TCP over Wireless Networks Using Multiple
Acknowledgements *

(Preliminary Version)

Saad Biaz Miten Mehta Steve West Nitin H. Vaidya

Department of Computer Science
Texas A&M University
College Station, TX 77843-3112, USA
E-mail: {saadb,mmehta,swest,vaidya}@cs.tamu.edu
Web: http://www.cs.tamu.edu/faculty/vaidya/mobile.html

Technical Report 97-001

January 30, 1997

Abstract

TCP protocol has been designed and tuned to perform well on wired network where
the packet loss is due mainly to congestion. On heterogeneous networks where some
links can be wireless this assumption is no more valid. In this paper, we propose a
protocol which makes the TCP protocol layer aware of high bit error rates on wireless
links while it tries to minimize the traffic load on the wired network. This is done by
avoiding unnecessary retransmissions from TCP. The idea is to acknowledge partially a
packet which reaches a base station, if it experiences difficulty (errors or congestion) on
the wireless link. The base station is responsible for retransmissions on the wireless link,
while it delays timeout at the sender by sending a partial acknowledgement.

*Research reported is supported in part by Texas Advanced Technology Program grant 009741-052-C and
National Science Foundation grant CDA-9529442.

1 Introduction

This report describes briefly a protocol for end-to-end reliable communication on a channel
consisting of several links, the last link being error-prone. We consider case (a) shown in Figure
1 where the path consists of one error-immune link and one error-prone link. Our protocol can
be extended to other cases, for instance, case (b) shown in Figure 1, where the path consists
of multiple error-prone and error-immune links. In the rest of this report, we assume that all

W W 1A

A B
| W Ll
o !

Wired Network

@ (b)

Figure 1: Case (a) : Fixed to mobile host. Cases (b) : mobile to mobile

wireline paths are error-immune, and wireless paths are error-prone. We may use the term
wired (wireless) link interchangeably with error-immune (error-prone) link.

The proposed protocol is end-to-end. The term end-to-end implies that the sender is
responsible for ensuring that the receiver receives transmitted data — if a sender believes that
receiver has received the data, then that belief must be correct.

Rest of this report is organized as follows. Section 2 provides motivation for the pro-
posed scheme, and provides brief discussion of previous related work. Section 3 discusses the
distinction between different types of acknowledgements used in our protocol. The proposed
protocol is outlined in Section 3. The implementation is described in Section 4. We describe
briefly the testbed in Section 5. Section 6 is dedicated to the experiments planned. Several
performance optimization to this protocol are possible, as described in Section 7.

2 Motivation and Related work

TCP is a protocol which has been designed, improved and tuned to work efficiently on wired
network where the packet loss is very small (< 1%) [7]. Whenever a packet is lost, it is
reasonably assumed that congestion occurred on the connection path. Hence, TCP triggers
slow-start and congestion avoidance algorithms when a timeout occurs for a packet. These
algorithms proved their efficiency on a wired network. But, on a wireless link, the bit error
rate is higher and the assumption that packet loss is mainly due to congestion is no more
valid. The slow-start and congestion avoidance algorithms are triggered even when packets
are lost due to corruption only on the wireless link. In this case, slow-start and congestion
avoidance algorithms lower the connection throughput. So, there is a need to adapt TCP to
heterogeneous networks which mix wired and wireless links. The proposed approach is based
on previous work in [1, 3, 4, 5, 6], and combines ideas proposed in these papers to obtain a

unified scheme. The reader is assumed to be familiar with [1, 3, 4, 5, 6]. The similarities and
differences between proposed approach and the previous work are as follows:

e Balakrishnan et al. [1] evaluate several TCP-based protocols. Our approach uses the
snoop protocol scheme in that some intermediate hosts on the path (e.g., base station)
may buffer packets being sent to the receiver. The difference, however, is that in our
protocol, the node that buffers the packet sends a partial acknowledgement Ack, to the
receiver. This cumulative acknowledgement will only prevent the sender from triggering
the slow start and congestion avoidance mechanisms. In presence of bad transmissions
conditions, snoop cannot prevent this. End-to-end semantics are still retained because
the sender will consider that a packet has been received only if it receives a complete
acknowledgement Ack. from the receiver.

Similar to the explicit loss notification (ELN) [1], our protocol also (implicitly) sends loss
notification (using the partial acknowledgement Ack,). The difference is that the loss
notification (actually an ack) is not sent by the receiver, but by an intermediate node
(in practice, a base station). In [1], the author recognizes the difficulty to distinguish
between congestion and error losses. Our protocol uses a realistic way to achieve the
ELN with a very good accuracy.

Similar to the link-layer retransmission schemein [1] our scheme also uses retransmissions,
however, these retransmissions are unlikely to conflict with retransmissions from the
sender. It is expected that our protocol will behave like snoop protocol for low bit error
rates. If the channel experiences transient or permanent bad conditions, our protocol is
expected to perform better than snoop. Snoop has a limited time to act to avoid sender
retransmissions. With the partial acknowledgement, we prevent the sender from timing
out. But we have to modify (slightly) TCP on the sender while snoop does not require
any modification. However, our protocol will behave like snoop for a sender whose TCP
is not modified. This sender will ignore the options field which we use to implement
partial acknowledgements.

e Badrinath et al. [5] : The I-TCP protocol [5] does not provide end-to-end semantics,
while the proposed approach does. Proposed scheme is similar to - TCP in that different
links are treated somewhat differently, as elaborated later. I-TCP has the advantage to
tune (choose the packet size) every connection, (wired connection or wireless connection),
to the errors characteristics. In our scheme, this may be done while respecting the TCP
end-to-end semantics.

Yavatkar et al. [6] proposes a similar scheme based on splitting the connection.

e Bakshi et al. [3, 4] present a protocol that sends, to the sender, an explicit bad state
notification (EBSN) when a wireless link experiences errors. Our scheme also (implicitly)
provides such a notification, using acknowledgement messages. The difference is that
our scheme informs the sender of which packets are indeed experiencing bad conditions
channel. The problem with EBSN is that, with a bad network latency, presence or
absence of EBSN at the sender will not reflect the actual channel state. The channel bad

state can also be of a very short duration such that whenever EBSN reaches the sender,
the channel is no more in bad state.

While proposed scheme, when applied to case (a) is similar to [3], proposed scheme
also applies to (b) and other scenarios. The proposal here can be considered to be an
improvement over [3] which does not use the snoop protocol.

The motivation behind the proposed approach is to combine the explicit notification schemes
(ELN or EBSN), end-to-end semantics, and link-level retransmission (snoop) into a TCP-like
protocol that handles a larger spectrum of bit error rates.

To obtain performance improvements using the proposed scheme, the sender TCP code
must be modified. However, a constraint imposed on the scheme is that it should be able to
work correctly even if the sender code is not modified.

3 The protocol

The idea is to distinguish the losses on the wired portion from the losses on the wireless link.
Instead of splitting the connection in two connections, one for the wired link and the other for
the wireless link, we use two types of acknowledgments :

Ack, : This partial acknowledgment with sequence number N, informs the sender S that the
packet(s) with sequence numbers up to N, — 1 had been received by the base station.

Ack. : This complete acknowledgment has the same semantics as the normal TCP acknowledg-
ment, i.e, the receiver R received the packet.

Let us describe the data transfer from a fixed host S. We will consider the different
receive and send events on the sender S (fixed host), the base station B and the receiver R
(mobile host). There are potentially many variations possible on the protocol summarized
below. Such variations will be investigated in our future work.

3.1 The sender
3.1.1 Data Sent
The sender will strictly follow the regular TCP when sending any packet as defined by RFC

793 [8]with the addition of algorithms introduced by [7] : slow start, congestion avoidance, fast
retransmit and fast recovery [9].

3.1.2 Acknowledgement Ack, received

Before describing the actions taken at the reception of Ackp, we define some variables. We
must distinguish the round trip time RTT between the sender and the receiver (end-to-end)
and the round trip time RTTp between the base station and the mobile host. These values
will have respectively a direct impact on the time out values RT'O and RTOg. RTO is the
maximum time the sender waits for an end-to-end acknowledgement. If RT'O expires, the
sender must retransmit the packet. RT'Op is the maximum time which can elapse between the
reception of a packet at the base station and its acknowledgement by the mobile host. This
acknowledgement Ack, with sequence number N, informs the sender that the base station
received all the packets with a sequence number up to N, — 1 and that it is experiencing
problems to forward the packets through the wireless link. The sender can identify these
packets. These packets have sequence numbers between the sequence number of the last Ack,
and N, — 1. More precisely, these packets spent more than RT'OB on the base station without
being successfully transmitted to the mobile host. Let RTTg be the round trip time between
the base station and the mobile host. The timeout value RT'Op will depend on RT'T’5. Hence,
the sender must update :

e the time out RTO.

RTO must be updated to give more time to the base station to accomplish the retrans-
missions. This will avoid end-to-end retransmissions, thus avoiding to trigger the slow
start and congestion avoidance mechanisms. There are different ways to update RT'O.

1: Reset

We just set the timer at its initial value when the packet was sent

2: Increase

Increase the current timer value by some amount (e.g. a constant increment or a
multiplicative factor)

We will evaluate the different possibilities

o the Round Trip Time RT'T

RTT will be updated when either Ack, or Ack, is received for a packet. If we update
RTT when Ack, is received, RTT" will not reflect the actual round trip time potentially
leading to a premature time out. The advantage is that a transient bad state of the
channel will not affect RTT. It RTT is updated with Ack. then it will reflect the actual
round trip time. We will investigate both possibilities.

Another possibility is to ignore the round-trip time sample corresponding to any packet
for which an Ack, is received.! This is analogous to Karn’s algorithm which ignores RT'T
samples corresponding to retransmitted packets.

!Thanks to P. Krishna for suggesting inclusion of this alternative.

The reception of Ack, will not affect any other parameter of the connection.

There is another possible approach for handling Ack,. When Ack, is received, corre-
sponding packets are just marked. Theses marks will be used when there is time out as follows
: the sender considers packets for which it timed out. If the packet is not marked, the sender
reacts exactly as in regular TCP. Otherwise, it will remove the mark and react as in regular
TCP except that it will not retransmit, will not trigger slow start and congestion avoidance.
In fact, the sender will only backoff the timer.

3.1.3 Acknowledgement Ack. received

Receiving Ack. means that the receiver got the packet. Hence, the sender takes the same steps
as in normal TCP except for RTT estimate. If RTT has been updated using Ack, then no
update with Ack.. Otherwise, RTT update must be done.

3.2 The base station
3.2.1 Data received

The base stations follow the Snoop protocol [1] with some modifications. When data is received
from the sender, the base station will take different steps depending on whether the packet is
out-of-sequence or not. If the base station receives :

1: A new packet in the normal TCP sequence

We buffer the packet, put a time stamp on it, set the timer RT'Op and try to forward
it to the mobile host. We must observe that RT'Op is set when the packet is cached
and not when the base station forwards it. RT'Op is set such that the packet will not
spend at the base station more than RT'Op time without being acknowledged. If RT'Op
expires then the base station sends back to the sender a cumulative acknowledgement
Ack, with the sequence number of this packet plus 1.

2: An out of sequence packet that has been buffered earlier

This can happen if, for example, the acknowledgements Ack, or Ack, have been lost.
The actions taken will depend on the sequence number S of the packet. Let S, be the
sequence number for the last acknowledged packet. If S > 5, and the packet is still in
the cache then we send back to the sender a partial Ack, (the packet will continue to be
handled by the base station). Otherwise, i.e S > S, and the packet is no more in the
cache then we process the packet as if it is a new packet. If 5 < S, then we generate a
fake Ack. holding the identity of the mobile host and send it back to the sender.

3: An out of sequence packet that has not been buffered earlier

This means that packets have been lost on the wired network or that there is an out-
of-order delivery. The problem here is to distinguish between out of order delivery and

retransmitted packets. In [1], Balakrishnan identifies an out-of-order delivered packet as
a packet whose sequence number is not more than one or two packets away from the last
packet seen so far. The retransmitted packet must be distinguished for the processing of
duplicate acknowledgements received from the mobile host.

An Ack, will be generated for this packet if it spends more RT'Op on the base station,
provided that meanwhile all packets before it have been received. Anyway, this packet
will be forwarded to the mobile host.

3.2.2 Retransmissions

When RTOp expires, this means that either the packet has not been sent yet or that it has
been lost. The packet must then be retransmitted and an Ack, is sent back to the sender if
all packets before it have been received by the base station. We have the choice to send Ack,
only once when first time RTOp expires, or to send it at each RT'Op expiration (or something
in between). We will investigate each approach.

Base station Base station Base station Base station
forwardsto mobile forwardsto sender AckC forwards to mobile sends to sender Acl%

P oRo, | o, |

I

H—ﬁm T T Time

Base station Base station Base station Base station
receives packet receives Ack receives packet times out
(€Y (b)

Figure 2: (a): No time out on the base station. (b) : Time out.

3.2.3 New acknowledgement received

Since the protocol must hold even if the TCP-sender does not recognize Ack,, acknowledge-
ments from the receiver must be processed (filtered) at the base station. These acknowledge-
ments will be processed exactly as in Snoop[l]. We recall here how Snoop processes acknowl-
edgements. The idea is to forward what is needed by the TCP protocol and to discard what
can trigger unnecessary retransmissions from the sender. Snoop will act differently depending
on three types of acknowledgements it will receive :

1: A new ack

Snoop will purge its buffer, forward the acknowledgement Ack. to the sender and update
RTTg. RTTg is the time which elapses from the time the base station receives a packet
to the reception of its acknowledgement from the receiver. In fact, [1] updates RTTg

only once per window and respects Karp’s condition which states that RTTs must not
be updated with any acknowledgement for a retransmitted packet. RTTp must reflect
an estimate of the time spent by the packet on the base station plus the round trip delay
to the mobile host.

2: A spurious Ack
Let S, the last sequence number acknowledged by the receiver. A spurious ack is an
acknowledgement for the sequence number A with A < 5,,. It is discarded.

3: A duplicate acknowledgement

The idea here is to forward the necessary acknowledgements to the TCP protocol and
to discard those who trigger unnecessary retransmissions from the sender. We exactly
follow the Snoop protocol for the duplicate acknowledgements

3.3 The receiver (mobile host)

The receiver is not modified : it follows TCP-Reno protocol.

4 Implementation

To implement Ack,, we can use the options field in the header of TCP packet. An option is
implemented with the following syntax : bpbjoption. by is a byte giving the type of option.
We must make sure that we choose by such that it does not interfere with other options like
SACKs. b i1s a byte giving the length of the option of kind b, including the kind byte and
the length byte. If we do not send a partial acknowledgement Ack,, we will just have a TCP
header without any option field. If there is an Ack,, we will have an option field of length 6
bytes : one byte for by, one byte for b; and four bytes for the sequence number acknowledged.

Another possibility is to send Ack, as an ICMP message.

5 Testbed

We will use Pentium based workstations running Free BSD 2.1.5 Release 0. These workstations
are interconnected using a 10 Mbps Ethernet and 915 Mhz AT&T Wavelans, a shared wireless
LAN with a raw bandwidth of 2Mbps.

6 Experiments

We will implement snoop and measure the throughput of the system when transmitting a large
file under different conditions of bit error rates (bursty and not bursty). We will implement

8

our scheme and perform the same measurements to compare with Snoop. This report will be
updated when the experimental results become available.

7 Performance expected

We believe that below some threshold of bit rate error BER, Snoop and our protocol will
behave the same and will have the same performance. When the bit error is very low on the
wireless link, Snoop will be able to recover without any time-out on the sender in most cases.
But, if the bit error rate on the wireless link is high or if the channel is overloaded, Snoop
would not be able to prevent time out and slow start on the sender will be triggered. With
our scheme, the sender will time out only if the base station abandons retransmissions or if
the Ack, is lost. In presence of congestion on the wired network, the following situation will
happen : packets will be dropped, so packets will reach the base station out of order and will
not be acknowledged by Ack,. Hence, packets already received by the base station may be
retransmitted by the sender.

Acknowledgements

Thanks are due to P. Krishna for his comments on a version of this report.

References

[1] Balakrishnan,H., V. N. Padmanabhan, Seshan, S., Katz, R., A Comparison of Mechanisms
for Improving TCP Performance over Wireless Links, ACM SIGCOMM’96, CA, August
1996.

[2] Balakrishnan,H., Seshan, S., Amir, E., Katz, R., Improving TCP/IP Performance over
Wireless Networks, 1st ACM Int’l Conf. on Mobile Computing (Mobicom), November
1995.

[3] Bikram S.Bakshi, P. Krishna, N.H. Vaidya, D.K. Pradhan, Improving Performance of
TCP over Wireless Networks, Texas A&M University, Technical Report TR-96-014, May
1996.

[4] Bikram S.Bakshi, P. Krishna, N.H. Vaidya, D.K. Pradhan, Performance of TCP over

Wireless Networks, to appear in the 17" International Conference on Distributed Com-

puting Systems (ICDCS), Baltimore, May 1997.

[5] A. Bakre, B.R. Badrinath, I-TCP : Indirect TCP for mobile hosts, Technical Report
DCS-TR-314, Rutgers University, October 1994.

[6] R. Yavatkar, N. Bhagwat,Improving End-to-End Performance of TCP over Mobile Inter-
networks, Mobile 94 Workshop on Mobile Computing Systems and Applications, Decem-
ber 1994.

[7] V. Jacobson, Congestion Avoidance and Control, ACM SIGCOMM’88, pp 314-329, Aug.
1988. An update version is available via ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

[8] J. Postel, Transmission Control Protocol, RFC 793, 85 pages, Sept 1981.
[9] W.R. Stevens, TCP/IP lllustrated, Volume 1, The Protocols, Addison Wesley, 1994.

10

