
TCP Enhancements for Heterogeneous Networks1

Stephen M. West Nitin H. Vaidya

Department of Computer Science
Texas A&M University

College Station, TX 77843-3112
Phone: (409) 845-0512

E-mail: {swest, vaidya}@cs.tamu.edu

Technical Report # 97-003

April 9, 1997

1 Research reported is supported in part by Texas Advanced Technology Grant 009741-052-C
(also known as 999903-052).

2

Abstract

Heterogeneous networks are composed of a mixture of wired and wireless links. Current
transmission control protocol (TCP) implementations have been designed to work well in
networks made up exclusively of wired links. In this environment, error rates are very low and
packet losses may be attributed almost entirely to network congestion. The proper response for a
TCP sender when packets are lost in this situation is to decrease throughput in order to prevent
the network congestion from becoming more severe. Unlike wired links, wireless links often have
significant error rates, and therefore the assumption that all losses are due to congestion is no
longer valid for heterogeneous networks. Since current TCP implementations are unable to
distinguish between wireless and congestive losses, they use a conservative approach and still
assume that all losses are due to congestion. This approach can often cause unnecessary
reductions in throughput, and may result in lower goodput due to retransmission of packets that
have already been successfully received. The focus of this project has been to review in more
detail what packet loss situations cause TCP to perform poorly and how wireless and congestive
losses may be differentiated in order to improve TCP’s performance. The test set-up for the
project consisted of three personal computers running FreeBSD with the first PC acting as a fixed
host, the second as a base station, and the third as a mobile host. The fixed host and base station
were connected by a LAN, and the base station and mobile host were connected by wireless
network cards. Single error and burst error situations were created on the wireless link using a
Poisson-distributed bit error model. Results such as throughput and goodput were then measured
using a packet filter at the mobile host and a set of customized TCP trace code at the sender.

3

Table of Contents

1.0 Introduction to The Problem...4
1.1 Overview of The Project and Paper..4

2.0 Background and Summary of Related Work..5
2.1 Basic TCP Functionality..6
2.2 TCP with Congestion Control..6

2.2.1 TCP Tahoe...7
2.2.2 TCP Reno...9

2.3 End-to-End Improvement Methods...10
2.3.1 TCP New-Reno..10
2.3.2 Selective Acknowledgments (SACKS)..11
2.3.3 Explicit Loss Notification (ELN)...12

2.4 Link-Layer Improvement Methods...12
2.5 Split Connection Improvement Methods..13
2.6 TCP-Aware Link-Layer Improvement Methods...14
2.7 SCPS-TP Improvement Methods...15

3.0 The Partial Acknowledgment Protocol..16
3.1 Expected Network Topology...17
3.2 ACKP During Connection Establishment...17
3.3 Base Station Operation..17
3.4 Operation at The Sender..19

4.0 Implementation Details..19
4.1 Addition of Snoop Functionality to FreeBSD...20
4.2 Partial Acknowledgment Implementation...21
4.3 Bit Error Model Implementation..22
4.4 Measurement Methods..23
4.5 Test Sender Program...24
4.6 Wireless Configuration Program..24

5.0 Experimental Results...25
5.1 General Results..25
5.2 Wireless LAN Performance...28

5.2.1 Bit Errors..28
5.2.2 Burst Errors..30

5.3 Performance for a Low Bandwidth Wireless Network..31
6.0 Conclusions...33
7.0 Future Work..33
8.0 Acknowledgments...34
9.0 References...35
Appendix A - FreeBSD Raw Data Samples...A-1
Appendix B - Configuration and Test Programs...A-6
Appendix C - FreeBSD Snoop and Error Model Upgrades..A-29
Appendix D - FreeBSD Measurement Upgrades..A-47
Appendix E - FreeBSD Partial ACK Upgrades..A-53

4

1.0 Introduction to The Problem

Most of the reliable transport layer protocols in existence today were designed when networks
were composed solely of wired links. In the time period since these protocols were initially
designed, networks have begun to shift from traditional wired systems to heterogeneous systems
composed of a mixture of wired and wireless links. Recent annual growth rates in wireless
applications have been between 35 and 60 percent per year, and it is anticipated that over 100
milli on users will have some version of wireless personal communications system (PCS) by the
end of the century [1]. As this trend towards wireless systems continues, it becomes more and
more important to insure that the transport layer protocols being used are tuned to perform well
both in the traditional wired networks and in heterogeneous networks.

Reliable transport layer protocols like TCP (Transmission Control Protocol) which are in use
today have been specifically tuned to work well in traditional wired networks. In this
environment, error rates are well below one percent and packet losses may be attributed almost
entirely to network congestion[2]. The proper response for a TCP sender when packets are lost
in this situation is to decrease throughput in order to prevent a congestive collapse in which useful
network throughput grinds to a halt. Unlike traditional networks, wireless systems may have
intermittent periods of high error rates[3]. Heterogeneous networks therefore have a mixture of
congestive losses and wireless losses due to errors. Existing TCP implementations are unable to
distinguish between these two types of losses, so they use a conservative approach and assume
that all losses are due to congestion. This approach ensures proper response to congestion, but
can result in congestion prevention measures being invoked unnecessarily when errors occur on a
wireless link. These measures in turn may cause reductions in throughput, and may result in
retransmission of packets that have already been successfully received.

Two different classes of solutions have been proposed to improve the performance of transport
protocols such as TCP for bulk data transfers within heterogeneous networks. The first class
adds functionality to existing transport protocols so that senders are able to distinguish between
congestive and wireless losses. The second class attempts to hide wireless losses from the TCP
sender. Hiding the losses may be accomplished in several ways including the use of split
connections, reliable wireless link-layers, and forward error correction. Specific implementations
of both classes along with their advantages and disadvantages will be covered in more detail in
section two of the paper.

1.1 Overview of The Project and Paper

The work performed for this project and presented in the rest of the paper can be divided into
three major stages. The first stage which is presented in section two of the paper involves
understanding how packet losses due to errors or congestion affect the performance of existing
TCP implementations. Also, a review of some of the recently proposed methods for improving
TCP in heterogeneous networks is presented. TCP was chosen for this study because it is widely

5

used, has many characteristics that are typical of a reliable transport layer protocol, and it is easy
to obtain TCP source code for experimentation. Also, because of the widespread deployment of
TCP, it is likely that in the near term incremental upgrades to TCP will be favored over entirely
new transport protocols.

The second stage of the project involved creating an environment that would allow Dr. Vaidya
and those of us working with him to modify the TCP/IP protocol stack, run experiments with the
modified code, and measure the results. This stage, which is highlighted in section four of the
paper, took the most time because it required a detailed understanding of certain portions of the
TCP/IP protocol stack and the FreeBSD operating system. A set of three personal computers
were used as the test system with one functioning as a fixed (wired) host, another as the base
station (wired to wireless router), and a third as the mobile (wireless) host. The abili ty to
generate controlled bit error and burst error situations was then added to the operating system
kernel on these machines. Next, methods were devised to obtain performance metrics at the
sender and receiver. Then, application programs were written to transfer test data. Finally, a
configuration program was written which allowed the error model parameters and the TCP
enhancement features to be changed inside the kernel without recompili ng the kernel’s source
code.

The third stage of the project involved making modifications to the TCP/IP portion of the
FreeBSD kernel in order to improve performance. The changes made to the kernel are
highlighted in section four of the paper and discussed in detail in the appendices. The first step
involved taking an implementation of the Berkeley snoop protocol (see section 2.6) which was
designed to run on the BSDI operating system and porting it over to the FreeBSD operating
system. This provided a useful way to become familiar with the FreeBSD kernel and to learn
techniques others had used when adding enhancements to TCP. Also, since the Berkeley snoop
protocol offers a significant performance improvement over existing TCP implementations on
heterogeneous networks, it served as a good baseline for comparison when testing future
enhancements. After the snoop protocol was functioning properly, a partial acknowledgment
protocol [6] proposed by Dr. Vaidya and those of us working with him was implemented. This
protocol, which is covered in the third section of the paper, is intended to be used at base stations
that are already running snoop. Its performance is reviewed in section five of this paper.

2.0 Background and Summary of Related Work

This section first takes a closer look at basic TCP functionality. Then it investigates how TCP
reacts to congestion and why this reaction can result in poor performance when errors are
interpreted as congestion. Finally, it covers various approaches which have been proposed to
improve the performance of TCP in heterogeneous networks. All of these new proposals are
backwards compatible and many of them use options negotiation to determine whether the
enhancements will be used or not. If either the sender or the receiver does not understand the
option, the enhancement is not used.

6

2.1 Basic TCP Functionality

TCP was designed to function as a connection oriented transport layer protocol capable of
operating on top of an unreliable network layer which may lose packets or deliver packets out-of-
order. It in turn delivers a reliable, sequenced stream of bytes from one end of the connection to
the other. TCP obtains reliabili ty through the use of positive acknowledgments (ACKs) with
retransmission. TCP also uses a variable sized sliding window to accomplish flow control and to
allow efficient utili zation of network bandwidth. The receiver dictates the usable window size so
that it can regulate the flow of data from the sender in a manner that doesn’t overfill i ts buffers.
The sender is then able to transmit up to a full window’s worth of packets before requiring an
acknowledgment. The window size needed to make efficient use of available bandwidth increases
with the bandwidth of the connection, and the delay in the path. The available bandwidth
multiplied by the delay is referred to as the delay-bandwidth product.

The acknowledgments used by TCP are cumulative and provide the sender with the sequence
number of the next packet that the receiver expects. ACKs are only sent in response to a packet
being received rather than at specific intervals. Thus, if no packets are arriving, no ACKs will be
sent. Cumulative acknowledgments are efficient in the sense that an ACK does not have to be
sent for every packet received. They are also ambiguous because they do not explicitly inform the
sender of any packets which have been lost or damaged. Thus, in Figure 1 below, when packet
one arrives, an ACK with a sequence of 1461 will be sent. When packets three and four arrive, an
ACK with a sequence of 1461 will be sent again. The sender can not tell from these cumulative
acknowledgments that packet three and four were successfully received.

Figure 1 - Receiver’s Window (Packet 2 Lost)

Packet 1 Packet 3 Packet 4

1 1461 43812921

The time between when a packet is sent and when its ACK arrives back at the sender is called the
round-trip-time (RTT). The RTT is measured by TCP and used to calculate a value for the
retransmission timer. The retransmission timer is set when a packet is transmitted and if a time-
out occurs at the sender before an ACK for the packet is received, the packet is sent again. This
feature ensures reliability because it allows TCP to detect losses and recover from them.

2.2 TCP with Congestion Control

This subsection covers the two TCP versions which introduced congestion control measures and
are prevalent in the Internet today. While they handle congestion in a way that results in network
stabili ty, their reaction to congestive losses can result in less than optimal throughput even in the

7

absence of wireless errors. Their throughput becomes even lower with a mixture of congestive
and wireless losses since they can not distinguish between the two cases.

2.2.1 TCP Tahoe

TCP Tahoe refers to a version of TCP introduced in the BSD operating system in 1988. This was
the first TCP implementation to include the congestion control mechanisms and round-trip-timing
enhancements proposed by Van Jacobson in his paper “Congestion Avoidance and Control” [2].
These new algorithms were introduced in response to congestive collapses which began occurring
on the Internet in 1986 and caused throughput to drop in some cases by a factor of a thousand.
The goal of these mechanisms is to ensure that a TCP connection is able to reach a state of
equili brium and that the connection obeys the “conservation of packets principle” once it is in
equili brium. This principle states that once a connection has reached equili brium, it should only
transmit a packet on the network when it receives feedback indicating that a packet has left the
network. The connection reaches equili brium by probing the network for available bandwidth and
adjusting a newly proposed sender congestion window. In TCP Tahoe, the window used by the
sender is taken as the minimum of the receiver window and this new congestion window.

The first of the mechanisms added by TCP Tahoe is Slow-Start. This algorithm is invoked when
a connection is first established or anytime a packet loss is detected. Its purpose is to ensure that
the connection actually reaches equili brium. It sets (reduces) the sender’s congestion window to
a single packet in size. In the Slow-Start phase, the sender’s congestion window is increased by
one packet for each ACK received. Slow-Start is somewhat of a misnomer since the congestion
window is actually being expanded exponentially each round-trip-time. Without Slow-Start, a
new connection will send an entire window of data all at once which may overwhelm intermediate
gateways and lead to a cycle of dropped packets and retransmission.

The second mechanism added by TCP Tahoe is an improved method for round-trip-time
estimation. The earliest versions of TCP used a smoothed round-trip-time estimator which was a
simple low-pass filter with a constant RTT variance factor (beta) of two. The problem with this
algorithm is that it adapts slowly to large changes in round-trip-times and this can cause the RTT
to be underestimated. This in turn will cause the retransmission timer to expire even though the
original packet has not been lost. The packet will then be sent a second time with the first packet
still i n the network. This wastes bandwidth and can lead to congestion because it violates the
conservation of packets requirement. The new RTT algorithm proposed by Jacobson uses a
simple estimate of the round-trip-time variance rather than a constant beta factor of two. This
allows it to more rapidly adjust to large timing changes and prevents erroneous timer expirations.
Jacobson also showed that for proper stabili ty an exponential backoff should be used when a
retransmission timer expires and the packet is resent.

The third mechanism added by TCP Tahoe is Congestion-Avoidance. The purpose of this
algorithm is to ensure that a sender cuts its throughput in half when a loss occurs since the loss is
assumed to be due to congestion. Although Congestion-Avoidance is a separate concept from
Slow-Start, they are implemented as a single procedure in practice. When a loss occurs, a

8

threshold variable called ssthresh is set to half of the congestion window or receiver’s window -
whichever is smaller. Then the congestion window is set to one to initiate Slow-Start. The
connection stays in the Slow-Start phase and increases the congestion window by one packet for
every ACK received until the congestion window reaches ssthresh. Then the connection enters
the Congestion-Avoidance phase in which it increases the congestion window by one packet for
each full window of data successfully transmitted and acknowledged. This approach results in
exponential decreases and linear increases.

The final mechanism introduced in TCP Tahoe was Fast-Retransmission. If a packet arrives out-
of-order (i.e. before the packet ahead of it in the sender’s transmission sequence) it means that
either it took a faster path or the packet before it was lost. The Fast-Retransmission algorithm
requires the receiver to immediately send an ACK when an out-of-order packet is received. When
packet one arrives in Figure 2 below, an ACK will be sent for sequence number 1461. Packets
three, four, and five are considered out-of-order packets and because ACKs are cumulative, the
sequence number acknowledged in each case will be 1461. A TCP Tahoe sender equipped with
FAST-Retransmission will i nterpret three duplicate ACKs in a row as an indication of a packet
loss. It will retransmit the missing packet and invoke the Slow-Start and Congestion-Avoidance
measures. The algorithm is called Fast-Retransmit because it allows the sender to recover from a
packet loss without waiting for the retransmission timer to expire.

Figure 2 - Receiver’s Window (Duplicate ACKs)

Packet 1 Packet 3 Packet 4

1 1461 43812921

Packet 5

5841

Advantages of Tahoe

Tahoe has the most basic congestion and loss mechanisms of all the modern TCP
implementations. However, the Fast-Retransmit algorithm introduced with TCP Tahoe may
provide the single most significant performance improvement when packets are lost due to
congestion. Fast-Retransmit is often able to detect packet losses in a matter of several
milli seconds on a LAN and within roughly a hundred milli seconds on a WAN. Without Fast-
Retransmit, the sender is forced to wait for a retransmission timer to expire. Since these timers
are designed to provide a relatively loose upper bound, they often have values on the order of
several seconds for even the fastest of LANs. Therefore, Fast-Retransmit can save on the order
of several seconds each time a loss occurs and this translates into enormous gains in throughput.

Disadvantages of Tahoe

While Fast-Retransmit makes Tahoe perform drastically better than a TCP implementation whose
sole means of loss detection is retransmission timers, it obtains significantly less than optimal
performance on high delay-bandwidth connections because of its initiation of Slow-Start (which

9

TCP Reno discussed below avoids). Also, in the case of multiple losses within a single window, it
is possible that the sender will retransmit packets which have already been received[7].

2.2.2 TCP Reno

TCP Reno refers to a version of TCP introduced in the BSD operating system in 1990. It has all
of the features of TCP Tahoe plus a new algorithm called Fast-Recovery which builds on the Fast-
Retransmit mechanism. With Fast-Recovery, three duplicate ACKs are still i nterpreted as a
packet loss due to congestion, but the fact that these duplicate ACKs made it to the sender means
congestion is moderate rather than severe. If congestion were severe, the majority of the packets
would be lost and it is unlikely that three duplicate ACKs would be received. Therefore, the
sender retransmits the lost packet, and invokes the Congestion-Avoidance algorithm, but does not
initiate Slow-Start. This effectively causes the sender to cut its throughput in half without
performing the initial ramp up.

In TCP Reno, the Fast-Recovery phase lasts from the time the loss is detected, until an ACK for
the retransmitted packet is received. The hardest part of the algorithm to understand is a
temporary inflation of the congestion window which occurs while in the Fast-Recovery phase.
Each duplicate ACK received at the sender indicates that another packet has left the network and
according to the conservation of packets concept, a new one may be introduced. Therefore, the
congestion window which was cut in half upon entering the Fast-Recovery phase is immediately
increased by three packets to account for the three initial duplicate ACKs. Then, each subsequent
duplicate ACK causes the congestion window to increase by one packet in size. When the ACK
for the retransmitted packet arrives, this temporary inflation is removed and the congestion
window is again half the size it was prior to the packet loss. This temporary window inflation
allows the connection to continue to make progress by maintaining the clocking relationship
between the ACKs coming back and the data being sent. Without this temporary inflation, the
congestion window would fill up, and the connection would stall.

Advantages of Reno

The key advantage to TCP Reno over TCP Tahoe is that it introduces a way to maintain the
clocking of new data with the duplicate ACKs. This allows TCP to directly cut its throughput in
half without the need for a Slow-Start period to reestablish the clocking between data and ACKs.
This improvement has the most noticeable effect on long delay-bandwidth connections where the
Slow-Start period lasts longer and large windows are needed to achieve optimal throughput. On
a wireless LAN where losses are due to errors, the Slow-Start period is very short, and even the
smallest of congestion windows makes efficient use of available bandwidth.

Disadvantages of TCP Reno

The Fast-Recovery mechanism introduced by TCP Reno handles multiple packet losses within a
single window poorly. This can lead to situations where TCP Reno must wait for a
retransmission timer to expire before continuing and is discussed further in the next section.

10

2.3 End-to-End Improvement Methods

End-to-end improvements attempt to reduce TCP’s susceptibili ty to packet losses without making
changes to any of the intermediate nodes (i.e. routers, and base stations). All upgrades are
performed at the sender and the receiver. In many cases this is desirable because it may be
impossible or impractical to modify the intermediate nodes. This is especially true when base
stations are owned by a service provider, and the mobile and fixed hosts are owned by the user.
These approaches do not sacrifice end-to-end reliabili ty and require no state maintenance at
intermediate nodes. A further advantage is that they provide the same performance improvements
regardless of whether the sender is the mobile host or the fixed host.

2.3.1 TCP New-Reno

TCP New-Reno is an experimental version of TCP Reno proposed by Hoe[8] which makes a
slight modification to the Fast-Recovery algorithm of TCP Reno. Unlike the Reno Fast-Recovery
phase which ends when the resent packet is acknowledged, the New-Reno Fast-Recovery phase
ends when all of the data is acknowledged which was outstanding at the time the loss was
detected. In the case of a single packet loss, Reno and New-Reno will perform identically.
However, if two or more packets are lost in a single window of data, Reno will i nvoke Fast-
Recovery multiple times while New-Reno will handle the multiple losses with a single Fast-
Recovery phase.

Advantages of TCP New-Reno

Avoiding multiple executions of Fast-Recovery in rapid succession allows New-Reno to eliminate
two detrimental effects. First, it prevents the connection from shrinking the congestion window
too drastically (i.e. by factors of four or more). This can provide substantial improvements for
high delay-bandwidth paths requiring large window sizes. Second, and more importantly, by not
shrinking the congestion window as drastically, it can eliminate the stalls which often happen to
TCP Reno after two packets are dropped in a single window.

Disadvantages of TCP New-Reno

While TCP New-Reno is capable of handling multiple packet losses in a single window, it is
limited to detecting and resending at most one lost packet per round-trip-time. This deficiency
becomes more pronounced as the delay-bandwidth becomes greater. More importantly, there are
situations where stalls can still occur if packets are lost in successive windows. Also, like all of
the previous versions of TCP discussed above, New-Reno still i nfers that all lost packets are
caused by congestion and it may therefore unnecessarily cut the congestion window size when
errors occur.

11

2.3.2 Selective Acknowledgments (SACKS)

Selective acknowledgments are an idea which has been around for at least a decade, but have seen
a great deal of renewed interest in the past year or two. The main idea with any of the proposed
SACK schemes is to provide the sender with more detailed information about the state of the
receiver than is possible with cumulative ACKs. In 1996, Mathis, Mahdavi, Floyd, and Romanow
proposed the MMFR SACK standard for use in the Internet[9]. This proposal allows a TCP
receiver to send SACK information as a set of options within the TCP header which is
complimentary to the existing TCP ACK. The new option fields indicate the starting and ending
sequence of non-contiguous sets of data existing at the receiver. Depending on the other TCP
options being used by the connection, a maximum of either two or three blocks of data may be
reported by a single ACK. The receiver shown in Figure 3 below has just received packet number
eight and the information sent in the SACK will be: first block = 8761 to 10221, second block =
5841 to 7301, and third block = 1461 to 4381.

Figure 3 - Receiver’s Window (Multiple Losses)

2

1 1461 4381 5841

3 5 7 8

7301 8761 10221

Receivers include SACK information in the TCP header only when duplicate ACKs are sent in
response to the arrival of an out-of-order packet. A new scoreboard matrix is introduced at the
sender to keep track of this SACK data, and a new pipe mechanism is used to track the number of
packets currently in transit (i.e. in the “network data pipe”). SACK performs Fast-Retransmit just
like New-Reno. It enters the Fast-Retransmit phase when a loss is detected, and it exits when all
of the data has been acknowledged which was outstanding when the Fast-Retransmit phase began.

Advantages of SACK

SACK improves upon TCP New-Reno when multiple packets are lost in a single window. The
additional information provided by SACK allows the sender to retransmit multiple lost packets
within a single round-trip-time. New-Reno has to wait for the ACK of the first retransmitted
packet to determine which (if any) other packets have been lost [7].

Disadvantages of SACK

SACK still makes no attempt to distinguish between losses due to congestion and errors on the
wireless link (it just decreases the effects losses have on performance). Also, it seems that with
the currently proposed implementation of SACK, there are still situations where stalls could occur
if packets are lost in very specific patterns.

12

2.3.3 Explicit Loss Notification (ELN)

Explicit Loss Notification is an end-to-end approach which allows the TCP sender to distinguish
between wireless and congestive losses. Currently, ELN is not considered a viable protocol
because there is no completely reliable method to inform the sender which losses are due to
congestion and which are due to errors on the wireless link. Experimental versions of ELN
operate on the assumption that the receiver (or an intermediate node) is able to inform the sender
of the reason for packet losses. When a packet is lost due to congestion, the receiver sends back
its typical duplicate ACKs to invoke Fast-Recovery at the sender. But, when a packet must be
resent due to errors, the duplicate ACK is sent with a new option field which denotes an error
related loss. This causes the sender to retransmit the packet without taking congestion avoidance
measures. Also, if the ELN option is set, the sender may retransmit the lost packet immediately
rather than waiting for two more duplicate ACKs.

Results for an ideal ELN scheme are given in [3]. The Mobile Computing Group at Texas A&M
is considering one approach which may be realistically used to implement a form of ELN. Packets
lost due to congestion will never make it to the receiver. However, packets which have errors
introduced on the wireless link may make it to the receiver and be discarded due to an improper
checksum. With the proposed approach, the TCP receiver would examine packets which pass the
IP checksum but fail the TCP checksum. Since the IP checksum was valid, the receiver knows
that the source and destination addresses and port numbers are correct. Other TCP header fields
would be examined to ensure they are plausible. Then a duplicate ACK with the ELN option
would be returned to the sender to force a retransmission of the packet with the error.

Advantages of ELN

A TCP sender equipped with the ELN upgrade is capable of distinguishing between congestive
and wireless losses. If the loss notification scheme is accurate, congestion prevention measures
will only be taken when appropriate.

Disadvantages of ELN

There is no known scheme that distinguishes perfectly between congestive and wireless losses
which does not require modification of intermediate nodes. The method proposed above falls
short of perfect differentiation because it will consider packets which do not reach the receiver’s
TCP layer as being lost due to congestion.

2.4 Link-Layer Improvement Methods

Reliable wireless link-layer protocols comprise the second class of TCP improvement schemes for
heterogeneous networks. Each of the link-layer improvement methods attempts to make the
wireless link appear like a slower, reliable (i.e. low error rate) link to the TCP sender. Reliabili ty
can be accomplished using forward error recovery (error corrective coding), automatic repeat
requests (ARQ) for lost frames, or a combination of both. Besides the method used to provide

13

reliabili ty, link-layer protocols also differ in how they deliver frames to the layers above them.
Some attempt an in-order delivery of frames while others allow out-of-order delivery.

Advantages of Link-Layer Protocols

Typically, link-layer protocols require little or no state maintenance at the base station (depending
on whether the link-layer provides in-order delivery). This allows link-layer solutions to function
efficiently during handoffs between base stations. Also, link-layer protocols do not interfere with
the end-to-end semantics of TCP, so a base station or link failure will not result in lost data.
Link-layer protocols are also independent of the upper layers, so the gains they achieve can be
used for other transport layer protocols besides TCP. Finally, reliable link-layer scheme can be
optimized for each type of wireless connection.

Disadvantages of Link-Layer Protocols

Reliable link-layer protocols perform local retransmissions between the base station and the
mobile host. It has been shown in [3] and [4] that these retransmissions at the link-layer can
interfere with TCP’s retransmission mechanisms when error rates become significant. This
interference is due to competition between the retransmission timers at the two different layers,
and inadvertent invocation of Fast-Retransmit by link-layer schemes which allow out-of-order
frame delivery. It could also be argued that providing reliable, sequenced delivery of frames
moves the functionality of several layers down to the link-layer.

2.5 Split Connection Improvement Methods

Split connection approaches make up a third class of TCP enhancement schemes for
heterogeneous networks. Split connection protocols distinguish errors on the wireless link from
congestive losses by dividing the end-to-end connection into separate wireless and wired
connections. An unmodified version of TCP may be used between the fixed host and the wireless
host. A version of TCP customized for wireless connections, or a new transport protocol
specifically designed for wireless communications is then used between the base station and
mobile host. The base station is the focal point for these protocols. It must take connection
requests from either the fixed host or mobile host and establish the second connection on behalf of
the requester. While the two hosts are communicating, the base station is responsible for
transferring data between the wireless and wired connections. It must also move this
responsibili ty to a new base station in a manner that is transparent to both ends when a handoff
occurs. The most well known of the split connection approaches is indirect TCP (I-TCP)
developed at Rutgers[10] [12]. It uses TCP for both connections.

Advantages of Split Connections

Because split connection protocols completely separate wireless and congestive losses, they are
able to obtain very good throughput.

14

Disadvantages of Split Connections

Split connection approaches require hard state maintenance at the base station. This means that
handoffs will require a good deal of information exchange between the old and new base station
serving the connection. Split connections also violate the end-to-end reliabili ty of TCP because
two connections are involved. Failures at the base station or along the transmission path can
result in information losses because the sender receives an ACK before the data truly makes it to
the ultimate destination. Finally, maintaining two separate connections creates a good deal of
overhead at the base station because each piece of data must traverse the entire protocol stack
twice. This could become a problem if many connections are serviced by a base station.

2.6 TCP-Aware Link-Layer Improvement Methods

The snoop protocol developed by Berkeley is an example of a TCP-Aware link-layer protocol [3].
It is a hybrid solution which uses concepts from the link-layer schemes and the split connection
approaches. Unlike the other solutions discussed, the basic snoop protocol is specifically
designed for data transfers from the fixed host to the mobile host. To improve the performance of
data transfers in the other direction a NACK (negative acknowledgment) may be used between
the mobile host and the base station. The basic snoop protocol is also unique from the others
because it only requires modifications at the base station.

A snoop base station caches each packet received on the wired link and then forwards it to the
mobile host. The snoop agent then watches the ACKs being returned from the mobile host to the
sender. The agent maintains round-trip-time estimates for the wireless link and performs local
retransmission if an ACK is not received before the timer expires. A much finer timer is used at
the base station than at the TCP sender so that multiple local retransmissions are possible before
the sender times out. Also, a single duplicate ACK for a packet cached at the base station results
in a local retransmission. The base station is able to interpret a single duplicate ACK (rather than
three) as a packet loss because the wireless link delivers packets in order.

The key to snoop is that unlike other link-layer protocols, it maintains state which it is able to use
to determine whether a packet was lost due to congestion (before reaching the base station), or
received at the base station and subsequently lost due to errors on the wireless link. This
information is used to shield the sender from duplicate ACKs due to wireless losses, and to pass
through duplicate ACKs caused by congestive losses. The state maintained by snoop also allows
it to recognize TCP retransmissions so that it will not compete with them.

Advantages of the Snoop Protocol

The fact that snoop only requires modifications to the base station can be an advantage if it is
desirable to change the base station without modifying any of the hosts within the Internet. More
importantly, throughput improvements provided by snoop are better than any of the other
experimental schemes. This is because the base station is able to accurately distinguish between
congestive and wireless losses so congestion avoidance mechanisms at the sender are invoked

15

only when appropriate. Finally, the state maintained at the base station is soft in the sense that it
can be lost without affecting the reliability of TCP.

Disadvantages of the Snoop Protocol

Although the state maintained at the base station by the snoop agent is soft, it can require a
significant amount of memory, and it does complicate handoffs. Perhaps snoop’s greatest
disadvantage is that it requires the ACKs to follow the same path as the data in order to shield the
sender from losses. This is not a problem for network topologies containing a single wireless path
which every packet must traverse. It does become a problem when multiple wireless paths are
possible, or with asymmetric links where the sender uses a high bandwidth, high delay path (such
as a satelli te link) to send the data and the receiver uses a low bandwidth terrestrial path to return
the ACKs. Finally, snoop has no method of informing the sender when the base station
experiences a period of high errors and this could lead to unnecessary timer expirations which
invoke congestion avoidance procedures.

2.7 SCPS-TP Improvement Methods

The Space Communications Protocol Standards - Transport Protocol (SCPS-TP) is a set of
extensions to TCP developed for use in satelli te networks by The MITRE Corporation, Gemini
Industries, NASA, and the Department of Defense [11]. Although some of the concepts
introduced with this set of standards are satelli te specific, there are number that can be used to
improve the performance of TCP on any wireless link that experiences errors. SCPS-TP
introduces a default assumption for losses which is set differently depending on the specific
network environment. Unlike current versions of TCP which always use the default assumption
that losses are due to congestion, SCPS-TP may use the default assumption that losses are due to
errors. This makes sense in networks known to have high error rates and little or no congestion.
The default assumption can also be temporarily changed during periods of high error rates so that
congestion avoidance measures are not unnecessarily invoked.

SCPS-TP uses a selective negative acknowledgment (SNACK) option. The goal of this option is
to provide the sender with a more complete picture of which packets have been lost. The SNACK
option serves the same purpose as the SACK option discussed previously, but its implementation
is completely different. Since the bandwidth available to ACKs on a satelli te is often very limited,
the SNACK option conveys lost packets in a way that uses fewer bytes and requires fewer ACKs
to generate a retransmission.

SCPS-TP also uses a different method of congestion avoidance which is often referred to as TCP
Vegas. The other standard TCP implementations discussed above find an optimal operating point
by linearly increasing their bandwidth until a loss occurs. Since any losses severely degrade
throughput on high delay-bandwidth links, TCP Vegas attempts to avoid this pattern of ramping
up throughput until losses occur. It does this “by increasing its congestion window more slowly
than standard TCP and by measuring the achieved throughput gain after each increase to detect
the available capacity without incurring loss.” [11]

16

Advantages of SCPS-TP

SCPS-TP achieves a very significant performance improvement over standard TCP when errors
are present in a high delay-bandwidth wireless environment. SCPS-TP combines the benefits of a
number of different techniques. First, it is able to distinguish between congestion and wireless
losses. Then, it combines this abili ty with the SNACK option so that it efficiently retransmits the
lost packets. SCPS-TP is also an ideal candidate for the wireless protocol used in a split
connection.

Disadvantages of SCPS-TP

The changes made as part of SCPS-TP are quite significant and so most fixed hosts will probably
not be equipped to take advantage of these upgrades. The authors indicate in [11] that the TCP
Vegas congestion control mechanisms are very sensitive to round-trip-times and require a
significant amount of tuning.

3.0 The Par tial Acknowledgment Protocol

The partial acknowledgment (ACKP) protocol is a new protocol that was proposed in [6] by the
Mobile Computing Group at Texas A&M and implemented and tested as part of this project.
Previous research efforts at Texas A&M focused on the proposal and simulation of an Explicit
Bad State Notification (EBSN) protocol [5]. The EBSN protocol was designed to send a
notification from the base station to the receiver when the base station was experiencing high
error rates (deep fades). This notification then caused the receiver to revise its retransmission
timer to give the base station more time to make the delivery and lower the likelihood of an
unnecessary time-out/Slow-Start at the sender. Results from the EBSN study indicated that it
effectively prevented unnecessary time-outs and congestion avoidance measures during high
wireless error periods which resulted in performance improvements over plain TCP of 50 percent
on wireless LANs and 100 percent on wide area wireless networks.

The ACKP protocol has been proposed as a means of combining the effectiveness of the snoop
protocol at performing TCP-Aware link-layer retransmissions with the capabili ties of an EBSN-
like protocol which prevents unnecessary time-outs during periods of high error rates on the
wireless link. This combination will maintain the end-to-end semantics of TCP and differentiate
between congestion and wireless losses over a wide spectrum of error conditions.

The central concept behind the ACKP protocol is to further distinguish between congestive and
wireless losses by splitting the acknowledgment mechanism into two parts rather than splitting the
connection in two as with I-TCP and other split connection protocols. The two types of ACKs
used by the protocol are: partial acknowledgment (Ackp) and complete acknowledgment (Ackc).
A partial acknowledgment with the sequence number N informs the sender that packets up to N-1
have been received by the base station. An Ackc is the standard TCP ACK sent by the receiver
which informs the sender that packets up to N-1 have been received. This new protocol requires
upgrades to the base station, and to the sender, but no modifications are required at the receiver.

17

3.1 Expected Network Topology

The ACKP protocol operates between a fixed host and a base station. The basic network
topology that ACKP is designed to work with is shown below. The protocol is flexible and could
be expanded to work with a wireless link in the middle of the connection, wireless links at both
ends of the connection, or a number of other network topologies.

Figure 4 - General Heterogeneous Network Topology

Base StationFixed Host
(TCP Source)

Mobile Host
(TCP Receiver)

Wired Network

3.2 ACKP During Connection Establishment

The ACKP protocol is designed to be compatible with older versions of TCP, but only TCP
versions containing the ACKP upgrades can take advantage of the performance improvements
offered by the protocol. During the connection establishment phase, the sender indicates whether
it is equipped to handle the ACKP protocol. Newer versions of TCP containing the ACKP
upgrade will set a TCP header option field to indicate they can take advantage of partial
acknowledgments. Older TCP versions which are unaware of ACKP will omit this option field.
If the base station receives the connection request with the option included, it knows that the
sender is equipped to handle partial acknowledgments. If the option field is omitted, the base
station will not send any partial acknowledgments.

3.3 Base Station Operation

The ACKP protocol is designed to work at a base station that is already equipped with the snoop
protocol since it relies on state information maintained by the snoop agent. When the ACKP
protocol is executed at the base station, the snoop buffer is scanned to determine the packet with
the highest contiguous sequence number. A new variable called lastackp is then compared to the
sequence number of the packet. If it is less than the sequence number of the packet, an Ackp

would provide the sender with new information. If lastackp is equal to the sequence number,
there is no need to send an Ackp because the sender already has the latest information from the
base station. The partial acknowledgment protocol is not run immediately after receiving a
packet. Instead, a delayed ACK timer is used so that under normal circumstances (i.e. in the

18

absence of errors) an Ackc will be received before the timer expires. This will drastically reduce
the number of Ackp packets sent which in turn allows more efficient use of the wired network.

When data is received at the base station, one of several scenarios can occur. In the first scenario,
an in-order packet arrives and snoop caches the packet and starts a local retransmission timer.
This retransmission timer also functions as the delayed ACK timer for the ACKP protocol. If the
timer expires before an Ackc is obtained from the receiver, snoop will retransmit the packet. The
partial acknowledgment protocol will then scan through the snoop buffer and determine that
lastackp is less than this packet’s sequence number, so an Ackp will be returned to the sender
informing it that the packet was received by the base station, but errors on the wireless have
prevented normal delivery. The lastackp variable will also be updated. In figure 5 below, the
Ackp sent by the base station would be for packet number four.

Figure 5 - ACKP Scenario 1

Packet 1 Packet 3

1 1461 43812921

Packet 2

Packet 4

The second scenario involves an out-of-order packet arriving at the base station. The packet may
be out-of-order for two reasons: it took a faster path between the sender and the base station, or
some packets ahead of it were lost due to congestion. The snoop agent will again buffer the
packet and start a local retransmission timer. If the timer expires before an Ackc is obtained from
the receiver, snoop will retransmit the packet. The partial acknowledgment protocol will then
scan through the snoop buffer. If the other packets have arrived at the base station, this packet
will have the highest contiguous sequence number and the same steps will be followed as in the
first scenario. If the packets have been lost due to congestion, the packet with the highest
contiguous sequence number will be equal to lastackp and lower than this packet’s sequence
number, so no Ackp will be sent. This will cause the sender to take congestion avoidance
measures just as it normally would. In the figure below, no Ackp will be sent in response to the
arrival of packet four because packets two and three have been lost due to congestion.

Figure 6 - ACKP Scenario 2

Packet 1

1 1461 43812921 Packet 4

The third scenario involves the receipt of a packet which fill s a hole in the packet buffer at the
base station. This situation will normally occur when a packet has been lost due to congestion
and then retransmitted. The same initial steps are followed as above. If the retransmission timer

19

expires, the snoop buffer is scanned, and a packet with a sequence number above this one will be
the packet with the highest contiguous sequence number. An Ackp will be sent for this packet
with the highest sequence number and lastackp will be updated. In figure 7 below, an Ackp will
be sent for packet four if the partial acknowledgment protocol is invoked in response to the
arrival of packet three.

Figure 7 - ACKP Scenario 3

Packet 1

1 1461 2921

Packet 2 Packet 4

Packet 3

3.4 Operation at The Sender

A TCP sender equipped with the ACKP upgrade is able to distinguish an Ackp from an Ackc by
whether or not the packet has the partial acknowledgment option set. ACKs with the option set
indicate to the sender that all packets up to but not including the sequence number acknowledged
have been received at the base station, and the base station is having trouble delivering the packets
over the wireless link. This partial acknowledgment causes the sender to reset its retransmission
timer so that an unnecessary time-out is avoided while the base station attempts to deliver the
packet. Other possible variations on this would involve using a constant or exponential backoff
rather than merely resetting the timer when an Ackp is received.

If the option field is not set, the ACK is a complete acknowledgment sent by the receiver. The
sender responds by performing the complete set of TCP ACK processing which includes updating
round-trip-timers, adjusting windows, freeing memory held by the acknowledged packets, and
sending new data. None of these actions are performed when a partial acknowledgment is
received. One variation on the handling of complete acknowledgments would be to ignore round-
trip timing measurements for packets which also had an Ackp associated with them. This is
analogous to Karn’s algorithm which says that the RTT measurement for a packet which has been
retransmitted should be ignored.

4.0 Implementation Details

The experimental testbed used for this project consisted of three Pentium based desktop
computers with each machine running the FreeBSD 2.1 operating system. The first computer,
Ravel, was connected only to a 10 Mbps ethernet LAN and was used as a fixed (wired) host. The
second PC, Verdi, was connected to both the ethernet LAN and a 2 Mbps WaveLAN wireless
LAN operating in the 915 MHz band. The wireless LAN used a Direct Sequence Spread
Spectrum (DSSS) modulation technique with a CSMA/CA media access protocol and an

20

addressing scheme identical to ethernet. Verdi operated as the base station which relayed packets
between the wired and wireless links. The third computer, Chopin, was connected only to the
WaveLAN wireless LAN and was used as a mobile (wireless) host. The name used to refer to a
machine on its wireless interface always has the suffix “-wv” added. Thus Chopin is referred to as
Chopin-wv and the wireless connection for Verdi is referred to as Verdi-wv.

Unless otherwise noted, all of the experiments in this project have focused on 2 milli on byte bulk
data transfers from the fixed host to the mobile host. Data flow in this direction is typical since
the majority of the time mobile hosts act as clients accessing data bases, files and WEB pages
residing on fixed hosts. The initial test set-up is illustrated in figure 8 below.

Figure 8 - Initial Heterogeneous Testbed

Base Station
Verdi

Fixed Host
Ravel

(TCP Source)

Mobile Host
Chopin-wv

(TCP Receiver)

Subne t 128 .194 .153

Subne t
128 .194 .154

One of the key goals of this project was to perform experimentation using a real testbed rather
than simulating the effects of various TCP enhancements on bulk data transfers. In past efforts it
has been observed that simulation results are often more likely to be questioned due to
uncertainties regarding the accuracy of the simulation environment and the assumptions made.
With a real implementation, there is much less room for dispute since all of the processing delays,
propagation delays, and protocol idiosyncrasies are taken into account.

The Mobile Computing Group at Texas A&M looked at several possible operating systems before
deciding to use FreeBSD. The main requirement was to obtain an operating system which was
freely distributed and came with the source code so that experimental modifications could be
made. Early on, LINUX was chosen because of its wide user base and availabili ty of drivers.
Soon afterwards, the group discovered that the experimental work being performed at Berkeley
and most other places was being done on various BSD derivatives (i.e. FreeBSD, BSDI,
NetBSD). Therefore, a switch was made to FreeBSD so that we could take better advantage of
these existing efforts and so that our results would be more directly comparable.

4.1 Addition of Snoop Functionality to FreeBSD

Once the testbed shown above was operating correctly with the Reno version of TCP, which
comes standard with FreeBSD 2.1, the next step taken was to add the snoop protocol. As
discussed in the introduction, this gave us an exercise which allowed us to become familiar with
the inner workings of the networking code while also providing us with a good baseline for

21

further development and comparison. Since the ACKP protocol was designed to operate on top
of the snoop agent, it was essential to first have a working version of the snoop protocol.

The source code for the version of snoop designed to run on BSDI was obtained from Berkeley.
The snoop source code modifications were spread across five main files. Three of the files
contained existing TCP procedures which had been modified to add the snoop functionality, and
two files were completely new. The three existing files were the hardest to examine because there
were many differences between the versions obtained from Berkeley and those which come
standard with FreeBSD. Some of the variations were due to differences between the FreeBSD
and BSDI operating systems. Others were related to the snoop protocol, and a third group of
variations were related to other networking upgrades Berkeley was testing. After sorting out
exactly which lines of code needed to be added to FreeBSD, problems such as memory buffer
(mbuf) allocation for the snoop cache, and other kernel configuration issues were solved. In all,
the required modifications were modest. It was the process of determining exactly what each
piece of code did and whether to add it that was difficult. In many cases a whole trail of source
code files had to be examined to determine the meaning of a line of code. Appendix C contains
documentation which shows each modification in detail.

4.2 Partial Acknowledgment Implementation

Once the FreeBSD version of the snoop protocol was working, an initial version of the partial
acknowledgment protocol was implemented. The changes made to the FreeBSD kernel for the
ACKP protocol are described in detail in Appendix E. The upgrade involved code additions in
three key areas. The first and hardest portion of the upgrade was the implementation of a module
at the base station which could create an appropriate Ackp packet. This procedure is unusual in
that it is constructing a TCP packet to pass from the base station to the sender, but the base
station is not really part of the connection so it must create a packet that looks like it is coming
from the receiver. Luckily, the information required to mimic the receiver is contained in the
header of the incoming data packets.

The second portion of the upgrade involved determining when to send an Ackp. Although the
procedure outlined in section three was written, the initial implementation installed at the base
station was much simpler. The goal of the initial implementation was to determine if the ACKP
protocol would provide performance enhancements such as better throughput and more efficient
use of the wired and wireless links during periods of high wireless error rates. The best way to
implement the protocol in order to obtain these desired results was to send an Ackp for every
packet received. This initial approach is valid for three reasons. First, since we know that our
sender is equipped to handle Ackp packets, the sender and base station do not have to negotiate
this option during the connection establishment phase. The option negotiation feature can be
added later for backwards compatibili ty. Second, within the controlled environment of the
testbed no congestive losses are present, so sending an Ackp for every packet will not adversely
affect the connection’s response to congestion. Third, the number of Ackp packets sent between
the base station and the fixed host should not affect the parameters we want to measure. These
packets may create additional colli sions on the wired link, but since the wired link is several times

22

faster than the wireless link, the additional colli sions on it should not affect throughput or any of
our other performance metrics. The full implementation can be added once it is determined
whether or not the ACKP protocol will offer significant performance improvements.

The third portion of the upgrade involved adding coding at the sender so that it could recognize
and react to an Ackp packet. The TCP option handling code now recognizes a new ACKP
option. When this option is present in the packet, the option handling code sets a flag. The
portion of the TCP code which handles incoming packets sees that this flag is set, updates the
retransmission timer so that a time-out is less likely, and then drops the packet without processing
it any further. Since an Ackp is being sent for every packet in this initial implementation, the
retransmission timer can not be incremented exponentially. Instead, it is reset to a constant value
which is roughly twice the initial time-out value each time an Ackp packet is received. This
ensures that the new protocol gives the base station roughly twice as long to recover during
periods of burst errors.

4.3 Bit Error Model Implementation

The bit error model used for the experiments was obtained from UC Berkeley. It is designed to
use either a Poisson-distributed bit-error model or a Markov model which transitions between
high and low error rates. The Poisson model is capable of damaging a single byte or creating a
burst of errors which damage several packets in a row. One copy of the model runs at the mobile
host to damage data packets, and another runs at the base station to damage ACKs. Parameters
such as the mean error rate and the burst size determine how the model behaves.

When the error model determines that an error should be injected, it modifies either the IP header
checksum or the TCP checksum depending on where the error occurs within the packet. This
forces either the TCP or IP layer to drop the packet. Then it calculates the interval in bytes
between the spot of the current error and the place the next error is to occur. To do this, a table
of 50,000 exponentially distributed integers is maintained. A number is randomly chosen from
the table and scaled by the mean error rate. This scaled value is then used as the interval between
errors. The table size combined with the random arrival of packets ensures that a repeating
pattern of errors is highly unlikely.

While this type of model is not necessarily an exact representation of the pattern of errors
experienced on a noisy wireless link, it is effective because the Poisson distribution has a variance
equal to its mean. The result is that errors are not evenly distributed. Sometimes they occur in
rapid succession and other times they are spaced quite far apart. As we will see in the results
section, closely spaced errors cause extreme performance degradation in existing versions of TCP.
The Poisson-distributed error model is therefore effective because it exercises the area where TCP
is most vulnerable.

23

4.4 Measurement Methods

Two methods were used to obtain performance metrics. The first method was rather
straightforward and involved using a packet filter called BPF (Berkeley Packet Filter) which
comes standard with the FreeBSD distribution. The packet filter is a pseudo device within the
kernel that functions as a promiscuous receiver at the link-layer (listens to all frames transferred
on the link). An application program called tcpdump which is also included in the standard
FreeBSD distribution is used to filter the packets captured by BPF. It allows the user to provide
filter specifications such as the source, destination, and protocol of packets which should be
accepted. These packets can be stored to a file and then later analyzed to look for duplicate
ACKs, retransmitted packets, long periods of inactivity, and other performance information. A
portion of a tcpdump file has been included for reference in Appendix A.

One metric which often provides insight is a plot of the sequence numbers versus time. The plot
for an ideal connection which has every packet delivered in-order with no retransmissions is
shown in Figure 9 below. The horizontal axis is the time in terms of hours, seconds, and
milli seconds. The vertical axis is the sequence number in bytes. The ideal plot is a straight line
and the slope of the line is the throughput for the connection. Diagrams such as these were made
by taking the raw tcpdump data and then parsing and plotting it in Microsoft Excel.

Figure 9 - Ideal Plot of Sequence Number vs. Time

0

500000

1000000

1500000

2000000

04:26.112 04:27.840 04:29.568 04:31.296 04:33.024 04:34.752 04:36.480

Time (MM:SS.msec)

S
eq

u
en

ce
 N

u
m

b
er

 (
B

yt
es

)

The second method used to measure performance was more involved. While tcpdump provides
data related to packet headers, it is capturing this data below the transport layer, so it is incapable
of providing information about the state variables related to the TCP connection. To completely
understand the performance of a connection, information such as retransmission time-outs, Fast-
Recovery initiation, and other parameters contained in the TCP control block at the sender must
be measured.

An initial attempt was made to write code from scratch which would measure the desired
parameters. This code was able to successfully capture the information, but the methods available

24

to move the information from within the kernel to a file for logging were messy at best. Instead,
modifications were made to existing debugging mechanisms. TCP contains a trace function which
records information into a debugging buffer provided that debugging has been enabled for the
given connection. Each buffer entry contains the packet header and a copy of the values
contained within the TCP control block at the time the entry was logged. An application program
called trpt which has symbolic links to the buffer can then be used to print the contents. Changes
were made in the kernel to increase the size of the debugging buffer, to modify where the trace
code was called, and to add a new type of debugging entry for Ackp packets. The kernel
configuration files also had to be changed to include the trace code and its related files. Finally,
the trpt program was customized to print the desired information in a format that was useful.

The advantage of using TCP’s trace coding in combination with the trpt program is that the data
capture and data display functionality are completely separated. Because the trace function
captures both the TCP header and the TCP control block, virtually any parameter of interest is
available. The trpt program can then be customized to print only the desired parameters. This
means that after the initial kernel upgrades are made, the only changes being made are to trpt
which is an application program. Therefore, the kernel does not have to be rebuilt each time the
user wants to display different pieces of information. This provides a very flexible means of
displaying the data captured.

4.5 Test Sender Program

The test sender program is a simple application program which uses the socket API to open a
connection with a remote machine and make bulk data transfers. It has a text based menu which
allows the user to select the port number and name of the destination machine. When the
program is first started, the default destination machine is Chopin-wv and the default port number
is 9 which is the well know port number for the discard server on a UNIX machine. The discard
server appears like a regular receiver to the TCP sender, but it throws away each packet that it
receives. A destination other than the default may be chosen by the user. Once this destination is
chosen, it becomes the new default. The test sender program also allows the user to enable or
disable debugging on the socket which is used for the data transfer. Enabling debugging causes
the kernel to record incoming packets and the state of the TCP control block in the trace buffer.
These packets can be examined using trpt at a later time as discussed in the previous section. The
test sender program also times the transfer to the nearest milli second. The source code for the
test sender program is included in Appendix B.

4.6 Wireless Configuration Program

The wireless configuration program is another application program which uses the socket API to
check and set the error model parameters and TCP enhancement features. This program is very
useful because it allows the test environment to be changed without requiring the kernel to be
modified and rebooted which saves time and ensures that conditions remain similar during testing.
The setsockopt and getsockopt socket system calls allow an application program to set features

25

within the kernel. Normally this involves features such as the maximum segment size, and buffer
sizes which relate to a particular socket. The FreeBSD kernel running on Verdi and Chopin has
been upgraded to include additional global socket options related to the error model and TCP
enhancements. These options determine whether snoop, ACKP, and the error model are enabled
or disabled. They also allow error model parameters such as the mean error rate and the burst
size to be changed. The configuration program contains the setsockopt calls required to set these
new kernel features, and the getsockopt calls required to check the current kernel settings. The
source code for the wireless configuration program is included in Appendix B.

5.0 Experimental Results

In this section, the experimental results are presented and explained. The first sub-section gives
some of the general results which were obtained early on in the project. These are shown to
demonstrate how unmodified TCP Reno performs. They ill ustrate and confirm many of the
problems associated with using TCP in heterogeneous networks which were presented earlier in
this report. The rest of the results look at how the snoop protocol and the ACKP protocol affect
the performance of TCP. Section 5.2 compares results in a wireless LAN environment, and
section 5.3 compares results in a low bandwidth wireless environment. The experiments
performed in sections 5.1 and 5.2 were designed to test the performance of the ACKP protocol in
two situations: during periods of single-packet wireless losses and during periods where packets
are lost in bursts. The intent of the experiments was to show that ACKP would not degrade the
performance of snoop which already performs well for single-packet losses and that ACKP would
improve the performance of snoop during bursts of packet losses.

5.1 General Results

This section discusses various plots which show how plain TCP (Reno) reacts to losses due solely
to errors, losses due solely to congestion, and losses due to a combination of both. The first plot
shown in Figure 10 on the next page was made from tcpdump information captured during a 2
milli on byte data transfer from Ravel to Chopin using the testbed shown previously in Figure 8.
The typical round-trip-time for a packet in this testbed was between 6 and 8 milli seconds, and the
ideal throughput for a connection was just over 200 KB/s. During the transfer plotted below, the
error model was used to inject errors on the wireless link at an average rate of once per 64 KB
(i.e. a bit error rate of 1.9 x 10-6). These errors resulted in a transfer time of 12.71 seconds with
an average throughput of 153.67 KB/s. This throughput value, which is only 25 percent below
the ideal rate, is actually unusually good for TCP Reno as we will see in the next section.

Several interesting concepts can be observed in the plot in Figure 10. First, the flat portions of
the plot indicate that the transfer has stalled. It is also evident from looking at a number of plots
such as this that these stalls account for almost the entire difference in performance between a
connection with errors, and a connection that is error-free. A closer review of the data collected
during the transfer reveals the reason for the stalls. When packets are lost in quick succession,
TCP Reno shrinks its congestion window in half for each loss. This results in a congestion

26

window which is too small to obtain the three duplicate ACKs required to initiate fast recovery.
Therefore, the connection waits in this state of temporary deadlock until the sender’s
retransmission timer expires causing the lost packet(s) to be resent. Snoop and many of the other
TCP enhancements prevent the sender from shrinking its congestion window in response to errors
so they are able to maintain a congestion window which is large enough to avoid stalls such as
these.

Figure 10 - TCP Reno Transfer on a LAN with Wireless Errors

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

09:26.208 09:27.936 09:29.664 09:31.392 09:33.120 09:34.848 09:36.576 09:38.304 09:40.032

Time (MM:SS.msec)

S
eq

u
en

ce
 N

u
m

b
er

 (
B

yt
es

)

The second concept which this plot ill ustrates is the effectiveness of Fast-Recovery. Each of the
30 small “blips” in the plot represents a packet which was lost and retransmitted without a stall
occurring. When the congestion window is large enough to detect the loss and initiate Fast-
Recovery, lost packets have very little effect on throughput since the main penalty is the time
required to detect and retransmit the packet. Without Fast-Recovery, each of the “blips” would
have created a stall.

The next two plots involved sending data over a WAN using the topology shown in Figure 11
below. For both plots, a connection was established between Chopin (the mobile sender) and the
discard server on the machine gemini.tuc.noao.edu in Tucson, Arizona. A 2 milli on byte data
transfer was then performed from Chopin to Gemini and recorded using tcpdump.

Figure 11 - Wide Area Testbed

Base Station
Verdi

Fixed Host
Gemini.tuc.noao.edu

(TCP Receiver)
Mobile Host
Chopin-wv

(TCP Sender)

Subne t 128 .194 .153

Subne t
128 .194 .154Wide Area Network

Even with an ideal connection which experienced no losses, one would expect lower throughput
on a WAN because the available bandwidth is lower. Also, the packet size for a WAN transfer is

27

512 bytes and the packet size for a LAN transfer is 1460 bytes. This smaller packet size adds
overhead and lowers the ideal throughput. The typical round-trip-time for a packet was 67
milli seconds, and the ideal throughput for a connection operating within this WAN environment
was almost 61 KB/s. The plot shown in Figure 12 below contained no errors on the wireless link,
but 17 packets were dropped due to congestion within the WAN. These losses (coupled with the
competition for bandwidth among the connections at the congested gateway) resulted in a transfer
time of almost 63 seconds with an average throughput of 31.0 KB/s.

Figure 12 - TCP Reno Transfer on a WAN with No Wireless Errors

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

10:53.760 11:02.400 11:11.040 11:19.680 11:28.320 11:36.960 11:45.600 11:54.240 12:02.880 12:11.520

Time (MM:SS.msec)

S
eq

u
en

ce
 N

u
m

b
er

 (
B

yt
es

)

For the plot shown in Figure 13 the same test set-up was used, but errors were injected on the
wireless link at a mean rate of once per 64 KB. The number of packets lost due to congestion
plus errors on the wireless link was 54 or roughly 1.38 percent of the total sent. These losses
resulted in a transfer time of almost 137 seconds with an average throughput of 14.3 KB/s.

Figure 13 - TCP Reno Transfer on a WAN with Wireless Errors

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

17:22.560 17:39.840 17:57.120 18:14.400 18:31.680 18:48.960 19:06.240 19:23.520 19:40.800 19:58.080

Tim e (MM:SS.m sec)

S
eq

u
en

ce
 N

u
m

b
er

 (
B

yt
es

)

28

The results from these transfers across a WAN demonstrate several things. First, a TCP
connection across a WAN experiences performance degradation mainly due to stalls caused by
two or more packets being lost in close succession. This is no different from a LAN, except that
the stalls can be more pronounced on a WAN because the RTT variance is greater and the
retransmission timers are consequently set much higher. Second, while a LAN can achieve
optimal throughput even with a congestion window as small as two packets (just over 2 KB), a
WAN such as the one tested often needs a congestion window size of at least 8 KB to perform
optimally. Third, even though transfers without any wireless losses were far from optimal, the
injection of errors reduced throughput an additional 50 percent by unnecessarily invoking
congestion avoidance measures.

5.2 Wireless LAN Performance

The main purpose of this section is to show how the ACKP protocol affects the performance of
TCP over a connection composed of a wired LAN and a wireless LAN. All of the experiments
conducted in this section use the testbed shown in Figure 8. Subnet 128.194.153 is the 10 Mbps
ethernet connection, and subnet 128.194.154 is the 2 Mbps WaveLAN wireless LAN. This test
environment ensures that no congestion occurs, and all losses may therefore be attributed to
errors on the wireless link.

Results were obtained for several different scenarios. Each test scenario involved sending 2
milli on bytes of data from the fixed host to the mobile host and a total of twenty test runs were
performed for each scenario. The values given in the tables below reflect the average of the runs.
Four parameters were measure for each test case: transfer time, wired goodput, wireless
goodput, and timer expirations. The transfer time was used to compute the average throughput
for each run. Goodput is defined as the ratio of the actual transfer size verses the total number of
bytes transmitted over the path[3]. A transfer in which there are no losses has a goodput of 100
percent and a transfer with losses has a goodput below 100 percent. The goodput values given in
the tables below were determined by dividing the ideal number of data packets required for the
transfer by the actual number of data packets recorded for the transfer. The timer expirations are
measured because the purpose of the ACKP protocol is to eliminate or at least decrease the timer
expirations in an effort to improve performance.

5.2.1 Bit Errors

The results for the bit error tests are shown in Table 1 on the next page. The first scenario, called
“Ideal Transfer” , used plain TCP Reno with no errors injected on the wireless link. This test case
was used to determine the ideal performance of the LAN testbed. The results for this case could
then be used as a basis for comparison among the other scenarios. As expected, no packets were
lost, so the number of timer expirations was zero and the goodput both on the wireless link and
the wired links was 100 percent. The throughput of 199.92 KB/s (1.6 Mbps) falls below the
nominal wireless bandwidth of 2 Mbps because of colli sions and overhead, but it is in line with the
WaveLAN performance cited in other studies and the manufacture’s specifications.

29

Table 1 - LAN Performance with Bit-Errors

Ideal Transfer TCP Reno Snoop Snoop + ACKP
Avg. Transfer Time 9.770 sec. 20.878 sec. 10.513 sec. 10.576 sec.
Trans. Time Std. Dev. 0.034 sec. 4.695 sec. 0.280 sec. 0.520 sec.
Avg. Throughput 199.92 KB/s 98.36 KB/s 185.91 KB/s 185.07 KB/s
Throughput Std. Dev. 0.682 KB/s 23.117 KB/s 4.890 KB/s 8.372 KB/s
Pct. Ideal Throughput ------ 49.20 % 93.00 % 92.58 %
Avg. Wired Goodput 100 % 97.4 % 99.4 % 99.5 %
Avg. Wireless Goodput 100 % 97.4 % 97.3 % 97.2 %
Avg. Timer Expirations 0.00 7.50 0.00 0.00

The remaining test cases in this sub-section involved injecting single bit-errors at a mean rate of
once every 64 KB. The second test case used standard TCP Reno. As expected, the wireless
errors caused TCP Reno to invoke congestion avoidance measures which resulted in a drastic
reduction in throughput. Because each lost packet must be retransmitted at the sender, the
goodput for the wired and wireless links is identical. Also, a number of stalls occurred during
each transfer as indicated by the timer expirations in Table 1.

The third test case used the same bit error rate, but the snoop agent at the base station was turned
on. The performance of snoop with errors is below the ideal transfer for several reasons. First,
anytime errors occur, performance must suffer to a certain degree since some of the packets must
be sent more than once between the base station and the mobile host. This is reflected in the
wireless goodput which is 97.3 percent. It also takes a finite amount of time to detect these
errors. The receiver’s window may fill while waiting for the lost packet and cause the transfer to
stall for a very short time (on the order of ten milli seconds) while the lost packet(s) are resent and
the window is shifted right. This last problem can be cured or reduced by increasing the size of
the receiver’s window.

The third test case demonstrates that in a LAN environment the snoop protocol is optimal for
single bit-errors in the sense that the sender is completely shielded from wireless losses. Shielding
the sender from losses prevented any congestive measures from being taken (no timer expirations
or duplicate ACKs were observed) which resulted in excellent performance in terms of throughput
and goodput on the wired link. These results were not surprising and confirmed the claims made
by the developers of the snoop protocol.

The final test case involved using both the snoop protocol and the new ACKP protocol. Since the
previous test case showed that no timer expirations occurred with the snoop protocol, the only
result which was important to show was that the additional processing performed by the ACKP
protocol did not degrade performance in situations where snoop was already behaving optimally.
As the results in Table 1 show, the performance with ACKP is almost identical to the performance
obtained using only snoop. The slight reduction in throughput can most likely be attributed to
variation in the error patterns which resulted in slightly higher transfer times for two of the ACKP
test runs.

30

Although it is not shown in the table above, snoop and ACKP were tested at mean error rates of
once every 32 KB and once every 16 KB as well. These results also showed that the snoop
protocol was optimal at shielding the sender from wireless losses and that the ACKP protocol did
not degrade performance even when the error rates became more severe.

5.2.2 Burst Errors

The test cases in this section look at how TCP Reno, the snoop protocol, and the ACKP protocol
perform when bursts of errors damage six consecutive packets. The mean distance between the
onset of two error bursts is 64 KB which is the same as for the single bit-errors. The ideal case is
the same as in Table 1 and is therefore not shown in Table 2 below. The first test case which uses
unmodified TCP Reno is included just for comparison.

The second and third test cases show the performance of snoop by itself, and of snoop with the
ACKP protocol. These test cases do show that the ACKP protocol was able to decrease the
number of sender time-outs and retransmissions during periods of high error rates. However, the
number of time-outs even without ACKP was still relatively small. As one might expect, the
throughput and wireless goodput dropped significantly due to the greater number of total errors.
Unfortunately, the performance with the ACKP protocol was not noticeably better than the
performance obtained using just the snoop protocol. This can be attributed to several factors.
First, since there were few time-outs when snoop alone was used, there is little room for
improvement once the ACKP protocol is added. These rare time-outs do result in congestion
avoidance measures at the sender, but they do not occur frequently enough to shrink the window
to the point that a stall can occur. Second, both the wired and wireless LANs are high bandwidth,
low delay links. In this type of environment there is no significant penalty for re-transmitting data
which has already successfully reached the base station or the receiver. Also, the reduction of the
congestion window due to an occasional time-out does not affect the throughput rate of the
connection.

Table 2 - LAN Performance with Burst Errors

TCP Reno Snoop Snoop + ACKP
Avg. Transfer Time 300.455 sec. 19.031 sec. 19.054 sec.
Trans. Time Std. Dev. 90.581 sec. 3.378 sec. 3.411 sec.
Avg. Throughput 7.19 KB/s 105.37 KB/s 105.66 KB/s
Throughput Std. Dev. 2.584 KB/s 16.548 KB/s 18.978 KB/s
Pct. Ideal Throughput 3.60 % 52.71 % 52.85 %
Avg. Wired Goodput 85.9 % 99.6 % 99.7 %
Avg. Wireless Goodput 85.9 % 87.5 % 88.2 %
Avg. Timer Expirations 56.60 0.65 0.30

31

5.3 Performance for a Low Bandwidth Wireless Network

After observing the failure of ACKP to improve the performance of snoop in a test environment
composed of wired and wireless LANs, the question that remained was if the ACKP protocol
would offer significant performance improvements in other environments. The round-trip-time
for a packet in a wireless LAN remains relatively small regardless of whether the packet reaches
the receiver immediately or must be retransmitted from the base station several times due to errors
on the wireless link. On a low bandwidth wireless network, retransmissions between the base
station and receiver can take a significant amount of time. Therefore, if a packet or a burst of
packets is lost in this type of environment, the sender’s retransmission timer is more likely to
expire unnecessarily. Wide area wireless networks (i.e. those that cover an entire city rather than
the floor of a building like the WaveLAN) and wireless LANs under heavy load are examples of
low bandwidth wireless environments.

The tests conducted in this section use the same testbed as the previous section except that a
delay has been added at the base station in each portion of the code where a packet is forwarded
on the wireless link (see Appendix E). These transmission delays make the wireless link appear to
have a peak bandwidth of 14.6 KB/s with a propagation delay that is still below 10 milli seconds.
The ideal case shown in Table 3 below demonstrates that the testbed behaves as expected when
no errors are present on the wireless link. Also, as expected, the introduction of bit errors at the
mean rate of once per 64 KB causes the throughput of TCP Reno to be cut in half with goodput
percentages that are about the same as for the wireless LAN test case.

The snoop and the snoop plus ACKP test cases also have results which are similar to those in the
last section. As Table 3 shows, the sender experiences some time-outs with snoop even when
only a single packet loss occurs on the low bandwidth wireless link. Again however, the number
of time-outs is very low and performance is therefore not significantly affected by them. Still , the
fact that single packet losses cause sender time-outs for the snoop test cases is promising since it
means an even higher number of time-outs should occur for burst errors.

Table 3 - Low Bandwidth Wireless Network with Bit Errors

Ideal Transfer TCP Reno Snoop Snoop + ACKP
Avg. Transfer Time 138.100 sec. 259.830 sec. 143.515 sec. 143.558 sec.
Trans. Time Std. Dev. 0.925 sec. 8.146 sec. 1.739 sec. 1.363 sec.
Avg. Throughput 14.14 KB/s 7.52 KB/s 13.61 KB/s 13.61 KB/s
Throughput Std. Dev. 0.093 KB/s 0.230 KB/s 0.163 KB/s 0.127 KB/s
Pct. Ideal Throughput ------ 53.20 % 96.24 % 96.20 %
Avg. Wired Goodput 100 % 97.6 % 99.8 % 99.8 %
Avg. Wireless Goodput 100 % 97.6 % 97.5 % 97.6 %
Avg. Timer Expirations 0.00 5.40 0.35 0.05

The last set of test cases looks at how TCP Reno, the snoop protocol, and the ACKP protocol
perform when bursts of errors damage six consecutive packets on a low bandwidth wireless
network. The mean distance between the onset of two error bursts is 64 KB just like in the

32

wireless LAN test cases. The ideal case is the same as in Table 3 and is therefore not shown in
Table 4 below. The first test case which uses unmodified TCP Reno is included just for
comparison.

Table 4 - Low Bandwidth Wireless Network with Burst Errors

TCP Reno Snoop Snoop + ACKP
Avg. Transfer Time 720.520 sec. 181.970 sec. 182.451 sec.
Trans. Time Std. Dev. 125.229 sec. 15.235 sec. 17.914 sec.
Avg. Throughput 2.79 KB/s 10.80 KB/s 10.79 KB/s
Throughput Std. Dev. 0.500 KB/s 0.828 KB/s 0.952 KB/s
Pct. Ideal Throughput 19.73 % 76.35 % 76.31 %
Avg. Wired Goodput 84.9 % 97.9 % 99.5 %
Avg. Wireless Goodput 84.9 % 86.8 % 87.8 %
Avg. Timer Expirations 57.55 4.30 0.70

The last two sets of test cases show that this time the snoop protocol experienced a significant
number of time-outs on many of the test runs while the number of time-outs with the ACKP
protocol remained low. However, the difference in performance between plain snoop and snoop
plus ACKP was still not significant. The throughput values for the snoop protocol and the ACKP
protocol were almost identical. The biggest difference between the two cases was in wired
goodput. Although the goodput for snoop plus ACKP was better, the overall network traffic on
the wired link would probably be about the same because of the Ackp packets being sent between
the base station and sender.

The ACKP protocol definitely achieves its objective of reducing the number of unnecessary time-
outs at the sender, but this does not result in improved performance for burst errors in either of
the environments tested. To see why, one must first look at what caused the degradation in
performance during bursts of errors. The causes are really the same factors which prevent snoop
from achieving ideal performance, but they are accentuated when packets are lost in bursts. Re-
transmitting a whole set of damaged packets takes time. It takes time for the base station to detect
lost packets and the detection time becomes greater when many packets are lost because less
feedback (or no feedback) is provided by the receiver. Also, unless the receiver’s window size is
fairly large (32 KB or more) the sender will generally stall while the burst of lost packets is
delivered. The combination of these factors is what results in the unnecessary time-out at the
receiver. Eliminating the unnecessary time-outs does not improve performance for the cases
tested because it can not eliminate these factors which are the primary reasons for performance
degradation.

The other reason the ACKP protocol failed to achieve a performance improvement is because
both the wireless LAN and the low bandwidth wireless environment had low delay wired links in
combination with low delay wireless links. The time-outs which the ACKP protocol prevents will
only have a significant detrimental effect on throughput when the delay-bandwidth product is
quite large. Satelli te connections and perhaps some combination of high delay wired and wireless
WANs would fit this description. Unlike LAN connections which only require a window size of

33

several kilobytes to obtain high transfer rates, these types of connections require a large window
on the order of 100 KB to obtain reasonably high throughput. They are therefore extremely
sensitive to any unnecessary congestion avoidance measures which shrink the window. With
round-trip-times of several hundred milli seconds, Slow-Start can take seconds, and the
Congestion-Avoidance phase may prevent the window from returning to its full size for several
minutes.

6.0 Conclusions

This project has provided me with an excellent opportunity to study the way in which reliable
transport layers such as TCP operate. I have gained a deeper understanding of the problems that
heterogeneous networks cause for TCP which is unable to distinguish between congestive and
wireless losses and I have had the chance to study a number of the different methods proposed by
others to improve TCP’s end-to-end performance. Reviewing these proposed improvements has
given insight into where the potential gains exist and the drawbacks associated with each
approach. The most important aspect of the problem which was learned during my studying and
experimentation was that it is generally not the congestion avoidance mechanisms themselves that
degrade performance in heterogeneous networks. Instead, it is the secondary effect they have of
reducing the congestion window size to the point that Fast-Recovery can no longer operate and
the transfer stalls when a packet is lost.

One of the most significant results of this project has been the successful development of a test
environment for the Mobile Computing Group here at Texas A&M. Wireless configuration and
testing programs have been implemented, an error model has been integrated into FreeBSD, and a
method for measuring and displaying results has been developed. This provides a foundation
which will allow future work to begin right from the protocol implementation phase.

Finally, this project successfully implemented and tested a completely new TCP enhancement, the
ACKP protocol. The ACKP protocol accomplished its goal of reducing the number of time-outs,
but it did not significantly improve performance for the environments in which it was tested. It is
believed that the ACKP protocol will offer significant gains in throughput for high delay-
bandwidth connections such as satelli te links, but this remains an area that has yet to be explored.
Even if the ACKP protocol does not result in improved performance in other test environments, it
has still been a significant accomplishment because it has provided us with a framework which
may be followed in developing and testing other protocols designed to enhance TCP’s
performance.

7.0 Future Work

At this point there are several possible paths which may be pursued in future work. The first is to
continue experimenting with the ACKP protocol to see how it performs in other network
topologies. As discussed in the results, it is likely that the ACKP protocol can still yield
significant performance improvements in terms of throughput and goodput on high bandwidth,

34

long delay paths such as satelli te links. The current test set-up provides high bandwidth over the
wireless link, but a method would need to be developed to introduce a long delay since the
current delay over the WaveLAN is on the order of several milli seconds. A high bandwidth, high
delay wireless link could be simulated by introducing a kind of shift register at the base station
which the packets must pass through before being sent on the wireless link. The drawback to this
approach is that it is starting to get away from the original objective of experimenting with
protocols using a real system rather than simulations.

End-to-end solutions are another potential area for future work. This would most likely involve
using preliminary SACK implementations as the base case. New improvements such as our
proposed ELN mechanism discussed in section 2.3.3 would then be added to the basic SACK
implementation. This combination would combine SACK’s efficiency at responding to losses
with ELN’s abili ty to distinguish between congestion and wireless losses. Studies would also
have to be performed to determine what percentage of packets with errors actually make it to the
TCP layer at the receiver on actual wireless networks in use today since the percentage must be
significant in order for our proposed ELN scheme to work.

A third area which may be explored in future work is the development of a protocol that operates
at the base station but requires less state per connection than the snoop protocol. The idea would
be to cache sequence numbers rather than packets at the base station. Duplicate
acknowledgments could be shielded from the sender just like with the snoop protocol. However,
packets would have to be resent from the sender rather than the base station. Therefore, when a
packet loss is detected at the base station (either due to duplicate ACKs or local time-outs), it
would transmit a type of explicit loss notification to the sender so that the lost packet is resent
without invoking congestion avoidance measures.

A fourth and final area for future work is to evaluate the performance of multiple connections
when congestive and wireless losses occur. All of the work done in this project and most of the
other current research efforts have focused on the performance of a single connection. The type
of study proposed would look at how losses on one connection affect the performance of other
connections. It would also test the relative performance of existing and new solutions in terms of
aggregate throughput for the set of connections at a base station.

8.0 Acknowledgments

I would first like to thank my wife for understanding my desire to return to graduate school and
for her support throughout my Masters program. I would next like to thank the members of my
committee for their time and support. Dr. Vaidya has been a wonderful committee chair who has
always been very accessible and has provided me with guidance and insight on many issues during
my project work. The close working relationship among the students within the Mobile
Computing Group at Texas A&M has also been a great help. In many cases we have been able to
leverage the work of others in the group, and our almost daily discussions have been very
insightful. I am especially grateful for Miten Mehta who installed FreeBSD, the WaveLAN
drivers, and other related software on our testbed machines. I would like to thank Hari

35

Balakrishnan at UC Berkeley for making the snoop source code available and answering questions
I had about their implementation. The research of the Mobile Computing Group at Texas A&M
is funded in part by Texas Advanced Technology Grant 009741-052-C (also known as 999903-
052).

9.0 References

[1] D. C. Cox, “Wireless Personal Communications: What is It?,” IEEE Personal
Communications Magazine, Vol. 2, Issue 2, April 1995, pp. 20-35.

[2] V. Jackobson and M. J. Karels, “Congestion Avoidance and Control”, Proceedings of
SIGCOMM ’88, August 1988.

[3] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A Comparison of
Mechanisms for Improving TCP Performance over Wireless Links” , Proceedings of ACM
SIGCOMM ’96, August 1996.

[4] A. DeSimone, M. C. Chuah, and O. C. Yue, “Throughput Performance of Transport-Layer
Protocols over Wireless LANs”, Proceeding of Globecom ’93, December 1993.

[5] B. S. Bakshi, P. Krishna, N. H. Vaidya, D. K. Pradhan, “Improving Performance of TCP
over Wireless Networks” , Texas A&M University Technical Report TR-96-014, May 1996,
(To be presented at ICDCS ’97).

[6] S. Biaz, M. Mehta, S. West, N. Vaidya, “TCP Over Wireless Networks Using Multiple
Acknowledgments”, Texas A&M University Technical Report TR-97-001, January 1997.

[7] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK TCP”,
http://ftp.ee.lbl.gov/floyd/sacks.html, May 1996.

[8] J. Hoe, “Improving the Start-Up Behavior of a Congestion Control Scheme for TCP”,
SIGCOMM ’96 Symposium on Communications Architectures and Protocols, August 1996.

[9] M. Mathis, J. Jahdavi, S. Floyd, A. Romanov, “TCP Selective Acknowledgment Options”,
RFC 2018, October 1996.

[10] A. V. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for Mobile Hosts”, Technical
Report DCS-TR-314, Dept. of Computer Science, Rutgers University, October 1994.

[11] R. C. Durst, G. J. Miller, and E. J. Travis, “TCP Extensions for Space Communications”,
Proceedings of MOBICOM ’96, pp. 15-26, November 1996.

[12] A. V. Bakre and B. R. Badrinath, “Implementation and Performance Evaluation of Indirect
TCP”, IEEE Transactions on Computers, Vol. 46, Number 3, March 1997, pp. 260-278.

