
Limitations of VLSI Implementation ofDelay-Insensitive Codes�Venkatesh AkellaECE DepartmentUniversity of CaliforniaDavis, CA 95616Phone: 916-752-9810Fax: 916-752-8428akella@ece.ucdavis.edu Nitin H. VaidyaComputer Science Dept.Texas A&M UniversityCollege Station, TX 77843-3112Phone: 409-845-0512Fax: 409-847-8578vaidya@cs.tamu.edu Robert RedinboECE DepartmentUniversity of CaliforniaDavis, CA 95616Phone: 916-752-3087Fax: 916-752-8428redinbo@ece.ucdavis.eduTechnical Report 95-050December 1995Department of Computer ScienceTexas A&M UniversityAbstractImplementation of delay-insensitive (DI) or unordered codes is the subject of this re-port. We present two di�erent architectures for decoding systematic DI codes: (a) enumeration-based decoder, and (b) comparison-based decoder. We argue that enumeration-baseddecoders are often impractical for many realistic codes. Comparison-based decoders thatdetect arrival of a code word by comparing the received checkbits with checkbits evalu-ated using the received data are practical but su�er from the following limitation. If thedecoder is to be implemented using asynchronous logic, i.e., if the gate and wire delaysare arbitrary (unbounded but �nite), then it is impossible to design a comparison-baseddecoder for any code that is more e�cient than a dual-rail code. In other words, theencoded word must contain at least twice as many bits as the data. The report showsthat comparison-based decoders for codes that have the requisite level of redundancycan be implemented using asynchronous logic. The report also shows that, by relaxingthe delay assumptions, it is possible to implement decoders for delay-insensitive codesthat are more e�cient than dual-rail codes.�Research reported is supported in part by National Science Foundation Grants MIP-930868 (at UC-Davis)and MIP-9423735 (at Texas A&M University).



1 IntroductionIn the past, signi�cant e�ort has been spent in designing e�cient codes for detection and cor-rection of unidirectional and asymmetric errors [2]. Application of such codes to asynchronousbuses has also been explored [3, 14, 5, 4, 17]. An asynchronous bus consists of wires whosetransmission delays are unpredictable. The problem of detecting the arrival of informationon such a bus has been shown to be equivalent to the problem of designing unordered or allunidirectional error detecting (AUED) codes [17] { such codes are also useful for unidirectionaland asymmetric error control. Some codes for correcting di�erent types of errors and skewson asynchronous buses have also been proposed (e.g., [3]). However, the past work has notexplored the issues in VLSI implementations of decoders for the proposed codes. While wefocus on asynchronous communication as the application of unordered [6] or delay-insensitivecodes, the results of this report have implications for all applications of such codes.This report deals with design of asynchronous decoders for codes used for commu-nication on asynchronous buses. Past work on decoders [2] implicitly assumes synchronoushardware implementation of the decoder. As noted above, unordered codes have been pro-posed for two types of problems: (i) detection of arrival of data on the asynchronous bus, (ii)detection and correction of various types of errors on the asynchronous bus. The problemof designing asynchronous decoders for the type (ii) codes is strictly harder than that fortype (i) codes. As a �rst step, this report focuses on design of asynchronous decoders thatcan detect when the transmitted information has been received, in the absence of any errors.As shown here, even this simple problem is hard to solve (in fact, impossible under certainconditions). This implies that, implementation of asynchronous decoders for unidirectionalerror correcting codes is likely to be very hard.The codes that are useful for detecting arrival of data on an asynchronous bus are saidto be unordered [6, 3, 5] or delay-insensitive [17]. Mathematically, one can formalize unorderedor delay-insensitive (DI) codes as follows. Consider a binary code C. A code word u 2 C issaid to be contained in a code word v 2 C, if v has a 1 in each position where u has a 1. Thisis denoted as u � v. A code C is said to be unordered or delay-insensitive (DI) when no codeword is contained in another code word. When an unordered code is used, arrival of a codeword can be unambiguously recognized by the receiver, in presence of arbitrary delays in the1



wires. It is easy to see that one-hot and dual-rail (double-rail) codes enjoy this property [17].Verhoe� [17], Varshavsky [16] and Blaum [2] discuss examples of other DI codes, e.g., Spernercodes and Berger codes among others and describe their mathematical properties.VLSI implementation of decoders for systematic unordered (or DI) codes is the subjectof this report. We �rst describe a communication protocol called the four-phase protocol [10]for the exchange of data on an asynchronous bus. Then we de�ne two possible architecturesfor the decoders. The �rst is called enumeration-based decoder which examines the entirecode word and determines if it is valid or not. It basically implements the membership-testusing combinational logic. We argue that it is often impractical (and almost impossible giventhe VLSI technological limits) to implement asynchronous enumeration-based decoders formany realistic codes. We then present a comparison-based decoder which detects the arrivalof a code word by recomputing the checkbits (using the received data bits) and comparing(or matching) them with the received checkbits. This is a practical approach but it su�ersfrom the drawback of hazards, i.e., due to unpredictable gate and wire delays the decodercould signal a match even though the code word is not yet received. To avoid such erroneousdetection of code words, the decoder needs to be delay-insensitive.In this report, we prove that it is impossible to design a delay-insensitive comparison-based decoder for any systematic DI code that uses less redundancy than a dual-rail code.In other words, the encoded word must contain at least twice as many bits as the data. Thecomparison-based decoder architecture is practical, therefore, our impossibility result is ofinterest.The report also shows that comparison-based decoders for appropriate codes (thathave the requisite level of redundancy) can be implemented under the above assumptions.Finally, we present some practical constraints on circuit delays under which comparison-baseddecoders could be implemented for codes with smaller redundancy than dual-rail codes. Weillustrate this with the implementation of a Berger code [1].The report is organized as follows. Section 2 discusses our system model. Section 3discusses the various decoder architectures and their implementation details. Section 4 showsthat codes that are not as redundant as dual-rail codes cannot be implemented. Section 5shows the characteristics of the encoder block (logic which recomputes the checkbits) for a2



delay-insensitive realization of comparison-based decoders. Section 6 shows that decoders forappropriate codes with requisite amount of redundancy can indeed be implemented (a designis presented). Section 7 shows that with some practical delay constraints decoders with smallerredundancy than dual-rail codes could be implemented. Section 8 discusses the implicationsof the main result of the report and provides directions for future work.2 System ModelThere are two components to our model: (a) the protocol used for communication on anasynchronous bus, and (b) the architecture of the decoder. We will describe the details of thecommunication protocol in this section and the decoder architectures in Section 3.2.1 Asynchronous Communication ProtocolUnlike a synchronous system, an asynchronous system does not have a clock to validate data.Data communication in an asynchronous system is accomplished by a handshake protocol[10]. There are two popular handshake protocols. The four-phase (or return-to-zero) protocoland the two-phase (or non-return-to-zero) protocol. We will use the four-phase handshakeprotocol in this study. The organization of a system with four-phase handshake protocol isshown in Figure 1.
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(1) Block S (sender) encodes the data and transmits the code word on the asynchronous busB. As the bus is initially in the spacer state, this step causes 0 ! 1 transitions on thebus wires corresponding to non-zero bits of the code word. When this 0! 1 transitionarrives at the decoder, we say that the corresponding non-zero (1) bit of the code wordhas arrived at the decoder.(2) After the code word is received by the receiver block R, it drives the ack wire high (orsets to logic level 1). (Note that the non-zero bits on bus B may arrive in an arbitraryorder because of arbitrary delays on the wires.)(3) Block S waits for ack to go high and then resets bus B, i.e., drives a logic value 0 on allwires of bus B (spacer).(4) After an unbounded but �nite amount of time, block R detects the spacer, i.e., B =000...0, and in turn drives the ack wire low which takes the system back to the initialstate, ready for the next transaction.Basically, in a four-phase protocol, the data bus starts in an all-zero state (also knownas the spacer) and transitions to whatever the code word is, and then goes back to an all-zerostate. The ack wire provides the feedback to the sender so that a new piece of data is not sentunless the previous one has been received (or reliably latched) by the receiver. Our model isvery simple and does not include the idea of pipelined data communication that was proposedby Blaum and Bruck [4, 5].3 Decoder ArchitecturesAssume that the code being used is an (n; k) systematic unordered code. Thus, each codeword contains k data bits, and r = n � k checkbits. The sender encodes k bits of data intoa code word containing n bits, by appending r = n � k checkbits to the k data bits. Thefunction of the decoder at the receiver is to detect when a code word has arrived, so thatthe receiver can latch the correct data into a register. (The term decoder is somewhat of amisnomer, because it only needs to detect arrival of a code word. In a systematic code word,the data is available without any further decoding.)4



In this section, we present two generic architectures for the decoder, which can be usedfor any unordered systematic code.3.1 Enumeration-based DecoderAn enumeration-based decoder implements a membership test to determine if a received wordbelongs to the code. The decoder looks at the input word and produces a 1 if the receivedword is a code word. The decoder must be hazard-free, otherwise, it may indicate that a codeword has been received when the received word, in fact, is not a code word.Consider the (4,2) Berger code [1] with 2 data bits (k=2) and 2 checkbits (r=2). Thefour code words in the (4,2) Berger code are:d1 d0 c1 c00 0 1 01 1 0 00 1 0 11 0 0 1where (d1,d0) are the data bits and (c1,c0) are the checkbits. A direct two-level AND/OR(sum-of-products) implementation of the decoder that produces a 1 on receiving a code wordand a 0 otherwise would result in glitches (hazards) at the output of the decoder due tounpredictable order of the arrival of the bits and the distribution of delays in the gates andwires inside the decoder [7, 15]. This is not acceptable because we expect the decoder outputto go to 1 only if we receive a code word.However, we can take advantage of the four-phase protocol to implement the circuitin a hazard-free manner as follows. The protocol states that after a spacer, each bit (dataand checkbits) can make a 0 to 1 transition in any possible order, but once they reach thecode word they stop changing, i.e., do not change till the next spacer is sent (which marksthe beginning of a new transaction). So, the wires undergo the following sequence:SPACER =) CODEWORD =) SPACER =) CODEWORD : : :This protocol, and the fact that the code is unordered, can be used to optimize the decoderfunction (or the underlying Karnaugh-map) as f = c1 + d1d0 + d0c0 + d1c0. Basically, the5



decoder implementation will contain one AND gate for each code word with the inputs ofthe AND gate being the bits which are 1 in the code word. Outputs of these AND gates willbe sent to an OR gate, whose output will be the function f . Function f has the followingcharacteristics:(1) It is positive and unate in all the variables: A function g(x1; x2; : : : ; xn) is said to beunate with respect to a variable xi if only xi or its complement xi appears in g but notboth [8]. A function g is said to be positive with respect to a variable xi if only theliteral xi appears in g.(2) f is hazard-free for all the allowable transitions under the four-phase protocol that isbeing used in this discussion. This is because, our implementation of f consists of onlyAND and OR gates, and the output of an AND gate remains at zero till all its inputsare 1 { all inputs of an AND gate become 1 only when the corresponding code word isreceived.(3) It can be shown that the minimal sum-of-products expression is unique [8] which meansthat all the prime-implicants are essential. So, f is the minimal hazard-free sum-of-products (SOP) realization of the enumeration-based decoder for (4,2) Berger code.Therefore, f cannot be minimized any further in terms of a two-level logic implementation.However, the function can be optimized to minimize the number of literals and fan-in at theexpense of the number of levels of logic.3.2 Complexity of Enumeration-based DecodersWhat happens to the complexity (size, fan-in, etc.) of the enumeration-based decoder as thenumber of the data bits increases? Consider (36,31) Berger code which is close to a typicalword in a computer. The number of code words in this code is 231. In the enumeration-basedimplementation, one AND gate is required for each code word which means 2� 109 (2 billion)AND gates and one OR gate with a fan-in of 2 � 109 are required. The fan-in of a typicalAND gate in this implementation would be 19 (on an average). In addition, as noted in theprevious section, the function is unate which means that all its prime implicants are essential6



so it cannot be minimized any further in a sum-of-products realization. A multi-level logicimplementation is also impractical because the number of product terms (AND gates) is toolarge for any computer-aided design tool to handle and even if there were such a tool thenumber of levels of logic and the number of literals (wires) would be would be too large forany practical VLSI implementation.3.3 Comparison-based Decoder ArchitectureFigure 2 illustrates the comparison-based decoder architecture. Input to the decoder are then bits received on the asynchronous bus. The input begins as all-0 spacer (i.e., all n bits are0). When the sender sends encoded data, the received n bits eventually become identical tothe transmitted code word. The Present output of the decoder is initially 0 (when the inputis all-0). The output should remain 0 until a code word has been received on the asynchronousbus. When the code word is detected, the output should become equal to 1. The Presentoutput of the decoder can be used to latch the correct data into a register. It is, therefore,critically important that the Present output of the decoder should not become equal to 1 beforethe correct data is received on the bus. (We will later show that this condition is impossibleto satisfy if r < k.)
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Figure 2: Comparison-based Decoder ArchitectureThe architecture of the decoder is simple and quite general. The decoder is implementedby means of an encoder and a comparator. The encoder receives the k data bits from theasynchronous bus, and computes the checkbits for the received data bits. The comparatorcompares these computed checkbits with the checkbits received on the asynchronous bus.7



When the two match, arrival of the code word is detected (more importantly, arrival of thecorrect data is detected). This architecture is useful for all systematic codes.In the previous section we noted that an enumeration-based decoder for (36,31) Bergercode is impractical. So, it is interesting to see if a comparison-based decoder could be imple-mented for a (36,31) Berger code. A comparison-based decoder lends itself to a divide-and-conquer algorithm. The architecture of a circuit to compute the checkbits of (36,31) Bergercode is shown in Figure 3.
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Figure 3: An Implementation of the (36,31) Berger Code EncoderUsing misII logic synthesis tools 1 we found that (36,31) Berger code can be imple-mented with 8 AND, 167 NAND, 39 OR, 5 XOR, 17 XNOR, 93 NOR, and 79 inverters. Allthe gates except the inverters were restricted to 2 inputs. Note that there are several pos-sible implementations of Berger codes. The implementation shown in Figure 3 is reasonablye�cient and was optimized for a gate-level implementation using multi-level logic. If no con-straints are placed on the gate and wire delays, these implementations could have glitches atthe output. The issues in a hazard-free realization of comparison-based decoders is the main1Multilevel logic synthesis and optimization tools from University of California, Berkeley8



subject of the report and is discussed in the next section in detail.4 Conditions for DI Decoder ImplementationIn this section we derive a necessary condition for a delay-insensitive VLSI implementation ofcomparison-based decoders. First we state our assumptions and then present the main resultof the report and its proof.4.1 AssumptionsThe discussion in this section makes the following two assumptions:A.1 The bus is asynchronous in that the delay on each wire is arbitrary (but �nite). Thedelays on any pair of wires are independent.A.2 The encoder and the comparator in the decoder are implemented using gates and wireswith arbitrary (but �nite) delays. Thus, delays in producing each output of the encoderare arbitrary and independent.(In practice, it is sometimes possible to assume some order relationship or bounds ondelays, as discussed later.)4.2 Main ResultTheorem 1 Given assumptions A.1 and A.2, it is impossible to implement a comparison-based decoder for a systematic delay-insensitive code if r < k. That is, a comparison-baseddecoder cannot be implemented if the level of redundancy is less than a dual-rail code.Proof: The theorem states an impossibility result. We present a proof by constructing ascenario wherein the decoder will not work properly unless r � k.Recall that, in the four phase protocol, the input to the decoder begins with all-0, thatis, all n input bits are 0. Let C(D) denote the r checkbits corresponding to k-bit data D. Also,let Ci(D) denote the i-th checkbit corresponding to data D, 0 � i � r� 1. Thus, initially, the9



output of the encoder will be C(00 � � � 00). This implies that, initially, the two r-bit inputsto the comparator must be C(00 � � � 00) and 00 � � � 00. Recall that the code being used is adelay-insensitive (unordered) code, therefore, C(00 � � � 00) cannot be identical to 00 � � � 00 (rbits). Thus, the initial value of Present output of the comparator will be 0 (indicating amismatch of its inputs). Figure 4 illustrates the initial state.
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Present = 0Figure 4: Initial con�gurationNow, let the code word transmitted by the sender on the asynchronous bus bedk�1dk�2 � � � d1d0 br�1br�2 � � � b1b0; where dk�1dk�2 � � � d1d0 = 11 � � � 1 and br�1br�2 � � � b1b0 =C(11 � � � 1): Thus, all the data bits transmitted by the sender are 1. To prove the impossibilityresult stated in the theorem, it is su�cient to construct one scenario where the stated resultis true. We now build one such scenario.Consider the scenario where all the non-zero bits in br�1br�2 � � � b1b0 arrive at the de-coder before any non-zero bits in dk�1dk�2 � � � d1d0 arrive at the decoder. Thus, now one inputto the comparator is br�1br�2 � � � b1b0 and the other input of the comparator is still C(00 � � � 00).Now, the non-zero data bits start arriving at the decoder. As the data input to theencoder (within the decoder) changes, its output will change from initial value C(0 � � � 0) tothe �nal value C(dk�1dk�2 � � � d1d0) = C(11 � � � 1) = br�1br�2 � � � b1b0. Output of the encoder isan input to the comparator.A \false match" is said to occur at the comparator if the two r-bit inputs of thecomparator are identical but the data bits received by the decoder are not identical to thedata bits transmitted by the sender. A false match will result in the receiver acceptingincorrect data. 10



In the scenario under consideration, to avoid a false match at the comparator, we mustguarantee that the output of the encoder will not become identical to br�1br�2 � � � b1b0 until allthe 1 (non-zero) bits of data dk�1dk�2 � � � d1d0 have arrived. We now show that a false matchcan occur if r < k.The input to the encoder changes from initial value 00 � � � 0 (k bits) to �nal valuedk�1dk�2 � � � d1d0 = 11 � � � 11. Therefore, as shown in Figure 5, the k-bit encoder input canpotentially follow the chain D0 = 00 � � � 0, D1, � � �, Dk�1,Dk = 11 � � � 1. That is, encoder inputmay change from initial value D0 to D1, then D2, and so on, �nally to Dk = 11 � � � 1. Whilethe received data bits are changing, the checkbits received from the sender remain steady atbr�1br�2 � � � b1b0. D0 = 0000 � � � 0000D1 = 0000 � � � 0001D2 = 0000 � � � 0011D3 = 0000 � � � 0111......Dk�3 = 0001 � � � 1111Dk�2 = 0011 � � � 1111Dk�1 = 0111 � � � 1111Dk = 1111 � � � 1111Figure 5: A chain from 00 � � � 0 to 11 � � � 1Let the initial output of the encoderC(D0) = C(00 � � � 0) be denoted as ar�1ar�2 � � � a1a0.The �nal output of the encoder will be C(Dk) = C(11 � � � 11) = br�1br�2 � � � b1b0. Thus, out-put of the encoder changes from ar�1ar�2 � � � a1a0 to br�1br�2 � � � b1b0 as its input changes fromD0 = 00 � � � 0 to Dk = 11 � � � 1. (Note that, in our notation, Ci(D0) = ai and Ci(Dk) = bi.)Claim: To avoid a false match, there must exist an i, 0 � i � r � 1, such that1. Ci(Dj) = Ci(D0), 0 � j � k � 1, and 11



2. Ci(Dk) = Ci(D0).This claim implies that as the data input of the encoder changes from D0 to Dk�1,at least one checkbit computed by the encoder, say i-th, remains constant. This checkbit iscomplemented only when the data input changes to Dk.Proof of the claim: The proof is by contradiction. Assume that the claim is false. Thisimplies that, for all i (0 � i � r�1), there exists ji (0 � ji � k�1) such that Ci(Dk) = Ci(Dji):Assume that the encoder input has become equal toDji , and the i-th checkbit computedby the encoder has become equal to Ci(Dji) = Ci(Dk) = bi. As the encoder is asynchronous(by assumption A.2), it is possible that its i-th output bit does not change (for a long time)even after the encoder input has changed fromDji . In this manner, i-th output of the encoder,for all i, becomes equal to Ci(Dji) (or Ci(Dk)) and stays there, before the data input of theencoder becomes equal to Dk (recall that ji � k � 1, 8i). Thus, when the encoder inputis equal to Dm where m = max(ji), the encoder output will be equal to C(Dk), althoughthe data bits received by the receiver are not Dk { this would cause a false match at thecomparator. Thus, the above claim is proved. 2The above proof of the claim considers the case when Dk is the data being transmittedby the sender. The above proof can be repeated for each data Dl (l > 0) in the chainto conclude that, to avoid a false match, for each l (1 � l � k), there must exist i(l),0 � i(l) � r � 1, such that(condition B.1) Ci(l)(Dj) = Ci(l)(D0), 0 � j � l � 1, and(condition B.2) Ci(l)(Dl) = Ci(l)(D0).If the above conditions are not satis�ed, a false match can occur. It is obvious that, the aboveconditions cannot be satis�ed, unless r � k. This concludes the proof of Theorem 1. 25 Characteristics of the Encoder FunctionWe now present some properties that the encoder function should satisfy for the existenceof a delay-insensitive comparison-based decoder implementation for a systematic unordered12



code.5.1 Diagonal PropertyFigure 6(a) presents an example of a chain of data and the corresponding checkbits thatsatisfy conditions B.1 and B.2 listed in the proof for Theorem 1. For this example, usingthe notation used in conditions B.1 and B.2, we have: (i) for l = 1, i(1) = 2, (ii) for l = 2,i(2) = 1, (iii) for l = 3, i(3) = 3, and (iv) for l = 4, i(4) = 0. Observe that, as shown in
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Theorem 2 Given a systematic unordered code with k = r, for a comparison-based decoderto be implemented under assumptions A.1 and A.2, a necessary condition is that C(00 � � � 0) =11 � � � 1: That is, checkbits corresponding to all-0 data must be all-1.Proof: This proof uses some notation presented in the proof of Theorem 1. We assume thatr = k for the code under consideration.Let the code word transmitted by the sender on the asynchronous bus bedk�1dk�2 � � � d1d0 br�1br�2 � � � b1b0; where dk�1dk�2 � � � d1d0 = 11 � � � 11 and br�1br�2 � � � b1b0 =C(11 � � � 11): Thus, all the data bits transmitted by the sender are 1. Let the data received bythe encoder follow the chain D0 through Dk, as de�ned in the proof of Theorem 1. Unlike theproof of Theorem 1, in this proof, we do not assume that all non-zero checkbits arrive beforethe data bits.Without loss of generality, assume that the checkbits are named such that c0 is the�rst to be complemented, followed by c1, c2, etc., in that order, as illustrated in Figure 6(b).This assumption implies that, i(l) = l� 1 for 1 � l � k (using the notation in conditions B.1and B.2). More speci�cally, for 1 � l � k,(condition P.1) Cl�1(Dj) = Cl�1(D0), 1 � j � l � 1, and(condition P.2) Cl�1(Dl) = Cl�1(D0).The proof of Theorem 2 is by contradiction. Thus, we assume that at least one checkbit inC(D0) = C(00 � � � 0) is 0. Now let l denote the largest integer, such that Cl�1(D0) = 0. Bythe above conditions, it follows that, Cl�1(Dl) = 1. Now assume that the data transmittedby the sender is Dl (l is not necessarily equal to k). The data input to the decoder couldpotentially follow the chain D0;D1; � � � ;Dl.Assume that the receiver receives the most signi�cant (r�l) checkbits, before any othercheckbits or data bits are received. More speci�cally, the lower r-bit input to the comparatoris now assumed to be br�1br�2 � � � bl 0 0 � � � 0. Additionally, in the scenario under consideration,the least signi�cant l checkbits transmitted by the sender are assumed to encounter a largedelay on the asynchronous bus (larger than all the data bits and other checkbits). { Therefore,those l checkbits will remain 0 at the receiver during the scenario under consideration here.14



Now, assume that the data input to the encoder has changed from D0 to Dl�1, alongthe chain D0;D1; � � � ;Dl�1. By conditions P.1 and P.2, the most signi�cant (r� l+ 1) bits ofC(Dl�1) must be equal to br�1br�2 � � � bl0. (Recall that Cl�1(D0) = Cl�1(Dl�1) = Cl�1(Dl) =0.) Also, P.1 and P.2 imply that, for each i � l � 2, there exists m(i) � l � 1, such thatCi(Dm(i)) = 0. Even though the data input of the encoder has changed to Dl, it is possible(by assumption A.2) for the output of the encoder to equal br�1br�2 � � � bl 0 0 � � � 0. Thiswill occur if the most signi�cant r � l + 1 checkbits produced by the encoder linger on fromC(Dl�1), and each of the i-th least signi�cant l � 1 checkbits (0 � i � l � 2) produced bythe encoder lingers on from C(Dm(i)). Thus, in this situation, the encoder output and thecheckbits received on the bus are both br�1br�2 � � � bl 0 0 � � � 0, while the data bits received onthe bus are Dl�1 (although data bits transmitted are Dl). Thus, the comparator will producea false match, before the data has arrived. This concludes the proof. 26 Delay-Insensitive Decoder For Dual-Rail CodeWe now demonstrate that the bound in Theorem 1 is tight, by presenting a delay-insensitive(asynchronous) comparison-based decoder, for the dual-rail code, based on the architectureshown in Figure 2. The dual-rail code is commonly used in asynchronous systems, and forthis code k = r. Our design is very similar to the implementations found in asynchronousliterature [10, 12]. Without loss of generality, let us assume that the number of data bits is 2.Therefore, r = k = 2. The table below shows the code words where d1 and d0 are data bitsand c1 and c0 are checkbits. d1 d0 c1 c00 0 1 10 1 1 01 0 0 11 1 0 0It follows that, c1 = d1 and c0 = d0. 15



Figure 7 shows the circuit-level implementation of the decoder. The gate marked Cdenotes a Muller C-element [10, 9]. It is a special latch which has the following behavior. Theoutput of the C element is high (or logic 1) when all of its inputs are high and the output islow (or logic 0) when all of its input go low; otherwise it retains its previous state.
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r=2Figure 7: DI Implementation of the Decoder for 2 bit Dual-Rail CodeIt may seem that the XNOR gate inside the comparator maybe prone to hazards(glitches) and hence result in a false match. However, a close examination of the possibletransitions of the XNOR gate inputs reveals that it is not the case. The following is theinformal justi�cation which can be veri�ed by inspecting the transition space of the XNORfunction. At the beginning of the data transmission (refer to the details of the four-phaseprotocol in Section 2.1), the decoder input is the all-0 spacer, and the two inputs of eachXNOR gate are 1 and 0 which results in an output of 0. After the code word arrives, oneof the inputs of the XNOR will change resulting in the output changing monotonically to 1.Hence, the XNOR gate will not glitch. This implementation of the decoder for the dual-railcode is delay-insensitive. This proves that there exist codes with k = r for which comparison-based decoders can be implemented under assumptions A.1 and A.2 in Section 4.16



7 Decoders with Delay AssumptionsSection 4 proves that, if k > r, an asynchronous comparison-based decoder cannot be im-plemented under assumptions A.1 and A.2. In this section, we demonstrate that it may bepossible to implement such decoders if we are allowed to place realistic restrictions on trans-mission and circuit delays. Speci�cally, we present an implementation of a decoder for the(5,3) Berger code that makes some assumptions regarding circuit delays. Note that for thiscode, k = 3 and r = 2 { thus, k > r.Figure 8 presents the code words from the (5,3) Berger code in the form of a \lattice".A code word u precedes code word v in this lattice if the data bits in code word v cover thedata bits in code word u, and the number of non-zero data bits in u and v di�ers by 1. InFigure 8, most signi�cant 3 bits of each code word are the data bits d2d1d0, and the leastsigni�cant 2 bits are the checkbits c1c0. (Note that only the data bits are being comparedhere, not the whole code word.)
001  10        010  10        100  10

000  11

011  01        101  01        110  01

111  00Figure 8: Lattice representation of the (5,3) Berger codeIn Figure 8 observe that, if the sender is prevented from sending the code word 111 00(corresponding to data 111), then all the remaining code words satisfy the diagonal propertystated previously. In particular, the data received by the decoder must traverse a chain startingfrom 000 to the actual data value. As 111 is a forbidden data, the transmitted data can onlybe of weight� 2. The diagonal property is apparent from the observation that, the checkbit c0is complemented only when a data with weight 1 is received, and checkbit c1 is complementedonly when a data with weight 2 is received. Thus, from the discussion in Section 5 it followsthat, the comparison-based decoder will function correctly under assumptions A.1 and A.2,provided the sender if forbidden from transmitting the code word 111 00.17



Now, we suggest some assumptions on the circuit delays to allow the sender to transmitcode word 111 00 as well. To allow this, we only have to ensure that the output of the encoder(within the decoder in Figure 2) will not become equal to 00 unless the data received bythe encoder is 111. This can be guaranteed as follows: (i) Partition the encoder into twocircuit blocks S0 and S1 to independently produce c0 and c1, respectively, as a function of thereceived data. The data bits received from the bus are sent to both S0 and S1. (ii) Ensurethat, when a transition occurs on the bus, the delay in producing the new output value issmaller for S0 as compared to S1. (i.e., in response to an input data change, the encodercomputes the new value of c0 faster than the new value of c1.)The above two conditions guarantee that the encoder will not produce output 00, unlessthe input is 111.2 This will ensure that a false match cannot occur when the transmitted codeword is 111 00. We already know that a false match cannot occur when any other code wordis transmitted. Thus, the decoder will function correctly under the circuit delay assumptionstated above.It is worth noting that the circuit delay assumption made above is easy to implementin practice. We conjecture that comparison-based decoders can be implemented for all Bergercodes under practical assumptions on circuit delays. Design of decoders for larger Bergercodes is a subject of on-going work.8 Discussion of the ResultsThe key contribution of the report is the investigation into the VLSI implementation of de-coders for unordered or delay-insensitive (DI) codes. We showed that enumeration-baseddecoders are impractical for codes of any reasonable size. Comparison-based decoders arefeasible but are prone to glitches if the underlying gate and wire delays are arbitrary (un-bounded but �nite). The key implication of this result is the non-existence of delay-insensitive2To see why that is true, note that the encoder can possibly produce output 00 only if its data inputschange from 000 to a data of weight 1 (e.g., 001), and then to a data of weight 2 (e.g., 101), and �nally to 111.When data changes along this chain, the encoder output can prematurely become 00 only if the c0 checkbitproduced when data input was 001 stays at 0 even when the data has changed to 101 and, in response, c1 haschanged to 0 (from 1). The circuit delay assumption made above, ensures that c1 cannot change to 0 (from1) in response to an input change from 001 to 101, before c0 changes from 0 to 1. Thus, the encoder outputcannot prematurely become equal to 00, and a false match cannot occur.18



comparison-based decoders for systematic delay-insensitive codes with redundancy less than50%. In other words, comparison-based decoders for systematic DI codes which are moree�cient (in terms of number of wires per bit) than dual-rail codes cannot be implemented indelay-insensitive manner. However, if one is prepared to make some delay assumptions in theunderlying implementation, codes with smaller redundancy could be implemented reliably,i.e., in a hazard-free manner. This was demonstrated in Section 7 by enumerating the condi-tions under which a decoder for a Berger code could be implemented. This is an interestingresult because it brings out a curious relationship between the timing (delay) assumptions inthe decoder implementation and the redundancy of the unordered (or delay-insensitive) code.An interesting problem is to determine the lower bounds on the redundancy in the unordered(or DI) codes to implement comparison-based decoders with quasi-delay-insensitive (QDI)assumption [12, 9, 13] and the speed-independent circuit theory [11].AcknowledgementsWe thank Janlung Sung for discussions during the early part of this research.References[1] Berger, J. M. ANote on Error Detection Codes for AsymmetricChannels. Informationand Control 4 (1961), 68{73.[2] Blaum, M., Ed. Codes for Detecting and Correcting Unidirectional Errors. IEEE Com-puter Society, 1993.[3] Blaum, M., and Bruck, J. Unordered error-correcting codes and their applications.In Digest of papers: The 22th Int. Symp. Fault-Tolerant Comp. (July 1992), pp. 486{493.[4] Blaum, M., and Bruck, J. Coding for Skew-Tolerant Parallel Asynchronous Com-munications. IEEE Transactions on Information Theory 39, 2 (March 1993), 379{388.[5] Blaum, M., and Bruck, J. Delay-Insensitive Pipelined Communication on ParallelBuses. IEEE Transactions on Computers 44, 5 (May 1995), 660{668.[6] Bose, B. On Unordered Codes. IEEE Transactions on Computers 40 (February 1991),125{131.[7] Eichelberger, E. B. Hazard Detection in Combinational and Sequential SwitchingCircuits. IBM Journal of Research, 9 (mar 1965), 90{99.19
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