Data Broadcast Scheduling®
(Part 1)

Nitin H. Vaidya Sohail Hameed
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112
E-mail: {vaidya,shameed}@cs.tamu.edu
Phone: (409) 845-0512
FAX: (409) 847-8578

Technical Report 96-012

May 1, 1996

Abstract

With the increasing popularity of portable wireless computers, mechanisms to ef-
ficiently transmit information to such clients are of significant interest. The environ-
ment under consideration is asymmetric in that the information server has much more
bandwidth available, as compared to the clients. In such environments, often it is not
possible (or not desirable) for the clients to send explicit requests to the server. It
has been proposed that in such systems the server should broadcast the data period-
ically. One challenge in implementing this solution is to determine the schedule for
broadcasting the data, such that the wait encountered by the clients is minimized.
A broadcast schedule determines what is broadcast by the server and when. In this
report, we present two algorithms for determining broadcast schedules that minimize
the wait time. Simulation results are presented to demonstrate that our algorithms
perform well.

*Research reported is supported in part by Texas Advanced Technology Program. grant 009741-052-C.

1 Introduction

Mobile computing and wireless networks are fast-growing technologies that are making ubiq-
uitous computing a reality. With the increasing popularity of portable wireless computers,
mechanisms to efficiently transmit information to such clients are of significant interest. For
instance, such mechanisms could be used by a mobile support station (or base station) to
communicate information of common interest (e.g., stock quotes, sports scores, etc.) to the
mobile hosts within its cell. Approaches for determining what to transmit and when, is the
subject of this report.

In the environment under consideration, the downstream communication capacity
from server to clients is relatively much greater than the upstream communication capacity,
from clients to server. Such environments are, hence, called asymmetric communication
environments [2]. In an asymmetric environment, broadcasting the information is an effec-
tive way of making the information available simultaneously to a large number of users.
For asymmetric environment, researchers have previously proposed algorithms for designing
broadcast schedules [1-3,5-13]. Two metrics are used to evaluate these algorithms:

o Access time: This is the amount of time a client has to wait for some information that
it needs. It is important to minimize the access time so as to decrease the idle time at
the client. Several researchers have considered the problem of minimizing the access

time [5, 10, 11, 6, 3, 2, 13]

e Tuning time: This is the amount ot time a client must listen to the broadcast until
it receives the information it needs. It is important to minimize the tuning time,
because the power consumption of a wireless client is higher when it is listening to the
transmissions, as compared to when it is in a doze mode. Previous work has tried to
minimize the tuning time by providing the clients with an index that provides hints to
the client of when the required data is scheduled to be broadcast [8, 10, 12]. Without
this information, the client must listen continually until the necessary information is
received.

This report presents an approach to minimize the access time. Our results can be combined
with the schemes for reducing tuning time to obtain a comprehensive solution. We consider
a database that is divided into pages. Thus, a broadcast schedule specifies when each page
is to be transmitted.

The main contributions of this report are as follows:

e Square-root Rule: We show that the access time is minimized when the frequency
of a page (in the broadcast schedule) is proportional to the square-root of its demand

(characterized as demand probability). While this rule is similar to a result by Imielinski
and Viswanathan [9] for a probabilistic scheduling algorithm, our approach results in
half the access time as compared to that in [9]. Our result is derived for a deterministic
algorithm, based on a somewhat different model. The similarity between our result
and that in [9] suggests that the square-root rule may be inherent to optimal scheduling
of broadcast schemes.

o We present two algorithms for scheduling broadcasts, based on the above square-root
rule. One algorithm generates a cyclic schedule for a given cycle size. The second
algorithm is not constrained to produce a cyclic schedule with any specified size. Fach
time a data page is to be transmitted, this algorithm is called, and it returns the
identifier of the page that should be transmitted. Thus, the first algorithm can be
considered off-line, while the second algorithm is on-line. We discuss relative merits
of the two algorithms later. It is worth noting that these algorithms can be combined
with the ideas previously proposed in [9, 10, 12] to minimize access time as well as
tuning time.

Simulation results are presented to demonstrate the performance of our algorithms.

o Impact of errors on the scheduling policy is evaluated. In an asymmetric environ-
ment, when a client receives a data page containing errors (due to some environmental
disturbance), it is not realistic for the client to request retransmission of the data. In
this case, the client must wait for the next transmission of the required data page. We
evaluate how the optimal frequencies of the pages are affected in presence of errors.

The rest of the report is organized as follows. Section 2 introduces some terminology.
Section 3 describes two types of approaches for scheduling broadcast cycles: static and
adaptive. The focus of this report is on static scheduling; we briefly describe how our
schemes can be made adaptive. Section 4 derives the square-root rule, and presents our static
broadcast scheduling algorithms. The impact of errors is analyzed in Section 5. Section 6
evaluates the performance of our schemes. Section 7 briefly discusses how our schemes can
be made adaptive. Related work is summarized in Section 8. The report concludes with
Section 9.

2 Preliminaries

In this section, we introduce terminology and notation to be used in the rest of the report.

We assume that the database at server is divided into pages. Size of a page is measured
in terms of the amount of time it takes to broadcast the page. The main results obtained

in this report are applicable when the pages are not necessarily identical in size. However,
for simplicity, unless otherwise specified all pages are assumed to be identical in size.

In much of our initial discussion, we focus on cyclic scheduling, i.e., algorithm to
design a broadcast cycle schedule with a specified cycle size. We will apply our results to
later design an “on-line” algorithm for broadcast scheduling.

The time required to broadcast one page is referred to as one pagetime. Let M denote
the total number of data pages in the server’s database. The broadcast cycle is divided into
a fixed number! of slots; the number of slots being denoted as N. Each broadcast slot
contains one page of information. One pagetime is equal to the time required to broadcast
one slot. An appearance of a page in a broadcast slot is referred to as an instance of the
page. There may be multiple instances of a page in the cycle. Schedule for the broadcast
cycle is an assignment of the pages to the slots in the cycle. More formally, a schedule is a
function ¢, ¥ : S — D, where D = {d|l < d < M} represents the set of M data pages and
S ={s]0 < s < N — 1} represents the set of slots in the broadcast cycle.

We define the frequency of a page as the number of instances of the page in the
broadcast cycle. f; denotes frequency of page . The f; instances of a page are numbered
1 through f;. The spacing between two instances of a page scheduled in slots A and B
(B > A) is equal to (B — A) modulo N. s;; denotes the spacing between j-th instance of
page ¢ and the next instance of page ¢ (1 < j < f;). Note that, after the f;-th instance of a
page in a transmission of the broadcast cycle, the next instance of the same page is the first
instance in the next transmission of the broadcast cycle.

Page Mean Access Time of a page 1, denoted ¢;, is defined as the average wait by

a client needing page ¢ until page ¢ is received from the server. Provided that the time at
which a client needs a page ¢ is uniformly distributed over the length of the cycle, ¢; can be
obtained as,

fi fi &2
S S:s 1 5%,
t, = e R _

]Z:; 2 N QJZZ;N

If all the f; instances of page i are equally spaced, that is, for some constant s;, s;; = s;
(1 <3 < fi), then, it follows that,

S; = —.

Ji
In this case, the expression for #; can be simplified as follows:
1 fi 42 1 fi 52
t, = = L A S
S

Tt is possible to conceive implementations with varying cycle size. Such schemes are a subject of our
on-going research.

Lo(siY Lo o N
= §f2 (ﬁ) = 58 as si= N/ f; (1)

Let p; denote the probability that a page needed by a client is page . Thus, p; is the
demand probability for page i. Overall Mean Access Time, t, is defined as the average wait

encountered by a client (average over all pages). Thus,

fo ()
t = tipi = 5 ~ | pi
=1 2 N

=1 \j=1

When s;; = s; (1 <7 < f;), that is, when all pages are distributed in the cycle with equal
spacing, the above equation reduces to

1 M
t = 5282'}?2' (2)
=1

3 Static and Adaptive Broadcasts

In the asymmetric communication environment under consideration, the clients may not be
capable of sending requests for data to the server (or, it may not be desirable for the clients to
send the requests to the server). In this case, the server must be provided with information
(such as user profiles) which will allow the server to estimate the demand probability for
each page. The broadcast schedule used by the server is determined completely by this
estimate of the demand. The broadcast schedule will not change unless the user profiles are
updated. In this report, such broadcast schedules are said to be static.

An adaptive scheme will continually gather statistics on the demand for various pages,
and modify the broadcast schedule to best meet the demand. While our focus is on static
schemes, our schemes can be made adaptive, as discussed in Section 7.

4 Proposed Scheduling Schemes

We first consider cyclic broadcast schedules. Fig. 1 depicts our procedure for constructing
a broadcast cycle. The first block in Fig. 1 maps the demand probability distribution into
page frequencies. Recall that frequency of a page is the number of times the page is to be
broadcast in a cycle. Having determined the frequencies, second block in Fig. 1 uses the
frequencies to determine the broadcast schedule. Our goal is to perform the functions of the
two blocks in such a way that overall mean access time, t, is minimized.

demand Transforming frequencies Mapping broadcast
probabilities probabilities of pages frequencies schedule
Emmm—— P
into to a
frequencies schedule

Figure 1: Constructing a Broadcast Cycle

4.1 Mapping Demand to Frequencies

We first present theoretical results that motivate our scheduling schemes. The first obser-
vation stated in Lemma 1 below is intuitive. This observation also follows from a result
presented in [11], and has been implicitly used by others (e.g., [3]).

Lemma 1 The broadcast schedule with minimum overall mean access time results when the
instances of each page are equally spaced.

This result remains valid when all pages in the server database are not identical in

Siz€.

Proof of the lemma is omitted here for brevity. Clearly, it is not always possible to space
instances of a page equally. For example, if number of slots in the cycle is 100 and frequency
for page 1 is 15, the instances of page 1 cannot be spaced evenly, as 100/15 is not an integer.
However, the above simple observation provides a heuristic, which is used by our algorithm
for scheduling the broadcast cycle. Note that, while Lemma 1 suggests that spacing between
consecutive instances of page ¢ should be constant, say s;, s; need not be identical to the
spacing s; between instances of another page j.

The objective in this section is to determine the optimal frequencies (f;’s) as a function
of the probability distribution (p;’s). We assume the ideal situation, as implied by Lemma 1,
where instances of all pages can be equally spaced. This assumption, although often difficult
to implement, does lead to a useful result. Before presenting the result formally, it is
instructive to consider the two examples below.

An intuitive (but not necessarily optimal) way to map demand probabilities into
frequencies is to choose the frequencies to be linearly proportional to the probabilities. That
is

Y

Ji o< pi,for1<i< M

The example below presents an illustration.

Example 1: Suppose there are 5 pages in the server’s database. Their demand probabil-
ities are given below :

page number 2

3
I

8

oo 1— DN
00 1= =
oo |- Ot

o |~ —

demand probability p;

Taking frequencies linearly proportional to demand probabilities, for N = 8, page
frequencies in the table below are obtained. Note that the frequency of page 1 is four times
that of page 2, because p; = 4py. The table also shows the spacing between consecutive
instances of each page. The resulting schedule for the broadcast cycle is illustrated in Fig.

2.

page number 2 || 1

frequency f; 1111
spacing s; = fﬁ = % 2

Figure 2: Schedule for Example 1

The page mean access time for page 1, t;, can be calculated using Equation 1, as
summarized in the table below. The overall mean access time, t, calculated using ¢;’s and
Equation 2, is obtained to be equal to t = 2.5 pagetimes. In general, it can be easily
shown that, if all instances of a page are equally spaced, and page frequencies are linearly
proportional to demand probabilities, then the overall mean access time is M /2, where M is
the number of pages in the server database. In Example 1, M = 5, therefore t = 5/2 = 2.5.

page numberz | 1 |23]4 |5
t; (unit is pagetime) || 1 |4 |4 |4 |4

Example 2 : For the same demand probabilities as in Example 1, let us now use the
frequencies listed in the table below. Note that in this case, N = 6. The resulting broadcast
schedule is shown in Fig. 3.

page number 2 || 1
frequency f;
spacing s; = fﬁ = % 3

—_
—_
—_
—_

Using Equations 1 and 2, the overall mean access time for the above schedule is
obtained as t = 2.25 pagetimes, which is smaller than ¢ = 2.5 obtained for the frequency
assignment in Example 1. Note that the frequencies f; assigned in Example 2 are linearly
proportional to \/p;. We now show that the minimum possible overall mean access time is

Figure 3: Schedule for Example 2

achieved when

Ji o< /pi

Theorem 1 Square-root Rule: Given the demand probability p; of each page 1, and cycle
size N, the minimum overall mean access time, t, is achieved when frequency f; of each page
i is proportional to \/p;, assuming that instances of each page are equally spaced.

Proof: Appendix B presents the proof. a

It is worth noting that Theorem 1 is applicable even if the pages are not identical
in size. As Zj]\il [; = N, above theorem implies that, f; = N (\/pi/ Zj]\il VP;i). Also, as
s; = N/ f;, a consequence of the above result is that, for ¢ to be minimized, we need

$; O Py i
As seen later, it is hard to satisfy the above condition for many probability distributions.
The above result, however, can be used to design good scheduling algorithms. Under the

condition specified in Theorem 1, the optimal overall mean access time, named toptimalv

(derived in Appendix B) is obtained as

toptimal = 5 (37 3

Relation to Previous Work

Imielinski and Viswanathan [7] previously proposed an algorithm for publishing that
uses a probabilistic approach for deciding which page to transmit in each slot. In their
scheme, page ¢ is transmitted in a given slot with probability

N/

M
Zj:l P

The page to be transmitted is determined using a random number generator with the above
probability distribution. This probability function does result in page frequencies f; that are
proportional to ,/p;, as recommended by our square-root rule. However, the overall mean
access time obtained using our approach is half that obtained with the probabilistic approach
in [7]. Specifically, overall mean access time obtained using the probabilistic approach in [7]

18
2

e

The difference in the performance of the two algorithm arises, primarily, from the fact that
we attempt to equally space consecutive instances of a page, while [7] uses a probabilistic ap-
proach. We choose the deterministic approach as it can provide in a factor of 2 improvement
over [7].

Now we present the two proposed algorithms. The first algorithm produces cyclic
schedules for a specified N, while the second algorithm is not required to produce a cycle
with any specified N.

4.2 Cyclic Scheduling Algorithm

Theorem 1 requires that f; oc \/p;, which in turn implies that f; = N |/p;/ Z]‘]\i1 /Dj- Clearly,
fi obtained by this expression may not be an integer, and therefore these frequencies may
not be achievable in practice. The result stated in Theorem 1, however, can be used as
a heuristic for determining suitable page frequencies. Our procedure for determining page
frequencies approximates the above ideal frequencies.

We assume that N > M, so that each page can be transmitted at least once each
cycle. Let n; denote the desired frequency for page ¢, that is,

ni:Nﬂ

M

and, let f; denote the actual frequencies assigned to each page. We would like n; and f; to
be as close as possible, if not equal. As n; may be non-integer, it is not always possible to
obtain f; = n;. The simple solution of using f; = round(n;) does not work as, in this case,

it may not satisfy the requirement Zj]\il fi = N. Our procedure for frequency assignment

assigns values of f; that are close to n;, while making sure that Zj]\il f; = N. This procedure

is summarized in Appendix A.

Once the desired page frequencies (f;) are known, as stated in Lemma 1, optimal
access time is obtained by distributing instances of each page uniformly throughout the

cycle. In order to distribute page ¢ with frequency f; uniformly, the spacing s; should be &

fi?
where N is the cycle size. If this ratio is not an integer, then it is clearly impossible to space
the pages evenly. Unfortunately, even if the ratio fﬁ is an integer, it may not be possible to

distribute instances of all the pages evenly. The example below illustrates one such case:

Example 3: Assume that number of pages is 3, and number of slots N = 6. The page

B

frequencies f; and ratio N/ f; are given in the table below. Note that fﬁ is an integer for all

2.

page number ¢ || 1 | 2
frequency f, 2

7
Si:%:% 2 3

S| W

In this case, an attempt to schedule the cycle quickly shows that, it is impossible to
schedule instances of page 1 equally spaced at distance 2, and instances of page 2 equally
spaced at distance 3. To do so requires that one instance of page 1 and 2 both be scheduled
in the same slot ! We refer to this as a “collision”.

Our cyclic scheduling algorithm can be summarized as follows. It takes as input, the
frequencies f; determined by the frequency assignment procedure.

1. Sort the pages in decreasing order of their frequencies. Let the sorted list be named

H.
2. For page ¢ at the front of the sorted list H, do the following steps:

o Assign the first instance of page ¢ to a randomly chosen empty slot in the cycle,
say slot number X (assume that the slots in the broadcast cycle are numbered 0

through N —1).

e Thereafter, for each j-th instance of page ¢ (2 < j < f;), an attempt is made
to schedule the j-th instance in slot number ¥ = round(X + (5 — 1) s;) modulo
N, where s; = N/ f;. As s; = N/ f; may not be an integer, rounding operation is
performed to determine Y. If slot Y is already filled by some page, then the j-th
instance of page ¢ is scheduled in an empty slot that is closest to slot Y (modulo

N).
3. Remove page ¢ from list H. If list H is not empty, go to step 2.
Section 6 presents numerical results to illustrate the performance of the cyclic schedul-

ing algorithm. Some simple variations on the above steps are possible; discussion of these

variants is omitted for brevity.

10

4.3 On-line Scheduling Algorithm

The first scheduling algorithm described above produces the entire cyclic schedule, before
the data is transmitted. On the other hand, the second algorithm can be used on-line
to determine the page to be transmitted in each slot, similar to a probabilistic algorithm
presented in [12]. (Our algorithm is not probabilistic, and yields better performance than
[12].)

As noted previously, under optimal conditions, the instances of a page are equally
spaced with spacing s;, where

—1/2
S; X Py

This can be rewritten as
2 _
s7 p; = constant

The above observation is used in our second algorithm, as presented below. In this case, slots
in the broadcast are numbered sequentially starting from 1. The slot number is incremented
by 1 each time a page is transmitted. The on-line scheduling algorithm is called to determine
which page should be transmitted in the next slot, say slot (). In the following, let R(y)
denote the number of the slot in which an instance of page 7 was most recently transmitted.
Initially, R(j) is initialized to 0, for all j.* Note that, R(j) is updated whenever page j is
transmitted.

ON-LINE algorithm:

broadcast page ¢ in slot)
if

(Q—R@) pi > (Q-R(j)’pj, 1<i,j<M

(If above condition is true for more
than one page, any one of those
pages may be chosen arbitrarily.)

() — R(7) is the spacing between the current slot, and the slot in which page ¢ was
previously transmitted. Note that, the term

12
(@ — R(2)" pi
is similar to the term s? p; in the equality

2., —
s; p; = constant

2The choice of initial value will not affect the mean access time much, unless the broadcast is for a very

short time.

11

presented above. The motivation behind our algorithm is to attempt to achieve this equality.
(It should be noted that this equality is not feasible for all demand probability distributions.)

Example 4: Consider a database containing 3 pages such that p; = 1/2, p, = 3/8, and
ps = 1/8. Figure 4 shows the pages transmitted by the server recently in slots 94 through
99 of the broadcast (recall that for on-line algorithm, slots in the broadcast are numbered
sequentially starting from 1). The above on-line algorithm is called to determine the page
to be transmitted in slot 100. Thus, ¢ = 100. Also, from Figure 4, observe that R(1) = 98,
R(2) = 97, and R(3) = 99. The on-line algorithm evaluates the term (@ — R(j))*p; for
J=1,2,3 as 2.0, 27/8 and 1/8, respectively. As this term is the largest for page 2, page 2
is transmitted in slot 100.

slot number
94 95 96 97 98 99 100

oo o 2 3 1 2 1 3

Figure 4: Illustration of the on-line algorithm

It turns out that the above on-line scheduling algorithm also sometime generates
cyclic schedules with reasonable size. However, this is not true for all probability distribu-
tions.

Performance measurements for the above algorithm are presented in Section 6. It is
worth noting that, a similar approach as above can also be used to design cycles of a given
size N. Evaluation of the above technique when used to design cyclic schedules of a given
size is a subject of on-going work.

5 Effect of Transmission Errors on Scheduling Strat-
egy

In the discussion above, we assumed that each page transmitted by the server is always
received correctly by each client. As the wireless medium is subject to disturbances and
failures, this assumption is not necessarily valid. Traditionally, in an environment that is
subject to failures, the data is encoded using error control codes (ECC). These codes enable
the client to “correct” some errors, that is, recover data in spite of the errors. However,
ECC cannot correct large number of errors in the data. When such errors are detected (but
cannot be corrected by the client), the server is typically requested to retransmit the data.

12

Since in the environment under consideration here we assume that the client does not
communicate with the server, it is not possible to ask the server to retransmit the data.® In
this section, we evaluate the impact of uncorrectable errors on the scheduling strategy for
broadcasts.

For the purpose of demonstration, we now consider a simple error model. (Similar
results can be obtained for other models as well.) Let uncorrectable errors occur according
to a Poisson process with rate A per second. Let [; denote the size of the :-th page, that is,
let the time required to broadcast page ¢ be [; seconds. If all pages have the same size, then
l; = L for all ¢ (L being a constant). Thus, the probability that page ¢ transmitted by the
server will be received by a client without uncorrectable errors is e=*i. If the page contains
uncorrectable errors (with probability 1 —e="), the page is discarded by the client, and the
client cannot use that instance of the page. The client must wait for the next instance of the
page. Now let all instances of a page i (1 < ¢ < M) be equally spaced with the spacing of S;
seconds (note: S; is measured in seconds. s; defined previously was measured in pagetime.)

As shown in Appendix C, under the above assumptions, the following expression for
overall mean access time (in seconds) is obtained.

M N
t=> Sipi (M =5
=1 2

Using this expression, the result below can be obtained. Appendix C sketches the proof.

Theorem 2 Given that uncorrectable errors occur according to a Poisson distribution with

rate X, and that all instances of a page are equally spaced, the overall mean access time is

1 1/2
i Vet Ali——)
froc vl (=5

12 1\ TY?
S; O Py 12 l; 12 <€All - 5)

minimized when

and

The above result implies that the frequency of a page should be larger if its size is
larger. This is intuitive, because with a larger size, more instances of the page are likely to
be corrupted. It is interesting to note that, when all pages are identical in size, the above
proportionality reduces to f; oc \/p;. Thus, for identical sized pages, uncorrectable errors do

not have any impact on the optimal scheduling strategy (although the errors do affect the

3Even if it were possible for a client to send a retransmit request to the server, it is not clear that a
broadcast scheme should allow such requests, because it is possible that many clients receive the original
broadcast correctly, but only a few do not due to some localized disturbance.

13

actual access time). The two algorithms presented in Section 4 can be easily modified to
use the result in Theorem 2.

It X is relatively large, many pages may be corrupted by uncorrectable errors, causing
a significant increase in the mean access time. A solution to this problem is to fragment
each page into smaller fragments, such that each fragment is encoded separately. Under this
situation, a client needs to receive one copy of each fragment so as to be able to receive the
page. However, this approach requires that the client should be able to receive the fragments
out-of-order and reorder them on receipt (the fragments will effectively be received out-of-
order if some of the fragments contain uncorrectable errors). Procedure for determining the
theoretical optimal frequencies when pages are fragmented to cope with errors is similar to
that in the proofs of Theorems 1 and 2.

6 Performance Evaluation

We consider two classes of demand probability distributions:

o Skewed distribution: In this case, half the data pages are requested more frequently
than the other half. The distribution is characterized by a parameter B, where 0.5 <
B < 1. The distribution can be formally defined as below:

B .
G L <0< [M)2]
pi =

g (M2l <i<M

Varying the value of B yields distributions with different amount of demand “skew”.
e Exponential distribution: In this case, page 1 is requested most frequently, and page M
is requested least frequently, the probabilities (p;’s) being determined by an exponential

function of . This distribution is characterized by a parameter v. The distribution
can be formally defined as below:

pi=p e 7Y

where p; is evaluated by solving the equality S, p; = 1. Thus, py = (1 —e™)/(1 —
e M),

Larger values of ~ cause p; to decrease more rapidly with increasing :.

We compare the overall mean access time t achieved by our two algorithms, with the
“optimal” ¢ given by Equation 3

1 M
loptimal = 9 (Z \/p_z)

and with the overall mean access time achieved using the probabilistic approach by Imielinski

and Viswanathan [7], as
2

o= (1)

In the figures to be presented below, the curves corresponding to our cyclic scheduling
scheme, and on-line scheduling scheme, are labeled as cyclic and on-line, respectively. The
curves corresponding to toptimal and tprob are labeled optimal and probabilistic, respec-

tively. The curve labeled M/2 plots the value M /2. If page frequencies f; are chosen linearly
proportional to p;, then the minimum possible overall mean access time is M/2.

It should be noted that the theoretical optimum values of ¢ may not be achievable
for all probability distributions. However, the theoretical values do provide a measure to
determine how close to optimal our algorithms are.

For the simulation results presented here, number of pages M is 50. Similar results
are obtained for larger values as well. The reason for choosing a small number was to enable
us to run experiments long enough to obtain simulation results with high confidence. Cycle
size N for the cyclic scheduling algorithm was chosen to be 100. Later, we will consider
the impact of cycle size on the performance of cyclic scheduling algorithm. Each schedule
was simulated long enough to simulate 1 Million requests for each schedule. Uncorrectable
transmission errors (as in Section 5) are not considered in our simulation.

For the skewed and exponential probability distributions, Figures 5 and 6 plot the
overall mean access time as a function of parameters B and ~, that characterize the skewed
and exponential distributions, respectively.

When B is close to 0.5, the skewed distribution is not very skewed (i.e., all pages
are requested with almost uniform probability). As B approaches 1, requests for half of
the pages become more frequent than the other half. When all pages are requested with
equal probability (B = 0.5), choosing f; to be proportional to p; or |/p; both result in the
same frequencies. Therefore, in Figure 5, the curves for optimal and M/2 meet at B = 0.5.
When B is larger than 0.5, the minimum access time achievable by choosing f; o p; is worse
than f; oc \/p;. In Figure 6, note that our algorithms achieve performance better than M /2,

and quite close to the theoretical optimal ¢ In particular, the on-line scheduling

optimal
algorithm achieves performance almost identical to the optimal.

Similar results are obtained in Figure 6 for the exponential distribution. When v = 0,
the probability distribution is uniform, and all curves, except probabilistic, converge (similar
to B = 0.5 above). As v is increased, the performance of on-line scheduling algorithm
remains close to optimal, however, that of cyclic scheduling starts degrading.

15

50— |
e cyclic —-—
E o “xon-line —+—- 4
Opt i mal o
- i probabilistjc = |
2 © M2
)
o 35 + n
(&)
@ %
c 30 + é
a
g
©
)
>
o
10 ‘ | | |
0.5 0.6 0.7 0.8 0.9

parameter B

Figure 5: Overall mean access time with skewed probability distribution (for different values

of B)

50 —=— ‘
T cyclic ——
@ 45 r Tk on-line —+- 7
optimal o
P 40 “x probabilistic - 1
* M2 ——
A 35 ¢ . .
(&) .
@ 30]
[
@
g
©
)
>
o
5 1 1 1 1
0 0. 05 0.1 0. 15 0.2 0. 25

gamma

Figure 6: Overall mean access time with exponential probability distribution (for different
values of v (gamma))

16

In general, the on-line algorithm performs better than the cyclic scheduling algo-
rithm. The reason for this is that the cyclic scheduling algorithm is constrained to produce
a schedule with a specified size (N = 100 in our simulations). For many probability distri-
butions, it is not possible to assign frequencies f; that are (approximately) proportional to
\/Pi, when N is relatively small. For such probability distributions, a cyclic schedule can
approach the optimal only when N is large.

To evaluate the impact of the choice of N, for the cyclic scheduling algorithm, Fig-
ures 7 and 8 plot the overall mean access time, as a function of cycle size N, for selected
values of parameters B and ~ (v is denoted as gamma in the figures). Captions for the figures
also list the theoretical optimum for the overall mean access time. Observe that, for small
N (i.e., close to M = 50) our cyclic scheduling algorithm is unable to achieve performance
close to theoretical optimum. Larger values of N result in performance close to optimal.

26
B =098 -—
B=0.99 «—-
£ 24 .
(2]
? 22 :
[&]
[&]
@®©
- 20 :
@
£
— 18 4
@
S 16 1
o
14 I I I I I
100 500 900 1300 1700 2100

cycle size N

Figure 7: Cyclic schedule with skewed distribution: The theoretical optimum overall mean
access time for B = 0.98 and 0.99 is 16.0 and 14.9875, respectively.

6.1 Merits of the Two Algorithms

The cyclic scheduling algorithm produces cyclic schedules of a specified size N. The cyclic
schedule can be determined a priori, and stored in a look-up table. Thus, cyclic scheduling
incurs very little overhead, once the schedule has been determined. In cyclic scheduling,
as entire cycle is determined based on the current probability estimates, a schedule change

17

26 ‘ ‘

ganma = 0.1 ——
@ gamma = 0.15 —+-- 1
= gamma = 0.2 -8--
%]
(%] 4
(8}
[&]
[&]
S i
c
© i
£
C_ES ,,,,,,,,,,,,,,,,,,,,,,
5 \ i
> N
© 10 + e S T 4

8 1 1 1 1 1
100 500 900 1300 1700

cycle size N

Figure 8: Cyclic schedule with exponential distribution: The theoretical optimum overall
mean access time for v = 0.1, 0.15 and 0.2 is 16.9692, 12.7266 and 9.8744, respectively.

may be made only when the next cycle is to be transmitted. Thus, longer broadcast cycles
may not be suitable for adaptive implementations.

While the on-line algorithm tends to achieve lower access times, it incurs scheduling
overhead for each page that is broadcasted. The advantages of the on-line algorithm are (i)
lower mean access time, and (ii) ability to quickly adapt to a change in demand probabilities.
This is possible, as the page transmitted in each slot can be determined based on current
estimate of the demand probabilities.

It may be noted that both our algorithms can be used in conjunction with other

techniques for adaptive broadcasts (e.g., [12]).

7 Adaptive Broadcast

To achieve adaptive behavior, the server must have some way to update its estimates of
demand probability (p;). Viswanathan [12] describes several ways in which this information
can be conveyed to the server, including (i) when a mobile client moves from one cell to
another, and (ii) when the client sends some other message, the access frequency information
is piggybacked on these messages. The idea is to minimize the need to send messages just
to update the user access profiles at the server. Viswanathan [12] divides pages into two
classes: (i) pages that are broadcast by the server, and (ii) pages that are sent to clients

18

only on-demand (i.e., when a request is received from the client for the page). Thus, clients
send requests for pages from class (ii), while simply waiting for the server to transmit a page
from class (i).

We suggest another approach that does not divide pages into two classes as above.
Instead, when a client needs some page, say ¢, it waits for some time bounded by a time-out
7. If an interval of 7 is exceeded, then the client sends a request to the server. Thus, if a
page is broadcast by the server within 7, no explicit request is sent. Parameter 7 affects
the mean access time, as well as the number of requests that are sent by the clients. The
server, based on the number of requests that are received, can update its estimate of demand
probabilities (p;). These new estimates can be used to determine the appropriate broadcast
schedule.* Performance evaluation of the above adaptive approach is a subject of on-going
research.

8 Related Work

The problem of broadcasting data efficiently has received much attention lately. The existing
schemes can be roughly divided into two categories (some schemes may belong to both
categories, we have listed them in the most appropriate category): Schemes attempting to
reduce the access time [3,2, 1,7, 11, 6, 5, 13] and schemes attempting to reduce the tuning
time [9, 8, 10]

Chiueh [5] and Acharya et al. [3, 2, 1] present schemes that transmit the more
frequently used pages more often. However, they do not use optimal degree of replication,
unlike our scheme.

As discussed in Section 4, Imielinski et al. [7] present an adaptive scheme for pub-
lishing that uses a probabilistic approach for deciding which page to transmit in each slot.
Their scheme also uses page frequencies proportional to square-root of demand probabilities,
however, our approach results in significantly better performance.

Jain and Werth [11] note that reducing the variance of spacing between consecutive
instances of a page reduces the mean access time. The two schemes presented in this report
do attempt to achieve a low variance.

Similar to our discussion in Section 5, Jain and Werth [11] also note that errors
may occur in transmission of data. Their solution to this problem is to use error control
codes (ECC) for forward error correction, and a RAID-like approach (dubbed airRAID)

that stripes the data. The server is required to transmit the stripes on different frequencies,

*In the cyclic scheduling algorithm presented earlier, we ensured that f; > 1 for all i. For adaptive
scheduling, this is not necessary, as a client will eventually time-out for a page whose frequency is 0, and
send a request to the server.

19

much like the RAID approach spreads stripes of data on different disks [4]. This requires
the clients to receive broadcasts on multiple frequencies. ECC is not always sufficient to
achieve forward error correction, therefore, uncorrectable errors remains an issue (which is
ignored in the past work on data broadcast).

9 Conclusions

This report considers asymmetric environments wherein a server has a much larger com-
munication bandwidth available as compared to the clients. In such an environment, an
effective way for the server to communicate information to the clients is to broadcast the
information periodically. We propose two algorithms for scheduling broadcasts, with the
goal of minimizing the access time. Simulation results show that our algorithms perform
quite well (very close to the theoretical optimum). The proposed algorithms can be com-
bined with other techniques for minimizing tuning time as well as for designing adaptive
broadcast schedules.

A Appendix: Frequency Assignment Procedure for
Cyclic Scheduling

The following steps are performed. Note that N > M. and we would like to have f; > 1,
for all 2.

1. For1 <i <M, n; =N /pi/ Zj]\il p;. (Determine ideal frequencies.)
2. If n; > 1, then n; =n; — 1, elsen; =0 (1 <1 < M).
3. number of empty slots = N — M (M slots already assigned, one per page.)

4. balance= N — M — Z]‘]\i1 n;.
The total number of slots available is N, of which M slots have already been allocated
(one per page). The remaining “demand” for slots is equal to Z]‘]\i1 n;. balance
denotes the difference between the total number of slots NV, and the number of slots
needed (which is equal to the number of allocated slots + total unsatisfied “demand”).
Therefore, at this point, balance = N — M — S n;. Note that, in general, the

J
balance may be negative or positive. At the end of this procedure, the balance will

be 0.

20

5. The rest of the algorithm only considers those pages for which current value of n; is
greater than 0. These pages (with positive n;) are ordered according to increasing
page numbers (other orderings may also be used).

Let this ordered list be named G.

6. For the page ¢ at the front of list G, do the following steps.
e n; = n; + balance/|G|. That is, new n; is obtained by adding to n;, page ¢’s
“share” of the balance.
e n; = round(n;).
e If n; >number of empty slots, then n; = number of empty slots.®

e fi = 1+ n;. (One slot was reserved for page ¢ in the first two steps of the
assignment procedure.)

e number of empty slots = number of empty slots — n;.
e remove page ¢ from the front of list G

e balance = number of empty slots — 3,5 n;

7. If list G is not empty, go to step 6.

The initial two steps of the above procedure ensure that f; > 1, for all 2. The
remaining steps allocate the remaining slots to different pages, such that the number of
allocated slots is close to n;, while making sure that the sum of assigned frequencies is N.

balance is used to ensure that frequencies sum to N.

B Appendix: Proof of Theorem 1

Theorem 1: Square-root Rule: Given the demand probability p; of each page v, and cycle
size N, the minimum overall mean access time, t, is achieved when frequency f; of each page
i is proportional to \/p;, assuming that instances of each page are equally spaced.

Proof: Asinstances of page ¢ are spaced equally, the spacing between consecutive instances

of page i is N/f;, where N = Zj]\il f; 1s the number of slots in the broadcast cycle. Also,

N

37 Now, overall mean
k2

in this case, the page mean access time is t; = s;/2. Therefore, t; =

access time t = M pit;. Therefore, we have,

1M N
=2 pir
P

>This step can sometime be eliminated without affecting correctness of the algorithm.

21

Define “supply” of page i, ¢; = f\,—’ Thus, ¢; 1s the fraction of slots in which page ¢ is
broadcast. Now note that, "M, ¢; =Y M & = ¥ =1 Now

=1 N — N 9
1 X p,
= =) = 4
5 ; " (4)
As M ¢ =1, only M — 1 of the ¢;’s can be changed independently. Now, for the optimal
values of ¢;, we must have g—; = 0, V2. We now solve these equations, beginning with 0 = 8%.
ot
0 = —
Iq1
19 M pi
200 \ ¢ i—2 4
10 (pl N Pi Pm)
= 55\ —T S a—y s m—
200 \ ¢u ; ¢ (1-E"q)
_ 1 (_zz L P)
2\ @ (1-XMq)
h PMm
_ — = — (5)
qi (1—-2Mq)?
. P2 Pym
Similarly = = — (6)
5 (1 =X q)?
From Equations 5 and 6, we get
P1 P2 q p
il a3 42 P2
Similarly it can be shown that 4 _ &, Vi,)
4q; b

This implies that, the optimal values of ¢;’s must be linearly proportional to /p;’s. It

is easy to see that constant of proportionality @ = —x1—— exists such that ¢; = a \/Pi is the
2= VP
only possible solution for the equations g—; = 0. From physical description of the problem,

we know that a non-negative minimum of £ must exist. Therefore, the above solution is
unique and yields the minimum ¢.

VPi

Substituting ¢; = SV
J=1VvV I

into Equation 4, and simplifying, yields optimal overall

mean access time as
2

S

22

C Appendix: Overall Mean Access Time in Presence
of Errors

Consider page ¢ that is spaced 5; seconds apart. Let the total time required to transmit
the cycle be denoted as T'. Then, f; = T/S;. (This is analogous to f; = N/s; in case of
fixed size pages.) Also, as size of page 7 is l;, we have 2™ fil; = T. (This is analogous to
SM . fi = N, in case of fixed size pages.)

First, let us determine the page mean access time t;, for page :. While a more formal
analysis can be carried out using a Markov chain, here we choose to present an intuitive
description of the analysis. Observe that average time until the first instance of page ¢ is
transmitted, from the time when a client starts waiting for page ¢, is S;/2 second. If the first
instance of page ¢ transmitted after a client starts waiting is corrupted, then an additional
S; seconds of wait is added until the next instance. Thus, each instance of page ¢ that is
received with uncorrectable errors adds 5; to the waiting time. Given that the probability
that an instance of page i contains uncorrectable errors is (1 — e¢=), the expected number
of consecutive instances with uncorrectable errors is obtained as

(1 o e—Ali) B (1 o e—Ali) B

Al
= — M1
I — (1 —e M) e ‘
Thus, the page mean access time is obtained to be
S . 1
b= s = s (- D)

Thus,

M M
b= piti=Y piSi <€Mi — —)
=1 =1 2

Proof of Theorem 2 : As f; =7T'/5;, the above expression for ¢ can be rewritten as,

t = %pili (- 3)

=1

ri

where, r; = fil;/T. Now, "M ri = >M fil;/T = T/T = 1. Thus, the above expression
for ¢ has a form similar to Equation 4, and can be minimized similarly. The optimization
procedure yields the result stated in Theorem 2.

23

References

1]

2]

[10]

[11]

[12]

[13]

S. Acharya, M. Franklin, and S. Zdonik, “Prefetching from a broadcast disk,” in 12th
International Conference on Data Engineering, Feb. 1996.

S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast disks - data management
for asymmetric communications environment,” in ACM SIGMOD Conference, May

1995.

S. Acharya, M. Franklin, and S. Zdonik, “Dissemination-based data delivery using
broadcast disks,” IEFE Personal Communication, pp. 50-60, Dec. 1995.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson, “RAID: High-
performance, reliable secondary storage,” ACM Computing Surveys, vol. 26, no. 2,

pp. 145-185, 1994.

T. Chiueh, “Scheduling for broadcast-based file systems,” in MOBIDATA Workshop,
Nov. 1994.

V. A. Gondhalekar, “Scheduling periodic wireless data broadcast,” Dec. 1995. M.S.
Thesis, The University of Texas at Austin.

T. Imielinski and S. Viswanathan, “Adaptive wireless information systems,” in Pro-
ceedings of SIGDBS (Special Interest Group in DataBase Systems) Conference, Oct.
1994.

T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Power efficient filtering of data
on air,” in 4th International Conference on Frtending Database Technology, Mar. 1984.

T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Energy efficient indexing on air,”
May 1994.

T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Data on the air - organization
and access,” submitted for publication.

R. Jain and J. Werth, “Airdisks and airraid : Modelling and scheduling periodic wireless
data broadcast (extended abstract),” Tech. Rep. DIMACS Tech. Report 95-11, Rutgers
University, May 1995.

S. Viswanathan, Publishing in Wireless and Wireline Environments. PhD thesis, Rut-
gers, Nov. 1994.

7. Zdonik, R. Alonso, M. Franklin, and S. Acharya, “Are disks in the air, ’ just pie in
the sky?)7 in IEEE Workshop on Mobile comp. System, Dec. 1994.

24

