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Abstract

With the increasing popularity of portable wireless computers, mechanisms to efficiently
transmit information to such clients are of significant interest. The environment under consid-
eration is asymmetric in that the information server has much more bandwidth available, as
compared to the clients. In such environments, often it is not possible (or not desirable) for the
clients to send explicit requests to the server. It has been proposed that in such systems the
server should broadcast the data periodically. One challenge in implementing this solution is to
determine the schedule for broadcasting the data, such that the wait encountered by the clients
is minimized. A broadcast schedule determines what is broadcast by the server and when. In
this report, we present three algorithms for determining broadcast schedules that minimize the
wait time. Simulation results are presented to demonstrate that our algorithms perform well.
Variations of our algorithms for environments subject to errors, and systems where different
clients may listen to different number of broadcast channels are also considered.

*Research reported is supported in part by Texas Advanced Technology Program grant 009741-052-C.
TThis report supersedes most material in report 96-012 [13] and contains more recent results.
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1 Introduction

Mobile computing and wireless networks are fast-growing technologies that are making ubiquitous
computing a reality. With the increasing popularity of portable wireless computers, mechanisms
to efficiently transmit information to such clients are of significant interest. For instance, such
mechanisms could be used by a satellite or base station to communicate information of common
interest (e.g., stock quotes, sports scores, etc.) to wireless hosts. Approaches for determining what
to transmit and when, is the subject of this report. In the environment under consideration, the
downstream communication capacity, from server to clients, is relatively much greater than the
upstream communication capacity, from clients to server. Such environments are, hence, called
asymmetric communication environments [2]. In an asymmetric environment, broadcasting the
information is an effective way of making the information available simultaneously to a large
number of users. For asymmetric environment, researchers have previously proposed algorithms
for designing broadcast schedules [4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16]. Two metrics are used to
evaluate these algorithms:

o Access time: This is the amount of time a client has to wait for some information that
it needs. It is important to minimize the access time so as to decrease the idle time at
the client. Several researchers have considered the problem of minimizing the access time
[4, 6, 10, 11, 12, 7, 3, 2, 15, 16]

e Tuning time: This is the amount of time a client must listen to the broadcast until it
receives the information it needs. It is important to minimize the tuning time, because the
power consumption of a wireless client is higher when it is listening to the transmissions, as
compared to when it is in a doze mode. Previous work has tried to minimize the tuning time
by providing the clients with an indexz that provides hints to the client of when the required
data is scheduled to be broadcast [9, 10, 11, 14]. Without this information, the client must
listen continually until the necessary information is received.

This report presents an approach to minimize the access time. Our results can be combined
with the schemes for reducing tuning time to obtain a comprehensive solution. We consider a
database that is divided into information items (or items for short). Thus, a broadcast schedule
specifies when each item is to be transmitted. Contributions of this report are as follow:

e Square-root Rule: We show that the access time is minimized when the frequency of an
item (in the broadcast schedule) is proportional to the square-root of its demand (charac-
terized as demand probability) and inversely proportional to square-root of its length. This
result is a generalized version of a result presented in [4, 15].

o We present three algorithms for scheduling broadcasts, based on the above square-root rule.

— The first algorithm is an “on-line” algorithm that can be used by a server to determine
which item to transmit next [13]. We demonstrate that the proposed on-line algorithm
achieves performance comparable to an optimal off-line algorithm. Also, the proposed
on-line algorithm reduces the average access time by a factor of 2, as compared to a
previously proposed on-line algorithm [14].

On-line algorithms are of significant interest as they are easy to adapt to time-varying
demands for the data items.



— The second algorithm is also an on-line algorithm obtained by modifying the first algo-
rithm. An on-line algorithm must use some decision-making mechanism to determine
which information item is to be transmitted next. For the first on-line algorithm, the
time complexity of the decision mechanism is linear in the number of information items
in the database. The second algorithm reduces this complexity significantly but may re-
sult in somewhat poorer performance than the first algorithm. This algorithm provides
the ability to trade performance with time complexity.

— The third algorithm generates cyclic schedule for a specified cycle size. This algorithm
is off-line in that it @ priori produces an entire schedule, which is then used repeatedly.

The ideas presented here can be combined with previous work [10, 14] to minimize tuning
time as well as access time.

e Impact of errors on the scheduling policy is evaluated. In an asymmetric environment, when
a client receives a data item containing errors (due to some environmental disturbance), it
is not always possible for the client to request retransmission of the data. In this case, the
client must wait for the next transmission of the required data item. We evaluate how optimal
broadcast frequencies of the items are affected in presence of errors [13].

e We consider systems where different clients may listen to different number of broadcast
channels, depending on how many they can afford. In such an environment, the schedules on
different broadcast channels should be designed so as to minimize the access time for most
(if not all) clients. This report presents preliminary results on this problem.

The rest of the report is organized as follows. Section 2 introduces some terminology.
Section 3 derives the square-root rule, and presents our broadcast scheduling algorithms. The
impact of errors is analyzed in Section 4. Section 5 considers an environment where different
clients may be listening to different number of channels (depending on what they can afford).
Section 6 evaluates the performance of our schemes. Section 7 briefly discusses how our schemes
can be made adaptive. Related work is summarized in Section 8. A summary is presented in
Section 9.

2 Preliminaries
This section introduces much of the terminology and notations to be used in rest of the report.
e Database at the server is assumed to be divided into many information items. The items are

not necessarily of the same size.

e The time required to broadcast an item of unit length is referred to as one time unit. Hence
time required to broadcast an item of length [ is [ time units. Note that unit of length and
time unit may be used interchangeably because of the way they are defined.

o [; represents length of item ¢.



To develop a theoretical foundation for our algorithms, we assume that the broadcast consists
of cycle of size N time units, The results presented in the report also apply to non-cyclic
schedules (for non-cyclic schedules, effectively, N — o0).

M = total number of information items in the server’s database. The items are numbered 1
through M.

Instance of an item : An appearance of an item in the broadcast cycle is referred to as an
instance of the item. There may be multiple instances of an item in the cycle.

Schedule : Schedule for the broadcast cycle is an order of the items in the cycle.

Frequency of an item : frequency f; of item ¢ is the number of instances of item ¢ in the
broadcast cycle. The f; instances of an item are numbered 1 through f;. Size of the cycle is,

therefore, given by N = Z£1 fil; , where [; is the length of item ¢.

Spacing : The spacing between two instances of an item is the time it takes to broadcast
information from the beginning of the first instance to the beginning of the second instance.
s;; denotes the spacing between j-th instance of item 7 and the next instance of item
(1 <7 < fi). Note that, after the f;-th instance of an item in a transmission of the broadcast
cycle, the next instance of the same item is the first instance in the next transmission of the
broadcast cycle.

Spacing between 1st and 2nd

instances of Item 1
fe— 10— >— 8 — > 4 rf{e—— 10—
Item 1 ltem 2 'tgm Item 1 Ite
1st instance of 2nd instance of
Item 1 Iltem 1

Figure 1: Showing a part of broadcast cycle (Example 1)

Example 1: As an example, refer to Figure 1. The figure shows a part of a broadcast cycle,
which contains two instances of item I, and one instance each of items 2 and 3. The lengths of
the items are 10, 8 and 4 time units respectively. The spacing between the two instances of item
1 is the time from the beginning of first instance of item 1 until the beginning of second instance,
which is equal to 10 + 8 + 4 = 22 time units. Thus, if a client needs item 1 some time (uniformly
distributed) between the two instances of item 1, then the average wait is 22/2 = 11 time units.
To reduce this wait, item 1 will have to be transmitted sooner, however, doing so will require one
of items 2 or 3 to be transmitted later, causing an increase in the access time of a client needing
that item. This example illustrates the need for appropriate scheduling of items in the broadcast.

a



o Jltem Mean Access Time : Item Mean Access Time of item ¢, denoted t;, is defined as the
average wait by a client needing item ¢ until it starts receiving item ¢ from the server. Provided
that a client is equally likely to need an item 7 at any instant of time (uniform distribution),
t; can be obtained as,

fz fz 2
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If all the f; instances of item ¢ are equally spaced, that is, for some constant s;, s;; = s;
(1 <7< fi), then, it follows that,

N
8= —
Ji
In this case, the expression for t; can be simplified as follows:
fi 2 i 2 2
1 83 1 » 1 » 1
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o Demand probability : Demand probability p; denotes the probability that an item needed by
a client is item 1.

o QOverall Mean Access Time : Overall Mean Access Time, denoted t, is defined as the average
wait encountered by a client (averaged over all items). Thus,

M 1fz 2

L = f:tipi = —Zﬁ Di
= 2 N

=1 7=1

When s;; = s; (1 < 7 < f;), that is, when all items are distributed in the cycle with equal
spacing, the above equation reduces to

1M
t = = i Pi 2
2;,9]) (2)

Note:

All results presented here remain valid if p; in the above expression is replaced by w;, where
w; may be interpreted as weight of item 7. The weights of all items do not have to add to 1 (the
fact that the p;’s add to 1 does not have any impact on our algorithms). For instance, weight w;
may be obtained as a product of the “priority” of item ¢ and the demand probability of item 1.
When p; is replaced by w;, t is interpreted as a cost metric.
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Figure 2: Constructing a Broadcast Cycle

3 Proposed Scheduling Schemes

Figure 2 depicts an abstract view of the procedure for constructing a broadcast schedule. The first
block in Figure 2 maps the demand probability distribution into “optimal” item frequencies. Recall
that frequency of an item is the number of times the item is to be broadcast in a cycle. Having
determined the optimal frequencies, second block in Figure 2 uses the frequencies to determine
the broadcast schedule. Our goal is to perform the functions of the two blocks in such a way
that overall mean access time, t, is minimized. Note that Figure 2 gives a low-level abstraction
of the procedure. This helps in obtaining an expression for Optimal Overall Mean Access Time.
Algorithms presented here do not use this two-step procedure, however, they are formulated based
on the results obtained in this discussion.

3.1 Mapping Demand to Frequencies

We first present theoretical results that motivate our scheduling schemes. The first observation
stated in Lemma 1 below is intuitive. This observation also follows from a result presented in [12],
and has been implicitly used by others (e.g., [3, 4, 15]).

Lemma 1 The broadcast schedule with minimum overall mean access time results when the in-
stances of each item are equally spaced.

Proof of the lemma is omitted here for brevity. In reality, it is not always possible to space instances
of an item equally. However, the above lemma provides a basis to determine a lower bound on
achievable overall mean access time. Note that, while Lemma 1 suggests that spacing between
consecutive instances of item ¢ should be constant, say s;, s; need not be identical to the spacing
s; between instances of another item j.

The objective in this section is to determine the optimal frequencies (f;’s) as a function of
the probability distribution (p;’s) and the length distribution (/;’s). We assume the ideal situation,
as implied by Lemma 1, where instances of all items can be equally spaced. This assumption,
although often difficult to implement, does lead to a useful result that the minimum possible
overall mean access time is achieved when

B
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Theorem 1 Square-root Rule: Given the demand probability p; of each item ¢, the minimum
overall mean access time, ¢, is achieved when frequency f; of each item i is proportional to \/p; and



inversely proportional to \/I;, assuming that instances of each item are equally spaced. That is,
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Proof: Appendix A presents the proof. O

To put it differently, for items v and j,

A special case of Theorem 1 when all items are of identical size was derived in [4, 15]

For cycle size N, Z]]\il fil; = N. Therefore, the above theorem implies that, f; =
(N \/pi/li) / (Z]]\il \/pjlj). Also, as spacing s; = N/ f;, a consequence of the above result is
that, for overall mean access time to be minimized, we need

N
N

8 X

As shown in Appendix A, from Theorem 1 it follows that, the optimal overall mean access

time, named toptimal? is:

2
1 M
loptimal = ) (Z \% pili) (3)
=1

toptimal represents a lower bound on achievable overall mean access time. As the lower
bound is derived assuming that instances of each item are equally spaced, the bound, in general,
is not achievable. However, as shown later, it is possible to achieve performance almost identical

to the above lower bound.

Now we present three scheduling algorithms. The first “on-line” algorithm determines which
item should be broadcast next by the server. The second on-line algorithm distributes the items
into different “buckets” and applies the first algorithm to these buckets instead of individual items,
thereby reducing the computation cost. The third algorithm uses the first algorithm to generate a
broadcast cycle with length approximately equal to a given size V.

3.2 On-line Scheduling Algorithm

Whenever the server is ready to transmit a new item, it calls the on-line algorithm presented here
[13]. The on-line algorithm determines the item to be transmitted next using a decision rule — this
decision rule is motivated by the result obtained in Theorem 1. As noted previously, Theorem 1



implies that, for optimal performance, instances of an item ¢ should be equally spaced with spacing

s;, where
Vi
VPi

S; X
This can be rewritten as

s? ]lﬁ = constant (4)
K3

The above observation is used in our algorithm, as presented below. In the following, let ¢) denote

the current time and R(j) denote the time at which an instance of item j was most recently

transmitted. R(j) is initialized to —1,! for all 7, and @ is initialized to 0. Note that, R(j) is

updated whenever item j is transmitted.

ON-LINE algorithm:

broadcast item ¢ at time ()
if
(@ - R pi/li > (@—RG) pi/lj, 1<j<M

(if there is a tie, that is, if the above condition is satisfied for
more than one item, any one of those items may be chosen arbitrarily.) O

() — R(7) is the spacing between the current time, and the time at which item ¢ was previously
transmitted. Note that, the term
12 P
Q- R(i)?
K3
is similar to the term s? p;/l; in Equation 4 above. The motivation behind our algorithm is to
attempt to achieve this equality, to the extent possible.

Example 2: Consider a database containing 3 items such that py = 1/2, p, = 3/8, and p3 = 1/8.
Assume that items have lengths [y = 1, I, = 2 and I3 = 4 time units. Figure 3 shows the
items recently broadcast by the server (up to time < 100). The above on-line algorithm is called
to determine the item to be transmitted at time 100. Thus, ¢ = 100. Also, from Figure 3,
observe that R(1) = 95, R(2) = 93, and R(3) = 96. The on-line algorithm evaluates the term
(Q — R(7))*pj/l; for j = 1,2,3 as 12.5, 147/16 (=9.1875) and 0.5, respectively. As this term is the
largest for item 1, item 1 is transmitted at time 100. O

Performance measurements for the above algorithm are presented in Section 6. Our algo-
rithm improves performance by a factor of 2 as compared to the probabilistic on-line algorithms
presented in [14, 15].

While, in general, the proposed on-line algorithm performs close to optimal, it is possible
to construct examples where the schedule produced by the algorithm is not exactly optimal.

!The choice of initial value will not affect the mean access time much, unless the broadcast is for a very short
time. For broadcasts that last a short time, other initial values may perform better. For instance, R(j) may be

initialized to —y/1;.
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Figure 3: Illustration of the on-line algorithm (Example 2)

Example 3: Consider the following parameters: M =2, =l =1, p1 =02+ ¢, p2 =1 — py,
and € < 0.05. In this case, the on-line algorithm produces the cyclic schedule (1,2),i.e.,1,2,1,2,...,
which achieves an overall mean access time of 1.0. On the other hand, the the cyclic schedule (1,2,2)
achieves overall mean access time 2.9/3 4 2¢/3 < 1. Thus, in this case, the on-line algorithm is not
optimal. However, the overall mean access time 1.0 of the on-line algorithm is within 3.5% of that
achieved by the cyclic schedule (1,2,2). O

The on-line algorithm produces a cyclic schedule, if the ties are resolved deterministically.
Appendix B presents an argument to show that the schedule produced by the on-line algorithm is
cyclic. However, size of the cycle may be large, and hard to predict accurately.

3.3 On-line Algorithm with Bucketing

The main disadvantage of On-line Algorithm is the high computational cost of O(M) required to
decide the next item to broadcast. This cost can be reduced by partitioning the database into
buckets of items, as follows.

Suppose that we divide the database into k& buckets, each bucket B; contains m; items,
m; > 0, such that Zle m; = M, the total number of items in database. We maintain the items in
each bucket in a cyclic queue. At any time, only items at the front of the buckets are candidates
for broadcast at that time. Define ¢; = 3 ;g pi/m; as the average demand probability of the

items in bucket Bj;, and d; =3 ;g l;/m; as the average length of the items in bucket B;. Note

that 2%, m;q; = 1. Let @ be the current time and R(i) be the time when item i was most
recently broadcast. Let I; denote the item at the front of Bucket B;. As shown in Appendix C,
for optimality, the following condition must hold when bucketing is used: If item ¢ is in bucket B;,
then

5i 0 \J i/ /7 (5)
and [ o /G //d; (6)

The on-line algorithm with bucketing is obtained from the above result.

10



ON-LINE WITH BUCKETING algorithm:

broadcast item [, at the front of bucket B,,
if
(@ = R(1n)) gn/dm > (@ — R(Lj))* ¢j/dj, 1<j<k

(if the condition is satisfied for more than one item,
any one of those items may be chosen arbitrarily.)
dequeue item [,, from the front of the bucket B,, and enqueue at the end O

The above algorithm is quite similar to the original on-line algorithm except that the decision
rule is applied only to items at the front of each bucket. Hence, the algorithm needs to compare
values for only k items giving the complexity of O(k). Observe that all items within the same
bucket are broadcast with the same frequency. This suggests that the p;/l; values of all items in
any bucket should be close for good results.

The Optimal Overall Mean Access Time rtesulting from the above algorithm as shown in
Appendix C, is given by

2
1 k
lopt_bucket = ) (Z Mg/ qidj) (7)
7=1

Similar to ¢ ¢ is a lower bound on performance achievable with bucketing.

optimal> topt_bucke
The above equation shows that topt_bucket is dependent upon the selection of values for
m;’s under the constraint that Z?:l m; = M. Optimizing the bucketing scheme for a given
number of buckets & requires that the m;’s be chosen appropriately, such that the above equation
is minimized.
For our simulations, we use a heuristic to determine the membership of items to the buckets.
The heuristic for determining the membership of an item ¢ to a bucket B; is as follows:

Let R, = mini\/m and R,,.p = maXi\/m. Let 6 = Ryue — Ryin. If, for item 1,

pi/li = Ry, then item ¢ is placed in bucket By. Any other item ¢ is placed in bucket B;

(1<j<k)if(j—16/k < (pi/l; = Rmin) < (j8/k). This is pictorially depicted in Figure 4.
The above heuristic executes in O(M) time.

o/k k=5
Rmin Rmax

bucket B1 B2 B3 B4 B5

Figure 4: Heuristic for assigning items to k buckets: The interval (R, .in, Rimaz) is divided into k

equal-sized sub-intervals. An item 7 whose /p;/l; value belongs to the j-th sub-interval is assigned
to bucket B; (1 <j<k).
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3.3.1 Comparison of Buckets and Multi-disk [3]

The notion of a bucket is similar to that of a broadcast disk in the multi-disk approach proposed
by Acharya et al. [3]. Therefore, the result in Equation 6 can be used to determine suitable
frequencies for the broadcast disks. The differences between the two approaches are as follows:
(a) Our algorithm is on-line in that the broadcast schedule is not predetermined. This allows our
algorithm to quickly react to any changes in parameters (such as demand probabilities). (b) The
algorithm in [3] imposes a constraint that the instances of each item be equally spaced at the risk
of introducing “holes” in the schedule (which may be filled with other information). Our algorithm
does not create such holes. (c¢) Our algorithm works well with items of arbitrary sizes. [3] is
constrained to fixed size items. (d) Acharya et al. do not have a way of determining the optimal
frequencies for the different disks, whereas, our algorithm automatically tries to use the optimal
frequencies.

3.4 Cyclic Scheduling Algorithm

We can use the on-line algorithm to generate off-line a schedule of size approximately equal to a
specified size V. The schedule may then be used as a cycle and broadcast repeatedly. Here is a
sketch of the algorithm:

while size of schedule < N

{
generate the next item to schedule using On-line algorithm
append it to the schedule

1

Example 4: Suppose there are 3 items in database. Their probabilities of access are p; =
1/2,p2 = 1/4 and ps = 1/4 respectively and their lengths are [; = 6,l; = 6 and I3 = 8 units
respectively. Let the specified cycle size N be 80 time units.

Let R(i) for ¢« = 1,2,3 be initialized to —1. Start with current time @ = 0. The (@ —
R(4))?p;/1; values for the three items would be 0.08,0.04 and 0.03 respectively. Hence we select
item 1 having maximum value, include it in our broadcast schedule and set R(¢) to current time
) = 0. Next we increment ¢ by the length of item 1, l;, making ¢) = 6. We again determine
the (Q — R(1))%*p;/l; term for ¢ = 1,2,3 which come out to be 2.99,2.04 and 1.53 respectively.
Hence we again select item 1 and append it to the schedule. We increment R(7) to current value
of time () = 6 and then increment ) by the length of item 1 making ¢) = 12. We again determine
(Q — R(1))*p;/1; for i = 1,2,3 which come out to be 2.99,7.04 and 5.28 respectively and hence we
select item 2 this time. The process is repeated until the size of schedule, ¢) equals or exceeds the
specified value of N = 80 time units. The resulting schedule is shown in Figure 5. O

It is evident that the size of the schedule from the above algorithm may end up in being
greater than the given size N. However, the error is bounded by the size of the largest item in the
database whose demand probability is non-zero.

12
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Figure 5: Showing the broadcast cycle of Example 4. Note that initially the algorithm does not
generate “sub-cycles”, but after the initial transients are damped, the algorithm generates sub-
cycles of items 3,2,1.

The On-line algorithm requires the knowledge about the time of last broadcast R(¢) of each
item ¢ to determine their spacing and hence the next item to broadcast. If R(¢) values are not
properly initialized, it will take some iterations in the beginning to bring R(¢) values to steady
state. Hence On-line algorithm shows a transient behavior at the beginning. The transients can
have an adverse impact on the schedule, if the initial transient forms a significant fraction of the
cyclic schedule.

One way of mitigating the effect of the transients could be to run the On-line algorithm to
generate items (and discarding them) until each item is generated at least a specified number of
times. This is the point when, hopefully, all the transients have been damped and now the above
Cyclic Scheduling Algorithm may be used to generate the cyclic schedule.

It should be noted that the given size N should be large enough such that all the items
with non-zero demand probabilities are scheduled at least once. Also, in general, larger N results
in lower access time.

The main advantage of Cyclic Scheduling Algorithm, as in case of any off-line schedule, is
that only a simple table look-up is needed each time the server needs to transmit an item (in
contrast, the on-line algorithms presented earlier incur O(M) or O(k) overhead). For the off-line
algorithm, initially, O(M N) overhead is incurred in generating the cyclic schedule. The initial
overhead is amortized over the period of time for which the schedule is used.

4 Effect of Transmission Errors on Scheduling Strategy

In the discussion above, we assumed that each item transmitted by the server is always received
correctly by each client. As the wireless medium is subject to disturbances and failures, this
assumption is not necessarily valid. Traditionally, in an environment that is subject to failures,
the data is encoded using error control codes (ECC). These codes enable the client to “correct”
some errors, that is, recover data in spite of the errors. However, ECC cannot correct large number
of errors in the data. When such errors are detected (but cannot be corrected by the client), the
server is typically requested to retransmit the data.

In the asymmetric environment under consideration here it is not always possible for the
client to ask the server to retransmit the data.? In this section, we evaluate the impact of uncor-
rectable errors on the scheduling strategy for broadcasts [13].

2Even if it were possible for a client to send a retransmit request to the server, it is not clear that a broadcast
scheme should allow such requests, because it is possible that many clients receive the original broadcast correctly,
but only a few do not due to some localized disturbance.

13



Suppose that uncorrectable errors occur in an item of length { with probability E(1).® Ap-
pendix D shows that the overall mean access time, t, for this case, assuming that instances of item
¢ are equally spaced with spacing s;, is given by

t = ésmi (% + %) = % g}sil’i (%) (8)

The Square Root Rule in Theorem 1 needs to be modified to take errors into account as
follows :

Theorem 2 Given that the probability of occurrence of uncorrectable errors in an item of length |
is E(l), the overall mean access time is minimized when

fim\/ﬁ< E(L) +1)1/2

VI \1- E(l) 2
and )
—1/2
~1/2 ,1/2 E) 1)
cocp VAL e N
ek (1—E(li)+2
Proof : See Appendix D. O

The lower bound on overall mean access time now becomes,

M , 1/2\ 2
E(l; 1
topt_error = (§ V pzlz ( ( ) + _) )
=1

11— E(l) 2

Equation 8 and Theorem 2 can be applied to many random error models.* For the purpose
of demonstration, we now consider a simple error model. Let uncorrectable errors occur according
to a Poisson process with rate A per unit time. Thus, the probability that item 7 transmitted by
the server will be received by a client without uncorrectable errors is e~ If the item contains
uncorrectable errors (with probability E(l;) = 1 — e~*), the item is discarded by the client, and
the client cannot use that instance of the item. The client must wait for the next instance of the
item.

Substituting E(l;) = 1 — e~ in Equation 8, and simplifying yields
M 1
t = ZSiPi (e”" — —)
=1 2

Similarly using Theorem 2, the optimal frequency f; for an item 7 should be

*Now, l; denotes length of item i after encoding with an error control code.
*Burst error models need somewhat different analysis. As burst errors are likely in wireless channels, this is an
important subject for future research.

14
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and

_ 1\ T/2
5; X p; 1z 13/2 (e”’ — 5)

The scheduling algorithms presented previously can be trivially modified to take into account
the new square-root rule (Theorem 2), to design good schedules for environments subject to failure.
The above result suggests that large items should be transmitted in smaller chunks (this is usually
true when dealing with errors). However, doing so requires that the client to be able to piece
together an information item using chunks that may arrive out of order.

5 Multiple Broadcast Channels

The discussion so far assumed that the server is broadcasting items over a single channel and all
the clients are tuned to this channel. One can also conceive an environment in which the server has
a large available bandwidth which is divided into multiple channels, the channels being numbered
1 through ¢. The clients can then subscribe to as many channels as they want (and can afford).
It is apparent that proper use of these channels should result in better performance. Here we give
two different schemes to exploit these channels to improve performance.

5.1 Channel Schedule Staggering

This scheme is basically an extension of cyclic scheduling algorithm. Here we assume that a
schedule is created before hand using some off-line algorithm such as the cyclic scheduling algorithm
described earlier. The same schedule is broadcast on every available channel — the schedule on
channel ¢ is delayed (¢ —1) 7 time units as compared to channel 1. We refer to this as “staggering”.
Thus, if an instance of item ¢ appears on channel j at time t, then on channel 741, the corresponding
instance of item 7 would appear at time ¢t + 7. A client, if tuned to more than one channel, should
try to listen to the channels which are equidistant from each other. For example, if there are six
channels used by server for data broadcast and a client can tune to three different channels, it
should listen to channels 1, 3 and 5 or channels 2, 4 and 6. Of course, the total number of channels
may not always be an integral multiple of the number of channels a client is listening to. In general,
the subscribed channels may be selected to be as equidistant as possible.

It can be shown that for two channels (¢ = 2), optimal overall mean access time is achieved
when the offset 7 is the weighted average of the spacing, s;, over all items, that is,

M
T:§;Pi8i

s; is the optimal spacing between consecutive instances of item ¢. The above result assumes that
Lemma 1 is satisfied by all the items. While equal spacing is not always achievable, it can be
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approximated (as done by our scheduling algorithms). Similar results may be obtained for larger
number of channels as well.

5.2 On-line scheme for multiple channels

This scheme is the modification of the on-line algorithm, described in Section 3.2, to accommodate
multiple channels. In this case, a client capable of listening to n broadcast channels, listens to
channels 1 through n (unlike previous section where the channels should be as equidistant as
possible).

The on-line scheduling scheme works as follows. Generate items to broadcast over channel
1 using the normal on-line algorithm (as in Section 3.2). For channel 2, generate the items using
the same on-line algorithm, but with different interpretation of R(7) for item ¢. Let us define R;(7)
as the instant when item ¢ was last broadcast over channel j. Here R(¢) is defined as the maximum
of Ry(7) and Ry(7), 1 <7 < M, and use it in the on-line algorithm to generate items for channel
2. Similarly, we define R(7) to be maximum of Ry(¢), Ro(i) and Rs(¢) for channel 3 and use the
on-line algorithm to generate channel 3 items, and so on. More formally, the algorithm for the
generation of items in channel & may be devised as follows :

ON-LINE algorithm for channel k:

R(1) = maxi<j<{R;(1)}, Vi, 1 <0< M
broadcast item ¢ at time ()
if
(@ - R pi/li > (@—RG) pi/lj, 1<j<M

(if there is a tie, that is, if the above condition is satisfied for
more than one item, any one of those items may be chosen arbitrarily.)
Ri(i) = @, where ¢ is the item broadcast O

The above algorithm can be easily modified to use bucketing. A complete analysis of the
algorithm and its simulation is one of the topics of our on-going research.

6 Performance Evaluation

We consider two classes of demand probability distributions:

o Skewed distribution: In this case, half the data items are requested more frequently than the
other half. The distribution is characterized by a parameter B, where 0.5 < B < 1. The
distribution can be formally defined as below:

B .
i L <i<[M)2)
pi =

ﬁ]\?/gy [M/2) <i< M

Varying the value of B yields distributions with different amount of demand “skew”.
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e Exponential distribution: In this case, item 1 is requested most frequently, and item M
is requested least frequently, the probabilities (p;’s) being determined by an exponential
function of 7. This distribution is characterized by a parameter v. The distribution can be
formally defined as below:

pi=pre (i=1)
where p; is evaluated by solving the equality "M, p; = 1. Thus, p; = (1—e™)/(1—e M),

Larger values of v cause p; to decrease more rapidly with increasing .

Each of these two probability distributions are evaluated with the following three length
distributions :

e Uniform length distribution: Length [; of item ¢ is defined as [; = L, where L is a constant.
(We select L = 10 for our simulations.)

o Increasing length distribution: Length [; of item ¢, in this case, is defined as [; = ¢, 1 <7 < M.

o Decreasing length distribution: In this case, length [; of item ¢ is defined as [; = M — ¢+ 1,
where M is the total number of items in server’s database, and 1 <17 < M.

We compare the overall mean access time t achieved by two of our algorithms, on-line and
on-line with bucketing, with the “optimal” t given by Equation 3

2

1 M
toptimal D) (Z v pili)
=1

In the figures to be presented below, the curves corresponding to our on-line algorithm, and
on-line with bucketing algorithm, are labeled as on-line and n buckets, respectively, where n shows
the number of buckets used. Whereas, the curve corresponding to toptimal is labeled optimal.

It should be noted that the theoretical optimum values of ¢ may not be achievable for all
probability distributions. However, the theoretical values do provide a measure to determine how
close to optimal our algorithms are.

For the simulation results presented here, number of items (M) is 50. Similar results can
be obtained for larger values as well. The reason for choosing a small M was to enable us to run
experiments long enough to obtain simulation results with high confidence. FEach schedule was
simulated long enough until 300,000 requests were satisfied. Uncorrectable transmission errors (as
in Section 4) are not considered in these simulations.

Figures 6, 7 and 8 plot overall mean access time against different values of B, the parameter
in skewed distribution, for uniform length, decreasing length and increasing length distributions,
respectively. In each of these figures, (a) plots simulation results and (b) plots analytical results.
For on-line with bucketing algorithm curves, the analytical value was calculated using Equation 7
for different number of buckets. Note that on-line curve is a special case of on-line with bucketing
curves with number of buckets= M. The assignment of various items to buckets is performed using
the heuristic presented in Section 3.3.
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Figure 6: Overall mean access time with skewed probability distribution (for different values of B)
and using uniform length distribution /; = 10. All curves coincide in each graph.
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Figure 7: Overall mean access time with skewed probability distribution (for different values of B)
and using decreasing length distribution I; = M — ¢ + 1, where M = 50.
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Figure 8: Qverall mean access time with skewed probability distribution (for different values of B)
and using increasing length distribution /; = i. On-line and optimal curves in (a) coincide.

In all these figures, note that the simulation results almost match the analytical values for
bucketing case. On-line algorithm, though not most time-efficient, performs pretty close to optimal.
Note that the performance tends to improve as the number of buckets is increased. It may also
be noted that most of the time, the on-line with bucketing algorithm with 5 buckets perform fairly
close to (pure) on-line algorithm which is a special case with number of buckets=M (here 50). It
is worth noting that this small loss in performance wins us a speed-up in computation by a factor

of 50/5 = 10.

Figure 6 is interesting in that all the curves coincide with each other. The reason is that
the length of all the items is uniform (here [; = 10, Vi) and hence the overall mean access time is
dependent only upon probability distribution, which has only two possible values of probabilities.
Hence, there are only two possible values of (p;/l;), Vi. This results in only two non-empty buckets,
even if we use the assignment algorithm to create 5 buckets. This is why all the curves coincide
with each other and with the optimal curve.

Figures 9, 10 and 11 plot overall mean access time against different values of v, the parameter
of exponential distribution, for uniform length, decreasing length and increasing length distribution,
respectively. The observations made earlier for figures 6, 7 and 8 are valid here as well.

In order to emphasize the necessity of taking lengths of items into account, we also plot
in Figure 12 a modified version of on-line algorithm in which we use the equation s?p;=constant,
instead of s?p;/l;=constant. The figure plots overall mean access time against different values of
B, for decreasing length distribution, {; = M — ¢+ 1. In the figure, the normal on-line algorithm is
labeled as on-line, whereas the modified version which does not take lengths into account is labeled
without lengths. Note that some of the previous work [4, 13, 15, 14] does not take into account
lengths of different items (or assumes lengths to be uniform). It is evident from Figure 12 that
their results cannot be applied to the case where lengths of different items are different without
encountering loss in performance.
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Figure 9: Overall mean access time with exponential probability distribution (for different values
of v) and using uniform length distribution /; = 10. On-line and optimal curves in (a) coincide.
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Figure 10: Overall mean access time with exponential probability distribution (for different values
of v) and using decreasing length distribution {; = M — i+ 1, where M = 50. On-line and optimal
curves in (a) coincide.
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Figure 11: Overall mean access time with exponential probability distribution (for different values
of v) and using increasing length distribution [; = i
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We conclude from this section that on-line algorithm almost always performs very close
to optimal. Simulation results demonstrate that the on-line with bucketing algorithm allows a
trade-off between run-time overhead of the on-line algorithm, and its performance. We also saw
that ignoring difference in lengths of various items can have a significant detrimental impact on
performance.

7 Static and Adaptive Broadcasts

In the asymmetric communication environment under consideration, the clients may not be capable
of sending requests for data to the server (or, it may not be desirable for the clients to send the
requests to the server). In this case, the server must be provided with information (such as
user profiles) which will allow the server to estimate the demand probability for each item. The
broadcast schedule used by the server is determined completely by this estimate of the demand. The
broadcast schedule will not change unless the user profiles are updated. Such broadcast schedules
are said to be static.

An adaptive scheme will continually gather statistics on the demand for various items, and
modify the broadcast schedule to best meet the demand. While we did not evaluate the adaptive
behavior of our algorithms, we believe that our on-line schemes can quickly adapt to any changes
in the demand probabilities.

To achieve adaptive behavior, the server must have some way to update its estimates of
demand probability (p;). Viswanathan [14] describes several ways in which this information can
be conveyed to the server, including (i) when a mobile client moves from one cell to another, and
(ii) when the client sends some other message, the access frequency information is piggybacked on
these messages. The idea is to minimize the need to send messages just to update the user access
profiles at the server. Viswanathan [14] divides items into two classes: (i) items that are broadcast
by the server, and (ii) items that are sent to clients only on-demand (i.e., when a request is received
from the client for the item). Thus, clients send requests for items from class (ii), and simply wait
for the server to transmit an item from class (i).

We suggest another approach that does not divide items into two classes as above [13].
Instead, when a client needs some item, say 7, it waits for some time bounded by a time-out 7.
If an interval of 7 is exceeded, then the client sends a request to the server. Thus, if an item is
broadcast by the server within 7, no explicit request is sent. Parameter 7 would affect the mean
access time, as well as the number of requests that are sent by the clients. The server, based on
the number of requests that are received, can update its estimate of demand probabilities (p;).
These new estimates can be used to determine the appropriate broadcast schedule. Performance
evaluation of the above adaptive approach is a subject of future research.

8 Related Work

The problem of broadcasting data efficiently has received much attention lately. The existing
schemes can be roughly divided into two categories (some schemes may belong to both categories,
we have listed them in the most appropriate category): Schemes attempting to reduce the access
time [4,3,2,1,8,12, 7, 6, 15, 16] and schemes attempting to reduce the tuning time [10, 9, 11].
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Ammar and Wong [4, 15] have performed extensive research on broadcast scheduling and
obtained many interesting results. Qur square root rule is a generalization of that obtained by
Ammar and Wong. Wong [15] and Imielinski and Viswanathan [8, 14] present an on-line scheme
that uses a probabilistic approach for deciding which item to transmit. Our on-line algorithm
results in an improvement by a factor of 2 in the mean access time as compared to the probabilistic
on-line algorithm in [8, 15]. Chiueh [6] and Acharya et al. [3, 2, 1] present schemes that transmit
the more frequently used items more often. However, they do not use optimal degree of replication,
unlike our schemes.

Jain and Werth [12] note that reducing the variance of spacing between consecutive instances
of an item reduces the mean access time. The two schemes presented in this report do attempt
to achieve a low variance. Similar to our discussion in Section 4, Jain and Werth [12] also note
that errors may occur in transmission of data. Their solution to this problem is to use error
control codes (ECC) for forward error correction, and a RAID-like approach (dubbed airRAID)
that stripes the data. The server is required to transmit the stripes on different frequencies, much
like the RAID approach spreads stripes of data on different disks [5]. This requires the clients to
receive broadcasts on multiple frequencies. ECC is not always sufficient to achieve forward error
correction, therefore, uncorrectable errors remains an issue (which is ignored in the past work on
data broadcast).

9 Summary

This report considers asymmetric environments wherein a server has a much larger communication
bandwidth available as compared to the clients. In such an environment, an effective way for the
server to communicate information to the clients is to broadcast the information periodically.
Contributions of this report are as follows:

o We propose three on-line and off-line algorithms for scheduling broadcasts, with the goal
of minimizing the access time. Simulation results show that our algorithms perform quite
well (very close to the theoretical optimal). The proposed on-line algorithms are suitable
for adaptive broadcasts, as they can quickly adapt to any changes in demand probability
distributions.

e The report considers the impact of errors on optimal broadcast schedules.

o When different clients are capable of listening on different number of broadcast channels, the
schedules on different broadcast channels should be designed so as to minimize the access
time for all clients. This report presents preliminary results on this problem.

More work is needed on some problems discussed in this report. Future work will also include

design of strategies for caching and updates that attempt to achieve optimal performance while

incurring low overhead. Further results will be made available at our web site at
http://www.cs.tamu.edu/faculty/vaidya/mobile.html
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A  Appendix: Proof of Theorem 1

Theorem 1: Square-root Rule: Given the demand probability p; of each item 1, the minimum
overall mean access time, ¢, is achieved when frequency f; of each item 1 is proportional to \/p; and

inversely proportional to \/I;, assuming that instances of each item are equally spaced. That is,

N
NG

fi_ [ ﬁ
f] Pj l;

Proof: As instances of item 7 are spaced equally, the spacing between consecutive instances of
item ¢ is N/f;, where N = Z]]\il f;l; is the number of slots in the broadcast cycle. Also, in this

case, the item mean access time is t; = s;/2. Therefore, t; = % Now, overall mean access time
k2

fi x

To put it differently, for items v and j,

t= Zf\il pit;. Therefore, we have,

Moy 1M N
t:;piQ_fi:§;piE (9)

Define “supply” of item ¢, ¢; = fili . Thus, g; is the fraction of time during which item ¢ is broadcast.

Now note that, Zf\il q; = 25\41 f]’\,’ = % = 1. Now, Equation 9 can be rewritten as,

= —Zp“ (10)

=1 q’L
As wal q; = 1, only M — 1 of the g;’s can be changed independently. Now, for the optimal values
of ¢;, we must have g— = 0, Vi. We now solve these equations, beginning with 0 = aaqtl'
t
0 = 9t
8(]1
_ 10 P1l1 . = il . pming
2 8(]1 1=2 4 (1 - wal ! (Zz)
_ 1 _P111 n pmin
2 q% (1 - ZM ! %)
pili pylng
- (1)
q% (1 - ZM ! %)
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. p2lz pmlnv
Similarly === = — (12)
5 (1= g
From Equations 11 and 12, we get
pili p2lz il pili
9 5 92 DP2t2
o : ¢ _  pili.
Similarly it can be shown that — = , Vi3
qj pilj

This implies that, the optimal values of ¢;’s must be linearly proportional to +/p;{;’s. It is
easy to see that constant of proportionality ¢ = —z——— exists such that ¢; = a /p:l; is the only
2]21 Vil
ot

possible solution for the equations By = 0. From physical description of the problem, we know

that a non-negative minimum of ¢ must exist. Therefore, the above solution is unique and yields
the minimum ¢.

Vil

Substituting ¢; = Mi’l into Equation 10, and simplifying, yields optimal overall mean
2]21 VPils

access time as
1 (M ’
=5 (S o)
ils

Also the optimal frequency of item ¢, f; may be obtained as ¢; = “g* o< v/pil;,

= fi x ]lﬁ

B Appendix: Cyclic Nature of the On-line Schedule

Assume that the ties in the on-line algorithm (Section 3.2) are resolved using a deterministic
rule that is time-independent. With this assumption, for given (fixed) probability and length
distributions, the on-line algorithm produces a cyclic schedule (as shown here). The length of the
cycle, however, is hard to predict. (NOTE: The initial transient may not be identical to the cycle
produced by the algorithm. We are focusing on the steady state behavior of the algorithm here.)

The proof that the on-line algorithm produces a cyclic schedule is based on the observation
that the maximum spacing between consecutive instance of any item is finite and bounded. We
present an informal proof. To simplify the proof here we assume that I; = 1 for all ©. The proof
can be generalized to arbitrary item sizes.

Assume that the items are sorted such that p; < p;, if « < j. Thus, item 1 has the smallest
demand probability, and item M has the largest demand probability. Observe that, due to the
decision rule used in our on-line algorithm, any item may be broadcast at most once between
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consecutive instances of item M. (Thus, item M is broadcast at least once each M time units.)
Similarly, between consecutive instances of item 1 each other item must be broadcast at least once.

The time at which latest instance of item 1 was transmitted is R(1). Consider the time
instances, say 7, 7o, -, i, - - - where item M is broadcast after the latest instance of item 1, before
item 1 is broadcast again. (Recall that item M is transmitted at least once each M time units.)
Now we show that the next broadcast of item 1 must occur within finite and bounded time. That
is the sequence 7y,79,---,7,--- is finite. As item M is broadcast at 7,_; and 7;, without an
intervening broadcast of item 1, it follows that

(1i = 1i21)*par > (70— R(1))*py

(Recall that here we have assumed [; = 1, Vi.) As 7, — 7,_1 < M, the above inequality implies that

M?py > (1 = R(1))*py

However, the above inequality cannot hold for arbitrarily large ¢;. The left-hand-side of the in-
equality is constant, while the right-hand-side increases monotonically with increasing 7. Therefore,
7, — R(1) cannot be larger than M+/pas/p1. Thus, there can be at most M+/pps/p1 instance of
item M between consecutive instances of item 1. Similarly, the number of instances of each item ¢
(2 < i < M) between consecutive instances of item 1 are finite and bounded. Therefore, the spac-
ing between consecutive instances of item 1 is bounded. Thus, the distinct item sequences that
can appear between consecutive instances of item 1 are bounded in number. As each item appears
at least once between consecutive instances of item 1, if any item sequence is repeated twice (and
some sequence will eventually have to be repeated), the rest of the schedule will repeat itself (due
to deterministic nature of the algorithm). Thus, after an initial transient, the on-line algorithm
will produce a cyclic schedule. This argument can also be extended to variable size items.

C Appendix: Proof of Optimal Overall Mean Access Time for
On-line with Bucketing Algorithm

Proof: Suppose that each bucket B;, 1 < j <k, contains m; items, m; > 0, Z;?:l m; = M. Let
4 = 2icB, pi/m; and d; = Y icB, l;/m; be the average access probability and average length of the
items in bucket B;, respectively.

The proof is similar to the proof in Appendix A. With bucketing, the frequency of all items
in the same bucket is identical. We define F; as the frequency of items in bucket B;. For optimal
solution, the items should be equally spaced. Therefore, spacing between consecutive instances of
an item in bucket ¢ is N/F;. Let ; denote the spacing N/ F;.

Now, N = Z?:l Fi;d;jm;. Therefore, S; = N/F; = Z?:l Fid;m;/F;. Let T; denote the item
mean access time of an item in bucket B;. Then, T; = %Si = %N/FZ = %(Z]]\il F;d;m;)/F;. Note
that, with the equal spacing assumption, item mean access time is identical for all items in the
same bucket.
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The Overall Mean Access Time is now given by
k
=2 | 2
j=1 \:€B,;
Since Zz’ij p; = m;q;, the above equation can be written as
k
Z m;¢iT;
=1

or

w|2

We define supply of bucket B;, denoted r;, as r; = F;d;m; /N. Observe that Z;?:l r; = 1.
The above equation for ¢ can be rewritten as

1k
P

(13)

If we denote qjm?dj as X, the above equation becomes

_L&X
t—§z—,

7=1 T]

where Z;?:l r; = 1. This equation has the same form as Equation 10. Therefore, from the proof
in Appendix A it follows that, with bucketing, to minimize ¢ the following condition must be true:

;X \/;] (14)

As Z =17 = 1, r; = =s—7~=- Substituting this into Equation 13, replacing X; = ¢;m; 2d;, and

ZHV_

simplifying, we get
2
k
1
topt_bucket ~ 5 (Z mj\/%dj)
=1

Substituting X; = qjmidj in the above proportionality (14), we get

x ,/qjm?dj = m]@\/d?

As r; = F;d;m; /N, we now get FJCJI{,mJ o« mj/q; /d;. On simplifying, this yields,




As F; = N/S;, we have,

Finally, note that, if item ¢ is in bucket B;, then f; = F; and s; = 5.

D Appendix: Overall Mean Access Time in Presence of Errors

Here we are not assuming bucketing. The result below can be easily generalized to the case where
items are divided into buckets. Consider item ¢, instances of which are spaced s; time units apart.
The total time required to transmit the cycle is N. Then, f; = N/s;. Also, as size of item ¢ is I;,

we have Y M| fil; = N.

First, let us determine the item mean access time, t;, for item 7. Observe that average time
until the first instance of item ¢ is transmitted, from the time when a client starts waiting for
item ¢, is s;/2 time units. If the first instance of item ¢ transmitted after a client starts waiting is
corrupted, then an additional s; time units of wait is needed until the next instance. Thus, each
instance of item ¢ that is received with uncorrectable errors adds s; to the waiting time. Given
that the probability that an instance of item ¢ of length /; contains uncorrectable errors is FE(l;),
the expected number of consecutive instances with uncorrectable errors is obtained as

Thus, the item mean access time is obtained to be

L = %-I-Si (%) = S (115(7];2()12)+%) - %Si (%)

M M
E(l) 1

= it = iSi | s T 5
Yorti=r (g )

Thus,

Proof of Theorem 2 : As s; = N/ f;, the above expression for ¢ can be rewritten as,

7. {_Ed)
tzfz al <_E(li) + 1) = ]Zw: v (it +3)

P —+ =
=1 fZ 1- E(lz) 2 T

=1

where, r; = f;[;/N. Now, Zf\il T, = Zf\il fili/N = N/N = 1. Thus, the above expression for ¢
has a form similar to Equation 10, and can be minimized similarly. The optimization procedure
yields the result stated in Theorem 2.
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