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Abstract

Heterogeneous networks are cwmposed of a mixture of wired and wireless links.  Current
transmisson control protocol (TCP) implementations have been designed to work well in
networks made up exclusively of wired links. In this environment, error rates are very low and
padket losses may be atributed almost entirely to network congestion. The proper response for a
TCP sender when padkets are lost in this stuation is to deaease throughput in order to prevent
the network congestion from becoming more severe. Unlike wired links, wirelesslinks often have
significant error rates, and therefore the asumption that al losses are due to congestion is no
longer valid for heterogeneous networks. Since arrent TCP implementations are unable to
distinguish between wireless and congestive losses, they use a onservative gproach and still
asume that al losses are due to congestion. This approach can often cause unrecessary
reductions in throughput, and may result in lower goodpu due to retransmisson of padkets that
have dready been successully recaved. The focus of this projed has been to review in more
detall what padket loss stuations cause TCP to perform poorly and how wirelessand congestive
losees may be differentiated in order to improve TCP's performance The test set-up for the
projed consisted of threepersonal computers running FreeBSD with the first PC ading as a fixed
host, the seaond as a base station, and the third as a mobile host. The fixed host and base station
were mnneded by a LAN, and the base station and mobile host were mnneded by wireless
network cards. Single aror and burst error situations were aeded on the wirelesslink using a
Poisson-distributed bit error model. Results sich as throughput and goodput were then measured
using a packet filter at the mobile host and a set of customized TCP trace code at the sender.
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1.0 Introductionto The Problem

Most of the reliable transport layer protocols in existence today were designed when networks
were omposed solely of wired links. In the time period since these protocols were initialy
designed, networks have begun to shift from traditional wired systems to heterogeneous g/stems
composed of a mixture of wired and wireless links. Receit annual growth rates in wireless
applicaions have been between 35 and 60 percent per yea, and it is anticipated that over 100
million users will have some version of wireless personal communicaions g/stem (PCS) by the
end of the century [1]. As this trend towards wireless gstems continues, it beames more and
more important to insure that the transport layer protocols being used are tuned to perform well
both in the traditional wired networks and in heterogeneous networks.

Reliable transport layer protocols like TCP (Transmisson Control Protocol) which are in use
today have been spedficdly tuned to work well in traditional wired networks. In this
environment, error rates are well below one percent and padet losses may be dtributed almost
entirely to network congestion[2]. The proper response for a TCP sender when padkets are lost
in this stuation isto deaease throughput in order to prevent a congestive llapse in which useful
network throughput grinds to a halt. Unlike traditional networks, wireless gstems may have
intermittent periods of high error rateq3]. Heterogeneous networks therefore have amixture of
congestive losses and wirelesslosses due to errors. Existing TCP implementations are unable to
distinguish between these two types of losss, so they use a onservative gproach and assume
that all losses are due to congestion. This approach ensures proper response to congestion, but
can result in congestion prevention measures being invoked unnecessarily when errors occur on a
wireless link. These measures in turn may cause reductions in throughput, and may result in
retransmission of packets that have already been successfully received.

Two different classes of solutions have been proposed to improve the performance of transport
protocols guch as TCP for bulk data transfers within heterogeneous networks. The first class
adds functionality to existing transport protocols  that senders are adle to distinguish between
congestive and wirelesslosses. The secnd class attempts to hide wirelesslosses from the TCP
sender. Hiding the losses may be acomplished in several ways including the use of split
connedions, reliable wirelesslink-layers, and forward error corredion. Spedfic implementations
of both classes along with their advantages and dsadvantages will be cvered in more detail in
section two of the paper.

1.1 Overview of The Project and Paper

The work performed for this projed and presented in the rest of the paper can be divided into
three major stages. The first stage which is presented in sedion two of the paper involves
understanding how padket losses due to errors or congestion affed the performance of existing
TCP implementations. Also, a review of some of the recently proposed methods for improving
TCP in heterogeneous networks is presented. TCP was chosen for this gudy becaise it is widely



used, has many charaderistics that are typicd of a reliable transport layer protocol, and it is easy
to obtain TCP source @de for experimentation. Also, because of the widespread deployment of
TCP, it is likely that in the nea term incremental upgades to TCP will be favored over entirely
new transport protocols.

The second stage of the projed involved creding an environment that would alow Dr. Vadya
and those of us working with hm to modify the TCP/IP protocol stad, run experiments with the
modified code, and measure the results. This dage, which is highlighted in sedion four of the
paper, took the most time becaise it required a detailed understanding of certain portions of the
TCP/IP protocol stack and the FreeBSD operating system. A set of three personal computers
were used as the test system with one functioning as a fixed (wired) host, another as the base
station (wired to wireless router), and a third as the mobile (wirelesg host. The aility to
generate oontrolled bit error and burst error situations was then added to the operating system
kernel on these machiines. Next, methods were devised to dbtain performance metrics at the
sender and recaver. Then, applicaion programs were written to transfer test data. Finaly, a
configuration program was written which alowed the aror model parameters and the TCP
enhancement feaures to be danged inside the kernel without recompiling the kernel’s urce
code.

The third stage of the projed involved making modificaions to the TCP/IP portion of the
FreeBSD kernel in order to improve performance The danges made to the kerne are
highlighted in sedion four of the paper and dscussd in detail in the gpendices. The first step
involved taking an implementation of the Berkeley snoop protocol (see sedion 2.6) which was
designed to run on the BSDI operating system and porting it over to the FreeBSD operating
system. This provided a useful way to become familiar with the FreeBSD kernel and to lean
tedhniques others had used when adding enhancements to TCP. Also, since the Berkeley snoop
protocol offers a significant performance improvement over existing TCP implementations on
heterogeneous networks, it served as a good baseline for comparison when testing future
enhancements. After the snoop protocol was functioning properly, a partia adknowledgment
protocol [6] proposed by Dr. Vaidya and those of us working with him was implemented. This
protocol, which is covered in the third sedion of the paper, is intended to be used at base stations
that are already running snoop. Its performance is reviewed in section five of this paper.

2.0 Background and Summary of Related Work

This ®dion first takes a doser look at basic TCP functionality. Then it investigates how TCP
reads to congestion and why this readion can result in poor performance when errors are
interpreted as congestion. Finally, it covers various approadhes which have been proposed to
improve the performance of TCP in heterogeneous networks. All of these new proposals are
badkwards compatible and many of them use options negotiation to determine whether the
enhancements will be used or not. If either the sender or the recaver does not understand the
option, the enhancement is not used.



2.1 Basic TCP Functionality

TCP was designed to function as a cnnedion oriented transport layer protocol cgpable of
operating on top of an unreliable network layer which may lose padkets or deliver padkets out-of-
order. It inturn delivers areliable, sequenced strean of bytes from one end of the connedion to
the other. TCP obtains reliability through the use of positive aknowledgments (ACKs) with
retransmisson. TCP aso uses a variable sized sliding window to acemplish flow control and to
allow efficient utili zation of network bandwidth. The recaver dictates the usable window size so
that it can regulate the flow of data from the sender in a manner that doesn’t overfill its buffers.
The sender is then able to transmit up to a full window’s worth of padkets before requiring an
adknowledgment. The window size needed to make dficient use of avail able bandwidth increases
with the bandwidth of the cnredion, and the delay in the path. The avalable bandwidth
multiplied by the delay is referred to as the delay-bandwidth product.

The a&nowledgments used by TCP are aumulative and provide the sender with the sequence
number of the next padket that the recever expeds. ACKs are only sent in response to a padet
being recaved rather than at spedfic intervals. Thus, if no padkets are ariving, no ACKs will be
sent. Cumulative ac&nowledgments are dficient in the sense that an ACK does not have to be
sent for every padket recaved. They are dso ambiguous becaise they do not explicitly inform the
sender of any padets which have been lost or damaged. Thus, in Figure 1 below, when padet
one arives, an ACK with a sequenceof 1461will be sent. When padkets three ad four arrive, an
ACK with a sequence of 1461 will be sent again. The sender can ot tell from these wmulative
acknowledgments that packet three and four were successfully received.

Figure 1 - Receiver's Window (Packet 2 Lost)

Packet 1 Packet 3 Packet 4

N

1 1461 2921 4381

The time between when a padket is ent and when its ACK arrives bad at the sender is cdled the
round-trip-time (RTT). The RTT is measured by TCP and used to cdculate avalue for the
retransmisson timer. The retransmisson timer is st when a padket is transmitted and if a time-
out occurs at the sender before an ACK for the padket is recaved, the padket is ent again. This
feature ensures reliability because it allows TCP to detect losses and recover from them.

2.2 TCP with Congestion Control

This sibsedion covers the two TCP versions which introduced congestion control measures and
are prevalent in the Internet today. While they handle congestion in away that results in network
stability, their reacion to congestive losses can result in lessthan optimal throughput even in the



absence of wirelesserrors. Their throughput becomes even lower with a mixture of congestive
and wireless losses since they can not distinguish between the two cases.

2.2.1 TCP Tahoe

TCP Tahoe refersto aversion of TCP introduced in the BSD operating system in 1988 This was
the first TCP implementation to include the angestion control medanisms and round-trip-timing
enhancements proposed by Van Jambson in his paper “Congestion Avoidance axd Control”[2].
These new algorithms were introduced in response to congestive ollapses which began occurring
on the Internet in 1986 and caused throughput to drop in some caes by a fador of a thousand.
The goa of these medhanisms is to ensure that a TCP connedion is able to read a state of
equili brium and that the cnnedion obeys the “conservation of padets principle” once it is in
equilibrium. This principle states that once a onnedion has readed equili brium, it should only
transmit a padket on the network when it receves feedbad indicaing that a padet has left the
network. The cnnedion reades equili brium by probing the network for avail able bandwidth and
adjusting a newly proposed sender congestion window. In TCP Tahoe, the window used by the
sender is taken as the minimum of the receiver window and this new congestion window.

The first of the medhanisms added by TCP Tahoe is Slow-Start. This algorithm is invoked when
a mnnedion isfirst established or anytime apadket lossis deteded. Its purpose is to ensure that
the cnnedion adualy reades equili brium. It sets (reduces) the sender’s congestion window to
asingle packet in size In the Slow-Start phase, the sender’s congestion window is increased by
one padket for ead ACK recaved. Slow-Start is smewhat of a misnomer since the angestion
window is adually being expanded exponentially ead round-trip-time. Without Slow-Start, a
new connedion will send an entire window of data dl at once which may overwhelm intermediate
gateways and lead to a cycle of dropped packets and retransmission.

The second medhanism added by TCP Tahoe is an improved method for round-trip-time
estimation. The ealiest versions of TCP used a smoothed round-trip-time estimator which was a
simple low-passfilter with a constant RTT variance fador (beta) of two. The problem with this
algorithm is that it adapts dowly to large dhanges in round-trip-times and this can cause the RTT
to be underestimated. This in turn will cause the retransmisson timer to expire even though the
origina padket has not been lost. The padket will then be sent a second time with the first padket
till in the network. This wastes bandwidth and can leal to congestion because it violates the
conservation of padets requirement. The new RTT algorithm proposed by Jambson uses a
smple estimate of the round-trip-time variance rather than a constant beta fador of two. This
allows it to more rapidly adjust to large timing changes and prevents erroneous timer expirations.
Jaobson aso showed that for proper stability an exponential badkoff should be used when a
retransmission timer expires and the packet is resent.

The third mecdhanism added by TCP Tahoe is Congestion-Avoidance The purpose of this
algorithm is to ensure that a sender cuts its throughput in half when alossoccurs snce the lossis
asumed to be due to congestion. Although Congestion-Avoidance is a separate concept from
Slow-Start, they are implemented as a single procedure in pradice  When a loss ocaurs, a



threshold variable cdled sghresh is st to half of the mngestion window or recever’s window -
whichever is snaller. Then the congestion window is %t to one to initiate Slow-Start. The
connedion stays in the Slow-Start phase and increases the mngestion window by one padet for
every ACK receved until the angestion window reades sshresh. Then the mnredion enters
the Congestion-Avoidance phase in which it increases the cngestion window by one padet for
ead full window of data succesqully transmitted and adknowledged. This approad results in
exponential decreases and linear increases.

The final medhanism introduced in TCP Tahoe was Fast-Retransmisson. If a padket arrives out-
of-order (i.e. before the padket ahead of it in the sender’s transmisson sequence) it means that
either it took a faster path or the padcket before it was lost. The Fast-Retransmisson algorithm
requires the recaver to immediately send an ACK when an out-of-order padket isrecaved. When
padket one arives in Figure 2 below, an ACK will be sent for sequence number 1461 Padets
three four, and five ae @nsidered out-of-order padkets and becaise ACKs are aumulative, the
sequence number adknowledged in ead case will be 1461 A TCP Tahoe sender equipped with
FAST-Retransmisson will i nterpret three dugicae ACKs in a row as an indicaion of a padket
loss It will retransmit the missng padket and invoke the Slow-Start and Congestion-Avoidance
measures. The dgorithm is cdled Fast-Retransmit because it allows the sender to recover from a
packet loss without waiting for the retransmission timer to expire.

Figure 2 - Receiver’'s Window (Duplicate ACKS)

Packet 1 Packet 3 Packet 4 Packet 5

R T

1 1461 2921 4381 5841

Advantages of Tahoe

Tahoe has the most basc oongestion and loss medianisms of al the modern TCP
implementations. However, the Fast-Retransmit algorithm introduced with TCP Tahoe may
provide the single most significant performance improvement when padkets are lost due to
congestion. Fast-Retransmit is often able to deted padket losses in a matter of several
milliseconds on a LAN and within roughly a hundred milliseconds on a WAN. Without Fast-
Retransmit, the sender is forced to wait for a retransmisgon timer to expire. Since these timers
are designed to provide arelatively loose upper bound, they often have values on the order of
several seoconds for even the fastest of LANS. Therefore, Fast-Retransmit can save on the order
of several seconds each time a loss occurs and this translates into enormous gains in throughput.

Disadvantages of Tahoe
While Fast-Retransmit makes Tahoe perform drasticdly better than a TCP implementation whose

sole means of loss detedion is retransmisson timers, it obtains sgnificantly less than optimal
performance on high delay-bandwidth connedions because of its initiation of Slow-Start (which



TCP Reno discussed below avoids). Also, inthe cae of multiple losses within a single window, it
is possible that the sender will retransmit packets which have already been received[7].

2.2.2 TCP Reno

TCP Reno refersto aversion of TCP introduced in the BSD operating system in 199Q It has all
of the feaures of TCP Tahoe plus a new algorithm cdled Fast-Revery which huilds on the Fast-
Retransmit mecdhanism. With Fast-Remvery, three dugicae ACKs are still interpreted as a
padket lossdue to congestion, but the fad that these dupicate ACKs made it to the sender means
congestion is moderate rather than severe. If congestion were severe, the mgjority of the padets
would be lost and it is unlikely that three dugicae ACKs would be recaved. Therefore, the
sender retransmits the lost padket, and invokes the Congestion-Avoidance dgorithm, but does not
initiate Slow-Start. This effedively causes the sender to cut its throughput in half without
performing the initial ramp up.

In TCP Reno, the Fast-Remvery phase lasts from the time the lossis deteded, until an ACK for
the retransmitted padket is recaved. The hardest part of the dgorithm to understand is a
temporary inflation of the congestion window which occurs while in the Fast-Reoovery phase.
Eadh dupicate ACK recaved at the sender indicaes that another padket has left the network and
acording to the cnservation of padets concept, a new one may be introduced. Therefore, the
congestion window which was cut in half upon entering the Fast-Recovery phase is immediately
increased by threepadkets to acount for the threeinitial dupgicae ACKs. Then, ead subsequent
dupicate ACK causes the amngestion window to increase by one padket in size  When the ACK
for the retransmitted padket arrives, this temporary inflation is removed and the ngestion
window is again helf the size it was prior to the padket loss This temporary window inflation
allows the wmnredion to continue to make progress by maintaining the docking relationship
between the ACKs coming bad and the data being sent. Without this temporary inflation, the
congestion window would fill up, and the connection would stall.

Advantagesof Reno

The key advantage to TCP Reno over TCP Tahoe is that it introduces a way to maintain the
clocking of new data with the dugicate ACKs. This alows TCP to diredly cut its throughput in
half without the need for a Slow-Start period to reestablish the docking between data and ACKs.
This improvement has the most noticedle dfed on long delay-bandwidth connedions where the
Slow-Start period lasts longer and large windows are nealed to adhieve optimal throughput. On
awirelessLAN where losses are due to errors, the Slow-Start period is very short, and even the
smallest of congestion windows makes efficient use of available bandwidth.

Disadvantages of TCP Reno
The Fast-Remvery medianism introduced by TCP Reno handles multiple padet losses within a

single window poorly. This can lead to Stuations where TCP Reno must wait for a
retransmission timer to expire before continuing and is discussed further in the next section.



2.3  End-to-End Improvement Methods

End-to-end improvements attempt to reduce TCP's susceptibility to padket losses without making
changes to any of the intermediate nodes (i.e. routers, and base stations). All upgades are
performed at the sender and the recaver. In many cases this is desirable becaise it may be
impossble or impradicd to modify the intermediate nodes. This is espeaally true when base
stations are owned by a service provider, and the mobile and fixed hosts are owned by the user.
These gproadhes do not saaifice end-to-end reliability and require no state maintenance d
intermediate nodes. A further advantage is that they provide the same performance improvements
regardless of whether the sender is the mobile host or the fixed host.

2.3.1 TCP New-Reno

TCP New-Reno is an experimental version of TCP Reno proposed by Hoe 8] which makes a
dight modificaion to the Fast-Rewvery algorithm of TCP Reno. Unlike the Reno Fast-Remvery
phase which ends when the resent padet is adknowledged, the New-Reno Fast-Remvery phase
ends when al of the data is adknowledged which was outstanding at the time the loss was
deteded. In the cae of a single padket loss Reno and New-Reno will perform identicaly.
However, if two or more padets are lost in a single window of data, Reno will invoke Fast-
Remvery multiple times while New-Reno will handle the multiple losses with a single Fast-
Recovery phase.

Advantages of TCP New-Reno

Avoiding multiple exeautions of Fast-Revery in rapid successon allows New-Reno to eliminate
two detrimental effeds. First, it prevents the connedion from shrinking the congestion window
too drasticdly (i.e. by fadors of four or more). This can provide substantial improvements for
high delay-bandwidth paths requiring large window sizes. Sewond, and more importantly, by not
shrinking the congestion window as drasticdly, it can eiminate the stalls which often happen to
TCP Reno after two packets are dropped in a single window.

Disadvantages of TCP New-Reno

While TCP New-Reno is capable of handling multiple padket losses in a single window, it is
limited to deteding and resending at most one lost padket per round-trip-time. This deficiency
beames more pronounced as the delay-bandwidth becomes greaer. More importantly, there ae
situations where stalls can still occur if padets are lost in successve windows. Also, like dl of
the previous versions of TCP discused above, New-Reno till infers that al lost packets are
caused by congestion and it may therefore unnecessarily cut the congestion window size when
errors occur.

1C



2.3.2 Selective Acknowledgments (SACKYS)

Seledive aknowledgments are an ideawhich has been around for at least a decale, but have seen
agrea ded of renewed interest in the past yea or two. The main ideawith any of the proposed
SACK schemes is to provide the sender with more detailed information about the state of the
recaver than is possble with cumulative ACKs. In 1996 Mathis, Mahdavi, Floyd, and Romanow
proposed the MMFR SACK standard for use in the Internet[9]. This proposal alows a TCP
recaver to send SACK information as a set of options within the TCP header which is
complimentary to the existing TCP ACK. The new option fields indicate the starting and ending
sequence of non-contiguous sts of data existing at the recaver. Depending on the other TCP
options being used by the mnredion, a maximum of either two or three blocks of data may be
reported by asingle ACK. The recever shown in Figure 3 below has just receved padket number
eight and the information sent in the SACK will be: first block = 8761to 10221, second block =
5841 to 7301, and third block = 1461 to 4381.

Figure 3 - Receiver's Window (Multiple Losses)

2 3 5 7 8

S N N R N

1 1461 4381 5841 7301 8761 10221

Recavers include SACK information in the TCP header only when dugicae ACKs are sent in
response to the arival of an out-of-order padcket. A new scoreboard matrix is introduced at the
sender to keep tradk of this SACK data, and a new pipe mecdhanism is used to tradk the number of
padkets currently in transit (i.e. in the “network data pipe”). SACK performs Fast-Retransmit just
like New-Reno. It enters the Fast-Retransmit phase when a lossis deteded, and it exits when all
of the data has been acknowledged which was outstanding when the Fast-Retransmit phase began.

Advantages of SACK

SACK improves upon TCP New-Reno when multiple padets are lost in a single window. The
additional information provided by SACK alows the sender to retransmit multiple lost padkets
within a single round-trip-time. New-Reno has to wait for the ACK of the first retransmitted
packet to determine which (if any) other packets have been lost [7].

Disadvantages of SACK
SACK till makes no attempt to distinguish between losses due to congestion and errors on the
wirelesslink (it just deaeases the dfeds losses have on performance). Also, it seems that with

the aurrently proposed implementation of SACK, there ae till situations where stalls could occur
if packets are lost in very specific patterns.
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2.3.3 Explicit Loss Notification (ELN)

Explicit LossNotification is an end-to-end approadch which allows the TCP sender to distinguish
between wireless and congestive losses. Currently, ELN is not considered a viable protocol
because there is no completely reliable method to inform the sender which losses are due to
congestion and which are due to errors on the wireless link. Experimental versions of ELN
operate on the assumption that the recaver (or an intermediate node) is able to inform the sender
of the reason for padcet losses. When a padet is lost due to congestion, the recaver sends badk
its typicd dupgicae ACKs to invoke Fast-Remvery at the sender. But, when a padket must be
resent due to errors, the dugdicae ACK is nt with a new option field which denotes an error
related loss This causes the sender to retransmit the padket without taking congestion avoidance
measures. Also, if the ELN option is st, the sender may retransmit the lost padket immediately
rather than waiting for two more duplicate ACKs.

Results for an ided ELN scheme ae given in [3]. The Mobile Computing Group at Texas A&M
is considering one goproadh which may be redisticdly used to implement aform of ELN. Padets
lost due to congestion will never make it to the recaver. However, padkets which have arors
introduced on the wirelesslink may make it to the recever and be discarded due to an improper
chedsum. With the proposed approad, the TCP recever would examine padkets which passthe
IP ched<sum but fail the TCP ched<sum. Since the IP chedksum was valid, the recever knows
that the source and destination addresses and port numbers are @rred. Other TCP header fields
would be examined to ensure they are plausible. Then a dugdicae ACK with the ELN option
would be returned to the sender to force a retransmission of the packet with the error.

Advantages of ELN

A TCP sender equipped with the ELN upgade is cgpable of distinguishing between congestive
and wirelesslosses. If the loss notification scheme is acairate, congestion prevention measures
will only be taken when appropriate.

Disadvantages of ELN

There is no known scheme that distinguishes perfedly between congestive and wireless losses
which does not require modification of intermediate nodes. The method proposed above falls
short of perfed differentiation because it will consider padkets which do not read the recever’'s
TCP layer as being lost due to congestion.

2.4 Link-Layer Improvement Methods

Reliable wirelesslink-layer protocols comprise the seand classof TCP improvement schemes for
heterogeneous networks. Ead of the link-layer improvement methods attempts to make the
wirelesslink appea like asower, reliable (i.e. low error rate) link to the TCP sender. Reliability
can be acomplished using forward error recvery (error corredive @ding), automatic repea
requests (ARQ) for lost frames, or a combination of both. Besides the method used to provide

12



reliability, link-layer protocols also differ in how they deliver frames to the layers above them.
Some attempt an in-order delivery of frames while others allow out-of-order delivery.

Advantages of Link-Layer Protocols

Typicdly, link-layer protocols require little or no state maintenance d the base station (depending
on whether the link-layer provides in-order delivery). This alows link-layer solutions to function
efficiently during handoffs between base stations. Also, link-layer protocols do not interfere with
the end-to-end semantics of TCP, so a base station or link failure will not result in lost data.
Link-layer protocols are dso independent of the upper layers, so the gains they adchieve can be
used for other transport layer protocols besides TCP. Findly, reliable link-layer scheme can be
optimized for each type of wireless connection.

Disadvantages of Link-Layer Protocols

Reliable link-layer protocols perform locd retransmissons between the base station and the
mobile host. It has been shown in [3] and [4] that these retransmissons at the link-layer can
interfere with TCP's retransmisson medhanisms when error rates become significant.  This
interference is due to competition between the retransmisgon timers at the two different layers,
and inadvertent invocaion of Fast-Retransmit by link-layer schemes which alow out-of-order
frame delivery. It could also be agued that providing reliable, sequenced delivery of frames
moves the functionality of several layers down to the link-layer.

2.5 Split Connection Improvement Methods

Split connedion approaches make up a third class of TCP enhancement schemes for
heterogeneous networks. Split connedion protocols distinguish errors on the wirelesslink from
congestive losses by dividing the exd-to-end conredion into separate wireless and wired
connedions. An unmodified version of TCP may be used between the fixed host and the wireless
host. A verson of TCP customized for wireless connedions, or a new transport protocol
spedficdly designed for wireless communications is then used between the base station and
mobile host. The base station is the focd point for these protocols. It must take nnedion
requests from either the fixed host or mobile host and establish the second connedion on behalf of
the requester. While the two hosts are cmmunicating, the base station is responsible for
transferring data between the wireless and wired connedions. It must aso move this
responsibility to a new base station in a manner that is transparent to both ends when a handoff
occaurs. The most well known of the split connedion approadies is indired TCP (I-TCP)
developed at Rutgers[10] [12]. It uses TCP for both connections.

Advantages of Split Connections

Because split connedion protocols completely separate wireless and congestive losses, they are
able to obtain very good throughput.
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Disadvantages of Split Connections

Split connedion approades require hard state maintenance d the base station. This means that
handoffs will require agood ded of information exchange between the old and new base station
serving the mnredion. Split connedions aso violate the end-to-end reliability of TCP because
two connedions are involved. Failures at the base station or along the transmisson path can
result in information losses becaise the sender recaves an ACK before the data truly makes it to
the ultimate destination. Finally, maintaining two separate wnnedions creaes a good ded of
overheal at the base station becaise eat pieceof data must traverse the entire protocol stadk
twice. This could become a problem if many connections are serviced by a base station.

2.6 TCP-Aware Link-Layer Improvement Methods

The snoop protocol developed by Berkeley is an example of a TCP-Aware link-layer protocol [3].
It is a hybrid solution which uses concepts from the link-layer schemes and the split connedion
approadhes. Unlike the other solutions discussed, the basic snoop protocol is gedficdly
designed for data transfers from the fixed host to the mobile host. To improve the performance of
data transfers in the other diredion a NACK (negative ac&nowledgment) may be used between
the mobile host and the base station. The basic snoop protocol is aso unique from the others
because it only requires modifications at the base station.

A snoop base station cades eat padket recaved on the wired link and then forwards it to the
mobile host. The snoop agent then watches the ACK's being returned from the mobile host to the
sender. The aent maintains round-trip-time estimates for the wireless link and performs locd
retransmisson if an ACK is not recaved before the timer expires. A much finer timer is used at
the base station than at the TCP sender so that multiple locd retransmissons are possble before
the sender times out. Also, asingle dugicae ACK for a padket caded at the base station results
in alocd retransmisson. The base station is able to interpret a single dugicate ACK (rather than
three) as a packet loss because the wireless link delivers packets in order.

The key to snoop is that unlike other link-layer protocols, it maintains gate which it is able to use
to determine whether a padket was lost due to congestion (before reading the base station), or
recaved at the base station and subsequently lost due to errors on the wireless link. This
information is used to shield the sender from dupicae ACKs due to wirelesslosses, and to pass
through dupicate ACKs caused by congestive losses. The state maintained by snoop also alows
it to recognize TCP retransmissions so that it will not compete with them.

Advantages of the Snoop Protocol

The fad that snoop only requires modificaions to the base station can be an advantage if it is
desirable to change the base station without modifying any of the hosts within the Internet. More
importantly, throughput improvements provided by snoop are better than any of the other
experimental schemes. This is becaise the base station is able to acarately distinguish between
congestive and wirelesslosses  congestion avoidance medhanisms at the sender are invoked
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only when appropriate. Finally, the state maintained at the base station is oft in the sense that it
can be lost without affecting the reliability of TCP.

Disadvantages of the Snoop Protocol

Although the state maintained at the base station by the snoop agent is ft, it can require a
sgnificant amount of memory, and it does complicae handoffs. Perhaps sio0p’s gredest
disadvantage is that it requires the ACKsto follow the same path as the data in order to shield the
sender from losses. Thisis not a problem for network topologies containing a single wirelesspath
which every paket must traverse. It does become aproblem when multiple wireless paths are
possble, or with asymmetric links where the sender uses a high bandwidth, high delay path (such
as a satellite link) to send the data and the recever uses a low bandwidth terrestrial path to return
the ACKs. Findly, snoop has no method of informing the sender when the base station
experiences a period of high errors and this could lead to unnecessary timer expirations which
invoke congestion avoidance procedures.

2.7 SCPS-TP Improvement Methods

The Space Communications Protocol Standards - Transport Protocol (SCPSTP) is a set of
extensions to TCP developed for use in satellite networks by The MITRE Corporation, Gemini
Industries, NASA, and the Department of Defense [11]. Although some of the wncepts
introduced with this st of standards are satellite spedfic, there ae number that can be used to
improve the performance of TCP on any wireless link that experiences errors. SCPSTP
introduces a default assumption for losses which is st differently depending on the spedfic
network environment. Unlike aurrent versions of TCP which always use the default assumption
that losses are due to congestion, SCPS TP may use the default assumption that losses are due to
errors. This makes snse in networks known to have high error rates and little or no congestion.
The default assumption can also be temporarily changed duing periods of high error rates o that
congestion avoidance measures are not unnecessarily invoked.

SCPSTP uses a seledive negative a&nowledgment (SNACK) option. The goal of this option is
to provide the sender with a more complete picture of which padets have been lost. The SNACK
option serves the same purpose & the SACK option discussed previoudy, but its implementation
is completely different. Since the bandwidth available to ACKs on a satellite is often very limited,
the SNACK option conveys lost padkets in a way that uses fewer bytes and requires fewer ACKs
to generate a retransmission.

SCPSTP also uses adifferent method of congestion avoidance which is often referred to as TCP
Vegas. The other standard TCP implementations discussed above find an optimal operating point
by linealy increasing their bandwidth until a loss occurs. Since ay losses sverely degrade
throughput on high delay-bandwidth links, TCP Vegas attempts to avoid this pattern of ramping
up throughput until losses occur. It does this “by increasing its congestion window more slowly
than standard TCP and by measuring the atieved throughput gain after ead increase to deted
the available capacity without incurring loss.” [11]
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Advantages of SCPS-TP

SCPSTP adiieves a very significant performance improvement over standard TCP when errors
are present in a high delay-bandwidth wirelessenvironment. SCPS TP combines the benefits of a
number of different techniques. Firgt, it is able to distinguish between congestion and wireless
losses. Then, it combines this ability with the SNACK option so that it efficiently retransmits the
lost padckets. SCPSTP is aso an ided candidate for the wireless protocol used in a split
connection.

Disadvantages of SCPS-TP

The danges made & part of SCPS TP are quite significant and so most fixed hosts will probably
not be eguipped to take alvantage of these upgades. The aithors indicae in [11] that the TCP
Vegas congestion control mecdhanisms are very senditive to round-trip-times and require a
significant amount of tuning.

3.0 ThePartial Acknowledgment Protocol

The partial adknowledgment (ACKP) protocol is a new protocol that was proposed in [6] by the
Mobile Computing Group at Texas A&M and implemented and tested as part of this projed.
Previous reseach efforts at Texas A&M focused on the proposal and smulation of an Explicit
Bad State Notificaion (EBSN) protocol [5]. The EBSN protocol was designed to send a
notification from the base station to the recaver when the base station was experiencing high
error rates (deep fades). This notification then caused the recaver to revise its retransmisson
timer to give the base station more time to make the delivery and lower the likelihood of an
unrecessry time-out/Slow-Start at the sender. Results from the EBSN study indicated that it
effedively prevented unnecessary time-outs and congestion avoidance measures during high
wirelesserror periods which resulted in performance improvements over plain TCP of 50 percent
on wireless LANs and 100 percent on wide area wireless networks.

The ACKP protocol has been proposed as a means of combining the dfediveness of the snoop
protocol at performing TCP-Aware link-layer retransmissons with the caabilities of an EBSN-
like protocol which prevents unnecessary time-outs during periods of high error rates on the
wirelesslink. This combination will maintain the end-to-end semantics of TCP and dfferentiate
between congestion and wireless losses over a wide spectrum of error conditions.

The central concept behind the ACKP protocol is to further distinguish between congestive and
wirelesslosses by splitting the ad&nowledgment medanism into two parts rather than splitting the
connedion in two as with I-TCP and other split connedion protocols. The two types of ACKs
used by the protocol are: partial adknowledgment (Ack,) and complete adknowledgment (Ackc).
A partial adknowledgment with the sequence number N informs the sender that padkets up to N-1
have been recaved by the base station. An Ack. is the standard TCP ACK sent by the recever
which informs the sender that padkets up to N-1 have been recaved. This new protocol requires
upgrades to the base station, and to the sender, but no modifications are required at the receiver.
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3.1 Expected Network Topology

The ACKP protocol operates between a fixed host and a base station. The basic network
topology that ACKP is designed to work with is snown below. The protocol is flexible and could
be expanded to work with a wirelesslink in the middle of the cnredion, wirelesslinks at both
ends of the connection, or a number of other network topologies.

Figure 4 - General Heterogeneous Network Topology

Wired Network

o —.
Fixed Host Base Station Mobile Host

(TCP Source) (TCP Receiver)

3.2 ACKP During Connection Establishment

The ACKP protocol is designed to be compatible with older versions of TCP, but only TCP
versions containing the ACKP upgades can take advantage of the performance improvements
offered by the protocol. During the mnnedion establishment phase, the sender indicates whether
it is equipped to handle the ACKP protocol. Newer versions of TCP containing the ACKP
upgade will set a TCP healer option field to indicae they can take advantage of partia
adknowledgments. Older TCP versions which are unaware of ACKP will omit this option field.
If the base station receves the mnredion request with the option included, it knows that the
sender is equipped to handle partial adknowledgments. If the option field is omitted, the base
station will not send any partial acknowledgments.

3.3 Base Station Operation

The ACKP protocol is designed to work at a base station that is already equipped with the snoop
protocol since it relies on state information maintained by the snoop agent. When the ACKP
protocol is exeauted at the base station, the snoop buffer is $anned to determine the padket with
the highest contiguous squence number. A new variable cdled lastackp is then compared to the
sequence number of the padket. If it is lessthan the sequence number of the padket, an Ack,
would provide the sender with rew information. If lastackp is equal to the sequence number,
there is no nedad to send an Ack, because the sender already has the latest information from the
base station. The partial adknowledgment protocol is not run immediately after recaving a
packet. Insteal, a delayed ACK timer is used so that under normal circumstances (i.e. in the
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absence of errors) an Ack. will be recaeved before the timer expires. Thiswill drasticaly reduce
the number of Ackpackets sent which in turn allows more efficient use of the wired network.

When data is recaved at the base station, one of several scenarios can occur. In the first scenario,
an in-order padet arrives and snoop cadies the padket and starts a locd retransmisgon timer.
This retransmisgon timer also functions as the delayed ACK timer for the ACKP protocol. If the
timer expires before an Ack. is obtained from the recaver, snoop will retransmit the packet. The
partial adknowledgment protocol will then scan through the snoop buffer and determine that
lastackp is less than this padket’s squence number, so an Ack, will be returned to the sender
informing it that the padket was recaved by the base station, but errors on the wireless have
prevented normal delivery. The lastackp variable will aso be updeted. In figure 5 below, the
Ack, sent by the base station would be for packet number four.

Figure 5 - ACKP Scenario 1

Packet 1 Packet 2 Packet 3

N

1 1461 2921 4381 * | Packet 4

The second scenario involves an out-of-order padket arriving at the base station. The padket may
be out-of-order for two reasons. it took afaster path between the sender and the base station, or
some padkets ahead of it were lost due to congestion. The snoop agent will again buffer the
padket and start a locd retransmisson timer. If the timer expires before an Ack. is obtained from
the recaver, snoop will retransmit the padket. The partial adknowledgment protocol will then
scan through the snoop buffer. If the other padkets have arived at the base station, this padket
will have the highest contiguous squence number and the same steps will be followed as in the
first scenario. If the padets have been lost due to congestion, the padket with the highest
contiguous squence number will be equal to lastackp and lower than this padket’s sequence
number, so no Ack, will be sent. This will cause the sender to take cngestion avoidance
measures just as it normally would. In the figure below, no Ack, will be sent in response to the
arrival of packet four because packets two and three have been lost due to congestion.

Figure 6 - ACKP Scenario 2
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1 1461 2921 4381 ° | Packet4

The third scenario involves the recept of a padket which fills a hole in the padket buffer at the
base station. This stuation will normally occur when a padket has been lost due to congestion
and then retransmitted. The same initial steps are followed as above. If the retransmisgon timer
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expires, the snoop buffer is anned, and a padket with a sequence number above this one will be
the padket with the highest contiguous squence number. An Ack, will be sent for this padket
with the highest sequence number and lastackp will be updated. In figure 7 below, an Ack, will
be sent for padket four if the partial adknowledgment protocol is invoked in response to the
arrival of packet three.

Figure 7 - ACKP Scenario 3
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3.4 Operation at The Sender

A TCP sender equipped with the ACKP upgade is able to distinguish an Ack, from an Ack. by
whether or not the padet has the partial adknowledgment option set. ACKs with the option set
indicae to the sender that all padkets up to but not including the sequence number adknowledged
have been recaved at the base station, and the base station is having trouble delivering the padckets
over the wirelesslink. This partial adknowledgment causes the sender to reset its retransmisson
timer so that an unnecessary time-out is avoided while the base station attempts to deliver the
padket. Other possble variations on this would involve using a mnstant or exponential bad<off
rather than merely resetting the timer when an,Agkeceived.

If the option field is not set, the ACK is a complete ac&nowledgment sent by the recaever. The
sender responds by performing the cmplete set of TCP ACK processng which includes updating
round-trip-timers, adjusting windows, freeng memory held by the ad&nowledged padets, and
sending new data. None of these adions are performed when a partial adnowledgment is
recaved. One variation on the handling of complete a&knowledgments would be to ignore round-
trip timing measurements for padets which also had an Ack, associated with them. This is
analogous to Karn's algorithm which says that the RTT measurement for a padket which has been
retransmitted should be ignored.

4.0 Implementation Details

The eperimental testbed used for this projed consisted of three Pentium based desktop
computers with ead machine running the FreeBSD 2.1 operating system. The first computer,
Ravel, was conneded only to a 10 Mbps ethernet LAN and was used as a fixed (wired) host. The
seaond PC, Verdi, was conneded to both the éhernet LAN and a 2 Mbps WavelL AN wireless
LAN operating in the 915 MHz band. The wireless LAN used a Dired Sequence Spreal
Spedrum (DSSSY modulation tedhnique with a CSMA/CA media acces protocol and an
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addressng scheme identicd to ethernet. Verdi operated as the base station which relayed padets
between the wired and wirelesslinks. The third computer, Chopin, was conneded only to the
WavelL AN wirelessLAN and was used as a mobile (wirelesg host. The name used to refer to a
madine on its wirelessinterface dways has the suffix “-wv” added. Thus Chopin is referred to as
Chopin-wv and the wireless connection for Verdi is referred to as Verdi-wv.

Unlessotherwise noted, al of the experiments in this projed have focused on 2 million byte bulk
data transfers from the fixed host to the mobile host. Data flow in this diredion is typicd since
the majority of the time mobile hosts ad as clients accessng data bases, files and WEB pages
residing on fixed hosts. The initial test set-up is illustrated in figure 8 below.

Figure 8 - Initial Heterogeneous Testbed
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One of the key goals of this projed was to perform experimentation using a red testbed rather
than smulating the dfeds of various TCP enhancements on hulk data transfers. In past efforts it
has been observed that smulation results are often more likely to be questioned dwe to
uncertainties regarding the acarracy of the simulation environment and the assumptions made.
With a red implementation, there is much lessroom for dispute since d of the processng delays,
propagation delays, and protocol idiosyncrasies are taken into account.

The Mobile Computing Group at Texas A&M looked at several possble operating systems before
dedding to use FreeBSD. The main requirement was to dbtain an operating system which was
fredy distributed and came with the source ®de so that experimental modifications could be
made. Early on, LINUX was chosen because of its wide user base and availability of drivers.
Soon afterwards, the group dscovered that the experimental work being performed at Berkeley
and most other places was being done on various BSD derivatives (i.e. FreeBSD, BSDI,
NetBSD). Therefore, a switch was made to FreeBSD so that we oould take better advantage of
these existing efforts and so that our results would be more directly comparable.

4.1 Addition of Snoop Functionality to FreeBSD

Once the testbed shown above was operating corredly with the Reno version of TCP, which
comes gandard with FreeBSD 2.1, the next step taken was to add the snoop protocol. As
discus=d in the introduction, this gave us an exercise which alowed us to become familiar with
the inner workings of the networking code while dso providing us with a good baseline for
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further development and comparison. Since the ACKP protocol was designed to operate on top
of the snoop agent, it was essential to first have a working version of the snoop protocol.

The source ®de for the version of snoop designed to run on BSDI was obtained from Berkeley.
The snoop source @de modificaions were spread aaoss five main files. Three of the files
contained existing TCP procedures which had been modified to add the snoop functionality, and
two fileswere ompletely new. The three eisting files were the hardest to examine becaise there
were many differences between the versions obtained from Berkeley and those which come
standard with FreeBSD. Some of the variations were due to differences between the FreeBSD
and BSDI operating systems. Others were related to the snoop protocol, and a third group of
variations were related to other networking upgades Berkeley was testing. After sorting out
exadly which lines of code needed to be added to FreeBSD, problems sich as memory buffer
(mbuf) alocation for the snoop cade, and other kernel configuration issues were solved. In all,
the required modifications were modest. It was the process of determining exadly what eat
pieceof code did and whether to add it that was difficult. In many cases a whole trail of source
code files had to be examined to determine the meaning of a line of code. Appendix C contains
documentation which shows each modification in detail.

4.2 Partial Acknowledgment Implementation

Once the FreeBSD version of the snoop protocol was working, an initial version of the partial
adknowledgment protocol was implemented. The dhanges made to the FreeBSD kernel for the
ACKP protocol are described in detail in Appendix E. The upgade involved code alditions in
threekey areas. The first and hardest portion of the upgade was the implementation of a module
at the base station which could creae an appropriate Ack, padket. This procedure is unusual in
that it is constructing a TCP padet to pass from the base station to the sender, but the base
station is not redly part of the connedion so it must creade apadet that looks like it is coming
from the recaver. Luckily, the information required to mimic the recever is contained in the
header of the incoming data packets.

The second portion of the upgade involved determining when to send an Ack,. Although the
procedure outlined in sedion three was written, the initial implementation installed at the base
station was much smpler. The goa of the initial implementation was to determine if the ACKP
protocol would provide performance enhancements such as better throughput and more dficient
use of the wired and wirelesslinks during periods of high wirelesserror rates. The best way to
implement the protocol in order to obtain these desired results was to send an Ack, for every
packet recaved. This initial approacd is valid for threereasons. First, since we know that our
sender is equipped to handle Ack, padkets, the sender and base station do not have to negotiate
this option during the mnnedion establishment phase. The option negotiation feaure can be
added later for badkwards compatibility. Second, within the controlled environment of the
testbed no congestive losses are present, so sending an Ack, for every padket will not adversely
affed the mnnedion’s response to congestion. Third, the number of Ack, padkets snt between
the base station and the fixed host should not affed the parameters we want to measure. These
padkets may crede alditional collisions on the wired link, but sincethe wired link is several times
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faster than the wirelesslink, the additional collisions on it should not affed throughput or any of
our other performance metrics. The full implementation can be alded once it is determined
whether or not the ACKP protocol will offer significant performance improvements.

The third portion of the upgrade involved adding coding at the sender so that it could recognize
and read to an Ack, padet. The TCP option handling code now recognizes a new ACKP
option. When this option is present in the padket, the option handling code sets a flag. The
portion of the TCP code which handles incoming padets fes that this flag is st, updates the
retransmisson timer so that atime-out is lesslikely, and then drops the padet without processng
it any further. Since an Ack; is being sent for every padet in this initial implementation, the
retransmisson timer can not be incremented exponentialy. Instead, it is reset to a mnstant value
which is roughly twice the initial time-out value eat time an Ack, padet is recaved. This
ensures that the new protocol gives the base station roughly twice & long to recover during
periods of burst errors.

4.3 Bit Error Model Implementation

The bit error model used for the experiments was obtained from UC Berkeley. It is designed to
use ather a Poison-distributed bit-error model or a Markov model which transitions between
high and low error rates. The Poisson model is cgpable of damaging a single byte or creding a
burst of errors which damage several padetsin arow. One mpy of the model runs at the mobile
host to damage data padkets, and another runs at the base station to damage ACKs. Parameters
such as the mean error rate and the burst size determine how the model behaves.

When the aror model determines that an error should be injeded, it modifies either the IP header
chedksum or the TCP chedksum depending on where the aror occurs within the packet. This
forces either the TCP or IP layer to drop the packet. Then it cdculates the interval in bytes
between the spot of the aurrent error and the placethe next error isto occur. To do this, atable
of 50,000 exponentially distributed integers is maintained. A number is randomly chosen from
the table and scded by the mean error rate. This <ded value is then used as the interval between
errors. The table size @mmbined with the random arrival of padkets ensures that a repeding
pattern of errors is highly unlikely.

While this type of model is not necessrily an exad representation of the pattern of errors
experienced on a noisy wirelesslink, it is effedive because the Poisson distribution has a variance
equal to its mean. The result is that errors are not evenly distributed. Sometimes they occur in
rapid successon and other times they are spacel qute far apart. As we will seein the results
sedion, closely spacel errors cause extreme performance degradation in existing versions of TCP.
The Poison-distributed error model is therefore dfedive becaise it exercises the aeawhere TCP
IS most vulnerable.
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4.4 Measurement Methods

Two methods were used to obtain performance metrics. The first method was rather
straightforward and involved using a padet filter cdled BPF (Berkeley Padket Filter) which
comes gandard with the FreeBSD distribution. The padet filter is a pseudo device within the
kernel that functions as a promiscuous receaver at the link-layer (listens to al frames transferred
on the link). An application program cdled tcpdump which is aso included in the standard
FreeBSD distribution is used to filter the padkets captured by BPF. It alows the user to provide
filter spedficaions sich as the source destination, and protocol of padkets which should be
accepted. These padkets can be stored to a file and then later analyzed to look for dupicae
ACKs, retransmitted padkets, long periods of inadivity, and other performance information. A
portion of a tcpdump file has been included for reference in Appendix A.

One metric which often provides insight is a plot of the sequence numbers versus time. The plot
for an ided connedion which hes every padcet delivered in-order with no retransmissons is
shown in Figure 9 below. The horizontal axis is the time in terms of hours, secnds, and
milliseconds. The verticd axis is the sequence number in bytes. The ided plot is a straight line
and the dope of the line is the throughput for the mwnnedion. Diagrams sich as these were made
by taking the raw tcpdump data and then parsing and plotting it in Microsoft Excel.

Figure 9 - Ideal Plot of Sequence Number vs. Time
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The second method used to measure performance was more involved. While tcpdump provides
data related to padket healers, it is cgpturing this data below the transport layer, so it is incgpable
of providing information about the state variables related to the TCP connedion. To completely
understand the performance of a wnredion, information such as retransmisson time-outs, Fast-
Revery initiation, and other parameters contained in the TCP control block at the sender must
be measured.

An initial attempt was made to write cde from scratch which would measure the desired
parameters. This code was able to succesdully capture the information, but the methods avail able
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to move the information from within the kernel to afile for logging were messy at best. Instea,
modificaions were made to existing debuggng medianisms. TCP contains a tracefunction which
records information into a debuggng buffer provided that debuggng has been enabled for the
given conredion. Ead huffer entry contains the packet header and a wpy of the values
contained within the TCP control block at the time the entry was logged. An applicaion program
cdled trpt which has gymbolic links to the buffer can then be used to print the contents. Changes
were made in the kernel to increase the size of the debuggng buffer, to modify where the trace
code was cdled, and to add a new type of debuggng entry for Ack, padkets. The kernel
configuration files also had to be danged to include the trace ©de and its related files. Finally,
the trpt program was customized to print the desired information in a format that was useful.

The alvantage of using TCP's trace oding in combination with the trpt program is that the data
cgpture and data display functionality are cmmpletely separated. Because the trace function
cgptures both the TCP header and the TCP control block, virtually any parameter of interest is
available. The trpt program can then be austomized to print only the desired parameters. This
means that after the initial kernel upgades are made, the only changes being made ae to trpt
which is an applicaion program. Therefore, the kernel does not have to be rebuilt eat time the
user wants to display different pieces of information. This provides a very flexible means of
displaying the data captured.

4.5 Test Sender Program

The test sender program is a smple gplication program which uses the socket APl to open a
connedion with a remote madiine and make bulk data transfers. It has a text based menu which
allows the user to seled the port number and name of the destination macine. When the
program is first started, the default destination machine is Chopin-wv and the default port number
IS 9 which is the well know port number for the discard server on a UNIX madine. The discad
server appeas like aregular recaver to the TCP sender, but it throws away ead padket that it
recaves. A destination other than the default may be dhosen by the user. Oncethis destination is
chosen, it becomes the new default. The test sender program also alows the user to enable or
disable debuggng on the socket which is used for the data transfer. Enabling debuggng causes
the kernel to record incoming padkets and the state of the TCP control block in the tracebuffer.
These padkets can be examined using trpt at alater time & discussed in the previous fdion. The
test sender program also times the transfer to the nearest millisecnd. The source @de for the
test sender program is included in Appendix B.

4.6 Wireless Configuration Program

The wirelessconfiguration program is another application program which uses the socket API to
chedk and set the e@ror model parameters and TCP enhancement fedures. This program is very
useful because it allows the test environment to be danged without requiring the kernel to be
modified and rebooted which saves time and ensures that conditions remain similar during testing.
The setsockopt and getsockopt socket system cdls allow an applicaion program to set fedures
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within the kernel. Normally this involves feaures sich as the maximum segment size, and buffer
sizes which relate to a particular socket. The FreeBSD kernel running on Verdi and Chopin hes
been upgaded to include alditional global socket options related to the eror model and TCP
enhancaments. These options determine whether snoop, ACKP, and the eror model are enabled
or disabled. They aso alow error model parameters such as the mean error rate and the burst
sizeto be dhanged. The anfiguration program contains the setsockopt cdls required to set these
new kernel feaures, and the getsockopt cdls required to ched the aurrent kernel settings. The
source code for the wireless configuration program is included in Appendix B.

5.0 Experimental Results

In this edion, the experimental results are presented and explained. The first sub-sedion gives
some of the genera results which were obtained ealy on in the projed. These ae shown to
demonstrate how unmodified TCP Reno performs.  They illustrate and confirm many of the
problems asociated with using TCP in heterogeneous networks which were presented ealier in
thisreport. The rest of the results look at how the snoop protocol and the ACKP protocol affed
the performance of TCP. Sedion 5.2 compares results in a wireless LAN environment, and
sedion 5.3 compares results in a low bandwidth wireless environment. The experiments
performed in sedions 5.1 and 5.2 were designed to test the performance of the ACKP protocol in
two gituations: during periods of single-padket wirelesslosses and duing periods where padkets
arelost in bursts. The intent of the experiments was to show that ACKP would not degrade the
performance of snoop which already performs well for single-padket losses and that ACKP would
improve the performance of snoop during bursts of packet losses.

5.1 General Results

This ®dion discusses various plots which show how plain TCP (Reno) reads to losses due solely
to errors, losses due solely to congestion, and losses due to a ambination of both. The first plot
shown in Figure 10 on the next page was made from tcpdump information captured duing a 2
million byte data transfer from Ravel to Chopin using the testbed shown previously in Figure 8.
The typicd round-trip-time for a padket in this testbed was between 6 and 8 milli seconds, and the
ided throughput for a cnnedion was just over 200KB/s. During the transfer plotted below, the
error model was used to injed errors on the wirelesslink at an average rate of once per 64 KB
(i.e. ahit error rate of 1.9 x 10°). These arors resulted in a transfer time of 12.71 seconds with
an average throughput of 15367 KB/s. This throughput value, which is only 25 percent below
the ideal rate, is actually unusually good for TCP Reno as we will see in the next section.

Several interesting concepts can be observed in the plot in Figure 10. First, the flat portions of
the plot indicae that the transfer has galled. It is aso evident from looking at a number of plots
such as this that these stalls acount for dmost the enitire difference in performance between a
connedion with errors, and a connedion that is error-free A closer review of the data olleded
during the transfer reveds the reason for the stalls. When padkets are lost in quick successon,
TCP Reno shrinks its congestion window in half for ead loss This results in a congestion
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window which is too small to adbtain the three dugicae ACKs required to initiate fast recvery.
Therefore, the nredion waits in this date of temporary deadlock until the sender’s
retransmisson timer expires causing the lost padket(s) to be resent. Snoop and many of the other
TCP enhancements prevent the sender from shrinking its congestion window in response to errors
so they are &le to maintain a mngestion window which is large enough to avoid stalls such as
these.

Figure 10 - TCP Reno Transfer on a LAN with Wireless Errors
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The second concept which this plot illustrates is the dfedivenessof Fast-Remvery. Ead of the
30 small “blips’ in the plot represents a padket which was lost and retransmitted without a stall
occaurring.  When the ngestion window is large enough to deted the loss and initiate Fast-
Remvery, lost padkets have very little dfed on throughput since the main penalty is the time
required to deted and retransmit the padket. Without Fast-Remvery, eat of the “blips’ would
have created a stall.

The next two plots involved sending data over a WAN using the topology shown in Figure 11
below. For both plots, a mnnedion was established between Chopin (the mobile sender) and the
discad server on the machine gemini.tuc.noao.edu in Tucson, Arizona. A 2 million byte data
transfer was then performed from Chopin to Gemini and recorded using tcpdump.

Figure 11 - Wide Area Testbed
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Even with an ided connedion which experienced no losses, one would exped lower throughput
on a WAN becaise the available bandwidth islower. Also, the padet sizefor a WAN transfer is
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512 bytes and the padket size for a LAN transfer is 1460 bytes. This sndler paket size alds
overheal and lowers the ided throughput. The typicd round-trip-time for a padet was 67
milli seconds, and the ided throughput for a mnnedion operating within this WAN environment
was amost 61 KB/s. The plot shown in Figure 12 below contained no errors on the wirelesslink,
but 17 padkets were dropped due to congestion within the WAN. These losses (coupled with the
competition for bandwidth among the mnnedions at the mwngested gateway) resulted in a transfer
time of almost 63 seconds with an average throughput of 31.0 KB/s.

Figure 12 - TCP Reno Transfer on a WAN with No Wireless Errors
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For the plot shown in Figure 13 the same test set-up was used, but errors were injeded on the
wirelesslink at a mean rate of once per 64 KB. The number of padkets lost due to congestion
plus errors on the wirelesslink was 54 or roughly 1.38 percent of the total sent. These losses
resulted in a transfer time of almost 137 seconds with an average throughput of 14.3 KB/s.

Figure 13 - TCP Reno Transfer on a WAN with Wireless Errors
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The results from these transfers acdoss a WAN demonstrate severa things. First, a TCP
connedion aaoss a WAN experiences performance degradation mainly due to stals caused by
two or more padkets being lost in close successon. Thisis no different from a LAN, except that
the stalls can be more pronounced on a WAN becaise the RTT variance is greaer and the
retransmisson timers are consequently set much higher. Seoond, while a LAN can adiieve
optimal throughput even with a congestion window as snall as two padets (just over 2 KB), a
WAN such as the one tested often neads a congestion window size of at least 8 KB to perform
optimally. Third, even though transfers without any wireless losses were far from optimal, the
injedion of errors reduced throughput an additiona 50 percent by unnecessarily invoking
congestion avoidance measures.

5.2 Wireless LAN Performance

The main purpose of this ®dion is to show how the ACKP protocol affeds the performance of
TCP over a onnedion composed of a wired LAN and a wirelessLAN. All of the experiments
conducted in this ®dion use the testbed shown in Figure 8. Subnet 128194.153is the 10 Mbps
ethernet connedion, and subnet 128194154 is the 2 Mbps WaveLAN wirelessLAN. This test
environment ensures that no congestion occurs, and al losses may therefore be dtributed to
errors on the wireless link.

Results were obtained for several different scenarios. Ead test scenario involved sending 2
million bytes of data from the fixed host to the mobile host and a total of twenty test runs were
performed for ead scenario. The values given in the tables below refled the average of the runs.
Four parameters were measure for eat test case: transfer time, wired goodpu, wireless
goodpu, and timer expirations. The transfer time was used to compute the average throughput
for eadr run. Goodpu is defined as the ratio of the adua transfer size verses the total number of
bytes transmitted over the path[3]. A transfer in which there ae no losses has a goodpu of 100
percent and atransfer with losses has a goodpu below 100 percent. The goodpu values given in
the tables below were determined by dividing the ided number of data padets required for the
transfer by the ad¢ual number of data padets recorded for the transfer. The timer expirations are
measured becaise the purpose of the ACKP protocol isto eliminate or at least deaease the timer
expirations in an effort to improve performance.

5.2.1 Bit Errors

The results for the bit error tests are shown in Table 1 on the next page. The first scenario, cdled
“Ided Transfer”, used plain TCP Reno with no errors injeded on the wirelesslink. Thistest case
was used to determine the ided performance of the LAN testbed. The results for this case could
then be used as a basis for comparison among the other scenarios. As expeded, no padets were
lost, so the number of timer expirations was zero and the goodpu both on the wirelesslink and
the wired links was 100 percent. The throughput of 19992 KB/s (1.6 Mbps) falls below the
nominal wirelessbandwidth of 2 Mbps becaise of collisions and overhead, but it isin line with the
WaveLAN performance cited in other studies and the manufacture’s specifications.
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Table 1 - LAN Performance with Bit-Errors

Ideal Transfer] TCP Reno Snoop Snoop + ACKH
Avg. Transfer Time 9.770 sec. 20.878 sec. 10.513 sec 10.576 sec.
Trans. Time Std. Dev. 0.034 sec. 4.695 sec. 0.280 seq. 0.520 sec.
Avg. Throughput 199.92 KB/s | 98.36 KB/s | 185.91 KB/s | 185.07 KB/s
Throughput Std. Dev. 0.682 KB/s | 23.117 KB/s | 4.890 KB/s 8.372 KB/s
Pct. Ideal Throughput |  ------ 49.20 % 93.00 % 92.58 %
Avg. Wired Goodput 100 % 97.4 % 99.4 % 99.5 %
Avg. Wireless Goodput 100 % 97.4 % 97.3 % 97.2 %
Avg. Timer Expirations 0.00 7.50 0.00 0.00

The remaining test cases in this sib-sedion involved injeding single bit-errors at a mean rate of
once every 64 KB. The semnd test case used standard TCP Reno. As expeded, the wireless
errors caused TCP Reno to invoke angestion avoidance measures which resulted in a drastic
reduction in throughput. Because eab lost padket must be retransmitted at the sender, the
goodpu for the wired and wirelesslinks is identicd. Also, a nhumber of stalls occurred during
each transfer as indicated by the timer expirations in Table 1.

The third test case used the same bit error rate, but the snoop agent at the base station was turned
on. The performance of snoop with errors is below the ided transfer for several reasons. First,
anytime erors occur, performance must suffer to a cetain degreesince some of the padkets must
be sent more than once between the base station and the mobile host. This is refleded in the
wireless goodpu which is 97.3 percent. It also takes a finite anount of time to deted these
errors. Therecaver’s window may fill while waiting for the lost padket and cause the transfer to
stall for avery short time (on the order of ten milli seconds) while the lost padket(s) are resent and
the window is difted right. This last problem can be aired or reduced by increasing the size of
the receiver’s window.

The third test case demonstrates that in a LAN environment the snoop protocol is optimal for
single bit-errors in the sense that the sender is completely shielded from wirelesslosses. Shielding
the sender from losses prevented any congestive measures from being taken (no timer expirations
or dupgicate ACKs were observed) which resulted in excdlent performancein terms of throughput
and goodpu on the wired link. These results were not surprising and confirmed the daims made
by the developers of the snoop protocol.

The final test case involved using both the snoop protocol and the new ACKP protocol. Sincethe
previous test case showed that no timer expirations occurred with the snoop protocol, the only
result which was important to show was that the additional processng performed by the ACKP
protocol did not degrade performance in situations where snoop was areadly behaving optimally.
Asthe resultsin Table 1 show, the performance with ACKP is aimost identicd to the performance
obtained using only snoop. The dight reduction in throughput can most likely be atributed to
variation in the aror patterns which resulted in slightly higher transfer times for two of the ACKP
test runs.
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Although it is not shown in the table @ove, snoop and ACKP were tested at mean error rates of
once every 32 KB and once a/ery 16 KB as well. These results also showed that the snoop
protocol was optimal at shielding the sender from wirelesslosses and that the ACKP protocol did
not degrade performance even when the error rates became more severe.

5.2.2 Burst Errors

The test casesin this edion look at how TCP Reno, the snoop protocol, and the ACKP protocol
perform when hbursts of errors damage six conseautive padkets. The mean distance between the
onset of two error bursts is 64 KB which is the same & for the single bit-errors. The ided caseis
the same asin Table 1 and is therefore not shown in Table 2 below. The first test case which uses
unmodified TCP Reno is included just for comparison.

The second and third test cases $ow the performance of snoop by itself, and of snoop with the
ACKP protocol. These test cases do show that the ACKP protocol was able to deaease the
number of sender time-outs and retransmissons during periods of high error rates. However, the
number of time-outs even without ACKP was dgill relatively small. As one might exped, the
throughput and wirelessgoodpu dropped significantly due to the greaer number of total errors.
Unfortunately, the performance with the ACKP protocol was not noticealy better than the
performance obtained using just the snoop protocol. This can be atributed to several fadors.
First, since there were few time-outs when snoop aone was used, there is little room for
improvement once the ACKP protocol is added. These rare time-outs do result in congestion
avoidance measures at the sender, but they do not occur frequently enough to shrink the window
to the point that a stall can occur. Seaond, both the wired and wirelessLANSs are high bandwidth,
low delay links. In this type of environment there is no significant penalty for re-transmitting data
which hes already succesgully readed the base station or the recever. Also, the reduction of the
congestion window due to an occasiona time-out does not affed the throughput rate of the
connection.

Table 2 - LAN Performance with Burst Errors

TCP Reno Snoop Snoop + ACKR
Avg. Transfer Time 300.455 sec.| 19.031 sec. 19.054 sec
Trans. Time Std. Dev. 90.581 sec. 3.378 sec. 3.411 sec.
Avg. Throughput 7.19 KB/s 105.37 KB/s | 105.66 KB/s
Throughput Std. Dev. 2.584 KB/s | 16.548 KB/s | 18.978 KB/s
Pct. Ideal Throughput 3.60 % 52.71 % 52.85 %
Avg. Wired Goodput 85.9 % 99.6 % 99.7 %
Avg. Wireless Goodput 85.9 % 87.5 % 88.2 %
Avg. Timer Expirations 56.60 0.65 0.30
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5.3 Performance for a Low Bandwidth Wireless Network

After observing the failure of ACKP to improve the performance of snoop in a test environment
composed of wired and wireless LANSs, the question that remained was if the ACKP protocol
would offer significant performance improvements in other environments. The round-trip-time
for a padket in a wirelessLAN remains relatively small regardliess of whether the padet reates
the recever immediately or must be retransmitted from the base station severa times due to errors
on the wirelesslink. On a low bandwidth wireless network, retransmissons between the base
station and recaver can take asignificant amount of time. Therefore, if a padket or a burst of
padkets is lost in this type of environment, the sender’s retransmisgon timer is more likely to
expire unnecessrily. Wide aeawirelessnetworks (i.e. those that cover an entire aty rather than
the floor of a building like the WaveL AN) and wirelessLANs under heavy load are examples of
low bandwidth wireless environments.

The tests conducted in this dion use the same testbed as the previous edion except that a
delay has been added at the base station in ead portion of the acde where apadket is forwarded
on the wirelesslink (seeAppendix E). These transmisgon delays make the wirelesslink appea to
have aped bandwidth of 14.6 KB/s with a propagation delay that is gill below 10 milli seconds.
The ided case shown in Table 3 below demonstrates that the testbed behaves as expeded when
no errors are present on the wirelesslink. Also, as expeded, the introduction of bit errors at the
mean rate of once per 64 KB causes the throughput of TCP Reno to be aut in half with goodpu
percentages that are about the same as for the wireless LAN test case.

The snoop and the snoop plus ACKP test cases also have results which are similar to those in the
last sedion. As Table 3 shows, the sender experiences me time-outs with snoop even when
only a single padet lossoccurs on the low bandwidth wirelesslink. Again however, the number
of time-outsis very low and performanceis therefore not significantly affeaed by them. Still, the
fad that single padet losses cause sender time-outs for the snoop test cases is promising since it
means an even higher number of time-outs should occur for burst errors.

Table 3 - Low Bandwidth Wireless Network with Bit Errors

Ideal Transfer] TCP Reno Snoop Snoop + ACKH
Avg. Transfer Time 138.100 sec. 259.830 seg. 143.515 sec. 143.558 |sec.
Trans. Time Std. Dev. 0.925 sec. 8.146 sec. 1.739 seq. 1.363 sec.
Avg. Throughput 14.14 KB/s 7.52 KB/s 13.61 KB/s 13.61 KB/s
Throughput Std. Dev. 0.093 KB/s 0.230 KB/s 0.163 KB/s 0.127 KB/s
Pct. Ideal Throughput |  ------ 53.20 % 96.24 % 96.20 %
Avg. Wired Goodput 100 % 97.6 % 99.8 % 99.8 %
Avg. Wireless Goodput 100 % 97.6 % 97.5 % 97.6 %
Avg. Timer Expirations 0.00 5.40 0.35 0.05

The last set of test cases looks at how TCP Reno, the snoop protocol, and the ACKP protocol
perform when hursts of errors damage six conseautive padkets on a low bandwidth wireless
network. The mean distance between the onset of two error bursts is 64 KB just like in the
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wirelessLAN test cases. Theided case is the same & in Table 3 and is therefore not shown in
Table 4 below. The first test case which uses unmodified TCP Reno is included just for
comparison.

Table 4 - Low Bandwidth Wireless Network with Burst Errors

TCP Reno Snoop Snoop + ACKR
Avg. Transfer Time 720.520 sec. 181.970 seg¢. 182.451 sec.
Trans. Time Std. Dev. 125.229 sec.| 15.235 sec. 17.914 sec
Avg. Throughput 2.79 KB/s 10.80 KB/s 10.79 KB/s
Throughput Std. Dev. 0.500 KB/s 0.828 KB/s 0.952 KB/s
Pct. Ideal Throughput 19.73 % 76.35 % 76.31 %
Avg. Wired Goodput 84.9 % 97.9 % 99.5 %
Avg. Wireless Goodput 84.9 % 86.8 % 87.8 %
Avg. Timer Expirations 57.55 4.30 0.70

The last two sets of test cases $ow that this time the snoop protocol experienced a significant
number of time-outs on many of the test runs while the number of time-outs with the ACKP
protocol remained low. However, the difference in performance between plain snoop and snoop
plus ACKP was gill not significant. The throughput values for the snoop protocol and the ACKP
protocol were dmost identicd. The biggest difference between the two cases was in wired
goodpu. Although the goodpu for snoop pus ACKP was better, the overall network traffic on
the wired link would probably be aout the same because of the Ack, padkets being sent between
the base station and sender.

The ACKP protocol definitely achieves its objedive of reducing the number of unnecessary time-
outs at the sender, but this does not result in improved performance for burst errors in either of
the environments tested. To see why, one must first look at what caused the degradation in
performance during bursts of errors. The causes are redly the same fadors which prevent snoop
from adhieving ided performance, but they are accetuated when padkets are lost in bursts. Re-
transmitting a whole set of damaged padkets takestime. It takes time for the base station to deted
lost padkets and the detedion time beawmmes greder when many padkets are lost becaise less
feedbadk (or no feedbad) is provided by the recaver. Also, unlessthe recaver’s window sizeis
fairly large (32 KB or more) the sender will generally stall while the burst of lost padets is
delivered. The combination of these fadors is what results in the unnecessary time-out at the
recaver. Eliminating the unnecessary time-outs does not improve performance for the caes
tested because it can not eliminate these fadors which are the primary reasons for performance
degradation.

The other reason the ACKP protocol faled to adhieve aperformance improvement is becaise
both the wiredlessLAN and the low bandwidth wireless environment had low delay wired links in
combination with low delay wirelesslinks. The time-outs which the ACKP protocol prevents will

only have asdignificant detrimental effed on throughput when the delay-bandwidth product is
quite large. Satellite cnnedions and perhaps ©sme combination of high delay wired and wireless
WANSs would fit this description. Unlike LAN connedions which only require awindow size of
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severa kilobytes to obtain high transfer rates, these types of connedions require alarge window
on the order of 100 KB to obtain reasonably high throughput. They are therefore extremely
sengitive to any unnecessry congestion avoidance measures which shrink the window. With
round-trip-times of several hundred milliseoonds, Slow-Start can take seconds, and the
Congestion-Avoidance phase may prevent the window from returning to its full size for several
minutes.

6.0 Conclusions

This projed has provided me with an excdlent opportunity to study the way in which reliable
transport layers such as TCP operate. | have gained a deeper understanding of the problems that
heterogeneous networks cause for TCP which is unable to distinguish between congestive and
wirelesslosses and | have had the chanceto study a number of the different methods proposed by
others to improve TCP's end-to-end performance Reviewing these proposed improvements has
given insight into where the potential gains exist and the drawbads associated with ead
approach. The most important asped of the problem which was leaned duing my studying and
experimentation was that it is generally not the congestion avoidance mecdanisms themselves that
degrade performance in heterogeneous networks. Instead, it is the secondary effed they have of
reducing the congestion window size to the point that Fast-Remvery can no longer operate and
the transfer stalls when a packet is lost.

One of the most significant results of this projed has been the succesdul development of a test
environment for the Mobile Computing Group here & Texas A&M. Wireless configuration and
testing programs have been implemented, an error model has been integrated into FreeBSD, and a
method for measuring and dsplaying results has been developed. This provides a foundation
which will allow future work to begin right from the protocol implementation phase.

Finaly, this projed succes<ully implemented and tested a cmpletely new TCP enhancement, the
ACKP protocol. The ACKP protocol acamplished its goal of reducing the number of time-outs,
but it did not significantly improve performance for the environments in which it was tested. It is
believed that the ACKP protocol will offer significant gains in throughput for high delay-
bandwidth connedions such as satellite links, but this remains an areathat has yet to be explored.
Even if the ACKP protocol does not result in improved performancein other test environments, it
has dill been a significant acammplishment because it has provided us with a framework which
may be followed in developing and testing other protocols designed to enhance TCP's
performance.

7.0 FutureWork

At this point there ae several possble paths which may be pursued in future work. The first isto
continue eperimenting with the ACKP protocol to see how it performs in other network
topologies. As discussd in the results, it is likely that the ACKP protocol can ill yield
significant performance improvements in terms of throughput and goodpu on high bandwidth,
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long delay paths such as satellite links. The aurrent test set-up provides high bandwidth over the
wireless link, but a method would neel to be developed to introduce along delay since the
current delay over the WaveL AN is on the order of several milliseconds. A high bandwidth, high
delay wirelesslink could be smulated by introducing a kind of shift register at the base station
which the padets must passthrough before being sent on the wirelesslink. The drawbad to this
approadh is that it is garting to get away from the origina objedive of experimenting with
protocols using a real system rather than simulations.

End-to-end solutions are another potential areafor future work. This would most likely involve
using preliminary SACK implementations as the base cae. New improvements such as our
proposed ELN medanism discussed in sedion 2.3.3 would then be alded to the basic SACK
implementation. This combination would combine SACK'’s efficiency at responding to losses
with ELN’s ability to distinguish between congestion and wireless losses. Studies would aso
have to be performed to determine what percentage of padkets with errors adualy make it to the
TCP layer at the recever on adua wirelessnetworks in use today since the percentage must be
significant in order for our proposed ELN scheme to work.

A third areawhich may be explored in future work is the development of a protocol that operates
at the base station but requires less sate per connedion than the snoop protocol. The ideawould
be to cade sequence numbers rather than padkets at the base station.  Duplicae
adknowledgments could be shielded from the sender just like with the snoop protocol. However,
padkets would have to be resent from the sender rather than the base station. Therefore, when a
padket lossis deteded at the base station (either due to dugicae ACKs or locd time-outs), it
would transmit a type of explicit loss notificaion to the sender so that the lost padket is resent
without invoking congestion avoidance measures.

A fourth and final areafor future work is to evaluate the performance of multiple cnnedions
when congestive and wirelesslosses occur. All of the work done in this projed and most of the
other current reseach efforts have focused on the performance of a single cnnedion. The type
of study proposed would look at how losses on one mnnedion affed the performance of other
connedions. It would also test the relative performance of existing and new solutions in terms of
aggregate throughput for the set of connections at a base station.
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