
Improving Performance of TCP over Wireless Networks �Bikram S. Bakshi P. Krishna N. H. Vaidya D. K. PradhanDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112E-mail: fbbakshi,pkrishna,vaidya,pradhang@cs.tamu.eduPhone: (409) 862-3411Technical Report TR-96-014yMay 1, 1996AbstractTransmission Control Protocol (TCP) assumes a relatively reliable underlying network wheremost packet losses are due to congestion. In a wireless network, however, packet losses will occurmore often due to unreliable wireless links than due to congestion. When using TCP over wirelesslinks, each packet loss on the wireless link results in congestion control measures being invokedat the source. This causes severe performance degradation. In this paper, we study the e�ect of(a) burst errors on wireless links, (b) packet size variation on the wired network, (c) local errorrecovery by the base station, and (d) explicit feedback by the base station, on the performance ofTCP over wireless networks.It is shown that the performance of TCP is sensitive to the packet size, and that signi�cantperformance improvements are obtained if a `good' packet size is used. While local recoveryby the base station using link-level retransmissions is found to improve performance, timeoutscan still occur at the source, causing redundant packet retransmissions from the source. Wepropose an \explicit feedback" mechanism to prevent these timeouts during local recovery. Resultsindicate signi�cant performance improvements when explicit feedback from the base station isused. A major advantage of our approaches over existing proposals is that, no state maintenanceis required at any intermediate host.Experiments are performed using the Network Simulator (NS) from Lawrence Berkeley Labs.The simulator has been extended to incorporate wireless link characteristics.�This research is supported, in part, by the Texas Advanced Technology Program under grants C-009741-052and C-999903-029.yThis report supersedes TR-95-049 1



1 IntroductionA typical wireless network with mobile users is implemented using a wired network of �xedhosts, some of which are augmented with wireless interfaces. Such hosts are called base stations.The base stations provide a gateway for communication between the wireless and wired network.Users of portable computers would like to execute popular applications like ftp, telnet, www-access, etc., over the wireless link, when they are mobile. Most of these popular applicationsemploy TCP as their transport-layer protocol. One of the primary reasons for the widespread useof TCP on the internet is its inbuilt algorithms for congestion control and avoidance. Over theyears, the internet community has incorporated new schemes into the TCP suite to make theseprotocols more robust to congestion. Details of schemes for congestion control and avoidance inTCP can be found in [2]. Here, we will give a brief overview of the general ideas behind theseschemes, as this explanation proves useful in understanding the problems typical to a wirelessnetwork.Two parameters of interest in this discussion are congestion window (cwnd), and slow-start-threshold (ssthresh) maintained by each TCP connection for use in ow-control. The valueof cwnd uctuates as new acknowledgments of previously sent data packets stream in. Themaximum amount of unacknowledged data that TCP can have on the internet at any time, isthe minimum of the receiver's advertised window and cwnd. The parameter ssthresh is used tocontrol the rate of growth of cwnd.Packets on the internet may get lost either due to congestion, or due to corruption by theunderlying physical medium. Given the low bit error rates of wired links, almost all losses arerelated to congestion. TCP's reaction to losses is based on this very observation. Losses aredetected either by timeouts at the source or by multiple duplicate acknowledgements (dupacks)from the receiver (referred to as the fast-retransmit policy [5]). Upon loss of a packet, TCP reactsby setting ssthresh to half the value of cwnd, subsequently decreasing cwnd to one, and enteringthe slow-start phase. This measure would appear severe, but works well, because cutting thewindow size and thus limiting the amount of unacknowledged data on the network, is the moste�ective way of dealing with congestion. In addition to the above measures, the timeout valueis doubled upon each consecutive packet loss. Only upon receipt of an acknowledgement for a\non-retransmitted packet" is the timeout value recomputed [1].While wired links o�er a virtually error free transmission medium, errors on wireless linkstend to be frequent and bursty, and are highly sensitive to direction of propagation, multipathfading, and general interference. As stated earlier, TCP assumes that each packet loss is solely2



due to congestion. However, in a wireless network, TCP will encounter packet losses that maybe unrelated to congestion. Nonetheless, these losses trigger congestion control measures at thesource and severely degrade performance. In addition, for wide-area wireless networks, the packetsize over wireless links is typically much smaller than the packet size over the wired network.For example, the packet size over wireless links for CDPD Networks [12] is only 128 bytes. Asa result, each packet on the wired network gets fragmented when transmitted over the wirelesslink. Loss of a fragment over the wireless link will initiate error recovery and congestion controlmechanisms at the source, causing noticeable performance degradation.In this study, we do not consider hando�s. In a separate study [17], we have proposed schemesto improve the performance of TCP in the presence of hando�s. In this study, we are only in-terested in the performance of TCP (for bulk data transfer) in the presence of losses in wirelessnetworks. The performance metrics of interest in this study are:� Goodput: This is the measure of how e�ciently a connection utilizes the network. It is de-termined as the ratio of useful data received at the destination and the total amount of datatransmitted by the source. If a connection requires a lot of extra packets to traverse the networkdue to retransmissions, its goodput is low. It is desirable that each connection have as higha goodput as possible. Clearly, this metric is of great signi�cance for e�cient operation of anetwork.� Throughput: This is the measure of how soon an end user is able to receive data. It is deter-mined as the ratio of the total data received by the end user and the connection time. A higherthroughput will directly impact the user's perception of the quality of service.In this paper we propose two approaches to improve the performance of TCP. They are:� Packet size variation: As stated earlier, the packet size on wide-area wireless networksis typically much smaller than the packet size on the wired network. In this approach,we improve the performance of TCP by choosing an `optimal' packet size on the wirednetwork. It is observed that the optimal packet size depends on the error conditions onthe wireless link. We show that choosing an optimal packet size over a non-optimal packetsize can improve performance by upto 30% over basic TCP. It should be noted that thisapproach does not require any change in the transport or the link layer protocols at anyhost in the network.� Explicit feedback: Local recovery from the base station is found to improve performanceof TCP. However, while the base station is performing local recovery, timeouts can stilloccur at the source. We propose an explicit feedbackmechanism that eliminates timeouts at3



the source during local recovery. We performed experiments on wide-area wireless networksas well as local-area wireless networks using explicit feedback from the base station to theTCP source. It is observed that using explicit feedback improves performance of TCPby upto 100% over basic TCP in wide-area wireless networks, and upto 50% in local-areawireless networks. Our choice of error characteristics over the wireless link is conservative.We expect our schemes to yield even better performance if wireless links are more lossy.The remainder of this paper is organized as follows. Section 2 presents a summary of the exist-ing proposals for improving TCP performance over wireless networks. We present our simulationenvironment in Section 3. Section 4 presents the discussion of the proposed approaches, namely`packet size variation', and `explicit feedback'. Results and conclusions follow in Section 5 andSection 6 respectively.2 Summary of Previous ApproachesCaceres and Iftode were among the �rst to investigate the impact of mobility on the perfor-mance of TCP [4]. The authors employ the fast retransmit procedure to recover quickly frompacket losses during hando�s. This work, however, does not address the issue of packet lossesdue to lossy wireless links.The split-connection approach [6, 7] suggests that a TCP connection between a mobile hostand a �xed host should be split into two separate connections { one between the mobile hostand the base station over the wireless medium, and another between the base station and the�xed host over the wired medium. Separation of ow control and congestion control of thewireless link from that of the �xed network, helps in improving TCP performance. However,the split-connection approach violates the semantics of end-to-end reliability. This is because,acknowledgments can arrive at the source even before the packet actually reaches the intendeddestination. Secondly, this approach requires a lot of state maintenance at the base station.Balakrishnan et.al. incorporate a transport layer aware agent (snoop agent) at the base stationin [11]. The snoop agent caches the TCP packets destined for the mobile host and performs localretransmissions after losses are detected by duplicate acknowledgments (dupacks) and timeouts.However, a timeout can occur at the source, and congestion control procedures invoked, whilethe snoop agent is trying to resend lost packets to the mobile host. Moreover, both snoop and thesplit-connection approaches do not perform well in the presence of bursty losses on the wirelesslinks.Several link level Channel State Dependent Packet (CSDP) scheduling policies are proposedin [9]. The performance of multiple TCP connections over a wireless LAN is investigated. It4



is observed that under FIFO packet scheduling at the base station, the head of line packet, ifencountering burst losses, could block the transmission of other packets. In case of multipleTCP connections sharing the wireless link, scheduling protocols such as round-robin providesigni�cant performance improvement over FIFO. The main limitation of this approach is thatthe performance improvement achievable depends mostly on the accuracy of the channel statepredictor. The problem of source timeouts exists in this approach too.3 Simulation EnvironmentWe use the Network Simulator (NS) [13] from Lawrence Berkeley Labs with extensions incor-porated to simulate wireless links, to evaluate the performance of our proposed schemes. NS isan extensible simulation engine built using C++ and Tcl/Tk that can simulate various avors ofTCP available today for wired networks. TCP-Tahoe is used for the purposes of our simulation.3.1 Wireless Link Parameters� Error Model : We consider a burst error model for errors on the wireless link. This errormodel is characterized by a 2 state markovmodel (as shown in Figure 1); the 2 states representinga good and a bad state. In each state, bit errors are poisson-distributed with a mean Bit ErrorRate (BER) of �g for the good state and �b for the bad state. The transition from good-to-bad state, and from bad-to-good state are also poisson-distributed with a mean transition rateof �gb=sec and �bg=sec respectively. We �x the mean BER in the good state, �g = 10�6, andthe mean BER in the bad state, �b = 10�2 (e.g. deep fades). The mean value of good period1�gb = 10sec, and the mean value of bad period 1�bg , is varied from 1 sec to 4 sec.
Good Bad

λ
gb

λ
bg

λ
g

λ
bFigure 1: Two State Markov Model for Burst Error Characterization�Maximum Transmission Unit (MTU) : This is the maximum link level packet size admis-sible on the wireless link. Any network layer data packet larger than the MTU gets fragmentedwhile traversing the wireless link. Typically, the MTU for the wide-area wireless network is small.Unless otherwise mentioned, we use 128 bytes as the MTU for the wireless network.� Overhead : A number of bytes is added to each network layer packet by the lower layerson the protocol stack before transmitting over the wireless link. These overheads are due to5



 

Wired Link

Link

Wireless
BS

SRC

FH

Fixed Host Base Station Mobile Host

SNK

MHFigure 2: Simulation Setupframing, error correction, segmentation, and synchronization. We assume that a packet over thewired network of length W bytes becomes 1.5W bytes after addition of these overheads. Sincewe assume a large overhead due to error correction, the BER during the good period (for bursterror model) is kept low. As a result, losses over the wireless link occur primarily during a badperiod. If a smaller overhead is chosen, then the BER during the good period should increase.� Bandwidth : Symmetrical, 19.2 Kbps (raw). After overheads due to Forward Error Correction(FEC), etc. have been removed, the e�ective link bandwidth is equal to 12.8 Kbps.� Delay : Transmission delay and propagation delay are the main delay components. Weassume that there is only one connection being served by the base station. Therefore, MACdelay is assumed to be negligible.3.2 Simulation ModelA simple network topology is chosen to make it easier to understand performance dynamics.As shown in Figure 2, there are three nodes : a �xed host (FH), a base station (BS) and a mobilehost (MH). There is a wired link (56 Kbps) between the �xed host and the base station and awireless link (19.2 Kbps) between the base station and the mobile host. In this paper, we areonly concerned with bulk data transfer from a �xed host to a mobile host. Therefore, a TCPsource (SRC) is embedded in the �xed host, and a TCP sink (SNK) is embedded in the mobilehost.3.3 TCP ParametersWe use Tahoe TCP which incorporates slow start, congestion avoidance and fast-retransmitalgorithms [2, 13]. Unless otherwise speci�ed, the window size is set to 4 Kbytes. We runexperiments for di�erent packet sizes ranging from 128 bytes to 1536 bytes. The header size isset to 40 bytes. The granularity of the TCP clock is set to 100 msec, implying that the roundtriptimes are measured to the nearest 100 msec.3.4 Graphical OutputPacket traces for a connection may be obtained as graphical output from the simulator. Foreach graph (as shown in Figures 3-5), the horizontal-axis shows the time in seconds, while thevertical-axis denotes packet numbermod 90. Each mark on the graph indicates a packet generated6



by the TCP source. Packet retransmissions are indicated by multiple adjacent marks having thesame vertical-coordinate, but di�ering in transmission time. For example, in Figure 3, Packet 44gets retransmitted twice; once at 25.9 sec, and then again at 28.3 sec.4 Proposed ApproachesIn this section, we provide detailed discussions on each of the following approaches:� E�ect of varying packet size on the wired network.� E�ect of local recovery and explicit feedback mechanism.4.1 E�ect of Packet Size VariationIn this section we will discuss the e�ect of variation of packet size on the wired network on theperformance of TCP without local recovery from the base station. Here, our aim is to improveTCP's performance without making changes in the transport layer or the link layer at any host.Typically, the MTU on a wide-area wireless network is kept small. This reduces the probabilityof packets getting corrupted during transmission over the wireless medium. For example, theMTU in CDPD networks is 128 bytes [12]. However, packets on the wired network larger thanthe wireless MTU get fragmented into multiple MTUs before transmission over the wireless link.Fragmentation of packets on a heterogeneous network appears to have many advantages aspointed out in [15]. The end hosts are relieved fromworrying about the size of their data-segmentseven though the intermediate links may have largely di�erent MTU sizes. If the packets from thesource are larger than the MTU of an intermediate link, the routers at the ends of this link areresponsible for fragmenting and subsequently reassembling the packet. Clearly, this approachwill give better throughput in cases where an intermediate high bandwidth link supports largerMTU sizes (those comparable to the size of the packet from the source).While fragmentation may appear to be an attractive solution to the wide discrepancy ininternetwork MTU sizes, the authors in [15] recommend it be avoided. It is pointed out thatdropping or corruption of a single such fragment will result in the whole packet being dropped.The source would then have to retransmit the entire packet causing more fragments to litter thenetwork and compound congestion problems. For these reasons, fragmentation of data packetsshould be avoided as far as possible.The above argument has important rami�cations for e�cient operation of TCP over wide-area wireless networks. While throughput of TCP is sensitive to the error characteristics of thelink, we show that the packet size on the wired network also a�ects results. Note that, if PathMTU Discovery (PMTU) [21] is used to decide the size of the data packet to be used for a TCPconnection, the packet size chosen will be equal to the smallest MTU among all links along the7



route for the connection. In this case, it will be the MTU on the wireless link. If neither theMSS option, nor PMTU are used during TCP connection establishment, the source assumes thedefault IP datagram size of 576 bytes [22] as the packet size.We performed experiments for di�erent packet sizes under di�erent error conditions over thewireless link. Our results indicate that for most error conditions, the optimal packet size di�ersfrom the MTU on the wireless link as well as the default IP datagram size. The numerical resultsof this study are presented in Section 5. We show that based on wireless link error characteristics,choosing a `good' packet size will provide signi�cant performance improvements without havingto maintain any state information per connection at the the base station. This proposal maysimply be implemented by maintaining a �xed table at each base station which maps a particularwireless link error characteristic to the `good' packet size for that error characteristic.Even though a judicial choice of packet size gives performance improvements, there exists asubstantial di�erence between the performance obtained, and the theoretical maximum achiev-able. Using local recovery and explicit feedback mechanisms presented in the next section, wecan obtain goodput and throughput values that nearly equal the theoretical maximum.4.2 Explicit FeedbackWe will �rst illustrate the e�ects of losses, local recovery and explicit feedback on TCP withthe help of an example.4.2.1 An ExampleA simple experiment is run on our simulator for a network con�guration shown in Figure 2, wherebulk data is transmitted from a �xed host to a mobile host. The packets are subjected to burstlosses on the wireless link. The losses are determined using the two-state markovmodel explainedearlier. For this example we use a simpler model, where the bit-errors and state-transition valuesare assumed to be constant and do not follow a random distribution. This is done so that we canexactly duplicate the errors and state transitions for each of the three experiments; basic TCP,local recovery, and explicit feedback. Following are the parameters used in these experiments:mean BER in good state, �g = 10�6, mean BER in bad state, �b = 10�2, 1�gb = 10sec, and1�bg = 4sec. The packet size on the wired network is equal to 576 bytes. The window size is equalto 4 Kbytes. As stated earlier, the MTU on the wireless link is equal to 128 bytes.The simulation starts with the wireless link in a good state. It remains in the good state for10 sec and then enters the bad state. It remains in the bad state for 4 sec and then reenters goodstate. This cycle continues for the length of the connection.8



Basic TCP
packet

time

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00Figure 3: Basic TCPFigure 3 shows the trace of packets for a connection using basic TCP. During the bad periods,all packets transmitted over the wireless link are lost. For example, consider the bad periodbetween 24-28 sec, where packets 44-50 are lost on the wireless link. The source detects theloss of packet 44 only after a timeout at 25.9 sec as all acknowledgements from the mobile hostalso get lost during this bad period. The source now initiates congestion control measures andretransmits the lost packets, causing degradation of goodput as well as throughput.Figure 4 shows the trace of packets for the same connection but using local recovery at thebase station. (The basic setup of Figure 2 is modi�ed to employ local link-level retransmissionsfrom the base station.) The link-level protocol used is similar to to the protocol in [9]. Thisinvolves aggressive retransmission with packet discards. If the base station does not receive anacknowledgement following a packet transmission, it retransmits the lost packet after a randomretransmission backo�. A maximum of RTmax successive retransmissions are allowed before apacket is discarded. We set RTmax to 13 [12]. It can be noticed that in most bad periods, localrecovery at the base station prevents packet losses on the wireless link. For example, between24-28 sec, no packets need to be retransmitted from the source. However, in some bad periods,the source may time out waiting for acknowledgments of packets that have already been sent.This is evident in the bad period of 10-14 sec, where a timeout for packet 27 occurs at the sourceat 13.75 sec.The problem of redundant retransmissions (from the TCP source as well as the base station)9



Local Recovery
packet

time

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00Figure 4: Local Recoverywas also pointed out in [3]. The authors in [3] suggested that error recovery employed at thelink layer could potentially interfere with TCP's timeout mechanism. This leads to competingor redundant retransmissions. In our example, redundant retransmissions occur for packet 27.While the base station is trying to transmit the packet to the mobile host, the source times outand retransmits the same packet. This problem will not arise if TCP implementations use a verycoarse timer. Current TCP implementations have a coarse timer granularity (of the order of300-500 millisecond). Other approaches that employ local recovery [9, 11] assume a coarse timer,which is why they do not notice this problem of redundant retransmissions during local recovery.Recent proposals advocate the use of �ner granularity timers, as this increases the sensitivityof the source TCP to congestion on the network [23]. In line with this trend, we use a timergranularity of 100 milliseconds for our experiments.Explicit feedback from the base station can completely eliminate the possibility of timeoutsoccurring at the source, while the wireless link is in a bad state. The results of using explicitfeedback are shown in Figure 5. As can be seen, there are no timeouts at the source, andtherefore, the source does not invoke congestion control measures during any bad period. Inthe next section, we explore the possibility of using existing feedback mechanisms, like ExplicitCongestion Noti�cation ECN [23] for improving TCP performance over wireless links.10



Explicit Feedback
packet

time

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00Figure 5: Explicit Feedback4.2.2 Can ECN work for us ?The use of explicit feedback for congestion control in the internet has already been shown towork well. ECN in the form of ICMP source quenches [20], is a host's means of informing thesource of congestion in the network. This noti�cation is sent to the source after either a packethas been dropped by the host due to an overow in its bu�ers, or if it anticipates a droppingof packet(s) based on existing congestion conditions. The latter approach will be more e�ectivein combating congestion as it predicts congestion and tries to take preventive measures beforepackets are actually dropped. Upon receipt of this explicit feedback, the source reduces itscongestion window to allow a reduction of congestion in the network.A base station can be con�gured to function as a gateway supporting ICMP messages. When awireless link enters a bad state, little data is able to get across to the mobile host (Figure 6, Case2). This results in queuing of packets from the source host at the base station. It would appearthat under these circumstances sending a source quench message to the source would decreasethe ow of new packets to the base station, and thus prevent unnecessary timeouts. This shouldimprove the goodput as well as the throughput for the connection. Our results show otherwise.After carefully tracing the ow of data and acknowledgement packets, we came to the followingconclusion. When a wireless link enters a bad state, each datagram (acknowledgement) requiresmultiple retransmissions before it can get across to the mobile host (base station). This increaseddelay will result in the source TCP timer timing out (Figure 6, Case 3(a)). A source quench11



message from the base station at this stage will not be able to prevent timeouts of packets thatare already on the network. It will of course, stem the ow of any further packets, and reducethe probability of their timeouts. This observation does, however, give us an important clue.When a wireless link is in a bad state, what is needed to prevent timeouts of packets queued atthe base station, is a mechanism to update the TCP timer at the source. This mechanism willessentially thwart the source's attempts to invoke congestion control in response to delays on thewireless link. If the base station is able to provide such a mechanism, then we can hope for ameasurable improvement in throughput.4.2.3 Explicit Bad State Noti�cation (EBSN)The preceding observation led us to explore how the TCP timer could be updated at the source.Clearly, in the absence of acknowledgments coming from the mobile host when the link is ina bad state, we do not have an estimate for the round-trip time. We cannot also generateacknowledgments from the base station for packets that have not yet been received by themobile host. Neither can we send acknowledgments of previously acknowledged packets as theywill be interpreted as dupacks. What seems to be a solution is to send an Explicit Bad StateNoti�cation (EBSN) that would cause the previous timeout to be canceled and a new timeoutput in place, based on the existing estimate of round trip time and variance1. Thus, the newtimeout value is identical to the previous one. See Appendix for implementation details. Figure 6,Case 3(b) summarizes the working of EBSN and its role in preventing timeouts at the source.The EBSN approach does not interfere with actual round trip time or variance estimates, andat the same time prevents unnecessary (and detrimental) timeouts from occurring. When thewireless link is in a bad state, we do not want the source to decrease its window if there is nocongestion. At the same time we should prevent timeouts for packets that had already been puton the network before the wireless link encountered the bad state. Clearly, EBSN is successfulin accomplishing both these tasks.In our simulations, EBSNs are sent to the source after every unsuccessful attempt by the basestation to transmit packets over the wireless link. The correct timeout value at the source isreadjusted upon receipt of the �rst new acknowledgement from the MH following any EBSN mes-sages received. This acknowledgement may initially cause a large variance in the rtt calculationbecause of the large delay encountered on the wireless link. However, a new acknowledgement is1If the new timeout value is chosen to be very large, deadlock might occur, where the source might nevertimeout. On the other hand, if we choose a very small value for the new timeout, a timeout might occur beforethe next EBSN arrives. The existing timeout estimate worked well for our simulations.12



TIMEOUT!!

MSSs

EBSN
Timeout prevented.

BS generates EBSN

(No acks coming in)

Substantial Queueing

(No more acks coming in)

Base 
Station

Source
Host

Source
Host

Ack

Host

Mobile
Host

Host
Mobile

(No data gets through)
Window of Packets

Base 
Station

Base 
Station

Window of Packets

Source
Host

(No data gets through)

(Little or No data gets through)

Mobile

CASE 2: Wireless Link  going into Bad State

CASE 3a : Wireless Link in Bad State (Without EBSN).

CASE 3b : Wireless Link in Bad State (With EBSN)

WIRED WIRELESS

Base 
Station

Smaller MTUs

Acks

Minimal QueueingMSSs

Acks

Source
Host

Mobile
Host

CASE 1 : Wireless Link in Good State.

Figure 6: EBSN: How it works13



4000

5000

6000

7000

8000

9000

10000

11000

12000

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

K
bi

ts
/s

ec
)

Packet Size (Bytes)

Throughput vs. Mean Length of Bad Period (for Basic TCP)

bad period = 1 sec
bad period = 2 sec
bad period = 3 sec
bad period = 4 sec

Maximum throughput for bad period = 1 sec

= 2 sec

= 3 sec

= 4 secFigure 7: Basic TCP(Wide-Area): Mean GoodPeriod=10 sec 4000

5000

6000

7000

8000

9000

10000

11000

12000

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

K
bi

ts
/s

ec
)

Packet Size (Bytes)

Throughput vs. Packet Size (Using Explicit Feedback)

bad period = 1 sec
bad period = 2 sec
bad period = 3 sec
bad period = 4 sec

Maximum throughput for bad period = 1 sec

= 3 sec

= 2 sec

= 4 secFigure 8: EBSN(Wide-Area): Mean Good Pe-riod=10 seca good indicator that the wireless link has quit the bad state and has entered a good state. Thiswill ensure a steady inow of acknowledgments and ultimately reduce variance.4.2.4 EBSN in Local-Area Wireless NetworksA TCP source is more susceptible to timeouts during local recovery when round-trip times arevery small. The round-trip times are typically of the order of milliseconds in a LAN environment.Thus, a LAN environment is an ideal candidate for use of EBSN. We study the impact of EBSNin a typical local-area wireless network. In this case we assume no fragmentation over the wirelesslink. The setup in Figure 2 is modi�ed for LAN experiments. The wired link bandwidth is setto 10 Mbps, and the wireless link bandwidth is set to 2 Mbps. The TCP window size is �xed at64 Kbytes. Results of this study are presented in the next section.5 Results and DiscussionIn this section we �rst present the results of experiments performed on wide-area and local-area wireless networks. We then discuss various issues related to the explicit feedback mechanismusing EBSN.We take into account 40 bytes of header overhead while measuring connection throughput.The standard deviation for all results presented is less than 4%.5.1 Wide-Area Wireless NetworksFigure 7 and Figure 8 illustrate the variation of throughput with packet size for basic TCP,and EBSN respectively. As stated earlier in the Section 3, the e�ective maximum through-put (tputmax) (the maximumthroughput achievable without any errors) is kept as 12.8 Kbps. The14



theoretical maximum throughput (tputth) in the presence of errors is determined as ( �bg(�bg+�gb) �tputmax) ( which is � tputmax).The value of tputth for each �bg is marked on the top right hand corner of Figures 7 and 8.We varied the packet size on the wired network from 128 bytes to 1536 bytes. Each run involveda 100 Kbyte �le transfer from the �xed host to the mobile host. The mean length of the goodperiod is set to 10 sec. We ran experiments for bad period lengths with means ranging from 1to 4 sec.Figure 7 shows that for a given packet size, throughput increases as the length of bad perioddecreases. It can also be seen that for each bad period length, there is an optimal packet sizewhich delivers the maximum throughput. For example, in Figure 7, for bad period = 1 sec,packets of size 512 bytes give the best throughput, however, for a bad period = 3 sec, packetsof size 384 bytes give the best throughput. Clearly, a good choice of packet size could providesigni�cant performance improvements over basic TCP (about 30% improvement in throughputis obtained if 512 bytes is chosen as the packet size instead of 1536 bytes, for a bad period =1 sec). We would like to draw the reader`s attention to the large di�erence between tputth andthe throughput obtained even for the optimal packet size for a particular error condition. Forexample, tputth for bad period = 1 sec is 11.8 Kbps. However, the throughput achieved using512 bytes (the optimal packet size for bad period = 1 sec) is only 8.7 Kbps.It can be noticed in Figure 7, that for packet sizes beyond the optimal packet size, throughputdecreases. One of the main reasons for this degradation, is increased fragmentation of packets onthe wireless link. Loss of a single fragment causes the retransmission of the whole packet fromthe source. The impact of larger packet size over the wired link is better illustrated in Figure 9which shows the extra data transmitted by the source due to retransmissions. As is evident,the amount of retransmitted data increases with both the packet size and the length of the badperiod; larger the amount of retransmitted data, lower is the goodput of the connection.The performance of TCP using EBSN is illustrated in Figure 8. There is signi�cantly moreimprovement in performance of TCP using EBSN than performance of basic TCP. An interestingobservation is that unlike basic TCP, the throughput now increases with increase in packet sizes.This is because, irrespective of packet size, timeouts are being completely eliminated when EBSNis used. In the absence of timeouts, there are no redundant retransmissions from the source whichis shown in Figure 9. The performance is no longer sensitive to fragmentation over the wirelesslink, and larger packets perform better. For example, for 1536 bytes, and for a bad period = 4sec, we notice a 100% improvement in throughput using EBSN; the throughput for basic TCP15



is 4.5 Kbps, and for TCP using EBSN is 9.0 Kbps. Indeed, we expect improvements to be muchhigher for larger bad period lengths. The e�ectiveness of EBSN is evident from Figure 8, wherethroughput obtained using EBSN is quite close to the theoretical maximum tputth for largerpacket sizes.
0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600

D
at

a 
R

et
ra

ns
m

itt
ed

 (
K

by
te

s)

Packet Sie (Bytes)

Data Retransmitted vs. Mean Length of Bad Period

Using EBSN
bad period = 1 sec
bad period = 2 sec
bad period = 3 sec
bad period = 4 secFigure 9: Basic TCP vs EBSN(Wide-Area): 100 Kbyte File, Mean Good Period=10 sec

1

1.2

1.4

1.6

1.8

2

0.4 0.6 0.8 1 1.2 1.4 1.6

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Mean Length of Bad Period (sec)

Throughput vs. Mean Length of Bad Period

Theoretical Maximum
 Using EBSN

Using Basic TCP

Figure 10: Basic TCP vs EBSN(Local-Area): Mean Good Period=4 sec5.2 Local-Area Wireless NetworksThe packet size for this study is �xed at 1536 bytes. We also assume that there is no frag-mentation on the wireless link. The maximum throughput on the wireless link in the absence oferrors (tputmax) is chosen to be 2 Mbps. As before, the maximum theoretical throughput (tputth)in the presence of errors is given by ( �bg�bg+�gb � tputmax).Each run involved a 4 Mbyte �le transfer from the �xed host to the mobile host. The meangood period length is set to 4 sec. We ran experiments for di�erent bad period lengths with16



means ranging from 400 milliseconds to 1.6 sec. Figure 10 illustrates the variation of throughputwith bad period length for basic TCP and EBSN. The value of tputth for the corresponding badperiod lengths is also plotted. TCP using EBSN clearly outperforms the basic TCP scheme.For some bad period lengths, there is about 50% improvement in throughput using EBSN. Asbefore, the primary reason for performance improvement using EBSN is zero timeouts at the TCPsource (Figure 11). Once again, the goodput achieved using EBSN is 100%. This is in contrastto the basic TCP scheme, where source timeouts result in a large number of retransmissions.
0

50

100

150

200

0.4 0.6 0.8 1 1.2 1.4 1.6

D
at

a 
R

et
ra

ns
m

itt
ed

 in
 K

B
yt

es

Mean Length of Bad Period (sec)

Data Retransmitted vs. Mean Length of Bad Period

EBSN
Basic TCPFigure 11: Basic TCP vs EBSN(Local-Area): 4 Mbyte File, Mean Good Period=4 sec6 ConclusionsThis paper presents a study of the e�ect of burst errors, packet size variation, local recovery,and explicit feedback, on the performance of TCP over wireless networks. First, we proposevariation in packet size over the wired network to improve TCP performance. Since, the MTUon the wide-area wireless links is small, a packet on the wired network gets fragmented beforetransmission over the wireless link. Loss of a fragment causes signi�cant degradation in perfor-mance of TCP. Results show that an optimal packet size can lead to about 30% performanceimprovement over a non-optimal packet size. We have shown that the optimal packet size varieswith the error conditions on the link.Local recovery using link-layer retransmissions from the base station is shown to improveperformance. However, while the base station is performing local recovery, the source could stilltimeout. To prevent these timeouts, we propose an explicit feedback mechanism. The centralidea of our approach is to send an Explicit Bad State Noti�cation (EBSN) Message to the sourcefrom the base station during local recovery. Upon receipt of an EBSN, the source resets itstimeout value. This way, timeouts at the source during local recovery are totally eliminated. It17



is observed that TCP using EBSN provides upto 100% performance improvement over basic TCPin wide-area wireless networks, and upto 50% performance improvement in local-area wirelessnetworks. These results are for a very conservative error model for the wireless link. We expectgreater performance improvements for wireless links having higher BERs. We also show that thethroughput and goodput values obtained for TCP using EBSN are very close to the theoreticalmaximum.We now summarize the main advantages and disadvantages of the explicit feedback mechanismusing EBSN.Advantages:� Source timeouts are prevented during local recovery. This improves goodput and throughputof the connection. Note, that the improvements will be more pronounced in high BER wirelesslinks. � TCP using EBSN does not require state maintenance at any intermediate host.� E�ectiveness of some of the proposed approaches [9, 11] depend on the granularity of the TCPtimer. A TCP timer with �ner granularity will result in a larger number of timeouts during localrecovery. This will cause signi�cant degradation in throughput and goodput. With our explicitfeedback mechanism, the timeout value at the source is reset upon receipt of every EBSN. Thisreduces the number of timeouts, and in a large number of cases prevents timeouts from occurringat all. The e�ect of clock granularity on performance is now greatly reduced, thus improving therobustness of the network [23].Disadvantage:� The main disadvantage of EBSN is that it requires modi�cation to TCP code at the source.Note, however, the changes involved are minimal as shown in the Appendix.We view this work as a preliminary investigation into the e�ectiveness of explicit feedbackmechanisms, to improve performance of TCP in wireless networks. In this paper, we haveassumed that the wired network is not congested. We are separately studying the impact ofcongestion in the wired network on the e�ectiveness of EBSN [18]. This involves looking intoissues related to the interaction between ECN and EBSN. We are also investigating schemesto make a source timer more robust to larger delays on the wireless link without using explicitfeedback mechanisms. If this is possible, we will be able to achieve performance improvementscomparable to those using EBSN without changing TCP code at the end hosts.References[1] P. Karn and C. Partridge, \Estimating round-trip times in reliable transport protocols,"Proc. SIGCOMM, Aug., 1987. 18



[2] V. Jacobson, \Congestion Avoidance and Control," Proc. SIGCOMM, pp. 314-329, Aug.,1988.[3] A. DeSimone, M.C. Chuah, and O.C. Yue, \Throughput Performance of Transport-LayerProtocols over Wireless LANs," Proc. Globecom, December 1993.[4] R. Caceres and L. Iftode, \Improving the Performance of Reliable Transport Protocols inMobile Computing Environments," IEEE JSAC Special Issue on Mobile Computing Networks,1994.[5] W. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, 1994.[6] R. Yavatkar and N. Bhagwat, \Improving End-to-End Performance of TCP over MobileInternetworks," Proc. of Workshop on Mobile Computing Systems and Applications, Dec.,1994.[7] A.Bakre and B.R. Badrinath, \I-TCP: Indirect TCP for Mobile Hosts," ICDCS, Oct., 1994.[8] Tim Alanko et al, \Measured Performance of Data Transmission Over Cellular TelephoneNetworks." Technical report TR C-1994-53, University of Helsinki.[9] P. Bhagwat et. al., \Enhancing Throughput over Wireless LANs Using Channel State De-pendent Packet Scheduling," INFOCOM, 1995.[10] A.Bakre and B.R. Badrinath, \Hando� and System Support for Indirect TCP/IP," Proc.Second Usenix Symp. on Mobile and Location-Independent Computing, April, 1995.[11] H. Balakrishnan, S. Seshan, E. Amir, R. H. Katz, \Improving TCP/IP Performance overWireless Networks," Proc. 1st ACM Conf. on Mobile Computing and Networking, November1995.[12] Cellular Digital Packet Data System Speci�cation: Release 1.0, CDPD Forum Inc., 1993.[13] Sally Floyd, Steve McCanne, \Network Simulator." LBNL public domain software. Availablevia ftp from ftp.ee.lbl.gov.[14] R Braden, \Requirements for Internet Hosts { Communication Layers", RFC 1122, October1989.[15] C. A. Kent, J. C. Mogul, \Fragmentation considered harmful," SIGCOMM 1988.[16] Authors of this paper, \Performance of TCP over Wireless Networks," Tech Report # TR-95-049, December, 1995.[17] Authors of this paper, \Seamless Communication over Mobile Wireless Networks," TechReport # TR-96-25, April, 1996.[18] Authors of this paper, \Explicit Feedback in Wireless Networks," Tech Report in prepara-tion. 19



[19] A. Conta and S. Deering, \Internet Control Message Protocol (ICMPv6) for the InternetProtocol Version 6 (IPv6)," RFC 1885, December, 1995.[20] J. Postel, \Internet Control Message Protocol," RFC 792, September 1981.[21] J. Mogul and S. Deering, \Path MTU Discovery," RFC 1191, November, 1990.[22] J. Postel, \The TCP Maximum Segment Size and Related Topics," RFC 879, November,1983.[23] Sally Floyd, \TCP and Explicit Congestion Noti�cation," ACM Computer CommunicationReview, V.24, No. 5, October 1994.Appendix: Implementation of EBSN in our SimulatorIn the normal operation of TCP, each time a data packet is sent out by a TCP source, anypreviously set timer is �rst disabled, and a new one put in place based on the latest estimate ofround trip time. We reproduce the basic algorithm below. Details may be found in [stev94].Basic TCPtcp_recv(){ if ((fast_retransmit) || (timeout)) {update ssthresh;update cwnd;update timer_backoff;set_rtx_timer(); /* explained below */retransmit lost pkt;return;}/* Other packet processing */} The set rtx timer() procedure cancels any previous timer, and puts a new one in place basedon the latest estimate of round trip time.set_rtx_timer(){ if previous timer(TCP_TIMER)cancel(TCP_TIMER);/* Now calculate new timeout based on latestestimate of round trip time and variance */new_timeout = calculate_new_timeout();set_tcp_timer(new_timeout);} 20



Response to an EBSN message requires minimal changes to the tcp code, which are localizedto the tcp recv() routine only. On receipt of an EBSN message, the source replaces any previoustimer with a new timer retaining the current timeout value. Note, that EBSN can be implementedas a new type of ICMP message.TCP's response to EBSNtcp_recv(){ if EBSN received {set_rtx_timer();return;}/* Other packet processing */}

21


