it is easy to see that they are based on functions of the formf(RTTi�RTTi�1) or g( 1RTTi � 1RTTi�1 ). The idea is then to detect the change in the round triptime RTT resulting from a change in the congestion window size. But, as the measurementsshow, the action of one user, in our case , sender verdi or ravel is small in comparison to theresult of the actions of all other users. Hence, the change in RTT does not depend on oneuser's action. In this case, the inference from the RTT cannot be reliable. For Wang's NTG,if you change the threshold from 12 to some other number, you will get a di�erent FrequencyCongestion Prediction with an almost equal Accuracy of Prediction. For Vegas, you have onlyto change the thresholds � and �.For Vegas, which is a TCP implementation, we were puzzled that the authors [6] claima throughput enhancement of 40 to 70% and a di�erent team [2] con�rmed an enhancementof at least 20% in throughput over TCP-Reno. But Vegas contains other enhancements (re-transmission schemes) than the congestion avoidance scheme. The authors do not seem tohave evaluated the contribution of the new congestion avoidance scheme to the performanceimprovement.Packet Loss Probability and Window SizeThe congestion losses occur as the result of the tra�c generated by many users. Let us considerthat the bottleneck stays at the same node during one connection. We can easily argue that :� the set of users with who we share the bottleneck varies every RTT� the overall load variation is almost independent of ONE user's actions� ONE user's load variation is negligible in regard to the overall load variationSince there is no synchronization of the users, congestion losses will occur randomly. In [5],Bolot reported random losses on his probe packets. Even if we know the exact queue size19



at the bottleneck at the time we want to send the packets, the randomness and speci�callythe burstiness of the tra�c makes it di�cult to adjust the window size with some guaranteeto avoid congestion losses. Given a period of time t, there is a non null probability that acongestion loss will occur on the path. And this probability will increase with duration t of\observation".Now, we can argue that the time for a window of n > 1 packets takes more time totraverse a network than a single packet. Hence, the probability to loose at least one packet islarger. But the probability Pi increases very slightly with the window size increase due to thefact that the time to traverse the network for n back to back packets is not proportional withn. This is due to the pipelining e�ect.But why is the probability qi of loosing ONE packet slightly decreasing with windowsize ? This comes from the relation between qi and Pi : qi = 1 � (1 � Pi) 1i and from thefact that Pi increases with the window size very slowly. Suppose that 10% of the windowsexperience congestion. But, since the packets are staggered by the network, we do not loose allof the packets of a window which experiences congestion. Now, suppose we have 100 packetsto send. In a �rst scenario, we send windows of size 2. In this case, we would loose at least 5packets on the average. Now, if we send windows of size 10, only one window would experiencelosses on the average. 10 back to back packets do not take �ve times longer to traverse thenetwork than 2 back to back packets. And since, the packets are staggered, there will be a lowprobability that I loose a burst of 5 packets (under the assumption of moderate congestion).Hence, the probability of loosing one packet is small with windows of size 10 than with size 2.One can argue also that if the congestion window reaches high values, this means that,temporarily, the conditions on the network are better (less congestion losses).7 ConclusionWe investigated the impact of congestion window sizes on the congestion loss rate. For ourconnections, we found that the losses almost do not depend on the congestion window size.Also, the congestion loss rate decreased slightly when the congestion window size increased.The congestion losses seem independent of ONE user's actions. Indeed, the tra�c generatedby a user is negligible in regard with the total tra�c induced by all the users who have toshare the network.For the congestion predictors, Jain's criterion, Wang's criterion and Vegas's criterionseem to be inadequate congestion predictors. They cannot be used to \diagnose" a loss.These results need to be veri�ed with a more exhaustive set of measurements. Weare trying to show analytically the same results. In the meantime, we plan to implement ontop of Reno, the TCP Vegas congestion avoidance scheme alone to verify the impact on theperformance without the retransmissions schemes introduced by Vegas.20
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