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Abstract

With the increasing popularity of portable wireless computers, mechanisms to efficiently
transmit information to such clients are of significant interest. The environment under
consideration is asymmetric in that the information server has much more bandwidth
available, as compared to the clients. It has been proposed that in such systems the server
should broadcast the information periodically. A broadcast schedule determines what is
broadcast by the server and when.

In this report, we present an algorithm for scheduling broadcast in such environments.
This algorithm is based on a fair queueing algorithm [6], and can be executed in O(log M)
time, where M is the number of information items. The algorithm significantly improves
the time-complexity over previously proposed broadcast scheduling algorithms. The al-
gorithm also takes transmission errors into account. We evaluate performance of the al-
gorithm and find it to be close to optimal. We also present an algorithm to coordinate
broadcasts over two different channels, and evaluate its performance.
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1 Introduction

Mobile computing and wireless networks are fast-growing technologies that are making ubiqg-
uitous computing a reality. Mobile and wireless computing systems have found many appli-
cations, including Defense Messaging System (DMS), Digital Battlefield and Data Dissemina-
tion (BADD) [9], and as a general-purpose computing tool. With the increasing popularity
of portable wireless computers, mechanisms to efficiently transmit information to such clients
are of significant interest [9]. For instance, such mechanisms could be used by a satellite [22]
or a base station [2] to communicate information of common interest to wireless hosts. In
the environment under consideration, the downstream communication capacity, from server
to clients, is relatively much greater than the upstream communication capacity, from clients
to server. Such environments are, hence, called asymmetric communication environments [2].
In an asymmetric environment, broadcasting the information is an effective way of making
the information available simultaneously to a large number of users. For asymmetric en-
vironment, researchers have previously proposed algorithms for designing broadcast schedules

2,3, 4, 8, 10, 13, 14, 15, 16, 11, 20, 22, 24, 25].

We consider a database that is divided into information items. The server periodically
broadcasts these items to all clients. A broadcast schedule determines when each item is trans-
mitted by the server. We present a new approach to design broadcast schedules that attempts
to minimize the average “access time”. Access time is the amount of time a client has to wait for
an information item that it needs. It is important to minimize the access time so as to decrease
the idle time at the client. Several researchers have considered the problem of minimizing the
access time [2, 3, 4, 8, 10, 15, 16, 24, 25].

The algorithms presented in this report are on-line algorithms. An on-line algorithm
does not a priori generate the broadcast schedule. Instead, the algorithm determines which
item to broadcast next when the server is ready to broadcast an item. On-line algorithms are
of interest as they can quickly adapt to time-varying environments.

The time-complexity involved in determining the next item to broadcast is critical. Our
previous work [21] includes a number of on-line algorithms each with linear time complexity
in number of items. Linear time-complexity in number of items may become intolerable when
the server has a large number of items to broadcast. Techniques like bucketing have previously
been used to reduce the complexity while sometimes compromising performance [21]. This
report presents two algorithms, based on packet fair queueing [6, 5, 18, 19], both having the
time-complexity of O(log M), where M is the number of information items. This is a signif-
icant improvement in time-complexity over previously proposed algorithms with comparable
performance. The proposed algorithms also take transmission errors into account as wireless
environments are subject to such errors. In an asymmetric environment, when a client receives
an information item containing errors, it is not always possible (or desirable) for the client to
request retransmission of the information. In this case, the client must wait for the next trans-
mission of the required item. Design of optimal broadcast schedules is affected by the error rate.
(Other than our work, we are not familiar with any other work that takes errors into account
when scheduling broadcasts.) Previously, on-line scheduling algorithms have been proposed for



error-free environments. The previous on-line algorithms either result in access times twice as
large as the proposed algorithm [25, 24], or have higher time complexity of O(M) [22].

In environments where different clients may listen to different number of broadcast chan-
nels (depending on how many they can afford), the schedules on different broadcast channels
should be coordinated so as to minimize the access time for most clients. We extend the pro-
posed algorithm to a system where the server can broadcast simultaneously on two channels,
and the clients may listen to one channel or both channels.

The rest of the report is organized as follows. Section 2 introduces terminology, and
derives some theoretical results that motivate the proposed algorithms. Section 3 presents
proposed scheduling algorithm. Scheduling algorithm for broadcast on two channels is presented
in Section 4. Section 5 evaluates the performance of our algorithms. Related work is discussed
in Section 6. A summary is presented in Section 7.

2 Theoretical Foundation for the Proposed Algorithm
First we introduce some terminology and notations to be used in this report.

e Database at the server is assumed to be divided into many information items. The items
are not necessarily of the same length.

o [, represents length of item 2.

e The time required to broadcast an item of unit length is referred to as one time unit.
Hence time required to broadcast an item of length [ is [ time units.

o M = total number of information items in the server’s database. The items are numbered

1 through M.

e The broadcast consists of a cycle of size N time units. (For an acyclic schedule, N = 00.)
The broadcast schedule is repeated after N time units (if N is finite).

Figure 1 illustrates broadcast cycle (1,2,1,3). That is, the items transmitted by the server
are 1,2,1,3,1,2,1,3,1,2,1,3,---. Assume that [y = 1, [ = 2 and [3 = 3. Then, size of the
broadcast cycle (1,2,1,3)is N =L +bL+L1+=14+2+14+3=T.

o [nstance of an item : An appearance of an item in the broadcast is referred to as an
instance of the item.

o Frequency of an item : Frequency f; of item ¢ is the number of instances of item 7 in
the broadcast cycle. The f; instances of an item are numbered 1 through f;. Size of the
broadcast cycle is given by N = "M fil; , where [; is the length of item i. In the cycle
(1,2,1,3) in Figure 1, fy =2 and fo = f5 = 1.
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Figure 1: Broadcast schedule

e Spacing : The spacing between two instances of an item is the time it takes to broadcast
information from the beginning of the first instance to the beginning of the second instance.
s;; denotes the spacing between j-th instance of item ¢ and the next instance of item
i (1 < j < fi). Note that, after the fi-th instance of an item in a transmission of
the broadcast cycle, the next instance of the same item is the first instance in the next
transmission of the broadcast cycle. For example, in Figure 1, s1;1 = 3 and sy, = 4.

It all instances of an item : are equally spaced, then s; denotes the spacing for item :.
That is, s;; = si, 1 < j < fi.

o [tem Mean Access Time of item ¢, denoted ¢;, is defined as the average wait by a client
needing item z until it starts receiving item ¢ from the server.

The access time is affected by presence of errors. Forward error correction (FEC) can often
correct small number of errors. However, FEC schemes cannot always correct the errors.
When wuncorrectable errors occur in an item, the contents of the item cannot be recovered.
As seen below, this affects performance achieved using a given broadcast schedule.

Now we evaluate the item mean access time in presence of uncorrectable errors. It can
be shown that the item mean access time is minimized when all instances of the item are
equally spaced. That is, s;; = s; for all j [16]. Hereafter, for our theoretical development,
we assume that all instances of item ¢ are spaced s; apart. (This assumption cannot always
be realized in practice, however, the assumption does provide a basis for developing the
proposed algorithm. The proposed algorithm attempts to approximate equal spacing.)

We assume that a client is equally likely to need an item at any instant of time (uniform
distribution). Then, the average time until the first instance of item ¢ is transmitted,
from the time when a client starts waiting for item ¢, is s;/2 time units. If this instance
does not contain uncorrectable errors, then the access time is s;/2. However, if the first
instance of item ¢ transmitted after a client starts waiting contains uncorrectable errors,
then an additional s; time units of wait is needed until the next instance. Thus, each
instance of item 7 that is received with uncorrectable errors adds s; to the access time.
Let the probability that an item of length [ contains uncorrectable errors be denoted as
E(1). (In our simulations, we assume E(l) = 1 — e~ X being called the error rate.) Now,
the expected number of consecutive instances of item ¢ containing uncorrectable errors is



obtained as!
E(l)
1—E)

Then, it follows that, the item mean access time for item ¢ is given by

Observe that the factor (%5—’%) is an increasing function of £(/;). Thus, as intuition would

suggest, environments with more noise (i.e., larger £(/;)) will result in greater access times.
As E(l;) is a function of [;, it follows that the optimal broadcast frequency of item ¢ should
be a function of [;. We later present a result that formalizes this observation.

o Demand probability : Demand probability p; denotes the probability that an item needed
by a client is item ¢. The demand probability distribution affects the optimal broadcast
schedule. Asintuition suggests, items with greater demand probability should be broadcast
more frequently than items with smaller demand probability. We will later determine the
optimal broadcast frequencies as a function of demand probabilities and other parameters.

o Overall Mean Access Time, denoted t,,cqq11, 1s defined as the average wait encountered by
a client (averaged over all items). Thus,

M
toverall — Z tz D
=1

Using Equation 1, we obtain ¢,,¢.q as
1 U 1+ E(l;)
Lovera = 3 PE-T T R — 2
i 2;}” (1—E(li) 2)
The theorem below provides a theoretical basis for the proposed scheduling scheme.

Theorem 1 Square-root Rule: Assuming that instances of each item are equally spaced,
minimum overall mean access time s achieved when frequency f; of each item 1 is proportional

to \/p; Gfgg;:;) and inversely proportional to \/I;. That is,

N T \T= B
!This expression is derived assuming that errors in different instances of the same item are independent.

Wireless transmissions are subject to burst errors, making errors in consecutive bits correlated (not indepen-
dent). However, in a typical broadcast schedule, consecutive instances of the same items are separated in time.

Therefore, it 1s reasonable to assume that errors in different instances of the same item are independent.



Proof: Appendix A presents the proof. a
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From Theorem 1 it follows that, there exists a constant K such that f; = K/ (%)

Now note that, cycle size N = S>M, fil;. Substituting the expression for f; into this equality,

and solving for K, yields
N

As spacing s; = N/ f;, for overall mean access time to be minimized, we need
N |l (1—=E()
8 = — ., |— | —=
M 1+ E(l) L (1—E)
2| Pili (71 —Z0 ) — (71 0L ) (3)
= (1) pi \1+ E(L)

Substituting this expression for s; into Equation 2, the optimal overall mean access time, named

Loptimal, 18 obtained as:
u LY\
1 1+ B
to imal — S zlz P — 4
it = (ZJP (1—E<m)) )

(Appendix A also presents a derivation of the above expression.)

K =

Loptimar 18 derived assuming that instances of each item are equally spaced. As illustrated
in Appendix B, the equal-spacing assumption cannot always be realized. Therefore, ¢,,imai
represents a lower bound on achievable overall mean access time. The lower bound, in general,
is not achievable. However, as shown later, it is possible to achieve overall mean access time
almost identical to the above lower bound.

3 Proposed Broadcast Scheduling Scheme

In this section, we consider the case when the information items are broadcast on a single
channel. Section 4 considers multiple channel broadcasts.

As noted above, for an optimal schedule, spacing between consecutive instances of item
¢ should be obtained using Equation 3. Equation 3 can be rewritten as

Lo l (5)

S (SN el (B (e ()




Let ¢; denote the right-hand side of Equation 5. That is, ¢; = L .
(e ) 5 )

J=1 JIN\1-E(y) pi \1+E(;)
Then, we have [;/s; = ¢;. Thus, the two conditions for obtaining an optimal schedule are: (i)
L = ¢; for each item i, and (ii) all instances of each item ¢ should be spaced equally apart

Sq

with spacing s;. It turns out that the above two conditions are similar to those imposed on
“packet fair queueing” algorithms [6]. Although the problem of packet fair queueing is not
identical to broadcast scheduling, the similarities between these two problems motivated us to
adapt a packet fair queueing algorithm in [6] to broadcast scheduling. The broadcast scheduling
algorithm, thus obtained, is presented below.

For each item ¢, the algorithm maintains two variables, B; and C;. B; is the earliest time
when next instance of item ¢ should begin transmission, and C; = B; + s,. (It may help the
reader to interpret C; as the “suggested worst-case completion time” for the next transmission
of item 1.)

Broadcast Scheduling Algorithm

Step 0: Determine optimal spacing s; for each item ¢, using Equation 3.
Current time is denoted by T'. Initially, T' = 0.
Initialize B; =0 and C; = s; for 1 <1 < M.
Step 1: Determine set S of items for which B; < T
That is, S={i | B; <T, 1 <i < M}.
Step 2: Let (), denote the minimum value of C; over all items ¢ in set 5.
Step 3: Choose item j € S such that C'; = ;. If this equality
holds for more than one item, choose any one of them arbitrarily.
Step 3: Broadcast item j at time T
B; =C;
CJ‘ = B]' + s;
Step 4: When item j completes transmission, increment 7' by [;.
Go to step 1.

The algorithm iterates steps 1 through 4 repeatedly, broadcasting one item per iteration. In each
iteration, first the set S of items with begin times B; smaller than or equal to T is determined.
The items in set S are “ready” for transmission. From among these items, the items with the
smallest C; (suggested worst-case completion time) is chosen for broadcast.

Using the heap data structure [12], steps 1 through 4 can be implemented such that, the
average time complexity per iteration is O(log M). Bennett and Zhou [6] cite a O(log M) fair
queueing implementation that can be used to implement the above algorithm. Their implemen-
tation is apparently presented in [5]; however, we are unable to obtain a copy of [5] at this time.
It is possible that their implementation of fair queueing is analogous to the implementation
summarized below. Keshav [17] also presents a heap-based implementation of fair queueing.
However, his fair queueing algorithm is somewhat different from that in [6].



We maintain two binary heaps, Hg and Hs. Heap Hp has item with smallest B; value,
among all its items, at its root. H¢ has item with smallest C; value, among all its items, at
its root. (Heap He implements set S.) Every item belongs to exactly one of the two heaps at
any given time. In the beginning, Hp contains all the items and H¢ is empty. In Step 1, set
S can be determined by repeatedly removing items j from the root of Hp until B; > T or Hp
becomes empty, and inserting them into Hs. Note that after every removal of an item, Hpg is
to be reheaped. Both insertion and removal of an item in a binary heap (including reheaping)
takes O(log M) time. Step 2 can be performed by removing the root item from H¢ again in
O(log M) time. An item j that is broadcast (after removal from H¢ is inserted back into Hp in
step 3 (after the new B; and C; values are calculated). The insertion requires O(log M) time
as well. Note that, in some iterations, more than one item may be removed from heap Hg (in
step 1) and added to heap Hc¢, while in some iterations no item may be removed from Hp.

Each broadcast instance of an item j is first inserted in Hpg, then removed from Hpg
and inserted into H¢, then removed from Hg, and transmitted. Thus, each item transmitted
requires 4 heap operations, resulting in an average time complexity O(log M). (Another way
to arrive at this conclusion is to observe that, because one item is added to heap Hp in each
iteration, on average only 1 item can be removed from Hpg per iteration.)

As an illustration, assume that the database consists of 3 items, such that [y =1, [, = 2,
Is =3, p1 = 0.5, p, = 0.25, and p3 = 0.25. Also, let F(l) = 1 — ¢~ In this case, s; = 3.53,
s3 = 6.50 and s3 = 7.32. In the first iteration of the above algorithm, at step 2, By = By =
B; =T =0, and (7 = 3.53, C3 = 6.50 and C3 = 7.32. During the first iteration, S = {1,2,3},
as T'= 0 and for all items B; = 0. As (' is the smallest, item 1 is the first item transmitted.
During the second iteration of the algorithm, T' =1, By = 3.53, By = By = 0, C; = 7.06,
Cy = 6.50 and C5 = 7.32. Now, S = {2,3} (as B, = B3 =0<T =1, and Bs > T). As
Cy < (5, item 2 is transmitted next. Figure 2 shows the first few items transmitted using the
above algorithm.

Figure 2: Illustration of the scheduling algorithm

Simulations show that the above algorithm attempts to use optimal spacing and frequency
for each item (i.e., actual spacings and frequencies are approximately equal to the optimal
values). Performance measurements for the above algorithm are presented in Section 5. In
general, as illustrated in section 5, the proposed on-line algorithm performs close to the optimal
obtained by Equation 4.



4 Multiple Broadcast Channels

The discussion so far assumed that the server is broadcasting items over a single channel and
all the clients are tuned to this channel. One can also conceive an environment in which the
server broadcasts information on multiple channels [23], and different clients listen to different
number of channels depending on the desired quality of service (as characterized by the mean
access time).

In this section, we present an on-line algorithm for scheduling broadcast on 2 channels.
This algorithm is not necessarily the best algorithm for 2 channels. The algorithm is presented
here as an illustration of how the algorithm in previous section may be extended for multiple
channels. Design of a superior O(c log M) algorithm for ¢ broadcast channels is a subject of
on-going research.

The approach considered here uses a modification of the algorithm described in Section 3.
Let the two broadcast channels be numbered 1 and 2. A client may either listen only to channel
1 (or only channel 2), or to both channels 1 and 2.

Similar to the algorithm presented above, the algorithm below maintains four variables,

B}, C}, B? and C?, for each item i.
2-Channel Broadcast Scheduling

Step 0: Determine optimal spacing s; for each item ¢, using Equation 3.
Current time is denoted by T'. (T is considered to be virtual time.) Initially, 7' = 0.
Initialize B! = 0 and O} = s; for 1 <7 < M.
Initialize B = 0 and C? = 5;/2 for 1 <i < M.

The remaining steps are executed to find an item to broadcast on channel A
at time T' (h may be 1 or 2).
Step 1: Determine set S of items for which B! < T.

That is, S ={: | B < T, 1 <1< M}.

If S is empty then set T = min;<;<a B;, and go to step 1.
Step 2: Let C,,;, denote the minimum value of Cih over all items 7 in set S.
Step 3: Choose item j € S such that C'; = ;. If this equality

holds for more than one item, choose any one of them arbitrarily.
Step 3: Broadcast item j at time T

B]: = B%L—I-S]‘
if h =1 then

B]2 = B]2 —I-S]‘/Q
else

le = le —|— S]‘/Q
Step 4: When item j completes transmission, increment 7' by [;.
Go to step 1.



This algorithm also, on average, requires O(log M) time per iteration (steps 1 through 4).

Section 5 evaluates the above algorithm, and compares the overall mean access times
achieved by the algorithm with analytical lower bounds. If a client listens to only one channel,
then Equation 4 provides a lower bound (#,ptimai) for the client’s overall meacn access time. If,
however, a client listens to both channels, then the access time experienced by the client may
reduce by at most a factor of 2. Therefore, a lower bound on the overall mean access time for a
client listening to both channels is t,p1imar/2, Where t,,timar is obtained using Equation 4.

5 Performance Evaluation

In this section, we present simulation results for various algorithms presented above. In each
simulation, number of information items? M is assumed to be 100. Error probability F(l) is

assumed to be 1 — ¢!

(several values of A are considered). Each simulation for single channel
was conducted for at least 8 million item requests by the clients. Other parameters used in the

simulation are described below.

5.1 Demand Probability Distribution

We assume that demand probabilities follow the Zipf distribution (similar assumptions are made
by other researchers as well [1, 2, 3, 4, 25]). The Zipf distribution may be expressed as follows:

/) :
ey SEM

where # is a parameter named access skew coefficient. Different values of the access skew
coefficient 6 yield different Zipf distributions. For 8 = 0, the Zipt distribution reduces to
uniform distribution with p; = 1/M. However, the distribution becomes increasingly “skewed”
as @ increases (that is, for larger 6, the range of p; values becomes larger). Different Zipf
probability distributions resulting from different § values are shown in Figure 3(a).

5.2 Length Distribution

A length distribution specifies length [; of each item ¢. We consider two distributions in this
report: (a) Uniform Length Distribution: In this case, [; = 1, 1 < ¢ < M. (b) Random Length
Distribution: In this case, integral lengths randomly distributed from 1 to 10 are assigned to
the items with uniform probability. The random length distribution is shown in Figure 3(b).

2Qur past experiments suggest that broadcast scheduling algorithms tend to be more sub-optimal for smaller
number of items. Therefore, we choose M relatively small (to attempt to show the worst-case behavior of the
algorithms). Besides, smaller M also allowed us to complete the simulations in a shorter duration of time.

10



5.3 Request Generation

For our simulations, we generated 2 requests for items per time unit. Simulation time is divided
into intervals of unit length; 2 requests are generated during each such interval. The time
at which the requests are made is uniformly distributed over the corresponding unit length
interval. The items for which the requests are made are determined using the demand probability
distribution.

5.4 Performance Evaluation for Single Channel Broadcast

In this section, we evaluate performance of the on-line algorithm for single channel as explained
in Section 3. Figures 4 and 5 plot overall mean access time in the presence of errors for different
error rates (A), and for random and uniform length distributions, respectively. In each of these
figures, part (a) plots the simulation results and part (b) plots analytical lower bounds for
0 = 0,0.5 and 1 (the lower bounds are obtained using Equation 4, substituting F(/) = 1 —e™).
From the simulation results, observe that the proposed on-line algorithm achieves performance
very close to optimal. As expected, the access time increases with increasing error rate .
However, observe that the proposed algorithm performs close to optimal for all values of A.
The simulation results confirm that the proposed algorithm is able to space instances of each
item with approximately ideal spacing, thereby achieving near-optimal overall mean access time.
Other researchers do not take uncorrectable errors into account when determining the broadcast
schedules.

5.5 Performance Evaluation for 2-Channel Broadcast

In this section, we evaluate performance of the on-line algorithm for two channels as explained in
Section 4. Figure 6 plots overall mean access time for a client which listens to only one channel,
for different error rates (A) and random length distribution. Figure 7 plots overall mean access
time for a client listening to both the channels. Again, in each of these figures, part (a) plots
the simulation results and part (b) plots analytical lower bounds for § = 0,0.5 and 1. The
lower bound for a client listening to a single channel is #,,tima (obtained using Equation 4)
and the lower bound for a client listening to both channels is ?,4timai/2. From the simulation
results, observe that the proposed algorithm achieves performance quite close to optimal. Clients
listening to one channel or two channels both experience overall mean access times close to the
respective lower bounds. The simulation results show that the proposed scheduling algorithm
for 2 channels performs well. Extension of this algorithm to arbitrary number of channels is a
subject of current research.

11
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Figure 3: (a) Zipf distribution for various values of access skew coefficient §. Note that the scale
on vertical axis is logarithmic. (b) Random length distribution. Lengths are chosen as integers
between 1 and 10 with uniform probability.

With Random Length Distribution

450 , , , 450 , , ,
THETA=0 THETA=0

g 400 g 400 1
= =
2] 2]
2 350 2 350 ]
] S
g g
c 300 c 300 ]
[ [
g R
_ 250 t-~ T 1 _ 250 ]
® e =
3 - 3
3 200 | - ] 3 200 | e ]

150 1 1 1 150 1 1 1

0 0.01 0.02 0.03 0.04 0 0.01 0.02 0.03 0.04
LAVBDA LAVBDA
(a) Simulation results (b) Analytical lower bounds

Figure 4: Overall mean access time against A for different values of § and random length
distribution. The simulation curves are obtained using algorithm given in Section 3.
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With Uniform Length Distribution
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Figure 5: Overall mean access time against A for different values of § and uniform length
distribution. The simulation curves are obtained using algorithm given in Section 3.
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Figure 6: Overall mean access time against A for different values of  and random length
distribution observed by a client listening to only one of the two broadcast channels. The
simulation curves are obtained using algorithm given in Section 4.
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With Random Length Distribution and Client listening to 2 channels
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Figure 7: Owverall mean access time against A for different values of  and random length
distribution observed by a client listening to both the channels. The simulation curves are
obtained using algorithm given in Section 4.

6 Related Work

The algorithms presented in this paper are based on an algorithm proposed previously for “packet
fair queueing” [6, 5, 18, 19]. As noted earlier, the problem of optimal broadcast scheduling is
closely related to design of good packet fair queueing algorithms.

The problem of data broadcasting has received much attention lately. The existing
schemes can be roughly divided into two categories (some schemes may actually belong to
both categories): Schemes attempting to reduce the access time [4, 3,2, 1, 13, 16, 10, 8, 25] and
schemes attempting to reduce the tuning time [14, 15]. However, proposed on-line algorithms
have not been studied previously. Also, impact of errors on scheduling and multiple-channel
broadcast have not been addressed by other researchers.

For error-free environments, Ammar and Wong [4, 25] have performed extensive research
on broadcast scheduling and obtained many interesting results. One of the results obtained
by Ammar and Wong is a special case of our square-root rule (Theorem 1). Wong [25] and
Imielinski and Viswanathan [13, 24] present an on-line scheme that uses a probabilistic approach
for deciding which item to transmit. Our on-line algorithm results in an improvement by a factor
of 2 in the mean access time as compared to the probabilistic on-line algorithm in [13, 24, 25].
Chiueh [8] and Acharya et al. [3, 2, 1] present schemes that transmit the more frequently used
items more often. However, they do not use optimal broadcast frequencies. Our schemes, on
the other hand, tend to use optimal frequencies.

Jain and Werth [16] note that reducing the variance of spacing between consecutive
instances of an item reduces the mean access time. The two schemes presented in this report
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do attempt to achieve a low variance. Jain and Werth [16] also note that errors may occur in
transmission of data. Their solution to this problem is to use error control codes (ECC) for
forward error correction, and a RAID-like approach (dubbed airRAID) that stripes the data.
The server is required to transmit the stripes on different frequencies, much like the RAID
approach spreads stripes of data on different disks [7]. ECC is not always sufficient to achieve
forward error correction, therefore, uncorrectable errors remains an issue (which is ignored in
the past work on data broadcast).

We previously proposed algorithms [22] for scheduling broadcast in presence of errors,
and for multiple channels. However, our previous algorithms had a higher time complexity as
compared to the algorithms presented in this report.

Battlefield Awareness and Data Dissemination (BADD) Advanced Concept Technology
Demonstration (ACTD) is a project in which our research work may be applied [9]. ACTD
is managed and funded by DARPA Information System Services. The mission behind BADD
project is to develop an operational system that would allow information dissemination in bat-
tlefields, maintain access to worldwide data repositories and provide tools to dynamically tailor
the information system to changing battlefield situations in order to allow warfighters to view a
consistent picture of the battlefield.

7 Summary

This report considers asymmetric environments wherein a server has a much larger communi-
cation bandwidth available as compared to the clients. In such an environment, an effective
way for the server to communicate information to the clients is to broadcast the information
periodically.

We propose a new on-line algorithm for scheduling broadcasts, with the goal of minimizing
the access time in an environment that may be subject to errors. The algorithm uses near-
optimal frequencies for each item — these frequencies are determined as a function of item
lengths, demand probability, and error rates. The proposed algorithm has O(log M) complexity
which is significantly lower than a previous algorithm with comparable performance. Simulation
results show that our algorithms perform quite well (very close to the theoretical optimal).

When different clients are capable of listening on different number of broadcast channels,
the schedules on different broadcast channels should be designed so as to minimize the access time
for all clients. The clients listening to multiple channels should experience proportionately lower
delays. This report presents an algorithm for scheduling broadcasts on 2 channels. Simulation
results show that this algorithm also performs close to optimal.

Acknowledgements

Thanks are due to P. Krishna for drawing our attention to the papers on packet fair queueing.

15



A Appendix: Proof of Theorem 1

Proof: As instances of item ¢ are spaced equally, the spacing between consecutive instances
of item ¢ is N/ f;, where N = Zj]\il fil; 1s the length of the broadcast cycle. Let, Z; denote

Di Gfgg;) Then, from Equation 2, we have

1M 1+ E() 1M
tovera = 3 IR e — = 3 6
e e Rk ©
Define “supply” of item ¢, r; = f]’vl’ Thus, r; is the fraction of time during which item ¢ is
broadcast. Now note that, S, r; = M, % = % = 1. Now, Equation 6 can be rewritten as,
1 X Zid;
tovera - a5 7
= eX (7)
As M ;= 1, only M —1 of the r;’s can be changed independently. Now, for the optimal values
of r;, we must have % = 0, V2. We now solve these equations, beginning with 0 = %
atovera 10 M Zzlz
0 — l - - Y Z
orq 20\
1o (i &z Znilu 1 ( Zil AV,
T e 1 = LA
20 \ ™ = (1 =M e 2 ry (1 i)
N Zily Zrlar (8)
ri (1— M )2
2 Zul
Similarly 222 = MMMI 5 9)
T2 (1 - Zz 1 7“2)

From Equations 9 and 10, we get

lel ZQZQ ™ lel
r2 - r2 — . - 7ol
1 2 2 22
Similarly it can be shown that - , Vi,
Ty Z]‘l]‘

This implies that, the optimal r; must be linearly proportional to /Z;l;. It is easy to
see that constant of proportionality a = exists such that r;, = a/Z;l; is the only
T YL VAL \/

possible solution for the equations % = 0. From physmal description of the problem, we know
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that a non-negative minimum of £ must exist. Therefore, the above solution is unique and yields
the minimum ¢. Substituting r; = =2 — into Equation 7, and simplifying, vields optimal
g Z]Ni1 m q ” phtymg, y P

overall mean access time as
2
1 /M
toptimal — § (Z \/ Zzlz) .
=1

Also, the optimal frequency of item ¢, f; may be obtained as f; = T’ZN x Zili]lvf = ,/%N.

7

Thus, we have shown that, optimal frequency f; is directly proportional to ,/%. Theorem 1 is

obtained by substituting Z; = p; Gfgg;’;) in the above proportionality. a

B Equal-Spacing Assumption

Equation 3 provides an expression for optimal spacing between instances of an item:, 1 <7 < M.
It may not be possible to achieve this spacing in reality.

Assume that number of items is M = 3, and cycle size N = 6. Let length of each item
be 1. For a certain probability distribution and error rate, the optimal item frequencies and
spacing are as follows: s =2, 59 =3, 53 =6, f1 =3, o =2, f3=1.

In this case, an attempt to schedule the cycle quickly shows that, it is impossible to
schedule instances of item 1 equally spaced at distance 2, and instances of item 2 equally spaced
at distance 3. To do so requires that one instance of item 1 and 2 both be scheduled at the same
time! This is called a “collision”. Collisions are not permissible in a real schedule, as two items
cannot be transmitted on the same channel simultaneously. This example illustrates that, in
general, collisions prevent us from spacing instances of each item ¢ equally apart.
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