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This technical report is substantially identical to technical report 96-017 [15]. This reportpresents a new algorithm for multiple channel broadcast, and also presents new performance evalua-tion results for some algorithms presented in [15]. [15] also presents some multiple channel broadcastalgorithms that are not considered in this report.1 IntroductionMobile computing and wireless networks are fast-growing technologies that are making ubiquitouscomputing a reality. With the increasing popularity of portable wireless computers, mechanisms toe�ciently transmit information to such clients are of signi�cant interest [13]. For instance, suchmechanisms could be used by a satellite or a base station to communicate information of commoninterest to wireless hosts. In the environment under consideration, the downstream communicationcapacity, from server to clients, is relatively much greater than the upstream communication capacity,from clients to server. Such environments are, hence, called asymmetric communication environments[2]. In an asymmetric environment, broadcasting the information is an e�ective way of makingthe information available simultaneously to a large number of users. For asymmetric environment,researchers have previously proposed algorithms for designing broadcast schedules [4, 6, 7, 8, 9, 10,11, 12, 17, 18, 19]. Two metrics are used to evaluate these algorithms:� Access time: This is the amount of time a client has to wait for some information that it needs.It is important to minimize the access time so as to decrease the idle time at the client. Severalresearchers have considered the problem of minimizing the access time [4, 6, 10, 11, 12, 7, 3, 2,18, 19]� Tuning time: This is the amount of time a client must listen to the broadcast until it receivesthe information it needs. It is important to minimize the tuning time, because the powerconsumption of a wireless client is higher when it is listening to the transmissions, as comparedto when it is in a doze mode [9, 10, 11, 17].This report presents an approach to minimize the access time. We consider a database that isdivided into information items (or items for short). Thus, a broadcast schedule speci�es when eachitem is to be transmitted.The contributions of this report are as follows:� Square-root rule: We show that the access time is minimized when the frequency of an item(in the broadcast schedule) is inversely proportional to the square-root of its size and directlyproportional to the demand for that item (characterized as demand probability). This result isa generalized version of a result presented in [4, 18].Impact of errors on the scheduling policy is also evaluated. In an asymmetric environment,when a client receives an information item containing errors (due to some environmental dis-turbance), it is not always possible for the client to request retransmission of the information.In this case, the client must wait for the next transmission of the required item. We evaluatehow optimal broadcast schedule is a�ected in presence of errors.We also consider systems where di�erent clients may listen to di�erent number of broadcastchannels, depending on how many they can a�ord. In such an environment, the schedules on3



di�erent broadcast channels should be coordinated so as to minimize the access time for mostclients.� For each of the broadcast environments (i.e., with or without errors, and with or withoutmultiple broadcast channels), we determine a theoretical lower bound on the achievable averageaccess time. This lower bound is used to determine e�cacy of proposed scheduling algorithms.� We propose a simple \on-line" algorithm, based on the above square-root rule for each environ-ment under consideration. An on-line algorithm can be used by the server to determine whichitem to broadcast next. On-line algorithms are of signi�cant interest as they are easy to adaptto time-varying demands for the information items. The access time achieved by the on-linealgorithms is shown to be very close to the theoretical lower bound. Also, performance of ouron-line algorithm is signi�cantly better than that proposed previously [17].The rest of the report is organized as follows. Section 2 introduces some terminology. Section 3derives the square-root rule, and presents two on-line algorithms. The impact of errors is analyzedin Section 4. Section 5 considers an environment where di�erent clients may be listening to di�erentnumber of channels (depending on what they can a�ord). Section 6 evaluates the performance of ourschemes. Related work is discussed in Section 7. A summary is presented in Section 8.2 PreliminariesThis section introduces much of the terminology and notations to be used in rest of the report.� Database at the server is assumed to be divided into many information items. The items arenot necessarily of the same size.� The time required to broadcast an item of unit length is referred to as one time unit. Hencetime required to broadcast an item of length l is l time units. Note that unit of length and timeunit may be used interchangeably because of the way they are de�ned.� M = total number of information items in the server's database. The items are numbered 1through M .� li represents length of item i.� To develop a theoretical foundation for our algorithms, we assume that the broadcast consistsof a cycle of size N time units. The results presented in the report also apply to non-cyclicschedules (for non-cyclic schedules, e�ectively, N ! 1).� Instance of an item : An appearance of an item in the broadcast is referred to as an instanceof the item.� Schedule : Schedule for the broadcast cycle is an order of the items in the cycle.� Frequency of an item : frequency fi of item i is the number of instances of item i in the broadcastcycle. The fi instances of an item are numbered 1 through fi. Size of the cycle is, therefore,given by N =PMi=1 fili , where li is the length of item i.4



� Spacing : The spacing between two instances of an item is the time it takes to broadcastinformation from the beginning of the �rst instance to the beginning of the second instance. sijdenotes the spacing between j-th instance of item i and the next instance of item i (1 � j � fi).Note that, after the fi-th instance of an item in a transmission of the broadcast cycle, the nextinstance of the same item is the �rst instance in the next transmission of the broadcast cycle.
10 108 4

3
Item 1 Item 2 Item Ite

instances of Item 1

Item 1 Item 1

Item 1

Spacing between two 

an instance of an instance of Figure 1: Showing a part of broadcast cycle (Example 1)Example 1: As an example, refer to Figure 1. The �gure shows a part of a broadcast cycle, whichcontains two instances of item 1, and one instance each of items 2 and 3. The lengths of the itemsare 10; 8 and 4 units respectively. The spacing between the two instances of item 1 is the timefrom the beginning of �rst instance of item 1 until the beginning of second instance, which is equalto 10 + 8 + 4 = 22 time units. Thus, if a client needs item 1 at some time (uniformly distributed)between the two instances of item 1, then the average wait is 22/2 = 11 time units. To reduce thiswait, item 1 will have to be transmitted sooner, however, doing so will require one of items 2 or 3to be transmitted later, causing an increase in the access time of a client needing that item. Thisexample illustrates the need for appropriate scheduling of items in the broadcast. 2� Item Mean Access Time : Item Mean Access Time of item i, denoted ti, is de�ned as theaverage wait by a client needing item i until it starts receiving item i from the server. Providedthat a client is equally likely to need an item i at any instant of time, ti can be obtained as,ti = fiXj=1 sij2 sijN = 12 fiXj=1 s2ijNIf all the fi instances of item i are equally spaced, that is, for some constant si, sij = si(1 � j � fi), then, it follows that, si = N=fi. In this case, the expression for ti can besimpli�ed as follows:ti = 12 fiXj=1 s2ijN = 12 fiXj=1 s2iN = 12 fi  s2iN! = 12si; as si = N=fi (1)� Demand probability : Demand probability pi denotes the probability that an item needed by aclient is item i. 5



� Overall Mean Access Time : Overall Mean Access Time, denoted t, is de�ned as the averagewait encountered by a client (averaged over all items). Thus,t = MXi=1 ti pi = MXi=10@12 fiXj=1 s2ijN 1A piWhen sij = si (1 � j � fi), the above equation reduces tot = 12 MXi=1 si pi (2)3 Proposed Scheduling Schemes3.1 Abstract Procedure
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of pagesFigure 2: Constructing a Broadcast ScheduleFigure 2 depicts an abstract view of the procedure for constructing a broadcast schedule. The �rstblock in Figure 2 maps the demand probability distribution into \optimal" item frequencies. Recallthat frequency of an item is the number of times the item is to be broadcast in a broadcast cycle.Having determined the optimal frequencies, second block in Figure 2 uses the frequencies to determinethe broadcast schedule. Our goal is to perform the functions of the two blocks in such a way thatoverall mean access time, t, is minimized. Note that Figure 2 gives a low-level abstraction of theprocedure. This helps in obtaining an expression for optimal overall mean access time. Algorithmspresented in this report do not use this two-step procedure, however, they are formulated based onresults obtained from an analysis of the above procedure.3.2 Mapping Demand Probabilities to Item FrequenciesWe �rst present theoretical results that motivate our scheduling schemes. The �rst observation statedin Lemma 1 below is intuitive. This observation also follows from a result presented in [12], and hasbeen implicitly used by others (e.g., [3, 4, 18]).Lemma 1 The broadcast schedule with minimum overall mean access time results when the instancesof each item are equally spaced.Proof of the lemma is omitted here for brevity. In reality, it is not always possible to space instances ofan item equally. However, the above lemma provides a basis to determine a lower bound on achievable6



overall mean access time. Note that, while Lemma 1 suggests that spacing between consecutiveinstances of item i should be constant, say si, si need not be identical to the spacing sj betweeninstances of another item j.The objective now is to determine the optimal frequencies (fi's) as a function of the probabilitydistribution (pi's) and the length distribution (li's). We assume the ideal situation, as implied byLemma 1, where instances of all items can be equally spaced. This assumption, although often di�cultto implement, does lead to a useful result stated in Theorem 1. This result is a generalization of aresult derived in [4, 18]. The result in [4, 18] applies only to items of identical size, whereas, ourresult applies to items of di�ering sizes. We use this result to design on-line broadcast schedulingalgorithms, which have not been investigated previously.Theorem 1 Square-root Rule: Given the demand probability pi of each item i, the minimumoverall mean access time, t, is achieved when frequency fi of each item i is proportional to ppi andinversely proportional to pli, assuming that instances of each item are equally spaced. That is,fi / rpiliProof: Appendix A presents the proof. 2Now note that, cycle size N = PMj=1 fj lj. Therefore, the above theorem implies that, fi =�Nppi=li� = �PMj=1 ppjlj�. Also, as spacing si = N=fi, a consequence of the above result is that,for overall mean access time to be minimized, we needsi / s lipiAs shown in Appendix A, from Theorem 1 it follows that, the optimal overall mean accesstime, named toptimal, is: toptimal = 12  MXi=1ppili!2 (3)toptimal represents a lower bound on achievable overall mean access time. As the lower boundis derived by assuming that instances of each item are equally spaced, the bound, in general, is notachievable. However, as shown later, it is possible to achieve performance almost identical to theabove lower bound.Now we present two scheduling algorithms. The �rst \on-line" algorithm determines whichitem should be broadcast next by the server. The second on-line algorithm distributes the items intodi�erent \buckets", to reduce time complexity of on-line decision-making.7



3.3 On-line Scheduling AlgorithmWhenever the server is ready to transmit a new item, it calls the on-line algorithm presented here.The on-line algorithm determines the item to be transmitted next using a decision rule { this decisionrule is motivated by the result obtained in Theorem 1. As noted previously, Theorem 1 implies that,for optimal performance, instances of an item i should be equally spaced with spacing si, wheresi / pli=pi. This can be rewritten ass2i pili = constant; 8i; 1 � i �M (4)The above observation is used in our algorithm, as presented below. We �rst de�ne some notation.Let Q denote the current time; the algorithm below decides which item to broadcast at time Q. LetR(j) denote the time at which an instance of item j was most recently transmitted; if item j hasnever been broadcast, R(j) is initialized to �1.1 Note that, R(j) is updated whenever item j istransmitted. Let function G(j) be de�ned asG(j) = (Q� R(j))2 pj=lj ; 1 � j �MThe �rst on-line algorithm is named Algorithm A.Algorithm A: On-line algorithm:Step 1: Determine maximum G(j) over all items j, 1 � j �M .Let Gmax denote the maximum value of G(j).Step 2: Choose item i such that G(i) = Gmax. If this equalityholds for more than one item, choose any one of them arbitrarily.Step 3: Broadcast item i at time Q.Step 4: R(i) = Q.Q�R(i) is the spacing between the current time, and the time at which item i was previouslytransmitted. Note that, the function G(i) = (Q �R(i))2 pi=li is similar to the term s2i pi=li inEquation 4. The motivation behind our algorithm is to attempt to achieve the equality in Equation 4,to the extent possible.Example 2: Consider a database containing 3 items such that p1 = 1=2, p2 = 3=8, and p3 = 1=8.Assume that items have lengths l1 = 1, l2 = 2 and l3 = 4 time units. Figure 3 shows the items recentlybroadcast by the server (up to time < 100). The above on-line algorithm is called to determine theitem to be transmitted at time 100. Thus, Q = 100. Also, from Figure 3, observe that R(1) = 95,R(2) = 93, and R(3) = 96. The on-line algorithm evaluates function G(j) = (Q � R(j))2pj=lj forj = 1; 2; 3 as 12.5, 147/16 (=9.1875) and 0.5, respectively. As G(j) is the largest for j = 1, item 1 istransmitted at time 100. 21The choice of initial value will not a�ect the mean access time much, unless the broadcast is for a very short time.For broadcasts that last a short time, other initial values may perform better. For instance, R(j) may be initialized to�plj . 8
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?Figure 3: Illustration of the on-line algorithm (Example 2)It can be shown that, algorithm A produces a cyclic schedule, if the ties in step 2 of thealgorithm are resolved deterministically [15]. Performance measurements for the above algorithmare presented in Section 6. Our algorithm improves access time by a factor of 2 as compared tothe probabilistic on-line algorithms presented in [17, 18]. In general, as shown in section 6, theproposed on-line algorithm performs close to the optimal obtained by Equation 3. However, it is alsopossible to construct scenarios where the schedule produced by the algorithm is not exactly optimal,as demonstrated in the next example.Example 3: Consider the following parameters: M = 2, l1 = l2 = 1, p1 = 0:2+ �, p2 = 1� p1, and0 < � < 0:05. In this case, the on-line algorithm produces the cyclic schedule (1,2), i.e., 1,2,1,2,...,which achieves an overall mean access time of 1.0. On the other hand, the cyclic schedule (1,2,2)achieves overall mean access time 2:9=3 + 2�=3 < 1. Thus, in this case, the on-line algorithm is notoptimal. However, the overall mean access time 1.0 of the on-line algorithm is within 3.5% of thatachieved by the cyclic schedule (1,2,2). 23.4 On-line Algorithm with BucketingA drawback of on-line algorithm A above is the computational cost of O(M) required to evaluate Gmaxin step 1 of the algorithm. This cost can be reduced by partitioning the database into \buckets" ofitems, as follows.Divide the database into k buckets, named B1 through Bk. Bucket Bi contains mi items, suchthatPki=1mi = M , the total number of items in the database. We maintain the items in each bucketin a queue. At any time, only items at the front of the buckets are candidates for broadcast at thattime. De�ne qj = (Pi�Bj pi)=mj as the average demand probability of the items in bucket Bj , anddj = (Pi�Bj li)=mj as the average length of the items in bucket Bj . Note that Pki=1miqi = 1. Let Qbe the current time and R(i) be the time when item i was most recently broadcast. Let Ij denotethe item at the front of bucket Bj . As shown in Appendix B, for optimality, the following conditionmust hold when bucketing is used: If item i is in bucket Bj , thenspacing si / qdj=qj9



In other words, s2i qjdj = constant, 8j; 1 � j � k and i 2 Bj (5)Let G(j) now denote (Q�R(Ij))2 qj=dj, 1 � j � k. Function G(j) used here is similar (but notidentical) to function G(j) used in algorithm A in the previous section. The on-line algorithm withbucketing, named Algorithm B, is obtained from the above result.Algorithm B: On-line With Bucketing:Step 1: Determine maximum G(j) over all buckets j, 1 � j � k.Let Gmax denote the maximum value of G(j).Step 2: Choose a bucket Bi such that G(i) = Gmax. If this equalityholds for more than one bucket, choose any one bucket arbitrarily.Step 3: Broadcast item Ii from the front of bucket Bi at time Q.Step 4: Dequeue item Ii from the front of the bucket Bi andenqueue it at the rear of Bi.Step 5: R(Ii) = Q.The above algorithm is quite similar to the original on-line algorithm A, except that thedecision rule (in steps 1 and 2) is applied only to items at the front of the k buckets. Hence, thealgorithm needs to compare values for only k items resulting in the time complexity of O(k). Observethat all items within the same bucket are broadcast with the same frequency. This suggests that the(pi=li) values of all items in any bucket should be close for good results.The Optimal Overall Mean Access Time resulting from the above algorithm, as shown inAppendix B, is given by topt bucket = 12 0@ kXj=1mjqqjdj1A2 (6)Similar to toptimal, topt bucket is a lower bound on average access time achievable with bucketing.The above equation shows that topt bucket is dependent upon the selection of values for mj 'sunder the constraint that Pkj=1mj = M . Optimizing the bucketing scheme for a given number ofbuckets k requires that the mj 's be chosen appropriately, such that the above equation is minimized.For our simulations, we use a heuristic to determine the membership of items to the buckets.The heuristic for determining the membership of an item i to a bucket Bj is as follows:Let Amin and Amax denote the minimum and maximum value of ppi=li (1 � i �M), respec-tively. Let � = Amax � Amin. If, for item i, ppi=li = Amin, then item i is placed in bucket B1.Any other item i is placed in bucket Bj (1 � j � k) if (j � 1)�=k < (ppi=li � Amin) � (j �=k).This is pictorially depicted in Figure 4. The above heuristic executes in O(M) time, and needs to beexecuted once for given probability and length distributions.10
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B2Figure 4: Heuristic for assigning items to k buckets: The interval (Amin; Amax) is divided into kequal-sized sub-intervals. An item i whose ppi=li value belongs to the j-th sub-interval is assignedto bucket Bj (1 � j � k).3.4.1 Comparison of Buckets and Multi-disk [3]The notion of a bucket is similar to that of a broadcast disk in the multi-disk approach proposed byAcharya et al. [3]. Therefore, the result in Equation 5 can be used to determine suitable frequenciesfor the broadcast disks.2 The di�erences between the two approaches are as follows: (a) Acharya etal. [3] do not have a way of determining the optimal frequencies for the di�erent disks, whereas, ouralgorithm automatically tries to use the optimal frequencies. (b) Our algorithm is on-line in that thebroadcast schedule is not predetermined. This allows our algorithm to quickly react to any changesin parameters (such as demand probabilities). (c) The algorithm in [3] imposes the constraint thatthe instances of each item be equally spaced at the risk of introducing idle periods (or \holes") in thebroadcast schedule (the holes may be �lled with other information). Our algorithm also tries to spaceitems at equal spacing, however, it does not enforce the constraint rigidly. Therefore, our algorithmdoes not create such holes. The argument in favor of a rigid enforcement of equal spacing, as in [3],is that caching algorithms are simpli�ed under such conditions. However, it is possible to implementcaching algorithms similar to those in [3] for the bucketing scheme as well. Evaluation of the cachingalgorithms is beyond the scope of this report. (d) Our algorithm works well with items of arbitrarysizes. [3] is constrained to �xed size items.4 E�ect of Transmission Errors on Scheduling StrategyIn Section 3, we presented on-line algorithms for determining broadcast schedules. These algorithmsdo not take into account transmission errors. In this section, we modify our basic approach to designbroadcast schedules in the presence of transmission errors.In the discussion so far, we assumed that each item transmitted by the server is always re-ceived correctly by each client. As the wireless medium is subject to disturbances and failures, thisassumption is not necessarily valid. Traditionally, in an environment that is subject to failures, thedata is encoded using error control codes (ECC). These codes enable the client to \correct" someerrors, that is, recover data in spite of the errors. However, ECC cannot correct large number oferrors in the data. When such errors are detected (but cannot be corrected by the client), the serveris typically requested to retransmit the data.In the asymmetric environment under consideration here it is not always possible for the clientto ask the server to retransmit the data.3 If a client waiting for item i receives an instance of itemi with uncorrectable errors, the item is discarded by the client. The client must wait for the next2As si, i 2 Bj , is proportional to pdj=qj , it follows that fi /pqj=dj.3Even if it were possible for a client to send a retransmit request to the server, it is not clear that a broadcast scheme11



instance of item i. In this section, we evaluate the impact of uncorrectable errors on the schedulingstrategy for broadcasts.Suppose that uncorrectable errors occur in an item of length l with probability E(l) (Now,li denotes length of item i after encoding with an error control code). Appendix C shows that theoverall mean access time, t, for this case, assuming that instances of item i are equally spaced withspacing si, is given by t = 12 MXi=1 si pi�1 + E(li)1� E(li)� (7)The Square Root Rule in Theorem 1 needs to be modi�ed to take errors into account as follows:Theorem 2 Given that the probability of occurrence of uncorrectable errors in an item of length l isE(l), the overall mean access time is minimized whenfi / rpili �1 + E(li)1� E(li)�1=2and si / s lipi �1�E(li)1 +E(li)�1=2Proof : See Appendix C. 2The lower bound on overall mean access time now becomes,topt error = 12  MXi=1ppili�1 +E(li)1�E(li)�1=2!2 (8)Theorem 2 implies that in an optimal schedule,s2i pili �1 +E(li)1�E(li)� = constant ; 1 � i �MThe on-line scheduling algorithms presented previously can be trivially modi�ed to take intoaccount the above result. For instance, Algorithm A can be used as such with the exception thatfunction G(j) needs to be re-de�ned as G(j) = (Q� R(j))2 (pj=lj) �1+E(lj)1�E(lj)�, 1 � j �M . Section 6evaluates the modi�ed algorithm A (using the re-de�ned function G(j)).should allow such requests, because it is possible that many clients receive the original broadcast correctly, but only afew do not (due to some localized disturbance). 12



5 Multiple Broadcast ChannelsThe discussion so far assumed that the server is broadcasting items over a single channel and all theclients are tuned to this channel. One can also conceive an environment in which the server has alarge available bandwidth which is divided into multiple channels, the channels being numbered 1through c. The clients can then subscribe to as many channels as they want (and can a�ord). It isapparent that proper use of these channels should result in better performance. Here we give oneapproach to exploit these channels to improve performance. Other approaches are also possible [15].The approach considered here uses a modi�cation of Algorithm A, described in Section 3.3, toaccommodate multiple channels. Let the total number of broadcast channels be c, the channels beingnumbered 1 through c. A client capable of listening to, say, n broadcast channels, may be listeningto any n channels.Let H = f1; 2; � � � ; cg denote the set of all broadcast channels. A client (that is interested inthe broadcast data) may listen to any non-empty subset S of the set H . For instance, if c = 2, thenH = f1; 2g, and S may be f1g, or f2g, or f1; 2g.Let �S denote the probability that S is the set of channels listened to by a client, whereS � H . By de�nition, �fg = 0 { that is, each client of interest in this discussion listens to at leastone channel.As di�erent clients may be listening to di�erent number of channels, we re-de�ne overall meanaccess time to be an average over all clients. The overall mean access time for multichannel broadcastis named tmultichan , and obtained as, tmultichan = XS�H �S tSwhere tS denotes the average access time encountered by a client listening to channels in set S. Forinstance, when number of broadcast channels is c = 2, H = f1; 2g, andtmultichan = �f1g tf1g + �f2g tf2g + �f1;2g tf1;2g (9)Equation 3 presented a lower bound (toptimal) on the overall mean access time when a client listensto only 1 channel. Clearly, for a non-empty set of channels S, a lower bound on tS is given bytoptimaljSjwhere jSj is the number of channels in set S. It follows that, a lower bound on tmultichan is given bytmultichan optimal = XS�H;jSj>0 �S toptimaljSj (10)In particular, if number of channels c = 2, thentmultichan optimal = ��f1g + �f2g + �f1;2g2 � toptimal13



Now we present an on-line algorithm to schedule broadcast on multiple channels. This algo-rithm is obtained by generalizing algorithm A in Section 3.3. In the following, assume that currenttime is Q, and the on-line algorithm needs to determine which page to broadcast on channel h (where1 � h � c). LetRh(j) denote the most recent time when item j was broadcast on channel h (1 � h � c,1 � j � M). Rh(j) is initialized to �1. For a subset S of H , de�ne RS(j) = maxh2S Rh(j). Thus,RS(j) is the time when item j was most recently transmitted on any channel in set S. Similar to thecost function G(j) used in Algorithm A, here we use a function Gh(j) for each channel h (1 � j �M).Gh(j) is de�ned as follows. Gh(j) = pjlj 0@ XS�H;h2S�S (Q�RS(j))21A (11)Note that the summation in the above expression for Gh(j) is over all subsets S of H that containchannel h.As an illustration, when c = 2, we have H = f1; 2g, andG1(j) = pjlj ��f1g(Q� Rf1g(j))2+�f1;2g(Q�Rf1;2g(j))2�and G2(j) = pjlj ��f2g(Q� Rf2g(j))2+�f1;2g(Q�Rf1;2g(j))2�The proposed on-line algorithm is as follows.On-line algorithm for channel h, 1 � h � c :Step 1: RS(j) = maxh2S Rh(j), 8S; 8j, S � H , 1 � j �M .Step 2: Determine maximum Gh(j) over all items j, 1 � j �M .Let Gmax denote the maximum value of Gh(j) over all j.Step 3: Choose item i such that Gh(i) = Gmax. If this equalityholds for more than one item, choose any one of them arbitrarily.Step 4: Broadcast item i on channel h at time Q.Step 5: Rh(i) = Q.Section 6.6 evaluates the performance of the above algorithm for two channels (c = 2). Time com-plexity of steps 1 and 2 above can be reduced by using techniques similar to bucketing (in Section 3.4).6 Performance EvaluationIn this section, we present simulation results for various algorithms presented above. Each simulationwas conducted for at least 6 million item requests by the clients. Other parameters used in thesimulation are described below. 14



6.1 Demand Probability DistributionWe assume that demand probabilities follow the Zipf distribution (similar assumptions are made byother researchers as well [1, 2, 3, 4, 18]). The Zipf distribution may be expressed as follows:pi = (1=i)�PMi=1(1=i)� 1 � i �Mwhere � is a parameter named access skew coe�cient. Di�erent values of the access skew coe�cient� yield di�erent Zipf distributions. For � = 0, the Zipf distribution reduces to uniform distributionwith pi = 1=M . However, the distribution becomes increasingly \skewed" as � increases (that is, forlarger �, the range of pi values becomes larger). Di�erent Zipf probability distributions resulting fromdi�erent � values are shown in Figure 5(a).
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� Uniform Length Distribution : In this case, L0 = L1 = 1. The distribution reduces to li = 1,1 � i �M .� Increasing Length Distribution : In this case, L0 = 1 and L1 = 10. In this case, li is a non-decreasing function of i, such that 1 � li � 10, 1 � i �M .� Decreasing Length Distribution : In this case, L0 = 10 and L1 = 1. In this case, li is anon-increasing function of i, such that 1 � li � 10, 1 � i �M .Figure 5(b) plots the three length distributions. In addition to these length distributions, wealso use a random length distribution obtained by choosing lengths randomly distributed from 1 to10 with uniform probability. The random length distribution used here is shown in Figure 6.
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With Uniform Length Distribution
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With Decreasing Length Distribution
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Figures 7, 8, 9 and 10 plot overall mean access time for di�erent values of access skew coe�cient�, for the four length distributions presented earlier. In each of these �gures, part (a) plots thesimulation results, and (b) plots the analytical lower bound on overall mean access time. In part (a),the curve labeled \Algo A" corresponds to the access time obtained by simulating algorithm A. Thecurves labeled \i buckets" in part (a) correspond to the access time obtained by simulating algorithmB with i buckets. In part (a) and (b) both, the curve labeled \optimal" corresponds to toptimalobtained using Equation 3. In part (b) of each �gure, the curve labeled \i buckets" corresponds totopt bucket obtained using Equation 6 with i buckets.First observation, as noted in the caption of each �gure, is that the simulation results arevery close to the corresponding lower bounds obtained analytically. Thus, our algorithm performswell (close to optimal). Now note that, when number of buckets is 1, Algorithm B reduces to the socalled \
at" cyclic scheduling [3] scheme where each item is broadcast once in a broadcast cycle. Asthe number of buckets approaches the number of items M , performance of the bucketing algorithmshould approach the performance of algorithm A. As algorithm A has a higher time complexity thatalgorithm B, it is interesting to see how performance of algorithm B improves when the number ofbuckets is increased. Observe that, the access time with 5 buckets is much smaller than that withjust 1 bucket. However, using 5 buckets is not always adequate to achieve access time of algorithm A.Increasing the number of buckets further to, say, 10 further improves the performance of algorithmB. For large � (i.e., large skew in probability distribution), number of buckets needs to be larger toachieve performance close to optimal. Thus, the choice of the number of buckets is more critical whenthe skew in probability distribution is large.An important conclusion from above results is that, performance of algorithm B, with a rel-atively small number of buckets (10 buckets in our illustration) is quite close to that achieved byalgorithm A (e�ectively, using M = 1000 buckets). This implies that algorithm B can signi�cantlyreduce time complexity of on-line decision making, with a reasonably small degradation in perfor-mance. Knowing the best possible access time (the optimal curve in the �gures) allows a designer tochoose an appropriate number of buckets. Secondly, as simulation results are very close to the analyti-cal lower bounds, analytical bounds can be used as a �rst-order approximation of actual performance.A drawback of the related previous work on \multi-disks" [3] is that they had no analytical methodto determine an appropriate number of disks. Therefore, to choose a suitable number of \disks",time-consuming simulations are necessary.6.5 Performance Evaluation in the Presence of Uncorrectable ErrorsIn this section, we evaluate performance of the on-line algorithm in the presence of uncorrectableerrors as explained in section 4. For the sake of illustration, we assume that uncorrectable errorsoccur according to a Poisson process with rate �. Hence E(li) = 1 � e��li . Figures 11 and 12 plotoverall mean access time in the presence of errors for di�erent error rates (�), and for increasingand decreasing length distributions, respectively. Again, in each of these �gures, part (a) plots thesimulation results and part (b) plots analytical lower bounds for � = 0; 1 and 1.5. The lower boundsare obtained using Equation 8 (substituting E(li) = 1 � e��li). Note that the results presented inthe previous section correspond to the case when �=0. From the simulation results, observe thatthe proposed on-line algorithm A, modi�ed to take errors into account, achieves performance closeto optimal. Previous research on broadcasts does not take uncorrectable errors into account when19



determining the broadcast schedules, or when evaluating the access time. Note that, with uniformlength distribution, the term (1+E(li))=(1�E(li)) becomes a constant (independent of i). Therefore,for uniform length distribution, Theorem 2 reduces to Theorem 1.With Increasing Length Distribution
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6.6 Performance with Multiple Broadcast ChannelsIn this section, we evaluate the performance of the on-line algorithm given in Section 5 for multiplechannel broadcast with number of channels c = 2. We also assume that �f1g = �f2g = 1��f1;2g2 .With Uniform Length Distribution
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skew coe�cient � = 0:5 and 1 respectively, against di�erent values of �f1;2g. Figures 14 (a) and 14(b) show the similar results but for random length distribution with � = 0:5 and 1 respectively. Thecurve labeled \1 channel" in each of these �gures is obtained for the clients listening to channel 1(i.e., tf1g). As �f1g = �f2g, due to symmetry, tf1g and tf2g should be identical. The curve labeled\2 channels" is obtained for the client listening to both the channels and represents tf1;2g. The curvelabeled \overall" is the overall mean access time obtained by substituting the values of tf1g; tf2g andtf1;2g in Equation 9. Whereas the curve labeled \lower bound" is obtained from Equation 10 inSection 5.For �f1;2g � 0:75, the performance viewed by a client listening to only one channel is veryclose to optimal obtained by Equation 3. However, as �f1;2g approaches to 1 (more and more clientslisten to both channels), the overall mean access time observed by client listening to only one channelincreases. This is because of the fact that for �f1;2g approaching to 1, the values of �f1g and �f2gdrop down to such an extent that the terms corresponding to �f1g and �f2g in the cost function(Equation 11 in section 5) become negligible. Hence the clients listening to only one channel pay thepenalty.The �gures also show that for the clients listening to both the channels, the algorithm improvesthe performance by approximately a factor of 2 (as compared to client listening to one channel). As�f1;2g approaches to zero (less number of clients listening to both the channels as compared to totalpopulation), the algorithm favors those who are listening to only one channel to improve the overallmean access time, penalizing those who are listening to both the channels. The �gures also show thatthe overall performance shown by curve \overall" is quite close to the analytical lower bound shownby curve \lower bound".For brevity, we do not show the results for increasing and decreasing length distribution.7 Related WorkThe problem of data broadcasting has received much attention lately. The existing schemes can beroughly divided into two categories (some schemes may actually belong to both categories): Schemesattempting to reduce the access time [4, 3, 2, 1, 8, 12, 7, 6, 18, 19] and schemes attempting to reducethe tuning time [10, 9, 11]. However, proposed on-line algorithms have not been studied previously.Also, impact of errors on scheduling, and broadcast on multiple channels, have not been addressed.Ammar and Wong [4, 18] have performed extensive research on broadcast scheduling andobtained many interesting results. Our square-root rule is a generalization of that obtained byAmmar and Wong. Wong [18] and Imielinski and Viswanathan [8, 17] present an on-line scheme thatuses a probabilistic approach for deciding which item to transmit. Our on-line algorithm A resultsin an improvement by a factor of 2 in the mean access time as compared to the probabilistic on-linealgorithm in [8, 17, 18]. Chiueh [6] and Acharya et al. [3, 2, 1] present schemes that transmit themore frequently used items more often. However, they do not use optimal broadcast frequencies. Ourschemes, on the other hand, tend to use optimal frequencies.Jain and Werth [12] note that reducing the variance of spacing between consecutive instancesof an item reduces the mean access time. The two schemes presented in this report do attempt toachieve a low variance. Similar to our discussion in Section 4, Jain and Werth [12] also note that22



errors may occur in transmission of data. Their solution to this problem is to use error controlcodes (ECC) for forward error correction, and a RAID-like approach (dubbed airRAID) that stripesthe data. The server is required to transmit the stripes on di�erent frequencies, much like the RAIDapproach spreads stripes of data on di�erent disks [5]. ECC is not always su�cient to achieve forwarderror correction, therefore, uncorrectable errors remains an issue (which is ignored in the past workon data broadcast).Battle�eld Awareness and Data Dissemination (BADD) Advanced Concept Technology Demon-stration (ACTD) is a project in which our research work may be applied [13]. ACTD is managedand funded by DARPA Information System Services. The mission behind BADD project is to de-velop an operational system that would allow information dissemination in battle�elds, maintainaccess to worldwide data repositories and provide tools to dynamically tailor the information systemto changing battle�eld situations in order to allow war�ghters to view a consistent picture of thebattle�eld.8 SummaryThis report considers asymmetric environments wherein a server has a much larger communicationbandwidth available as compared to the clients. In such an environment, an e�ective way for the serverto communicate information to the clients is to broadcast the information periodically. Contributionsof this report are as follows:� We propose on-line algorithms for scheduling broadcasts, with the goal of minimizing the accesstime. Simulation results show that our algorithms perform quite well (very close to the theo-retical optimal). The bucketing scheme proposed in the report facilitates a trade-o� betweentime complexity and performance of the on-line algorithm.� The report considers the impact of errors on optimal broadcast schedules. A near-optimalalgorithm for scheduling in presence of errors is presented.� When di�erent clients are capable of listening on di�erent number of broadcast channels, theschedules on di�erent broadcast channels should be designed so as to minimize the access timefor all clients. The clients listening to multiple channels should experience proportionately lowerdelays. This report presents an algorithm for scheduling broadcasts in such a system.More work is needed on some problems discussed in this report. Future work will also includedesign of strategies for caching and updates that attempt to achieve optimal performance while in-curring low overhead. Further results will be made available at our web site athttp://www.cs.tamu.edu/faculty/vaidya/mobile.html .AcknowledgementsWe thank referees of the WOSBIS workshop version of this paper [16] for their valuable commentsand suggestions. 23



A Appendix: Proof of Theorem 1Proof: As instances of item i are spaced equally, the spacing between consecutive instances of itemi is N=fi, where N =PMj=1 fj lj is the length of the broadcast cycle. Also, in this case, the item meanaccess time is ti = si=2. Therefore, ti = N2fi . Now, overall mean access time t =PMi=1 piti. Therefore,we have, t = MXi=1 pi N2fi = 12 MXi=1 piNfi (12)De�ne \supply" of item i, ri = filiN . Thus, ri is the fraction of time during which item i is broadcast.Now note that, PMi=1 ri =PMi=1 filiN = NN = 1. Now, Equation 12 can be rewritten as,t = 12 MXi=1 piliri (13)As PMi=1 ri = 1, only M � 1 of the ri's can be changed independently. Now, for the optimal values ofri, we must have @t@ri = 0, 8i. We now solve these equations, beginning with 0 = @t@r1 .0 = @t@r1 = 12 @@r1  MXi=1 piliri != 12 @@r1  p1l1r1 + M�1Xi=2 piliri + pM lM(1�PM�1i=1 ri)! = 12  �p1l1r21 + pM lM(1�PM�1i=1 ri)2!=) p1l1r21 = pM lM(1�PM�1i=1 ri)2 (14)Similarly p2l2r22 = pM lM(1�PM�1i=1 ri)2 (15)(16)From Equations 15 and 16, we get p1l1r21 = p2l2r22 =) r1r2 = sp1l1p2l2Similarly it can be shown that rirj = s pilipjlj ; 8i; jThis implies that, the optimal ri must be linearly proportional to ppili. It is easy to see thatconstant of proportionality a = 1PMj=1ppjlj exists such that ri = appili is the only possible solutionfor the equations @t@ri = 0. From physical description of the problem, we know that a non-negativeminimum of t must exist. Therefore, the above solution is unique and yields the minimum t.24



Substituting ri = ppiliPMj=1ppjlj into Equation 13, and simplifying, yields optimal overall meanaccess time as t = 12 �PMi=1ppilj�2 : Also, the optimal frequency of item i, fi may be obtained asfi = riNli / ppili Nli = qpiliN . Thus, we have shown that, optimal frequency fi is directly proportionalto qpili . 2B Appendix: Optimal Overall Mean Access Time with BucketingProof: BucketBj (1 � j � k) containsmj items, such thatPkj=1mj = M . Also, qj = (Pi�Bj pi)=mjand dj = (Pi�Bj li)=mj be the average access probability and average length of the items in bucketBj , respectively.The proof here is similar to the proof in Appendix A. With bucketing, the frequency of allitems in the same bucket is identical. We de�ne Fi as the frequency of items in bucket Bi. For optimalsolution, the items should be equally spaced. Therefore, spacing between consecutive instances of anitem in bucket i is N=Fi. Let Si denote the spacing N=Fi.Now, N = Pkj=1 Fjdjmj . Therefore, Si = N=Fi = Pkj=1 Fjdjmj=Fi. Let Ti denote the itemmean access time of an item in bucket Bi. Then, Ti = 12Si = 12N=Fi = 12(Pkj=1 Fjdjmj)=Fi. Notethat, with the equal spacing assumption, item mean access time is identical for all items in the samebucket.The Overall Mean Access Time is now given byt = kXj=10@Xi2Bj pi1ATjSince Pi2Bj pi = mjqj , the above equation can be written as t =Pkj=1mjqjTj or t = N2 Pkj=1 qjmjFj :We de�ne supply of bucket Bj , denoted rj , as rj = Fjdjmj=N . Observe that Pkj=1 rj = 1.The above equation for t can be rewritten ast = 12 kXj=1 qjm2jdjrj (17)If we denote qjm2jdj as Xj , the above equation becomest = 12 kXj=1 Xjrjwhere Pkj=1 rj = 1. This equation has the same form as Equation 13. Therefore, from the proof inAppendix A it follows that, with bucketing, to minimize t the following condition must be true:rj / qXj (18)25



As Pkj=1 rj = 1, rj = pXjPMi=1pXj . Substituting this into Equation 17, replacing Xj = qjm2jdj , andsimplifying, we get topt bucket = 12 0@ kXj=1mjqqjdj1A2Substituting Xj = qjm2jdj in the above proportionality (18), we getrj / qqjm2jdj = mj pqjqdjAs rj = Fjdjmj=N , we now get FjdjmjN / mj pqjpdj . On simplifying, this yields, Fj / qqj=dj . AsFj = N=Sj , we have, Sj / qdj=qj . Finally, note that, if item i is in bucket Bj , then its frequencyfi = Fj and its spacing si = Sj . 2C Appendix: Overall Mean Access Time in Presence of ErrorsHere we are not assuming bucketing. The result below can be easily generalized to the case whereitems are divided into buckets. Consider item i, instances of which are spaced si time units apart.The total time required to transmit the cycle is N . Then, fi = N=si. Also, as size of item i is li, wehave PMi=1 fili = N .First, let us determine the item mean access time, ti, for item i. Observe that average timeuntil the �rst instance of item i is transmitted, from the time when a client starts waiting for item i,is si=2 time units. If the �rst instance of item i transmitted after a client starts waiting is corrupted,then an additional si time units of wait is needed until the next instance. Thus, each instance of itemi that is received with uncorrectable errors adds si to the access time. Given that the probabilitythat an instance of item i of length li contains uncorrectable errors is E(li), the expected number ofconsecutive instances with uncorrectable errors is obtained asE(li)1� E(li)Thus, the item mean access time is obtained to beti = si2 + si � E(li)1�E(li)� = si �12 + E(li)1�E(li)� = 12 si �1 + E(li)1� E(li)�Therefore, t = MXi=1 piti = 12 MXi=1 pi si �1 +E(li)1�E(li)�26
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