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Abstract

With the increasing popularity of portable wireless computers, mechanisms to efficiently trans-
mit information to such clients are of significant interest. The environment under consideration
1s asymmetric in that the information server has much more bandwidth available, as compared
to the clients. In such environments, often it is not possible (or not desirable) for the clients to
send explicit requests to the server. It has been proposed that in such systems the server should
broadcast the data periodically. One challenge in implementing this solution is to determine the
schedule for broadcasting the data, such that the wait encountered by the clients is minimized. A
broadcast schedule determines what is broadcast by the server and when. In this report, we present
algorithms for determining broadcast schedules that minimize the wait time. Simulation results
are presented to demonstrate that our algorithms perform well. Variations of our algorithms for
environments subject to errors, and systems where different clients may listen to different number
of broadcast channels are also considered.

*Research reported is supported in part by Texas Advanced Technology Program grant 009741-052-C and National
Science Foundation grant MIP-9423735.

T Appears in part at Workshop on Satellite Based Information Services (WOSBIS), Nov. 1996, Rye, NY.

{Typographical errors in Appendix B corrected on November 18, 1996.



Contents
1 Imntroduction
2 Preliminaries

3 Proposed Scheduling Schemes
3.1 Abstract Procedure . . . . . . ..o
3.2 Mapping Demand Probabilities to Item Frequencies . . . . . . . . . .. ... ... .. ... ..
3.3 On-line Scheduling Algorithm . . . . . .. ... 0 o
3.4 On-line Algorithm with Bucketing . . . . . . . . ... o oo
3.4.1 Comparison of Buckets and Multi-disk [3] . . . . .. .. .. ... .. 0.

4 Effect of Transmission Errors on Scheduling Strategy
5 Multiple Broadcast Channels

6 Performance Evaluation
6.1 Demand Probability Distribution . . . . . . . . .. ...
6.2 Length Distribution . . . . . . . . .. e
6.3 Request Generation . . . . . . . . .. L
6.4 Performance Evaluation in the Absenceof Uncorrectable Errors . . . . . . . ... ... ... ..
6.5 Performance Evaluation in the Presence of Uncorrectable Errors . . . . . . . .. ... ... ..

6.6 Performance with Multiple Broadcast Channels . . . . . .. .. .. ... ... ... ... ....
7 Related Work
8 Summary
A Appendix: Proof of Theorem 1
B Appendix: Optimal Overall Mean Access Time with Bucketing

C Appendix: Overall Mean Access Time in Presence of Errors

22

23

24

25

26



This technical report is substantially identical to technical report 96-017 [15]. This report
presents a new algorithm for multiple channel broadcast, and also presents new performance evalua-
tion results for some algorithms presented in [15]. [15] also presents some multiple channel broadcast
algorithms that are not considered in this report.

1 Introduction

Mobile computing and wireless networks are fast-growing technologies that are making ubiquitous
computing a reality. With the increasing popularity of portable wireless computers, mechanisms to
efficiently transmit information to such clients are of significant interest [13]. For instance, such
mechanisms could be used by a satellite or a base station to communicate information of common
interest to wireless hosts. In the environment under consideration, the downstream communication
capacity, from server to clients, is relatively much greater than the upstream communication capacity,
from clients to server. Such environments are, hence, called asymmetric communication environments
[2]. In an asymmetric environment, broadcasting the information is an effective way of making
the information available simultaneously to a large number of users. For asymmetric environment,
researchers have previously proposed algorithms for designing broadcast schedules [4, 6, 7, 8, 9, 10,
11, 12, 17, 18, 19]. Two metrics are used to evaluate these algorithms:

o Access time: This is the amount of time a client has to wait for some information that it needs.
It is important to minimize the access time so as to decrease the idle time at the client. Several
researchers have considered the problem of minimizing the access time [4, 6, 10, 11, 12, 7, 3, 2,
18, 19]

e Tuning time: This is the amount of time a client must listen to the broadcast until it receives
the information it needs. It is important to minimize the tuning time, because the power
consumption of a wireless client is higher when it is listening to the transmissions, as compared
to when it is in a doze mode [9, 10, 11, 17].

This report presents an approach to minimize the access time. We consider a database that is
divided into information items (or items for short). Thus, a broadcast schedule specifies when each
item is to be transmitted.

The contributions of this report are as follows:

o Square-root rule: We show that the access time is minimized when the frequency of an item
(in the broadcast schedule) is inversely proportional to the square-root of its size and directly
proportional to the demand for that item (characterized as demand probability). This result is
a generalized version of a result presented in [4, 18].

Impact of errors on the scheduling policy is also evaluated. In an asymmetric environment,
when a client receives an information item containing errors (due to some environmental dis-
turbance), it is not always possible for the client to request retransmission of the information.
In this case, the client must wait for the next transmission of the required item. We evaluate
how optimal broadcast schedule is affected in presence of errors.

We also consider systems where different clients may listen to different number of broadcast
channels, depending on how many they can afford. In such an environment, the schedules on



different broadcast channels should be coordinated so as to minimize the access time for most
clients.

For each of the broadcast environments (i.e., with or without errors, and with or without
multiple broadcast channels), we determine a theoretical lower bound on the achievable average
access time. This lower bound is used to determine efficacy of proposed scheduling algorithms.

We propose a simple “on-line” algorithm, based on the above square-root rule for each environ-
ment under consideration. An on-line algorithm can be used by the server to determine which
item to broadcast next. On-line algorithms are of significant interest as they are easy to adapt
to time-varying demands for the information items. The access time achieved by the on-line
algorithms is shown to be very close to the theoretical lower bound. Also, performance of our
on-line algorithm is significantly better than that proposed previously [17].

The rest of the report is organized as follows. Section 2 introduces some terminology. Section 3

derives the square-root rule, and presents two on-line algorithms. The impact of errors is analyzed
in Section 4. Section 5 considers an environment where different clients may be listening to different
number of channels (depending on what they can afford). Section 6 evaluates the performance of our
schemes. Related work is discussed in Section 7. A summary is presented in Section 8.

2

This

Preliminaries
section introduces much of the terminology and notations to be used in rest of the report.
Database at the server is assumed to be divided into many information items. The items are

not necessarily of the same size.

The time required to broadcast an item of unit length is referred to as one time unit. Hence
time required to broadcast an item of length [ is [ time units. Note that unit of length and time
unit may be used interchangeably because of the way they are defined.

M = total number of information items in the server’s database. The items are numbered 1
through M.

l; represents length of item 1.

To develop a theoretical foundation for our algorithms, we assume that the broadcast consists
of a cycle of size N time units. The results presented in the report also apply to non-cyclic
schedules (for non-cyclic schedules, effectively, N — o0).

Instance of an item : An appearance of an item in the broadcast is referred to as an instance
of the item.

Schedule : Schedule for the broadcast cycle is an order of the items in the cycle.

Frequency of an item : frequency f; of item ¢ is the number of instances of item ¢ in the broadcast
cycle. The f; instances of an item are numbered 1 through f;. Size of the cycle is, therefore,
given by N = Zf\il fil; , where [; is the length of item ¢.



e Spacing : The spacing between two instances of an item is the time it takes to broadcast
information from the beginning of the first instance to the beginning of the second instance. s;;
denotes the spacing between j-th instance of item ¢ and the next instance of item ¢ (1 < j < f;).
Note that, after the f;-th instance of an item in a transmission of the broadcast cycle, the next
instance of the same item is the first instance in the next transmission of the broadcast cycle.

Spacing between two
instances of Item 1

fe—— 10—t 8 — > 4>+ 10—

Item 1 ltem 2 ”gm Item 1 Ite
an instance of an instance of
ltem 1 Item 1

Figure 1: Showing a part of broadcast cycle (Example 1)

Example 1: As an example, refer to Figure 1. The figure shows a part of a broadcast cycle, which
contains two instances of item 1, and one instance each of items 2 and 3. The lengths of the items
are 10, 8 and 4 units respectively. The spacing between the two instances of item 1 is the time
from the beginning of first instance of item 1 until the beginning of second instance, which is equal
to 10 + 8 + 4 = 22 time units. Thus, if a client needs item 1 at some time (uniformly distributed)
between the two instances of item 1, then the average wait is 22/2 = 11 time units. To reduce this
wait, item 1 will have to be transmitted sooner, however, doing so will require one of items 2 or 3
to be transmitted later, causing an increase in the access time of a client needing that item. This
example illustrates the need for appropriate scheduling of items in the broadcast. O

o Jtem Mean Access Time : Item Mean Access Time of item 1, denoted t;, is defined as the
average wait by a client needing item ¢ until it starts receiving item ¢ from the server. Provided
that a client is equally likely to need an item ¢ at any instant of time, #; can be obtained as,
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If all the f; instances of item 7 are equally spaced, that is, for some constant s;, s;; = s;

(1 <4 < fi), then, it follows that, s; = N/f;. In this case, the expression for ¢; can be
simplified as follows:

fi 2 2
. 1 . 1
%= = fi (8—2) = 5%, as s; =N/f; (1)

e Demand probability : Demand probability p; denotes the probability that an item needed by a
client is item ¢.



o Qverall Mean Access Time : QOverall Mean Access Time, denoted t, is defined as the average
wait encountered by a client (averaged over all items). Thus,
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When s;; = s; (1 < j < f;), the above equation reduces to

1M
t = —E i Pi 2
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3 Proposed Scheduling Schemes

3.1 Abstract Procedure

demand Transforming frequencies Mapping broadcast
probabilities probabilities of pages frequencies schedule
into to a
frequencies schedule

Figure 2: Constructing a Broadcast Schedule

Figure 2 depicts an abstract view of the procedure for constructing a broadcast schedule. The first
block in Figure 2 maps the demand probability distribution into “optimal” item frequencies. Recall
that frequency of an item is the number of times the item is to be broadcast in a broadcast cycle.
Having determined the optimal frequencies, second block in Figure 2 uses the frequencies to determine
the broadcast schedule. Our goal is to perform the functions of the two blocks in such a way that
overall mean access time, t, is minimized. Note that Figure 2 gives a low-level abstraction of the
procedure. This helps in obtaining an expression for optimal overall mean access time. Algorithms
presented in this report do not use this two-step procedure, however, they are formulated based on
results obtained from an analysis of the above procedure.

3.2 Mapping Demand Probabilities to Item Frequencies

We first present theoretical results that motivate our scheduling schemes. The first observation stated
in Lemma 1 below is intuitive. This observation also follows from a result presented in [12], and has
been implicitly used by others (e.g., [3, 4, 18]).

Lemma 1 The broadcast schedule with minimum overall mean access time results when the instances
of each item are equally spaced.

Proof of the lemma is omitted here for brevity. In reality, it is not always possible to space instances of
an item equally. However, the above lemma provides a basis to determine a lower bound on achievable



overall mean access time. Note that, while Lemma 1 suggests that spacing between consecutive
instances of item 7 should be constant, say s;, s; need not be identical to the spacing s; between
instances of another item j.

The objective now is to determine the optimal frequencies ( f;’s) as a function of the probability
distribution (p;’s) and the length distribution (I;’s). We assume the ideal situation, as implied by
Lemma 1, where instances of all items can be equally spaced. This assumption, although often difficult
to implement, does lead to a useful result stated in Theorem 1. This result is a generalization of a
result derived in [4, 18]. The result in [4, 18] applies only to items of identical size, whereas, our
result applies to items of differing sizes. We use this result to design on-line broadcast scheduling
algorithms, which have not been investigated previously.

Theorem 1 Square-root Rule: Given the demand probability p; of each item ¢, the minimum
overall mean access time, t, is achieved when frequency f; of each item 1 is proportional to \/p; and

inversely proportional to \/I;, assuming that instances of each item are equally spaced. That is,
Ji \/%
7

Proof: Appendix A presents the proof. O

Now note that, cycle size N = Z]]\il fil;. Therefore, the above theorem implies that, f; =
(N \/pi/li) / (Z]]\il \/pjlj). Also, as spacing s; = N/ f;, a consequence of the above result is that,

for overall mean access time to be minimized, we need

l;
S; X 4] —
Pi

As shown in Appendix A, from Theorem 1 it follows that, the optimal overall mean access

time, named toptimal? is:

2
1 M
loptimal = ) (Z \% pili) (3)
=1

toptimal represents a lower bound on achievable overall mean access time. As the lower bound

is derived by assuming that instances of each item are equally spaced, the bound, in general, is not
achievable. However, as shown later, it is possible to achieve performance almost identical to the
above lower bound.

Now we present two scheduling algorithms. The first “on-line” algorithm determines which
item should be broadcast next by the server. The second on-line algorithm distributes the items into
different “buckets”, to reduce time complexity of on-line decision-making.



3.3 On-line Scheduling Algorithm

Whenever the server is ready to transmit a new item, it calls the on-line algorithm presented here.
The on-line algorithm determines the item to be transmitted next using a decision rule — this decision
rule is motivated by the result obtained in Theorem 1. As noted previously, Theorem 1 implies that,
for optimal performance, instances of an item z should be equally spaced with spacing s;, where

s; < \/l;/p;. This can be rewritten as

57 pi L
Zl = constant, Vi,1 <:< M (4)

7

The above observation is used in our algorithm, as presented below. We first define some notation.
Let () denote the current time; the algorithm below decides which item to broadcast at time ¢). Let
R(j) denote the time at which an instance of item j was most recently transmitted; if item j has
never been broadcast, R(j) is initialized to —1.! Note that, R(j) is updated whenever item j is
transmitted. Let function G/(j) be defined as

G(j)=(Q— R(j)) pi/l;, 1<j<M

The first on-line algorithm is named Algorithm A.
Algorithm A: On-line algorithm:

Step 1: Determine maximum G(j) over all items 7,1 < j < M.
Let G40 denote the maximum value of G(j).
Step 2: Choose item ¢ such that G(i) = G a4, If this equality
holds for more than one item, choose any one of them arbitrarily.
Step 3: Broadcast item ¢ at time ).
Step 4: R(i) = Q.

() — R(7) is the spacing between the current time, and the time at which item ¢ was previously
transmitted. Note that, the function G(i) = (Q — R(4))* p;/l; is similar to the term s? p;/l; in
Equation 4. The motivation behind our algorithm is to attempt to achieve the equality in Equation 4,
to the extent possible.

Example 2: Consider a database containing 3 items such that py = 1/2, po = 3/8, and p3 = 1/8.
Assume that items have lengths [y = 1,13 = 2 and I3 = 4 time units. Figure 3 shows the items recently
broadcast by the server (up to time < 100). The above on-line algorithm is called to determine the
item to be transmitted at time 100. Thus, ¢ = 100. Also, from Figure 3, observe that R(1) = 95,
R(2) = 93, and R(3) = 96. The on-line algorithm evaluates function G(j) = (@ — R(j))*p;/!; for
Jj=1,2,3as 12.5, 147/16 (=9.1875) and 0.5, respectively. As G/(j) is the largest for j = 1, item 1 is
transmitted at time 100. O

!The choice of initial value will not affect the mean access time much, unless the broadcast is for a very short time.
For broadcasts that last a short time, other initial values may perform better. For instance, R(j) may be initialized to

-/
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Figure 3: Illustration of the on-line algorithm (Example 2)

It can be shown that, algorithm A produces a cyclic schedule, if the ties in step 2 of the
algorithm are resolved deterministically [15]. Performance measurements for the above algorithm
are presented in Section 6. Our algorithm improves access time by a factor of 2 as compared to
the probabilistic on-line algorithms presented in [17, 18]. In general, as shown in section 6, the
proposed on-line algorithm performs close to the optimal obtained by Equation 3. However, it is also
possible to construct scenarios where the schedule produced by the algorithm is not ezactly optimal,
as demonstrated in the next example.

Example 3: Consider the following parameters: M =2, 1y =l =1, p1 =024 ¢, p; =1 —py, and
0 < € < 0.05. In this case, the on-line algorithm produces the cyclic schedule (1,2), i.e., 1,2,1,2,...,
which achieves an overall mean access time of 1.0. On the other hand, the cyclic schedule (1,2,2)
achieves overall mean access time 2.9/3 + 2¢/3 < 1. Thus, in this case, the on-line algorithm is not
optimal. However, the overall mean access time 1.0 of the on-line algorithm is within 3.5% of that
achieved by the cyclic schedule (1,2,2). O

3.4 On-line Algorithm with Bucketing

A drawback of on-line algorithm A above is the computational cost of O(M) required to evaluate G4,
in step 1 of the algorithm. This cost can be reduced by partitioning the database into “buckets” of
items, as follows.

Divide the database into k& buckets, named By through By. Bucket B; contains m; items, such
that 3%, m; = M, the total number of items in the database. We maintain the items in each bucket
in a queue. At any time, only items at the front of the buckets are candidates for broadcast at that
time. Define ¢; = (Ez’eB] pi)/m; as the average demand probability of the items in bucket B;, and

d; = (Ez’ij l;)/m; as the average length of the items in bucket B;. Note that S migi = 1. Let Q

be the current time and R(¢) be the time when item ¢ was most recently broadcast. Let [; denote
the item at the front of bucket B;. As shown in Appendix B, for optimality, the following condition
must hold when bucketing is used: If item 7 is in bucket B;, then

spacing s; o« 1/d;/q;



In other words, Sii?j = constant, Vj, 1<j<k and 7€ B, (5)

J

Let G(j) now denote (Q — R(I;))? ¢;/d;, 1 < j < k. Function G(j) used here is similar (but not
identical) to function G/(j) used in algorithm A in the previous section. The on-line algorithm with
bucketing, named Algorithm B, is obtained from the above result.

Algorithm B: On-line With Bucketing:

Step 1: Determine maximum G(j) over all buckets j, 1 < j < k.
Let G40 denote the maximum value of G(j).
Step 2: Choose a bucket B; such that G(i) = G a4, If this equality
holds for more than one bucket, choose any one bucket arbitrarily.
Step 3: Broadcast item I; from the front of bucket B; at time ).
Step 4: Dequeue item I; from the front of the bucket B; and
enqueue it at the rear of B;.

Step 5: R(I;) = Q.

The above algorithm is quite similar to the original on-line algorithm A, except that the
decision rule (in steps 1 and 2) is applied only to items at the front of the k buckets. Hence, the
algorithm needs to compare values for only & items resulting in the time complexity of O(k). Observe
that all items within the same bucket are broadcast with the same frequency. This suggests that the
(p:i/1;) values of all items in any bucket should be close for good results.

The Optimal Overall Mean Access Time tesulting from the above algorithm, as shown in
Appendix B, is given by

2
1 k
lopt_bucket = 5 (Z LAY/ ‘Zjdj) (6)
7=1

Similar to ¢ topt_bucket is a lower bound on average access time achievable with bucketing.

optimal>

The above equation shows that ¢ ¢ is dependent upon the selection of values for m;’s

opt_bucke
under the constraint that Z;?:l m; = M. Optimizing the bucketing scheme for a given number of
buckets %k requires that the m;’s be chosen appropriately, such that the above equation is minimized.

For our simulations, we use a heuristic to determine the membership of items to the buckets.
The heuristic for determining the membership of an item ¢ to a bucket B; is as follows:

Let A, and Ajuqe denote the minimum and maximum value of \/p;/l; (1 < i< M), respec-
tively. Let 6 = Ajur — Amin. If, for item v, \/]i = A,n, then item 7 is placed in bucket Bj.
Any other item ¢ is placed in bucket B; (1 < j < k)if (j — 1)é/k < (Vpi/li = Amin) < (5 6/K).
This is pictorially depicted in Figure 4. The above heuristic executes in O(M ) time, and needs to be
executed once for given probability and length distributions.

10



o/k k=5
Amin Amax

bucket B1 B2 B3 B4 BS

Figure 4: Heuristic for assigning items to & buckets: The interval (Apin, Amqs) is divided into k

equal-sized sub-intervals. An item ¢ whose \/p;/l; value belongs to the j-th sub-interval is assigned
to bucket B; (1 <j<k).

3.4.1 Comparison of Buckets and Multi-disk [3]

The notion of a bucket is similar to that of a broadcast disk in the multi-disk approach proposed by
Acharya et al. [3]. Therefore, the result in Equation 5 can be used to determine suitable frequencies
for the broadcast disks.? The differences between the two approaches are as follows: (a) Acharya et
al. [3] do not have a way of determining the optimal frequencies for the different disks, whereas, our
algorithm automatically tries to use the optimal frequencies. (b) Our algorithm is on-line in that the
broadcast schedule is not predetermined. This allows our algorithm to quickly react to any changes
in parameters (such as demand probabilities). (¢) The algorithm in [3] imposes the constraint that
the instances of each item be equally spaced at the risk of introducing idle periods (or “holes”) in the
broadcast schedule (the holes may be filled with other information). Our algorithm also tries to space
items at equal spacing, however, it does not enforce the constraint rigidly. Therefore, our algorithm
does not create such holes. The argument in favor of a rigid enforcement of equal spacing, as in [3],
is that caching algorithms are simplified under such conditions. However, it is possible to implement
caching algorithms similar to those in [3] for the bucketing scheme as well. Evaluation of the caching
algorithms is beyond the scope of this report. (d) Our algorithm works well with items of arbitrary
sizes. [3] is constrained to fixed size items.

4 Effect of Transmission Errors on Scheduling Strategy

In Section 3, we presented on-line algorithms for determining broadcast schedules. These algorithms
do not take into account transmission errors. In this section, we modify our basic approach to design
broadcast schedules in the presence of transmission errors.

In the discussion so far, we assumed that each item transmitted by the server is always re-
ceived correctly by each client. As the wireless medium is subject to disturbances and failures, this
assumption is not necessarily valid. Traditionally, in an environment that is subject to failures, the
data is encoded using error control codes (ECC). These codes enable the client to “correct” some
errors, that is, recover data in spite of the errors. However, ECC cannot correct large number of
errors in the data. When such errors are detected (but cannot be corrected by the client), the server
is typically requested to retransmit the data.

In the asymmetric environment under consideration here it is not always possible for the client
to ask the server to retransmit the data.® If a client waiting for item 7 receives an instance of item
1 with uncorrectable errors, the item is discarded by the client. The client must wait for the next

2As s;, 1 € By, is proportional to \/d;/q;, it follows that f; o< \/q;/d;.

*Even if it were possible for a client to send a retransmit request to the server, it is not clear that a broadcast scheme

11



instance of item ¢. In this section, we evaluate the impact of uncorrectable errors on the scheduling
strategy for broadcasts.

Suppose that uncorrectable errors occur in an item of length [ with probability F(l) (Now,
l; denotes length of item ¢ after encoding with an error control code). Appendix C shows that the
overall mean access time, t, for this case, assuming that instances of item ¢ are equally spaced with
spacing s;, is given by

_ EL0)
The Square Root Rule in Theorem 1 needs to be modified to take errors into account as follows:

Theorem 2 Given that the probability of occurrence of uncorrectable errors in an item of length [ is
E(l), the overall mean access time is minimized when

o E ()

and

Proof : See Appendix C. O

The lower bound on overall mean access time now becomes,

e = 5 (LA (F40) gl )

Theorem 2 implies that in an optimal schedule,

s p; (1 + E(l;)
L \TC B

):constant ,1<e <M

The on-line scheduling algorithms presented previously can be trivially modified to take into
account the above result. For instance, Algorithm A can be used as such with the exception that

function G(j) needs to be re-defined as G(j) = (Q — R(j))* (p;/1;) G—l_gg ;) 1 <7< M. Section 6

evaluates the modified algorithm A (using the re-defined function G/(j)).

should allow such requests; because it is possible that many clients receive the original broadcast correctly, but only a
few do not (due to some localized disturbance).

12



5 Multiple Broadcast Channels

The discussion so far assumed that the server is broadcasting items over a single channel and all the
clients are tuned to this channel. One can also conceive an environment in which the server has a
large available bandwidth which is divided into multiple channels, the channels being numbered 1
through ¢. The clients can then subscribe to as many channels as they want (and can afford). It is
apparent that proper use of these channels should result in better performance. Here we give one
approach to exploit these channels to improve performance. Other approaches are also possible [15].

The approach considered here uses a modification of Algorithm A, described in Section 3.3, to
accommodate multiple channels. Let the total number of broadcast channels be ¢, the channels being
numbered 1 through ¢. A client capable of listening to, say, n broadcast channels, may be listening
to any n channels.

Let H = {1,2,---,c} denote the set of all broadcast channels. A client (that is interested in
the broadcast data) may listen to any non-empty subset S of the set H. For instance, if ¢ = 2, then
H ={1,2}, and S may be {1}, or {2}, or {1,2}.

Let IIg denote the probability that S is the set of channels listened to by a client, where
5 C H. By definition, Iy = 0 — that is, each client of interest in this discussion listens to at least
one channel.

As different clients may be listening to different number of channels, we re-define overall mean
access time to be an average over all clients. The overall mean access time for multichannel broadcast
is named %,u7ichan, and obtained as,

tmultichan = Z HStS
SCH

where tg denotes the average access time encountered by a client listening to channels in set 5. For
instance, when number of broadcast channels is ¢ = 2, H = {1,2}, and

tuttichan, = Wy oy + Wy tooy + gy oy t1 9y (9)

Equation 3 presented a lower bound (%,ptimar) on the overall mean access time when a client listens
to only 1 channel. Clearly, for a non-empty set of channels 5, a lower bound on tg is given by

toptimal

|51

where |5 is the number of channels in set 5. It follows that, a lower bound on t,,yitichan 18 given by

tontimal
tmultichan_optimal = Z HS Ojt;Ta (10)
SCH,|S|>0

In particular, if number of channels ¢ = 2, then

1I
tmultichan_optimal = (H{l} + H{Q} + {;2}) toptimal

13



Now we present an on-line algorithm to schedule broadcast on multiple channels. This algo-
rithm is obtained by generalizing algorithm A in Section 3.3. In the following, assume that current
time is @, and the on-line algorithm needs to determine which page to broadcast on channel i (where
1 < h <¢). Let Ry(j) denote the most recent time when item j was broadcast on channel 4 (1 < h < ¢,
1 < j < M). Rp(j)is initialized to —1. For a subset S of H, define R°(j) = maxyes Rp(j). Thus,
Rs(j) is the time when item j was most recently transmitted on any channel in set 5. Similar to the

cost function G(j) used in Algorithm A, here we use a function G5 (j) for each channel b (1 < j < M).
Gu(7) is defined as follows.

Gmn:%( ZIHAQ—WUW) (1)

SCH,heS
Note that the summation in the above expression for G,(j) is over all subsets S of H that contain
channel A.

As an illustration, when ¢ = 2, we have H = {1,2}, and
Gi(7) = 2 (ay(Q = RV + T op(@ — RO (5))?)

and

Ga(j) = 22 (ay(Q = RID(7)? + T (@ — RO (5))?)

The proposed on-line algorithm is as follows.

On-line algorithm for channel h, 1 < h <e¢:

Step 1: R%(j) = maxpes Ru(j),VS,Vj, SC H,1<j< M.
Step 2: Determine maximum G,(j) over all items 7,1 < j < M.
Let G qp denote the maximum value of G(7) over all j.
Step 3: Choose item ¢ such that G (i) = G ey If this equality
holds for more than one item, choose any one of them arbitrarily.
Step 4: Broadcast item ¢ on channel L at time ).

Step 5: Rp(i) = Q.

Section 6.6 evaluates the performance of the above algorithm for two channels (¢ = 2). Time com-
plexity of steps 1 and 2 above can be reduced by using techniques similar to bucketing (in Section 3.4).

6 Performance Evaluation

In this section, we present simulation results for various algorithms presented above. Fach simulation
was conducted for at least 6 million item requests by the clients. Other parameters used in the
simulation are described below.
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6.1 Demand Probability Distribution

We assume that demand probabilities follow the Zipf distribution (similar assumptions are made by
other researchers as well [1, 2, 3, 4, 18]). The Zipf distribution may be expressed as follows:

(/)"

== 1<i<M
PTEE iy T
where 6 is a parameter named access skew coefficient. Different values of the access skew coefficient
8 vield different Zipf distributions. For 8 = 0, the Zipf distribution reduces to uniform distribution
with p; = 1/M. However, the distribution becomes increasingly “skewed” as 6 increases (that is, for
larger 6, the range of p; values becomes larger). Different Zipf probability distributions resulting from
different @ values are shown in Figure 5(a).
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It em Number It em Number
(a) Zipf Distribution for various values of 6 (b) Length Distribution

Figure 5: (a) shows the Zipf Distribution for various values of access skew coefficient #. Note that
the scale on vertical axis is logarithmic. The probability distribution becomes more skewed with
increasing 6. (b) shows three length distributions used in our analysis. Another length distribution
used in this report is illustrated in Figure 6.

6.2 Length Distribution

A length distribution specifies length [; of item ¢ as a function of 7, and some other parameters. In
this report, we consider the following length distribution.

Li—-L , .
li:round<<ﬁ)(z—l)—l—Lo), 1<i< M

where Ly and Ly are parameters that characterize the distribution. Lg and Lq are both non-zero
integers. round() function above returns a rounded integer value of its argument.

We consider three special cases of the above length distribution, obtained by choosing integral
appropriate Ly and Ly values.
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o Uniform Length Distribution : In this case, Lo = Ly = 1. The distribution reduces to [; = 1,
1<i< M.

o Increasing Length Distribution : In this case, Lg = 1 and Ly = 10. In this case, [; is a non-
decreasing function of ¢, such that 1 <[; < 10,1 <7< M.

o Decreasing Length Distribution : In this case, Ly = 10 and Ly = 1. In this case, [; is a
non-increasing function of ¢, such that 1 </; <10, 1 <: < M.

Figure 5(b) plots the three length distributions. In addition to these length distributions, we
also use a random length distribution obtained by choosing lengths randomly distributed from 1 to
10 with uniform probability. The random length distribution used here is shown in Figure 6.

Length

0 100 200 300 400 500 600 700 800 900 1000
Item Number

Figure 6: Random Length Distribution. Lengths are randomly distributed from 1 to 10 with uniform
probability.

6.3 Request Generation

For our simulations, we generated 2 requests for items per time unit. Simulation time is divided into
intervals of unit length; 2 requests are generated during each such interval. The time at which the

requests are made is uniformly distributed over the corresponding unit length interval. The items for
which the requests are made are determined using the demand probability distribution.

6.4 Performance Evaluation in the Absence of Uncorrectable Errors

In this section, we evaluate Algorithms A and B, assuming that uncorrectable transmission errors do
not occur. Performance evaluation in presence of such errors is discussed in the next section.
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Figure 7: Quverall mean access time for different values of access skew coefficient § and using uniform
length distribution. In (a), curves for Algo A and optimal overlap with each other. The simulation
results are within 0.7% of analytical results.
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Figure 8: Quverall mean access time for different values of access skew coefficient # and using increasing
length distribution. In (a), curves for Algo A and optimal overlap with each other. The simulation
results are within 0.5% of analytical results.
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results are within 0.2% of analytical results..

With Random

3000 T
. PR B - optipal  —o—
p Algo A —+-
2500 & 1 bucket -s--
= 5 buckets -
» 10 buckets —--—
P 2000 -
o
2
- 1500 -
©
2
- 1000
©
8 500 |-
0 L L L L
0. 25 0.5 0.75 1 1.25 1
THETA

(a) Simulation results

Length Distribution

3000

2500

2000

1500

Mean Access Tine

1000

500

Overal |

,,,,,,,, ey ____oOptiml_—e—_
1 bucket -+~-
e 5 buckets -=-- 7
R LD 10 buckets -x--
.25 0.5 0.75 1 1.25 1.5

THETA

(b) Analytical lower bounds

Figure 10: QOuverall mean access time for different values of access skew coefficient # and using random
length distribution. In (a), curves for Algo A and optimal overlap with each other. The simulation
results are within 0.3% of analytical results.

18



Figures 7, 8, 9 and 10 plot overall mean access time for different values of access skew coefficient
6, for the four length distributions presented earlier. In each of these figures, part (a) plots the
simulation results, and (b) plots the analytical lower bound on overall mean access time. In part (a),
the curve labeled “Algo A” corresponds to the access time obtained by simulating algorithm A. The
curves labeled “7 buckets” in part (a) correspond to the access time obtained by simulating algorithm
B with ¢ buckets. In part (a) and (b) both, the curve labeled “optimal” corresponds to loptimal
obtained using Equation 3. In part (b) of each figure, the curve labeled “i buckets” corresponds to
topt_bucket obtained using Equation 6 with ¢ buckets.

First observation, as noted in the caption of each figure, is that the simulation results are
very close to the corresponding lower bounds obtained analytically. Thus, our algorithm performs
well (close to optimal). Now note that, when number of buckets is 1, Algorithm B reduces to the so
called “flat” cyclic scheduling [3] scheme where each item is broadcast once in a broadcast cycle. As
the number of buckets approaches the number of items M, performance of the bucketing algorithm
should approach the performance of algorithm A. As algorithm A has a higher time complexity that
algorithm B, it is interesting to see how performance of algorithm B improves when the number of
buckets is increased. Observe that, the access time with 5 buckets is much smaller than that with
just 1 bucket. However, using 5 buckets is not always adequate to achieve access time of algorithm A.
Increasing the number of buckets further to, say, 10 further improves the performance of algorithm
B. For large 6 (i.e., large skew in probability distribution), number of buckets needs to be larger to
achieve performance close to optimal. Thus, the choice of the number of buckets is more critical when
the skew in probability distribution is large.

An important conclusion from above results is that, performance of algorithm B, with a rel-
atively small number of buckets (10 buckets in our illustration) is quite close to that achieved by
algorithm A (effectively, using M = 1000 buckets). This implies that algorithm B can significantly
reduce time complexity of on-line decision making, with a reasonably small degradation in perfor-
mance. Knowing the best possible access time (the optimal curve in the figures) allows a designer to
choose an appropriate number of buckets. Secondly, as simulation results are very close to the analyti-
cal lower bounds, analytical bounds can be used as a first-order approximation of actual performance.
A drawback of the related previous work on “multi-disks” [3] is that they had no analytical method
to determine an appropriate number of disks. Therefore, to choose a suitable number of “disks”,
time-consuming simulations are necessary.

6.5 Performance Evaluation in the Presence of Uncorrectable Errors

In this section, we evaluate performance of the on-line algorithm in the presence of uncorrectable
errors as explained in section 4. For the sake of illustration, we assume that uncorrectable errors
occur according to a Poisson process with rate A. Hence FE(l;) = 1 — e~ . Figures 11 and 12 plot
overall mean access time in the presence of errors for different error rates (), and for increasing
and decreasing length distributions, respectively. Again, in each of these figures, part (a) plots the
simulation results and part (b) plots analytical lower bounds for # = 0,1 and 1.5. The lower bounds
are obtained using Equation 8 (substituting E(l;) = 1 — e~¥). Note that the results presented in
the previous section correspond to the case when A=0. From the simulation results, observe that
the proposed on-line algorithm A, modified to take errors into account, achieves performance close
to optimal. Previous research on broadcasts does not take uncorrectable errors into account when
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determining the broadcast schedules, or when evaluating the access time. Note that, with uniform
length distribution, the term (1+ F(l;))/(1— E(l;)) becomes a constant (independent of 7). Therefore,
for uniform length distribution, Theorem 2 reduces to Theorem 1.
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Figure 11: OQverall mean access time against A for different values of § and increasing length distri-
bution. The simulation curves are obtained using Algorithm A modified to take errors into account.
The simulation results are within 2.5 % of analytical results.
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Figure 12: Overall mean access time against A for different values of # and decreasing length distri-
bution. The simulation curves are obtained using Algorithm A modified to take errors into account.
The simulation results are within 1.1 % of analytical results.
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6.6 Performance with Multiple Broadcast Channels

In this section, we evaluate the performance of the on-line algorithm given in Section 5 for multiple

channel broadcast with number of channels ¢ = 2. We also assume that Iy = Iy =
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Figure 13: Performance Evaluation for Uniform Length Distribution. (a) shows the curves for § = 0.5
and (b) shows the curves for § = 1. Note that the overall performance is very close to optimal. The
curves labeled “overall” and “lower bound” almost overlap.
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Figures 13 (a) and 13 (b) show the evaluation results for uniform length distribution with
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skew coefficient § = 0.5 and 1 respectively, against different values of Il ;). Figures 14 (a) and 14
(b) show the similar results but for random length distribution with 8 = 0.5 and 1 respectively. The
curve labeled “1 channel” in each of these figures is obtained for the clients listening to channel 1
(ie., tyy). As Iy = Iy, due to symmetry, t(3y and t9y should be identical. The curve labeled
“2 channels” is obtained for the client listening to both the channels and represents ¢y ;. The curve
labeled “overall” is the overall mean access time obtained by substituting the values of 44,45y and
t(1,2) in Equation 9. Whereas the curve labeled “lower bound” is obtained from Equation 10 in
Section 5.

For Il oy < 0.75, the performance viewed by a client listening to only one channel is very
close to optimal obtained by Equation 3. However, as Il 5, approaches to 1 (more and more clients
listen to both channels), the overall mean access time observed by client listening to only one channel
increases. This is because of the fact that for Iy, 5y approaching to 1, the values of Iy and Il
drop down to such an extent that the terms corresponding to Ily;y and Il in the cost function
(Equation 11 in section 5) become negligible. Hence the clients listening to only one channel pay the
penalty.

The figures also show that for the clients listening to both the channels, the algorithm improves
the performance by approximately a factor of 2 (as compared to client listening to one channel). As
Il¢1 2y approaches to zero (less number of clients listening to both the channels as compared to total
population), the algorithm favors those who are listening to only one channel to improve the overall
mean access time, penalizing those who are listening to both the channels. The figures also show that
the overall performance shown by curve “overall” is quite close to the analytical lower bound shown
by curve “lower bound”.

For brevity, we do not show the results for increasing and decreasing length distribution.

7 Related Work

The problem of data broadcasting has received much attention lately. The existing schemes can be
roughly divided into two categories (some schemes may actually belong to both categories): Schemes
attempting to reduce the access time [4, 3,2, 1,8, 12, 7, 6, 18, 19] and schemes attempting to reduce
the tuning time [10, 9, 11]. However, proposed on-line algorithms have not been studied previously.
Also, impact of errors on scheduling, and broadcast on multiple channels, have not been addressed.

Ammar and Wong [4, 18] have performed extensive research on broadcast scheduling and
obtained many interesting results. Qur square-root rule is a generalization of that obtained by
Ammar and Wong. Wong [18] and Imielinski and Viswanathan [8, 17] present an on-line scheme that
uses a probabilistic approach for deciding which item to transmit. Our on-line algorithm A results
in an improvement by a factor of 2 in the mean access time as compared to the probabilistic on-line
algorithm in [8, 17, 18]. Chiueh [6] and Acharya et al. [3, 2, 1] present schemes that transmit the
more frequently used items more often. However, they do not use optimal broadcast frequencies. Our
schemes, on the other hand, tend to use optimal frequencies.

Jain and Werth [12] note that reducing the variance of spacing between consecutive instances
of an item reduces the mean access time. The two schemes presented in this report do attempt to
achieve a low variance. Similar to our discussion in Section 4, Jain and Werth [12] also note that
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errors may occur in transmission of data. Their solution to this problem is to use error control
codes (ECC) for forward error correction, and a RAID-like approach (dubbed airRAID) that stripes
the data. The server is required to transmit the stripes on different frequencies, much like the RAID
approach spreads stripes of data on different disks [5]. ECC is not always sufficient to achieve forward
error correction, therefore, uncorrectable errors remains an issue (which is ignored in the past work
on data broadcast).

Battlefield Awareness and Data Dissemination (BADD) Advanced Concept Technology Demon-
stration (ACTD) is a project in which our research work may be applied [13]. ACTD is managed
and funded by DARPA Information System Services. The mission behind BADD project is to de-
velop an operational system that would allow information dissemination in battlefields, maintain
access to worldwide data repositories and provide tools to dynamically tailor the information system
to changing battlefield situations in order to allow warfighters to view a consistent picture of the

battlefield.

8 Summary

This report considers asymmetric environments wherein a server has a much larger communication
bandwidth available as compared to the clients. In such an environment, an effective way for the server
to communicate information to the clients is to broadcast the information periodically. Contributions
of this report are as follows:

o We propose on-line algorithms for scheduling broadcasts, with the goal of minimizing the access
time. Simulation results show that our algorithms perform quite well (very close to the theo-
retical optimal). The bucketing scheme proposed in the report facilitates a trade-off between
time complexity and performance of the on-line algorithm.

e The report considers the impact of errors on optimal broadcast schedules. A near-optimal
algorithm for scheduling in presence of errors is presented.

o When different clients are capable of listening on different number of broadcast channels, the
schedules on different broadcast channels should be designed so as to minimize the access time
for all clients. The clients listening to multiple channels should experience proportionately lower
delays. This report presents an algorithm for scheduling broadcasts in such a system.

More work is needed on some problems discussed in this report. Future work will also include
design of strategies for caching and updates that attempt to achieve optimal performance while in-
curring low overhead. Further results will be made available at our web site at

http://www.cs.tamu.edu/faculty/vaidya/mobile.html
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A  Appendix: Proof of Theorem 1

Proof: As instances of item ¢ are spaced equally, the spacing between consecutive instances of item
iis N/ f;, where N = Z]]\il f;l; is the length of the broadcast cycle. Also, in this case, the item mean

access time is t; = s;/2. Therefore, t; = % Now, overall mean access time t = Zf\il pit;. Therefore,
we have,
M M
N 1 N
t= Pi— == Pi— 12
ZZ:; "2fi 2 ; i (12)

Define “supply” of item ¢, r; = % Thus, r; is the fraction of time during which item ¢ is broadcast.

Now note that, "M r, = ¥ M, % = % = 1. Now, Equation 12 can be rewritten as,

1Mp”
t = = 1
QZTZ' (3)

As Zf\il r; = 1, only M — 1 of the r;’s can be changed independently. Now, for the optimal values of

r;, we must have % = 0, Vi. We now solve these equations, beginning with 0 = 887151.
k2

b 10 (A
o 87‘1 B 287‘1 ; T

=1

_ Lo (b Nk pwd ) L pho o puly
20 S T aexty) T2 A My

m =1 Ti o (L=
pily pylng
ri (1= 8 )
- pala pmin
Similarly ——=- = — (15)
AT S

From Equations 15 and 16, we get

p1ly _ pals T il
77 T T ok
1 2 2 P2t2

- 1.
Similarly it can be shown that — = Pits , Vi, g
rj pil

This implies that, the optimal r; must be linearly proportional to \/p;l;. It is easy to see that

1
Zj\il V' psl;
a9t

for the equations 5, = 0. From physical description of the problem, we know that a non-negative

minimum of ¢ must exist. Therefore, the above solution is unique and yields the minimum ¢.

constant of proportionality a = exists such that r; = a+/p;l; is the only possible solution
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Substituting r; = =pf—— 2l into Equation 13, and simplifying, yields optimal overall mean

YLVl
M

access time as t = % ( \/Pi ) Also, the optimal frequency of item 2, f; may be obtained as
fi= T’lfv x Pili]lv—i = %N. Thus, we have shown that, optimal frequency f; is directly proportional
to (/5. O

B Appendix: Optimal Overall Mean Access Time with Bucketing

Proof: Bucket B; (1 < j < k) contains mj items, such that }°7_, m; = M. Also, ¢; = (3, pi)/m;
and d; = (Zz’eB] l;)/m; be the average access probability and average length of the items in bucket
Bj, respectively.

The proof here is similar to the proof in Appendix A. With bucketing, the frequency of all
items in the same bucket is identical. We define F; as the frequency of items in bucket B;. For optimal
solution, the items should be equally spaced. Therefore, spacing between consecutive instances of an
item in bucket i is N/F;. Let S; denote the spacing N/F;.

Now, N = Z;?:l Fid;ym;. Therefore, S; = N/F; = Z?Zl Fid;m;/F;. Let T; denote the item
mean access time of an item in bucket B;. Then, T; = %Si = %N/FZ = %(Z?Zl Fid;m;)/F;. Note
that, with the equal spacing assumption, item mean access time is identical for all items in the same

bucket.

The Overall Mean Access Time is now given by

=5 (50

43

Since Zz’ij p; = m;q;, the above equation can be written as t = Z?:l m;q;T; or t = % Z?:l 7

We define supply of bucket B;, denoted r;, as r; = F;d;m;/N. Observe that Z;?:l r; = 1.

The above equation for ¢ can be rewritten as

Zdj
(17)

l\')l»—\

If we denote qjm?dj as X, the above equation becomes
Lo X
iy &

]=1

where Z;?:l r; = 1. This equation has the same form as Equation 13. Therefore, from the proof in
Appendix A it follows that, with bucketing, to minimize ¢ the following condition must be true:

T X \/Z (18)
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As Z;?:l rp=1,r; = ZMi V)iJ/X_ Substituting this into Equation 17, replacing X; = qjmgdj, and
=1 J

simplifying, we get
2
k
1
lopt_bucket = B) ij\/ q;d;
=1

Substituting X; = qjm?dj in the above proportionality (18), we get

rjoc\/q]‘miidj:m]‘\/q_j\/d?

As r; = Fyd;m; /N, we now get % x m;\/q;/d;. On simplifying, this yields, Fj oc \/q;/d;. As
F; = N/S;, we have, S; < /d;/q;. Finally, note that, if item ¢ is in bucket B;, then its frequency
fi = F; and its spacing s; = 5.

C Appendix: Overall Mean Access Time in Presence of Errors

Here we are not assuming bucketing. The result below can be easily generalized to the case where
items are divided into buckets. Consider item ¢, instances of which are spaced s; time units apart.
The total time required to transmit the cycle is N. Then, f; = N/s;. Also, as size of item ¢ is [;, we

have "M fil; = N.

First, let us determine the item mean access time, t;, for item ¢. Observe that average time
until the first instance of item ¢ is transmitted, from the time when a client starts waiting for item ¢,
is s;/2 time units. If the first instance of item ¢ transmitted after a client starts waiting is corrupted,
then an additional s; time units of wait is needed until the next instance. Thus, each instance of item
¢ that is received with uncorrectable errors adds s; to the access time. Given that the probability
that an instance of item ¢ of length /; contains uncorrectable errors is E(l;), the expected number of
consecutive instances with uncorrectable errors is obtained as

E(l)
1= By

Thus, the item mean access time is obtained to be

o= S (M) = s (lJFM) N %Si (%)

Therefore,

M 1 M L+ E()
t=2 piti = 521’2‘92’ (1—7]5(12))
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Proof of Theorem 2 : As s; = N/ f;, the above expression for ¢ can be rewritten as,

E(l;
S (H—E(li)) _ i (#203)
TP \TTEw)) T 24 "

where, r; = f;l;/N. Now, Zf\il T, = Zf\il fili/ N = N/N = 1. Thus, the above expression for ¢ has
a form similar to Equation 13, and can be minimized similarly. The optimization procedure yields
the result stated in Theorem 2.
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