
TCP over Wireless Networks Using MultipleAcknowledgements �(Preliminary Version)Saad Biaz Miten Mehta Steve West Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112, USAE-mail: fsaadb,mmehta,swest,vaidyag@cs.tamu.eduWeb: http://www.cs.tamu.edu/faculty/vaidya/mobile.htmlTechnical Report 97-001January 30, 1997AbstractTCP protocol has been designed and tuned to perform well on wired network wherethe packet loss is due mainly to congestion. On heterogeneous networks where somelinks can be wireless this assumption is no more valid. In this paper, we propose aprotocol which makes the TCP protocol layer aware of high bit error rates on wirelesslinks while it tries to minimize the tra�c load on the wired network. This is done byavoiding unnecessary retransmissions from TCP. The idea is to acknowledge partially apacket which reaches a base station, if it experiences di�culty (errors or congestion) onthe wireless link. The base station is responsible for retransmissions on the wireless link,while it delays timeout at the sender by sending a partial acknowledgement.�Research reported is supported in part by Texas Advanced Technology Program grant 009741-052-C andNational Science Foundation grant CDA-9529442.



1 IntroductionThis report describes brie
y a protocol for end-to-end reliable communication on a channelconsisting of several links, the last link being error-prone. We consider case (a) shown in Figure1 where the path consists of one error-immune link and one error-prone link. Our protocol canbe extended to other cases, for instance, case (b) shown in Figure 1, where the path consistsof multiple error-prone and error-immune links. In the rest of this report, we assume that all
Base Station 

Mobile host

Fixed host

Wired Network

(a)

Base Station 

Mobile host

Base Station 

Mobile host

Wired Network

(b)Figure 1: Case (a) : Fixed to mobile host. Cases (b) : mobile to mobilewireline paths are error-immune, and wireless paths are error-prone. We may use the termwired (wireless) link interchangeably with error-immune (error-prone) link.The proposed protocol is end-to-end. The term end-to-end implies that the sender isresponsible for ensuring that the receiver receives transmitted data { if a sender believes thatreceiver has received the data, then that belief must be correct.Rest of this report is organized as follows. Section 2 provides motivation for the pro-posed scheme, and provides brief discussion of previous related work. Section 3 discusses thedistinction between di�erent types of acknowledgements used in our protocol. The proposedprotocol is outlined in Section 3. The implementation is described in Section 4. We describebrie
y the testbed in Section 5. Section 6 is dedicated to the experiments planned. Severalperformance optimization to this protocol are possible, as described in Section 7.2 Motivation and Related workTCP is a protocol which has been designed, improved and tuned to work e�ciently on wirednetwork where the packet loss is very small (� 1%) [7]. Whenever a packet is lost, it isreasonably assumed that congestion occurred on the connection path. Hence, TCP triggersslow-start and congestion avoidance algorithms when a timeout occurs for a packet. Thesealgorithms proved their e�ciency on a wired network. But, on a wireless link, the bit errorrate is higher and the assumption that packet loss is mainly due to congestion is no morevalid. The slow-start and congestion avoidance algorithms are triggered even when packetsare lost due to corruption only on the wireless link. In this case, slow-start and congestionavoidance algorithms lower the connection throughput. So, there is a need to adapt TCP toheterogeneous networks which mix wired and wireless links. The proposed approach is basedon previous work in [1, 3, 4, 5, 6], and combines ideas proposed in these papers to obtain a2



uni�ed scheme. The reader is assumed to be familiar with [1, 3, 4, 5, 6]. The similarities anddi�erences between proposed approach and the previous work are as follows:� Balakrishnan et al. [1] evaluate several TCP-based protocols. Our approach uses thesnoop protocol scheme in that some intermediate hosts on the path (e.g., base station)may bu�er packets being sent to the receiver. The di�erence, however, is that in ourprotocol, the node that bu�ers the packet sends a partial acknowledgement Ackp to thereceiver. This cumulative acknowledgement will only prevent the sender from triggeringthe slow start and congestion avoidance mechanisms. In presence of bad transmissionsconditions, snoop cannot prevent this. End-to-end semantics are still retained becausethe sender will consider that a packet has been received only if it receives a completeacknowledgement Ackc from the receiver.Similar to the explicit loss noti�cation (ELN) [1], our protocol also (implicitly) sends lossnoti�cation (using the partial acknowledgement Ackp). The di�erence is that the lossnoti�cation (actually an ack) is not sent by the receiver, but by an intermediate node(in practice, a base station). In [1], the author recognizes the di�culty to distinguishbetween congestion and error losses. Our protocol uses a realistic way to achieve theELN with a very good accuracy.Similar to the link-layer retransmission scheme in [1] our scheme also uses retransmissions,however, these retransmissions are unlikely to con
ict with retransmissions from thesender. It is expected that our protocol will behave like snoop protocol for low bit errorrates. If the channel experiences transient or permanent bad conditions, our protocol isexpected to perform better than snoop. Snoop has a limited time to act to avoid senderretransmissions. With the partial acknowledgement, we prevent the sender from timingout. But we have to modify (slightly) TCP on the sender while snoop does not requireany modi�cation. However, our protocol will behave like snoop for a sender whose TCPis not modi�ed. This sender will ignore the options �eld which we use to implementpartial acknowledgements.� Badrinath et al. [5] : The I-TCP protocol [5] does not provide end-to-end semantics,while the proposed approach does. Proposed scheme is similar to I-TCP in that di�erentlinks are treated somewhat di�erently, as elaborated later. I-TCP has the advantage totune (choose the packet size) every connection, (wired connection or wireless connection),to the errors characteristics. In our scheme, this may be done while respecting the TCPend-to-end semantics.Yavatkar et al. [6] proposes a similar scheme based on splitting the connection.� Bakshi et al. [3, 4] present a protocol that sends, to the sender, an explicit bad statenoti�cation (EBSN) when a wireless link experiences errors. Our scheme also (implicitly)provides such a noti�cation, using acknowledgement messages. The di�erence is thatour scheme informs the sender of which packets are indeed experiencing bad conditionschannel. The problem with EBSN is that, with a bad network latency, presence orabsence of EBSN at the sender will not re
ect the actual channel state. The channel bad3



state can also be of a very short duration such that whenever EBSN reaches the sender,the channel is no more in bad state.While proposed scheme, when applied to case (a) is similar to [3], proposed schemealso applies to (b) and other scenarios. The proposal here can be considered to be animprovement over [3] which does not use the snoop protocol.The motivation behind the proposed approach is to combine the explicit noti�cation schemes(ELN or EBSN), end-to-end semantics, and link-level retransmission (snoop) into a TCP-likeprotocol that handles a larger spectrum of bit error rates.To obtain performance improvements using the proposed scheme, the sender TCP codemust be modi�ed. However, a constraint imposed on the scheme is that it should be able towork correctly even if the sender code is not modi�ed.3 The protocolThe idea is to distinguish the losses on the wired portion from the losses on the wireless link.Instead of splitting the connection in two connections, one for the wired link and the other forthe wireless link, we use two types of acknowledgments :Ackp : This partial acknowledgment with sequence number Na informs the sender S that thepacket(s) with sequence numbers up to Na � 1 had been received by the base station.Ackc : This complete acknowledgment has the same semantics as the normal TCP acknowledg-ment, i.e, the receiver R received the packet.Let us describe the data transfer from a �xed host S. We will consider the di�erentreceive and send events on the sender S (�xed host), the base station B and the receiver R(mobile host). There are potentially many variations possible on the protocol summarizedbelow. Such variations will be investigated in our future work.3.1 The sender3.1.1 Data SentThe sender will strictly follow the regular TCP when sending any packet as de�ned by RFC793 [8]with the addition of algorithms introduced by [7] : slow start, congestion avoidance, fastretransmit and fast recovery [9]. 4



3.1.2 Acknowledgement Ackp receivedBefore describing the actions taken at the reception of AckP , we de�ne some variables. Wemust distinguish the round trip time RTT between the sender and the receiver (end-to-end)and the round trip time RTTB between the base station and the mobile host. These valueswill have respectively a direct impact on the time out values RTO and RTOB. RTO is themaximum time the sender waits for an end-to-end acknowledgement. If RTO expires, thesender must retransmit the packet. RTOB is the maximum time which can elapse between thereception of a packet at the base station and its acknowledgement by the mobile host. Thisacknowledgement Ackp with sequence number Na informs the sender that the base stationreceived all the packets with a sequence number up to Na � 1 and that it is experiencingproblems to forward the packets through the wireless link. The sender can identify thesepackets. These packets have sequence numbers between the sequence number of the last Ackcand Na�1. More precisely, these packets spent more than RTOB on the base station withoutbeing successfully transmitted to the mobile host. Let RTTB be the round trip time betweenthe base station and the mobile host. The timeout value RTOB will depend on RTTB. Hence,the sender must update :� the time out RTO.RTO must be updated to give more time to the base station to accomplish the retrans-missions. This will avoid end-to-end retransmissions, thus avoiding to trigger the slowstart and congestion avoidance mechanisms. There are di�erent ways to update RTO.1: ResetWe just set the timer at its initial value when the packet was sent2: IncreaseIncrease the current timer value by some amount (e.g. a constant increment or amultiplicative factor)We will evaluate the di�erent possibilities� the Round Trip Time RTTRTT will be updated when either Ackp or Ackc is received for a packet. If we updateRTT when Ackp is received, RTT will not re
ect the actual round trip time potentiallyleading to a premature time out. The advantage is that a transient bad state of thechannel will not a�ect RTT. If RTT is updated with Ackc then it will re
ect the actualround trip time. We will investigate both possibilities.Another possibility is to ignore the round-trip time sample corresponding to any packetfor which an Ackp is received.1 This is analogous to Karn's algorithm which ignores RTTsamples corresponding to retransmitted packets.1Thanks to P. Krishna for suggesting inclusion of this alternative.5



The reception of Ackp will not a�ect any other parameter of the connection.There is another possible approach for handling Ackp. When Ackp is received, corre-sponding packets are just marked. Theses marks will be used when there is time out as follows: the sender considers packets for which it timed out. If the packet is not marked, the senderreacts exactly as in regular TCP. Otherwise, it will remove the mark and react as in regularTCP except that it will not retransmit, will not trigger slow start and congestion avoidance.In fact, the sender will only backo� the timer.3.1.3 Acknowledgement Ackc receivedReceiving Ackc means that the receiver got the packet. Hence, the sender takes the same stepsas in normal TCP except for RTT estimate. If RTT has been updated using Ackp then noupdate with Ackc. Otherwise, RTT update must be done.3.2 The base station3.2.1 Data receivedThe base stations follow the Snoop protocol [1] with some modi�cations. When data is receivedfrom the sender, the base station will take di�erent steps depending on whether the packet isout-of-sequence or not. If the base station receives :1: A new packet in the normal TCP sequenceWe bu�er the packet, put a time stamp on it, set the timer RTOB and try to forwardit to the mobile host. We must observe that RTOB is set when the packet is cachedand not when the base station forwards it. RTOB is set such that the packet will notspend at the base station more than RTOB time without being acknowledged. If RTOBexpires then the base station sends back to the sender a cumulative acknowledgementAckp with the sequence number of this packet plus 1.2: An out of sequence packet that has been bu�ered earlierThis can happen if, for example, the acknowledgements Ackp or Ackc have been lost.The actions taken will depend on the sequence number S of the packet. Let Sa be thesequence number for the last acknowledged packet. If S > Sa and the packet is still inthe cache then we send back to the sender a partial Ackp (the packet will continue to behandled by the base station). Otherwise, i.e S > Sa and the packet is no more in thecache then we process the packet as if it is a new packet. If S � Sa then we generate afake Ackc holding the identity of the mobile host and send it back to the sender.3: An out of sequence packet that has not been bu�ered earlierThis means that packets have been lost on the wired network or that there is an out-of-order delivery. The problem here is to distinguish between out of order delivery and6



retransmitted packets. In [1], Balakrishnan identi�es an out-of-order delivered packet asa packet whose sequence number is not more than one or two packets away from the lastpacket seen so far. The retransmitted packet must be distinguished for the processing ofduplicate acknowledgements received from the mobile host.An Ackp will be generated for this packet if it spends more RTOB on the base station,provided that meanwhile all packets before it have been received. Anyway, this packetwill be forwarded to the mobile host.3.2.2 RetransmissionsWhen RTOB expires, this means that either the packet has not been sent yet or that it hasbeen lost. The packet must then be retransmitted and an Ackp is sent back to the sender ifall packets before it have been received by the base station. We have the choice to send Ackponly once when �rst time RTOB expires, or to send it at each RTOB expiration (or somethingin between). We will investigate each approach.
Base station 
receives Ackreceives packet

Base station 

Base station 
forwards to mobile

Base station 
forwards to sender Ackc

RTOB

Time

(a)
receives packet

Base station 

Base station 
sends to sender Ackp

RTOB

Time

Base station 
forwards to mobile

Base station 
times out

(b)Figure 2: (a): No time out on the base station. (b) : Time out.3.2.3 New acknowledgement receivedSince the protocol must hold even if the TCP-sender does not recognize Ackp, acknowledge-ments from the receiver must be processed (�ltered) at the base station. These acknowledge-ments will be processed exactly as in Snoop[1]. We recall here how Snoop processes acknowl-edgements. The idea is to forward what is needed by the TCP protocol and to discard whatcan trigger unnecessary retransmissions from the sender. Snoop will act di�erently dependingon three types of acknowledgements it will receive :1: A new ackSnoop will purge its bu�er, forward the acknowledgementAckc to the sender and updateRTTB. RTTB is the time which elapses from the time the base station receives a packetto the reception of its acknowledgement from the receiver. In fact, [1] updates RTTB7



only once per window and respects Karp's condition which states that RTTB must notbe updated with any acknowledgement for a retransmitted packet. RTTB must re
ectan estimate of the time spent by the packet on the base station plus the round trip delayto the mobile host.2: A spurious AckLet Sn the last sequence number acknowledged by the receiver. A spurious ack is anacknowledgement for the sequence number A with A < Sn. It is discarded.3: A duplicate acknowledgementThe idea here is to forward the necessary acknowledgements to the TCP protocol andto discard those who trigger unnecessary retransmissions from the sender. We exactlyfollow the Snoop protocol for the duplicate acknowledgements3.3 The receiver (mobile host)The receiver is not modi�ed : it follows TCP-Reno protocol.4 ImplementationTo implement Ackp, we can use the options �eld in the header of TCP packet. An option isimplemented with the following syntax : bkbloption. bk is a byte giving the type of option.We must make sure that we choose bk such that it does not interfere with other options likeSACKs. bl is a byte giving the length of the option of kind bk including the kind byte andthe length byte. If we do not send a partial acknowledgement Ackp, we will just have a TCPheader without any option �eld. If there is an Ackp, we will have an option �eld of length 6bytes : one byte for bk, one byte for bl and four bytes for the sequence number acknowledged.Another possibility is to send Ackp as an ICMP message.5 TestbedWe will use Pentium based workstations running Free BSD 2.1.5 Release 0. These workstationsare interconnected using a 10 Mbps Ethernet and 915 Mhz AT&T Wavelans, a shared wirelessLAN with a raw bandwidth of 2Mbps.6 ExperimentsWe will implement snoop and measure the throughput of the system when transmitting a large�le under di�erent conditions of bit error rates (bursty and not bursty). We will implement8



our scheme and perform the same measurements to compare with Snoop. This report will beupdated when the experimental results become available.7 Performance expectedWe believe that below some threshold of bit rate error BER, Snoop and our protocol willbehave the same and will have the same performance. When the bit error is very low on thewireless link, Snoop will be able to recover without any time-out on the sender in most cases.But, if the bit error rate on the wireless link is high or if the channel is overloaded, Snoopwould not be able to prevent time out and slow start on the sender will be triggered. Withour scheme, the sender will time out only if the base station abandons retransmissions or ifthe Ackp is lost. In presence of congestion on the wired network, the following situation willhappen : packets will be dropped, so packets will reach the base station out of order and willnot be acknowledged by Ackp. Hence, packets already received by the base station may beretransmitted by the sender.AcknowledgementsThanks are due to P. Krishna for his comments on a version of this report.References[1] Balakrishnan,H., V. N. Padmanabhan, Seshan, S., Katz, R., A Comparison of Mechanismsfor Improving TCP Performance over Wireless Links, ACM SIGCOMM'96, CA, August1996.[2] Balakrishnan,H., Seshan, S., Amir, E., Katz, R., Improving TCP/IP Performance overWireless Networks, 1st ACM Int'l Conf. on Mobile Computing (Mobicom), November1995.[3] Bikram S.Bakshi, P. Krishna, N.H. Vaidya, D.K. Pradhan, Improving Performance ofTCP over Wireless Networks, Texas A&M University, Technical Report TR-96-014, May1996.[4] Bikram S.Bakshi, P. Krishna, N.H. Vaidya, D.K. Pradhan, Performance of TCP overWireless Networks, to appear in the 17th International Conference on Distributed Com-puting Systems (ICDCS), Baltimore, May 1997.[5] A. Bakre, B.R. Badrinath, I-TCP : Indirect TCP for mobile hosts, Technical ReportDCS-TR-314, Rutgers University, October 1994.9



[6] R. Yavatkar, N. Bhagwat,Improving End-to-End Performance of TCP over Mobile Inter-networks, Mobile 94 Workshop on Mobile Computing Systems and Applications, Decem-ber 1994.[7] V. Jacobson, Congestion Avoidance and Control, ACM SIGCOMM'88, pp 314-329, Aug.1988. An update version is available via ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.[8] J. Postel, Transmission Control Protocol, RFC 793, 85 pages, Sept 1981.[9] W.R. Stevens, TCP/IP Illustrated, Volume 1, The Protocols, Addison Wesley, 1994.

10


