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1 IntroductionMobile computing and wireless networks are fast-growing technologies that are making ubiquitouscomputing a reality. With the increasing popularity of portable wireless computers, mechanismsto e�ciently transmit information to such clients are of signi�cant interest. For instance, suchmechanisms could be used by a satellite or base station to communicate information of commoninterest (e.g., stock quotes, sports scores, etc.) to wireless hosts. Approaches for determining whatto transmit and when, is the subject of this report. In the environment under consideration, thedownstream communication capacity, from server to clients, is relatively much greater than theupstream communication capacity, from clients to server. Such environments are, hence, calledasymmetric communication environments [2]. In an asymmetric environment, broadcasting theinformation is an e�ective way of making the information available simultaneously to a largenumber of users. For asymmetric environment, researchers have previously proposed algorithmsfor designing broadcast schedules [4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16]. Two metrics are used toevaluate these algorithms:� Access time: This is the amount of time a client has to wait for some information thatit needs. It is important to minimize the access time so as to decrease the idle time atthe client. Several researchers have considered the problem of minimizing the access time[4, 6, 10, 11, 12, 7, 3, 2, 15, 16]� Tuning time: This is the amount of time a client must listen to the broadcast until itreceives the information it needs. It is important to minimize the tuning time, because thepower consumption of a wireless client is higher when it is listening to the transmissions, ascompared to when it is in a doze mode. Previous work has tried to minimize the tuning timeby providing the clients with an index that provides hints to the client of when the requireddata is scheduled to be broadcast [9, 10, 11, 14]. Without this information, the client mustlisten continually until the necessary information is received.This report presents an approach to minimize the access time. Our results can be combinedwith the schemes for reducing tuning time to obtain a comprehensive solution. We consider adatabase that is divided into information items (or items for short). Thus, a broadcast schedulespeci�es when each item is to be transmitted. Contributions of this report are as follow:� Square-root Rule: We show that the access time is minimized when the frequency of anitem (in the broadcast schedule) is proportional to the square-root of its demand (charac-terized as demand probability) and inversely proportional to square-root of its length. Thisresult is a generalized version of a result presented in [4, 15].� We present three algorithms for scheduling broadcasts, based on the above square-root rule.{ The �rst algorithm is an \on-line" algorithm that can be used by a server to determinewhich item to transmit next [13]. We demonstrate that the proposed on-line algorithmachieves performance comparable to an optimal o�-line algorithm. Also, the proposedon-line algorithm reduces the average access time by a factor of 2, as compared to apreviously proposed on-line algorithm [14].On-line algorithms are of signi�cant interest as they are easy to adapt to time-varyingdemands for the data items. 3



{ The second algorithm is also an on-line algorithm obtained by modifying the �rst algo-rithm. An on-line algorithm must use some decision-making mechanism to determinewhich information item is to be transmitted next. For the �rst on-line algorithm, thetime complexity of the decision mechanism is linear in the number of information itemsin the database. The second algorithm reduces this complexity signi�cantly but may re-sult in somewhat poorer performance than the �rst algorithm. This algorithm providesthe ability to trade performance with time complexity.{ The third algorithm generates cyclic schedule for a speci�ed cycle size. This algorithmis o�-line in that it a priori produces an entire schedule, which is then used repeatedly.The ideas presented here can be combined with previous work [10, 14] to minimize tuningtime as well as access time.� Impact of errors on the scheduling policy is evaluated. In an asymmetric environment, whena client receives a data item containing errors (due to some environmental disturbance), itis not always possible for the client to request retransmission of the data. In this case, theclient must wait for the next transmission of the required data item. We evaluate how optimalbroadcast frequencies of the items are a�ected in presence of errors [13].� We consider systems where di�erent clients may listen to di�erent number of broadcastchannels, depending on how many they can a�ord. In such an environment, the schedules ondi�erent broadcast channels should be designed so as to minimize the access time for most(if not all) clients. This report presents preliminary results on this problem.The rest of the report is organized as follows. Section 2 introduces some terminology.Section 3 derives the square-root rule, and presents our broadcast scheduling algorithms. Theimpact of errors is analyzed in Section 4. Section 5 considers an environment where di�erentclients may be listening to di�erent number of channels (depending on what they can a�ord).Section 6 evaluates the performance of our schemes. Section 7 brie
y discusses how our schemescan be made adaptive. Related work is summarized in Section 8. A summary is presented inSection 9.2 PreliminariesThis section introduces much of the terminology and notations to be used in rest of the report.� Database at the server is assumed to be divided into many information items. The items arenot necessarily of the same size.� The time required to broadcast an item of unit length is referred to as one time unit. Hencetime required to broadcast an item of length l is l time units. Note that unit of length andtime unit may be used interchangeably because of the way they are de�ned.� li represents length of item i. 4



� To develop a theoretical foundation for our algorithms, we assume that the broadcast consistsof cycle of size N time units, The results presented in the report also apply to non-cyclicschedules (for non-cyclic schedules, e�ectively, N ! 1).� M = total number of information items in the server's database. The items are numbered 1through M .� Instance of an item : An appearance of an item in the broadcast cycle is referred to as aninstance of the item. There may be multiple instances of an item in the cycle.� Schedule : Schedule for the broadcast cycle is an order of the items in the cycle.� Frequency of an item : frequency fi of item i is the number of instances of item i in thebroadcast cycle. The fi instances of an item are numbered 1 through fi. Size of the cycle is,therefore, given by N =PMi=1 fili , where li is the length of item i.� Spacing : The spacing between two instances of an item is the time it takes to broadcastinformation from the beginning of the �rst instance to the beginning of the second instance.sij denotes the spacing between j-th instance of item i and the next instance of item i(1 � j � fi). Note that, after the fi-th instance of an item in a transmission of the broadcastcycle, the next instance of the same item is the �rst instance in the next transmission of thebroadcast cycle.
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Item 1Figure 1: Showing a part of broadcast cycle (Example 1)Example 1: As an example, refer to Figure 1. The �gure shows a part of a broadcast cycle,which contains two instances of item 1, and one instance each of items 2 and 3. The lengths ofthe items are 10; 8 and 4 time units respectively. The spacing between the two instances of item1 is the time from the beginning of �rst instance of item 1 until the beginning of second instance,which is equal to 10 + 8 + 4 = 22 time units. Thus, if a client needs item 1 some time (uniformlydistributed) between the two instances of item 1, then the average wait is 22/2 = 11 time units.To reduce this wait, item 1 will have to be transmitted sooner, however, doing so will require oneof items 2 or 3 to be transmitted later, causing an increase in the access time of a client needingthat item. This example illustrates the need for appropriate scheduling of items in the broadcast.25



� Item Mean Access Time : Item Mean Access Time of item i, denoted ti, is de�ned as theaverage wait by a client needing item i until it starts receiving item i from the server. Providedthat a client is equally likely to need an item i at any instant of time (uniform distribution),ti can be obtained as, ti = fiXj=1 sij2 sijN = 12 fiXj=1 s2ijNwhere N = MXi=1 filiIf all the fi instances of item i are equally spaced, that is, for some constant si, sij = si(1 � j � fi), then, it follows that, si = NfiIn this case, the expression for ti can be simpli�ed as follows:ti = 12 fiXj=1 s2ijN = 12 fiXj=1 s2iN = 12 fi  s2iN! = 12si as si = N=fi (1)� Demand probability : Demand probability pi denotes the probability that an item needed bya client is item i.� Overall Mean Access Time : Overall Mean Access Time, denoted t, is de�ned as the averagewait encountered by a client (averaged over all items). Thus,t = MXi=1 ti pi = MXi=10@12 fiXj=1 s2ijN 1A piWhen sij = si (1 � j � fi), that is, when all items are distributed in the cycle with equalspacing, the above equation reduces tot = 12 MXi=1 si pi (2)Note:All results presented here remain valid if pi in the above expression is replaced by wi, wherewi may be interpreted as weight of item i. The weights of all items do not have to add to 1 (thefact that the pi's add to 1 does not have any impact on our algorithms). For instance, weight wimay be obtained as a product of the \priority" of item i and the demand probability of item i.When pi is replaced by wi, t is interpreted as a cost metric.6
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of pagesFigure 2: Constructing a Broadcast Cycle3 Proposed Scheduling SchemesFigure 2 depicts an abstract view of the procedure for constructing a broadcast schedule. The �rstblock in Figure 2 maps the demand probability distribution into \optimal" item frequencies. Recallthat frequency of an item is the number of times the item is to be broadcast in a cycle. Havingdetermined the optimal frequencies, second block in Figure 2 uses the frequencies to determinethe broadcast schedule. Our goal is to perform the functions of the two blocks in such a waythat overall mean access time, t, is minimized. Note that Figure 2 gives a low-level abstractionof the procedure. This helps in obtaining an expression for Optimal Overall Mean Access Time.Algorithms presented here do not use this two-step procedure, however, they are formulated basedon the results obtained in this discussion.3.1 Mapping Demand to FrequenciesWe �rst present theoretical results that motivate our scheduling schemes. The �rst observationstated in Lemma 1 below is intuitive. This observation also follows from a result presented in [12],and has been implicitly used by others (e.g., [3, 4, 15]).Lemma 1 The broadcast schedule with minimum overall mean access time results when the in-stances of each item are equally spaced.Proof of the lemma is omitted here for brevity. In reality, it is not always possible to space instancesof an item equally. However, the above lemma provides a basis to determine a lower bound onachievable overall mean access time. Note that, while Lemma 1 suggests that spacing betweenconsecutive instances of item i should be constant, say si, si need not be identical to the spacingsj between instances of another item j.The objective in this section is to determine the optimal frequencies (fi's) as a function ofthe probability distribution (pi's) and the length distribution (li's). We assume the ideal situation,as implied by Lemma 1, where instances of all items can be equally spaced. This assumption,although often di�cult to implement, does lead to a useful result that the minimum possibleoverall mean access time is achieved when fi / ppipliTheorem 1 Square-root Rule: Given the demand probability pi of each item i, the minimumoverall mean access time, t, is achieved when frequency fi of each item i is proportional to ppi and7



inversely proportional to pli, assuming that instances of each item are equally spaced. That is,fi / ppipliTo put it di�erently, for items i and j, fifj = spipj sljliProof: Appendix A presents the proof. 2A special case of Theorem 1 when all items are of identical size was derived in [4, 15]For cycle size N , PMj=1 fjlj = N . Therefore, the above theorem implies that, fi =�Nppi=li� = �PMj=1 ppjlj�. Also, as spacing si = N=fi, a consequence of the above result isthat, for overall mean access time to be minimized, we needsi / plippiAs shown in Appendix A, from Theorem 1 it follows that, the optimal overall mean accesstime, named toptimal, is: toptimal = 12  MXi=1ppili!2 (3)toptimal represents a lower bound on achievable overall mean access time. As the lowerbound is derived assuming that instances of each item are equally spaced, the bound, in general,is not achievable. However, as shown later, it is possible to achieve performance almost identicalto the above lower bound.Now we present three scheduling algorithms. The �rst \on-line" algorithm determines whichitem should be broadcast next by the server. The second on-line algorithm distributes the itemsinto di�erent \buckets" and applies the �rst algorithm to these buckets instead of individual items,thereby reducing the computation cost. The third algorithm uses the �rst algorithm to generate abroadcast cycle with length approximately equal to a given size N .3.2 On-line Scheduling AlgorithmWhenever the server is ready to transmit a new item, it calls the on-line algorithm presented here[13]. The on-line algorithm determines the item to be transmitted next using a decision rule { thisdecision rule is motivated by the result obtained in Theorem 1. As noted previously, Theorem 18



implies that, for optimal performance, instances of an item i should be equally spaced with spacingsi, where si / plippiThis can be rewritten as s2i pili = constant (4)The above observation is used in our algorithm, as presented below. In the following, let Q denotethe current time and R(j) denote the time at which an instance of item j was most recentlytransmitted. R(j) is initialized to �1,1 for all j, and Q is initialized to 0. Note that, R(j) isupdated whenever item j is transmitted.ON-LINE algorithm:broadcast item i at time Qif (Q� R(i))2 pi=li � (Q� R(j))2 pj=lj ; 1 � j �M(if there is a tie, that is, if the above condition is satis�ed formore than one item, any one of those items may be chosen arbitrarily.) 2Q�R(i) is the spacing between the current time, and the time at which item i was previouslytransmitted. Note that, the term (Q�R(i))2 piliis similar to the term s2i pi=li in Equation 4 above. The motivation behind our algorithm is toattempt to achieve this equality, to the extent possible.Example 2: Consider a database containing 3 items such that p1 = 1=2, p2 = 3=8, and p3 = 1=8.Assume that items have lengths l1 = 1, l2 = 2 and l3 = 4 time units. Figure 3 shows theitems recently broadcast by the server (up to time < 100). The above on-line algorithm is calledto determine the item to be transmitted at time 100. Thus, Q = 100. Also, from Figure 3,observe that R(1) = 95, R(2) = 93, and R(3) = 96. The on-line algorithm evaluates the term(Q�R(j))2pj=lj for j = 1; 2; 3 as 12.5, 147/16 (=9.1875) and 0.5, respectively. As this term is thelargest for item 1, item 1 is transmitted at time 100. 2Performance measurements for the above algorithm are presented in Section 6. Our algo-rithm improves performance by a factor of 2 as compared to the probabilistic on-line algorithmspresented in [14, 15].While, in general, the proposed on-line algorithm performs close to optimal, it is possibleto construct examples where the schedule produced by the algorithm is not exactly optimal.1The choice of initial value will not a�ect the mean access time much, unless the broadcast is for a very shorttime. For broadcasts that last a short time, other initial values may perform better. For instance, R(j) may beinitialized to �plj . 9
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?Figure 3: Illustration of the on-line algorithm (Example 2)Example 3: Consider the following parameters: M = 2, l1 = l2 = 1, p1 = 0:2 + �, p2 = 1� p1,and � < 0:05. In this case, the on-line algorithm produces the cyclic schedule (1,2), i.e., 1,2,1,2,...,which achieves an overall mean access time of 1.0. On the other hand, the the cyclic schedule (1,2,2)achieves overall mean access time 2:9=3+2�=3 < 1. Thus, in this case, the on-line algorithm is notoptimal. However, the overall mean access time 1.0 of the on-line algorithm is within 3.5% of thatachieved by the cyclic schedule (1,2,2). 2The on-line algorithm produces a cyclic schedule, if the ties are resolved deterministically.Appendix B presents an argument to show that the schedule produced by the on-line algorithm iscyclic. However, size of the cycle may be large, and hard to predict accurately.3.3 On-line Algorithm with BucketingThe main disadvantage of On-line Algorithm is the high computational cost of O(M) required todecide the next item to broadcast. This cost can be reduced by partitioning the database intobuckets of items, as follows.Suppose that we divide the database into k buckets, each bucket Bi contains mi items,mi � 0, such that Pki=1mi = M , the total number of items in database. We maintain the items ineach bucket in a cyclic queue. At any time, only items at the front of the buckets are candidatesfor broadcast at that time. De�ne qj = Pi�Bj pi=mj as the average demand probability of theitems in bucket Bj , and dj = Pi�Bj li=mj as the average length of the items in bucket Bj . Notethat Pki=1miqi = 1. Let Q be the current time and R(i) be the time when item i was mostrecently broadcast. Let Ij denote the item at the front of Bucket Bj . As shown in Appendix C,for optimality, the following condition must hold when bucketing is used: If item i is in bucket Bj ,then si / qdj=pqj (5)and fi / pqj=qdj (6)The on-line algorithm with bucketing is obtained from the above result.10



ON-LINE WITH BUCKETING algorithm:broadcast item Im at the front of bucket Bmif (Q� R(Im))2 qm=dm � (Q�R(Ij))2 qj=dj; 1 � j � k(if the condition is satis�ed for more than one item,any one of those items may be chosen arbitrarily.)dequeue item Im from the front of the bucket Bm and enqueue at the end 2The above algorithm is quite similar to the original on-line algorithm except that the decisionrule is applied only to items at the front of each bucket. Hence, the algorithm needs to comparevalues for only k items giving the complexity of O(k). Observe that all items within the samebucket are broadcast with the same frequency. This suggests that the pi=li values of all items inany bucket should be close for good results.The Optimal Overall Mean Access Time resulting from the above algorithm as shown inAppendix C, is given by topt bucket = 12 0@ kXj=1mjqqjdj1A2 (7)Similar to toptimal, topt bucket is a lower bound on performance achievable with bucketing.The above equation shows that topt bucket is dependent upon the selection of values formj 's under the constraint that Pkj=1mj = M . Optimizing the bucketing scheme for a givennumber of buckets k requires that the mj 's be chosen appropriately, such that the above equationis minimized.For our simulations, we use a heuristic to determine the membership of items to the buckets.The heuristic for determining the membership of an item i to a bucket Bj is as follows:Let Rmin = minippi=li and Rmax = maxippi=li. Let � = Rmax � Rmin. If, for item i,ppi=li = Rmin, then item i is placed in bucket B1. Any other item i is placed in bucket Bj(1 � j � k) if (j � 1)�=k < (ppi=li � Rmin) � (j �=k). This is pictorially depicted in Figure 4.The above heuristic executes in O(M) time.
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B2Figure 4: Heuristic for assigning items to k buckets: The interval (Rmin; Rmax) is divided into kequal-sized sub-intervals. An item i whose ppi=li value belongs to the j-th sub-interval is assignedto bucket Bj (1 � j � k). 11



3.3.1 Comparison of Buckets and Multi-disk [3]The notion of a bucket is similar to that of a broadcast disk in the multi-disk approach proposedby Acharya et al. [3]. Therefore, the result in Equation 6 can be used to determine suitablefrequencies for the broadcast disks. The di�erences between the two approaches are as follows:(a) Our algorithm is on-line in that the broadcast schedule is not predetermined. This allows ouralgorithm to quickly react to any changes in parameters (such as demand probabilities). (b) Thealgorithm in [3] imposes a constraint that the instances of each item be equally spaced at the riskof introducing \holes" in the schedule (which may be �lled with other information). Our algorithmdoes not create such holes. (c) Our algorithm works well with items of arbitrary sizes. [3] isconstrained to �xed size items. (d) Acharya et al. do not have a way of determining the optimalfrequencies for the di�erent disks, whereas, our algorithm automatically tries to use the optimalfrequencies.3.4 Cyclic Scheduling AlgorithmWe can use the on-line algorithm to generate o�-line a schedule of size approximately equal to aspeci�ed size N . The schedule may then be used as a cycle and broadcast repeatedly. Here is asketch of the algorithm:while size of schedule < Nf generate the next item to schedule using On-line algorithmappend it to the schedulegExample 4: Suppose there are 3 items in database. Their probabilities of access are p1 =1=2; p2 = 1=4 and p3 = 1=4 respectively and their lengths are l1 = 6; l2 = 6 and l3 = 8 unitsrespectively. Let the speci�ed cycle size N be 80 time units.Let R(i) for i = 1; 2; 3 be initialized to �1. Start with current time Q = 0. The (Q �R(i))2pi=li values for the three items would be 0:08; 0:04 and 0:03 respectively. Hence we selectitem 1 having maximum value, include it in our broadcast schedule and set R(i) to current timeQ = 0. Next we increment Q by the length of item 1, l1, making Q = 6. We again determinethe (Q � R(i))2pi=li term for i = 1; 2; 3 which come out to be 2:99; 2:04 and 1:53 respectively.Hence we again select item 1 and append it to the schedule. We increment R(i) to current valueof time Q = 6 and then increment Q by the length of item 1 making Q = 12. We again determine(Q�R(i))2pi=li for i = 1; 2; 3 which come out to be 2:99; 7:04 and 5:28 respectively and hence weselect item 2 this time. The process is repeated until the size of schedule, Q equals or exceeds thespeci�ed value of N = 80 time units. The resulting schedule is shown in Figure 5. 2It is evident that the size of the schedule from the above algorithm may end up in beinggreater than the given size N . However, the error is bounded by the size of the largest item in thedatabase whose demand probability is non-zero.12
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0 6 12 18 24 32 38 44 52 58 64 72 80Q =Figure 5: Showing the broadcast cycle of Example 4. Note that initially the algorithm does notgenerate \sub-cycles", but after the initial transients are damped, the algorithm generates sub-cycles of items 3,2,1.The On-line algorithm requires the knowledge about the time of last broadcast R(i) of eachitem i to determine their spacing and hence the next item to broadcast. If R(i) values are notproperly initialized, it will take some iterations in the beginning to bring R(i) values to steadystate. Hence On-line algorithm shows a transient behavior at the beginning. The transients canhave an adverse impact on the schedule, if the initial transient forms a signi�cant fraction of thecyclic schedule.One way of mitigating the e�ect of the transients could be to run the On-line algorithm togenerate items (and discarding them) until each item is generated at least a speci�ed number oftimes. This is the point when, hopefully, all the transients have been damped and now the aboveCyclic Scheduling Algorithm may be used to generate the cyclic schedule.It should be noted that the given size N should be large enough such that all the itemswith non-zero demand probabilities are scheduled at least once. Also, in general, larger N resultsin lower access time.The main advantage of Cyclic Scheduling Algorithm, as in case of any o�-line schedule, isthat only a simple table look-up is needed each time the server needs to transmit an item (incontrast, the on-line algorithms presented earlier incur O(M) or O(k) overhead). For the o�-linealgorithm, initially, O(MN) overhead is incurred in generating the cyclic schedule. The initialoverhead is amortized over the period of time for which the schedule is used.4 E�ect of Transmission Errors on Scheduling StrategyIn the discussion above, we assumed that each item transmitted by the server is always receivedcorrectly by each client. As the wireless medium is subject to disturbances and failures, thisassumption is not necessarily valid. Traditionally, in an environment that is subject to failures,the data is encoded using error control codes (ECC). These codes enable the client to \correct"some errors, that is, recover data in spite of the errors. However, ECC cannot correct large numberof errors in the data. When such errors are detected (but cannot be corrected by the client), theserver is typically requested to retransmit the data.In the asymmetric environment under consideration here it is not always possible for theclient to ask the server to retransmit the data.2 In this section, we evaluate the impact of uncor-rectable errors on the scheduling strategy for broadcasts [13].2Even if it were possible for a client to send a retransmit request to the server, it is not clear that a broadcastscheme should allow such requests, because it is possible that many clients receive the original broadcast correctly,but only a few do not due to some localized disturbance.13



Suppose that uncorrectable errors occur in an item of length l with probability E(l).3 Ap-pendix D shows that the overall mean access time, t, for this case, assuming that instances of itemi are equally spaced with spacing si, is given byt = MXi=1 sipi � E(li)1� E(li) + 12� = 12 MXi=1 sipi �1 + E(li)1� E(li)� (8)The Square Root Rule in Theorem 1 needs to be modi�ed to take errors into account asfollows :Theorem 2 Given that the probability of occurrence of uncorrectable errors in an item of length lis E(l), the overall mean access time is minimized whenfi / ppipli � E(li)1�E(li) + 12�1=2and si / p�1=2i l1=2i � E(li)1�E(li) + 12��1=2Proof : See Appendix D. 2The lower bound on overall mean access time now becomes,topt error =  MXi=1ppili� E(li)1� E(li) + 12�1=2!2Equation 8 and Theorem 2 can be applied to many random error models.4 For the purposeof demonstration, we now consider a simple error model. Let uncorrectable errors occur accordingto a Poisson process with rate � per unit time. Thus, the probability that item i transmitted bythe server will be received by a client without uncorrectable errors is e��li . If the item containsuncorrectable errors (with probability E(li) = 1� e��li), the item is discarded by the client, andthe client cannot use that instance of the item. The client must wait for the next instance of theitem. Substituting E(li) = 1� e��li in Equation 8, and simplifying yieldst = MXi=1 si pi �e�li � 12�Similarly using Theorem 2, the optimal frequency fi for an item i should be3Now, li denotes length of item i after encoding with an error control code.4Burst error models need somewhat di�erent analysis. As burst errors are likely in wireless channels, this is animportant subject for future research. 14



fi / ppipli �e�li � 12�1=2and si / p�1=2i l1=2i �e�li � 12��1=2The scheduling algorithms presented previously can be trivially modi�ed to take into accountthe new square-root rule (Theorem 2), to design good schedules for environments subject to failure.The above result suggests that large items should be transmitted in smaller chunks (this is usuallytrue when dealing with errors). However, doing so requires that the client to be able to piecetogether an information item using chunks that may arrive out of order.5 Multiple Broadcast ChannelsThe discussion so far assumed that the server is broadcasting items over a single channel and allthe clients are tuned to this channel. One can also conceive an environment in which the server hasa large available bandwidth which is divided into multiple channels, the channels being numbered1 through c. The clients can then subscribe to as many channels as they want (and can a�ord).It is apparent that proper use of these channels should result in better performance. Here we givetwo di�erent schemes to exploit these channels to improve performance.5.1 Channel Schedule StaggeringThis scheme is basically an extension of cyclic scheduling algorithm. Here we assume that aschedule is created before hand using some o�-line algorithm such as the cyclic scheduling algorithmdescribed earlier. The same schedule is broadcast on every available channel { the schedule onchannel i is delayed (i�1) � time units as compared to channel 1. We refer to this as \staggering".Thus, if an instance of item i appears on channel j at time t, then on channel j+1, the correspondinginstance of item i would appear at time t+ � . A client, if tuned to more than one channel, shouldtry to listen to the channels which are equidistant from each other. For example, if there are sixchannels used by server for data broadcast and a client can tune to three di�erent channels, itshould listen to channels 1, 3 and 5 or channels 2, 4 and 6. Of course, the total number of channelsmay not always be an integral multiple of the number of channels a client is listening to. In general,the subscribed channels may be selected to be as equidistant as possible.It can be shown that for two channels (c = 2), optimal overall mean access time is achievedwhen the o�set � is the weighted average of the spacing, si, over all items, that is,� = 12 MXi=1 pi sisi is the optimal spacing between consecutive instances of item i. The above result assumes thatLemma 1 is satis�ed by all the items. While equal spacing is not always achievable, it can be15



approximated (as done by our scheduling algorithms). Similar results may be obtained for largernumber of channels as well.5.2 On-line scheme for multiple channelsThis scheme is the modi�cation of the on-line algorithm, described in Section 3.2, to accommodatemultiple channels. In this case, a client capable of listening to n broadcast channels, listens tochannels 1 through n (unlike previous section where the channels should be as equidistant aspossible).The on-line scheduling scheme works as follows. Generate items to broadcast over channel1 using the normal on-line algorithm (as in Section 3.2). For channel 2, generate the items usingthe same on-line algorithm, but with di�erent interpretation of R(i) for item i. Let us de�ne Rj(i)as the instant when item i was last broadcast over channel j. Here R(i) is de�ned as the maximumof R1(i) and R2(i), 1 � i � M , and use it in the on-line algorithm to generate items for channel2. Similarly, we de�ne R(i) to be maximum of R1(i), R2(i) and R3(i) for channel 3 and use theon-line algorithm to generate channel 3 items, and so on. More formally, the algorithm for thegeneration of items in channel k may be devised as follows :ON-LINE algorithm for channel k:R(i) = max1�j�cfRj(i)g; 8i; 1 � i �Mbroadcast item i at time Qif (Q� R(i))2 pi=li � (Q� R(j))2 pj=lj ; 1 � j �M(if there is a tie, that is, if the above condition is satis�ed formore than one item, any one of those items may be chosen arbitrarily.)Rk(i) = Q, where i is the item broadcast 2The above algorithm can be easily modi�ed to use bucketing. A complete analysis of thealgorithm and its simulation is one of the topics of our on-going research.6 Performance EvaluationWe consider two classes of demand probability distributions:� Skewed distribution: In this case, half the data items are requested more frequently than theother half. The distribution is characterized by a parameter B, where 0:5 � B � 1. Thedistribution can be formally de�ned as below:pi = 8><>: BbM=2c; 1 � i � bM=2c1�BM�bM=2c; bM=2c < i �MVarying the value of B yields distributions with di�erent amount of demand \skew".16



� Exponential distribution: In this case, item 1 is requested most frequently, and item Mis requested least frequently, the probabilities (pi's) being determined by an exponentialfunction of i. This distribution is characterized by a parameter 
. The distribution can beformally de�ned as below: pi = p1 e�
 (i�1)where p1 is evaluated by solving the equality PMi=1 pi = 1. Thus, p1 = (1� e�
)=(1� e�M
).Larger values of 
 cause pi to decrease more rapidly with increasing i.Each of these two probability distributions are evaluated with the following three lengthdistributions :� Uniform length distribution: Length li of item i is de�ned as li = L, where L is a constant.(We select L = 10 for our simulations.)� Increasing length distribution: Length li of item i, in this case, is de�ned as li = i, 1 � i �M .� Decreasing length distribution: In this case, length li of item i is de�ned as li = M � i+ 1,where M is the total number of items in server's database, and 1 � i �M .We compare the overall mean access time t achieved by two of our algorithms, on-line andon-line with bucketing, with the \optimal" t given by Equation 3toptimal = 12  MXi=1ppili!2In the �gures to be presented below, the curves corresponding to our on-line algorithm, andon-line with bucketing algorithm, are labeled as on-line and n buckets, respectively, where n showsthe number of buckets used. Whereas, the curve corresponding to toptimal is labeled optimal.It should be noted that the theoretical optimum values of t may not be achievable for allprobability distributions. However, the theoretical values do provide a measure to determine howclose to optimal our algorithms are.For the simulation results presented here, number of items (M) is 50. Similar results canbe obtained for larger values as well. The reason for choosing a small M was to enable us to runexperiments long enough to obtain simulation results with high con�dence. Each schedule wassimulated long enough until 300,000 requests were satis�ed. Uncorrectable transmission errors (asin Section 4) are not considered in these simulations.Figures 6, 7 and 8 plot overall mean access time against di�erent values of B, the parameterin skewed distribution, for uniform length, decreasing length and increasing length distributions,respectively. In each of these �gures, (a) plots simulation results and (b) plots analytical results.For on-line with bucketing algorithm curves, the analytical value was calculated using Equation 7for di�erent number of buckets. Note that on-line curve is a special case of on-line with bucketingcurves with number of buckets= M . The assignment of various items to buckets is performed usingthe heuristic presented in Section 3.3. 17
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(b) Analytical resultsFigure 6: Overall mean access time with skewed probability distribution (for di�erent values of B)and using uniform length distribution li = 10. All curves coincide in each graph.
530

540

550

560

570

580

590

600

610

620

630

640

0.5 0.6 0.7 0.8 0.9

o
v
e
r
a
l
l
 
m
e
a
n
 
a
c
c
e
s
s
 
t
i
m
e

parameter B

2 buckets(simulation)
5 buckets(simulation)

on-line
optimal

(a) Simulation results 530

540

550

560

570

580

590

600

610

620

630

640

0.5 0.6 0.7 0.8 0.9

o
v
e
r
a
l
l
 
m
e
a
n
 
a
c
c
e
s
s
 
t
i
m
e

parameter B

2 buckets(analytical)
5 buckets(analytical)

optimal

(b) Analytical resultsFigure 7: Overall mean access time with skewed probability distribution (for di�erent values of B)and using decreasing length distribution li = M � i+ 1, where M = 50.18
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, the parameterof exponential distribution, for uniform length, decreasing length and increasing length distribution,respectively. The observations made earlier for �gures 6, 7 and 8 are valid here as well.In order to emphasize the necessity of taking lengths of items into account, we also plotin Figure 12 a modi�ed version of on-line algorithm in which we use the equation s2i pi=constant,instead of s2i pi=li=constant. The �gure plots overall mean access time against di�erent values ofB, for decreasing length distribution, li = M � i+1. In the �gure, the normal on-line algorithm islabeled as on-line, whereas the modi�ed version which does not take lengths into account is labeledwithout lengths. Note that some of the previous work [4, 13, 15, 14] does not take into accountlengths of di�erent items (or assumes lengths to be uniform). It is evident from Figure 12 thattheir results cannot be applied to the case where lengths of di�erent items are di�erent withoutencountering loss in performance. 19
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(b) Analytical resultsFigure 9: Overall mean access time with exponential probability distribution (for di�erent valuesof 
) and using uniform length distribution li = 10. On-line and optimal curves in (a) coincide.
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(b) Analytical resultsFigure 10: Overall mean access time with exponential probability distribution (for di�erent valuesof 
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(b) Analytical resultsFigure 11: Overall mean access time with exponential probability distribution (for di�erent valuesof 
) and using increasing length distribution li = i
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We conclude from this section that on-line algorithm almost always performs very closeto optimal. Simulation results demonstrate that the on-line with bucketing algorithm allows atrade-o� between run-time overhead of the on-line algorithm, and its performance. We also sawthat ignoring di�erence in lengths of various items can have a signi�cant detrimental impact onperformance.7 Static and Adaptive BroadcastsIn the asymmetric communication environment under consideration, the clients may not be capableof sending requests for data to the server (or, it may not be desirable for the clients to send therequests to the server). In this case, the server must be provided with information (such asuser pro�les) which will allow the server to estimate the demand probability for each item. Thebroadcast schedule used by the server is determined completely by this estimate of the demand. Thebroadcast schedule will not change unless the user pro�les are updated. Such broadcast schedulesare said to be static.An adaptive scheme will continually gather statistics on the demand for various items, andmodify the broadcast schedule to best meet the demand. While we did not evaluate the adaptivebehavior of our algorithms, we believe that our on-line schemes can quickly adapt to any changesin the demand probabilities.To achieve adaptive behavior, the server must have some way to update its estimates ofdemand probability (pi). Viswanathan [14] describes several ways in which this information canbe conveyed to the server, including (i) when a mobile client moves from one cell to another, and(ii) when the client sends some other message, the access frequency information is piggybacked onthese messages. The idea is to minimize the need to send messages just to update the user accesspro�les at the server. Viswanathan [14] divides items into two classes: (i) items that are broadcastby the server, and (ii) items that are sent to clients only on-demand (i.e., when a request is receivedfrom the client for the item). Thus, clients send requests for items from class (ii), and simply waitfor the server to transmit an item from class (i).We suggest another approach that does not divide items into two classes as above [13].Instead, when a client needs some item, say i, it waits for some time bounded by a time-out � .If an interval of � is exceeded, then the client sends a request to the server. Thus, if an item isbroadcast by the server within � , no explicit request is sent. Parameter � would a�ect the meanaccess time, as well as the number of requests that are sent by the clients. The server, based onthe number of requests that are received, can update its estimate of demand probabilities (pi).These new estimates can be used to determine the appropriate broadcast schedule. Performanceevaluation of the above adaptive approach is a subject of future research.8 Related WorkThe problem of broadcasting data e�ciently has received much attention lately. The existingschemes can be roughly divided into two categories (some schemes may belong to both categories,we have listed them in the most appropriate category): Schemes attempting to reduce the accesstime [4, 3, 2, 1, 8, 12, 7, 6, 15, 16] and schemes attempting to reduce the tuning time [10, 9, 11].22



Ammar and Wong [4, 15] have performed extensive research on broadcast scheduling andobtained many interesting results. Our square root rule is a generalization of that obtained byAmmar and Wong. Wong [15] and Imielinski and Viswanathan [8, 14] present an on-line schemethat uses a probabilistic approach for deciding which item to transmit. Our on-line algorithmresults in an improvement by a factor of 2 in the mean access time as compared to the probabilisticon-line algorithm in [8, 15]. Chiueh [6] and Acharya et al. [3, 2, 1] present schemes that transmitthe more frequently used items more often. However, they do not use optimal degree of replication,unlike our schemes.Jain and Werth [12] note that reducing the variance of spacing between consecutive instancesof an item reduces the mean access time. The two schemes presented in this report do attemptto achieve a low variance. Similar to our discussion in Section 4, Jain and Werth [12] also notethat errors may occur in transmission of data. Their solution to this problem is to use errorcontrol codes (ECC) for forward error correction, and a RAID-like approach (dubbed airRAID)that stripes the data. The server is required to transmit the stripes on di�erent frequencies, muchlike the RAID approach spreads stripes of data on di�erent disks [5]. This requires the clients toreceive broadcasts on multiple frequencies. ECC is not always su�cient to achieve forward errorcorrection, therefore, uncorrectable errors remains an issue (which is ignored in the past work ondata broadcast).9 SummaryThis report considers asymmetric environments wherein a server has a much larger communicationbandwidth available as compared to the clients. In such an environment, an e�ective way for theserver to communicate information to the clients is to broadcast the information periodically.Contributions of this report are as follows:� We propose three on-line and o�-line algorithms for scheduling broadcasts, with the goalof minimizing the access time. Simulation results show that our algorithms perform quitewell (very close to the theoretical optimal). The proposed on-line algorithms are suitablefor adaptive broadcasts, as they can quickly adapt to any changes in demand probabilitydistributions.� The report considers the impact of errors on optimal broadcast schedules.� When di�erent clients are capable of listening on di�erent number of broadcast channels, theschedules on di�erent broadcast channels should be designed so as to minimize the accesstime for all clients. This report presents preliminary results on this problem.More work is needed on some problems discussed in this report. Future work will also includedesign of strategies for caching and updates that attempt to achieve optimal performance whileincurring low overhead. Further results will be made available at our web site athttp://www.cs.tamu.edu/faculty/vaidya/mobile.html .23



A Appendix: Proof of Theorem 1Theorem 1: Square-root Rule: Given the demand probability pi of each item i, the minimumoverall mean access time, t, is achieved when frequency fi of each item i is proportional to ppi andinversely proportional to pli, assuming that instances of each item are equally spaced. That is,fi / ppipliTo put it di�erently, for items i and j, fifj = spipj sljliProof: As instances of item i are spaced equally, the spacing between consecutive instances ofitem i is N=fi, where N = PMj=1 fj lj is the number of slots in the broadcast cycle. Also, in thiscase, the item mean access time is ti = si=2. Therefore, ti = N2fi . Now, overall mean access timet =PMi=1 piti. Therefore, we have,t = MXi=1 pi N2fi = 12 MXi=1 piNfi (9)De�ne \supply" of item i, qi = filiN . Thus, qi is the fraction of time during which item i is broadcast.Now note that, PMi=1 qi =PMi=1 filiN = NN = 1. Now, Equation 9 can be rewritten as,t = 12 MXi=1 piliqi (10)As PMi=1 qi = 1, only M � 1 of the qi's can be changed independently. Now, for the optimal valuesof qi, we must have @t@qi = 0, 8i. We now solve these equations, beginning with 0 = @t@q1 .0 = @t@q1= 12 @@q1  MXi=1 piliqi != 12 @@q1  p1l1q1 + M�1Xi=2 piliqi + pM lM(1�PM�1i=1 qi)!= 12  �p1l1q21 + pM lM(1�PM�1i=1 qi)2!=) p1l1q21 = pM lM(1�PM�1i=1 qi)2 (11)24



Similarly p2l2q22 = pM lM(1�PM�1i=1 qi)2 (12)From Equations 11 and 12, we getp1l1q21 = p2l2q22 =) q1q2 = sp1l1p2l2Similarly it can be shown that qiqj = s pilipjlj ; 8i; jThis implies that, the optimal values of qi's must be linearly proportional to ppili's. It iseasy to see that constant of proportionality a = 1PMj=1ppjlj exists such that qi = appili is the onlypossible solution for the equations @t@qi = 0. From physical description of the problem, we knowthat a non-negative minimum of t must exist. Therefore, the above solution is unique and yieldsthe minimum t.Substituting qi = ppiliPMj=1ppjlj into Equation 10, and simplifying, yields optimal overall meanaccess time as t = 12  MXi=1qpilj!2Also the optimal frequency of item i, fi may be obtained as qi = filiN / ppili,=) fi / rpili 2B Appendix: Cyclic Nature of the On-line ScheduleAssume that the ties in the on-line algorithm (Section 3.2) are resolved using a deterministicrule that is time-independent. With this assumption, for given (�xed) probability and lengthdistributions, the on-line algorithm produces a cyclic schedule (as shown here). The length of thecycle, however, is hard to predict. (NOTE: The initial transient may not be identical to the cycleproduced by the algorithm. We are focusing on the steady state behavior of the algorithm here.)The proof that the on-line algorithm produces a cyclic schedule is based on the observationthat the maximum spacing between consecutive instance of any item is �nite and bounded. Wepresent an informal proof. To simplify the proof here we assume that li = 1 for all i. The proofcan be generalized to arbitrary item sizes.Assume that the items are sorted such that pi � pj , if i < j. Thus, item 1 has the smallestdemand probability, and item M has the largest demand probability. Observe that, due to thedecision rule used in our on-line algorithm, any item may be broadcast at most once between25



consecutive instances of item M . (Thus, item M is broadcast at least once each M time units.)Similarly, between consecutive instances of item 1 each other item must be broadcast at least once.The time at which latest instance of item 1 was transmitted is R(1). Consider the timeinstances, say �1; �2; � � � ; �i; � � � where item M is broadcast after the latest instance of item 1, beforeitem 1 is broadcast again. (Recall that item M is transmitted at least once each M time units.)Now we show that the next broadcast of item 1 must occur within �nite and bounded time. Thatis the sequence �1; �2; � � � ; �i; � � � is �nite. As item M is broadcast at �i�1 and �i, without anintervening broadcast of item 1, it follows that(�i � �i�1)2pM � (�i � R(1))2p1(Recall that here we have assumed li = 1, 8i.) As �i� �i�1 �M , the above inequality implies thatM2pM � (�i �R(1))2p1However, the above inequality cannot hold for arbitrarily large ti. The left-hand-side of the in-equality is constant, while the right-hand-side increases monotonically with increasing i. Therefore,�i � R(1) cannot be larger than MppM=p1. Thus, there can be at most MppM=p1 instance ofitem M between consecutive instances of item 1. Similarly, the number of instances of each item i(2 � i �M) between consecutive instances of item 1 are �nite and bounded. Therefore, the spac-ing between consecutive instances of item 1 is bounded. Thus, the distinct item sequences thatcan appear between consecutive instances of item 1 are bounded in number. As each item appearsat least once between consecutive instances of item 1, if any item sequence is repeated twice (andsome sequence will eventually have to be repeated), the rest of the schedule will repeat itself (dueto deterministic nature of the algorithm). Thus, after an initial transient, the on-line algorithmwill produce a cyclic schedule. This argument can also be extended to variable size items.C Appendix: Proof of Optimal Overall Mean Access Time forOn-line with Bucketing AlgorithmProof: Suppose that each bucket Bj , 1 � j � k, contains mj items, mj > 0, Pkj=1mj = M . Letqj =Pi�Bj pi=mj and dj =Pi�Bj li=mj be the average access probability and average length of theitems in bucket Bj , respectively.The proof is similar to the proof in Appendix A. With bucketing, the frequency of all itemsin the same bucket is identical. We de�ne Fi as the frequency of items in bucket Bi. For optimalsolution, the items should be equally spaced. Therefore, spacing between consecutive instances ofan item in bucket i is N=Fi. Let Si denote the spacing N=Fi.Now, N =Pkj=1 Fjdjmj . Therefore, Si = N=Fi =Pkj=1 Fjdjmj=Fi. Let Ti denote the itemmean access time of an item in bucket Bi. Then, Ti = 12Si = 12N=Fi = 12(PMj=1 Fjdjmj)=Fi. Notethat, with the equal spacing assumption, item mean access time is identical for all items in thesame bucket. 26



The Overall Mean Access Time is now given byt = kXj=10@Xi2Bj pi1ATjSince Pi2Bj pi = mjqj , the above equation can be written ast = kXj=1mjqjTjor t = N2 kXj=1 qjmjFjWe de�ne supply of bucket Bj , denoted rj , as rj = Fjdjmj=N . Observe that Pkj=1 rj = 1.The above equation for t can be rewritten ast = 12 kXj=1 qjm2jdjrj (13)If we denote qjm2jdj as Xj , the above equation becomest = 12 kXj=1 Xjrjwhere Pkj=1 rj = 1. This equation has the same form as Equation 10. Therefore, from the proofin Appendix A it follows that, with bucketing, to minimize t the following condition must be true:rj / qXj (14)As Pkj=1 rj = 1, rj = pXjPMi=1pXj . Substituting this into Equation 13, replacing Xj = qjm2jdj , andsimplifying, we get topt bucket = 12 0@ kXj=1mjqqjdj1A2Substituting Xj = qjm2jdj in the above proportionality (14), we getrj / qqjm2jdj = mjpqjqdjAs rj = Fjdjmj=N , we now get FjdjmjN / mj pqjpdj . On simplifying, this yields,Fj / pqjpdj27



As Fj = N=Sj , we have, Sj / pdjpqjFinally, note that, if item i is in bucket Bj , then fi = Fj and si = Sj . 2D Appendix: Overall Mean Access Time in Presence of ErrorsHere we are not assuming bucketing. The result below can be easily generalized to the case whereitems are divided into buckets. Consider item i, instances of which are spaced si time units apart.The total time required to transmit the cycle is N . Then, fi = N=si. Also, as size of item i is li,we have PMi=1 fili = N .First, let us determine the item mean access time, ti, for item i. Observe that average timeuntil the �rst instance of item i is transmitted, from the time when a client starts waiting foritem i, is si=2 time units. If the �rst instance of item i transmitted after a client starts waiting iscorrupted, then an additional si time units of wait is needed until the next instance. Thus, eachinstance of item i that is received with uncorrectable errors adds si to the waiting time. Giventhat the probability that an instance of item i of length li contains uncorrectable errors is E(li),the expected number of consecutive instances with uncorrectable errors is obtained asE(li)1� E(li)Thus, the item mean access time is obtained to beti = si2 + si � E(li)1� E(li)� = si � E(li)1� E(li) + 12� = 12si �1 + E(li)1� E(li)�Thus, t = MXi=1 piti = MXi=1 pi si � E(li)1�E(li) + 12�Proof of Theorem 2 : As si = N=fi, the above expression for t can be rewritten as,t = MXi=1 pi Nfi � E(li)1�E(li) + 12� = MXi=1 pili � E(li)1�E(li) + 12�riwhere, ri = fi li=N . Now, PMi=1 ri = PMi=1 fili=N = N=N = 1. Thus, the above expression for thas a form similar to Equation 10, and can be minimized similarly. The optimization procedureyields the result stated in Theorem 2. 28
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