Optimal Run-Time Tracing of Message-Passing Programs

Anish Karmarkar and Nitin Vaidya'
Department of Computer Science, Texas A&M University,
College Station, Tx - 77843.

Robert H B Netzer
Department of Computer Science, Brown University
Providence, RI 02912.

Tecnical Report TR95-040.

Sept., 19952

!Supported in part by National Science Foundation grant, MIP9502563.
2Revised Nov., 1995.

Abstract

The widespread adoption of distributed computing has accentuated the need for an effective
set of support tools to facilitate debugging and monitoring of distributed programs. Unfor-
tunately for distributed programs, this is not a trivial task. Many distributed programs are
inherently non-deterministic in nature. Two runs of the same programs with the same input
data may not result in the same execution sequence. Cyclic debugging is one of the most
common strategies used in debugging. To allow cyclic debugging, messages are traced for
repeatable execution. In this paper we present a simple proof that it is impossible to have an
algorithm, which will produce an optimal message trace (least number on messages traced),
in general. We then present two tracing algorithms, Algorithm A and Algorithm B. Both
the algorithms trace messages at run-time, i.e., when a message is received at a process.
Algorithm A does optimal tracing of messages, given the fact that messages are traced at
run-time, and no information about the future is available when these decisions are made.
Algorithm B improves on the storage requirement and execution time of Algorithm A, and
is based on the observation that only (n-1) buffers are required per process for optimal run-
time decision making, where n is the number of processes in the system. This algorithm is
an improvement over the algorithm presented in [10], which does optimal tracing only when
the races amongst messages are transitive.

1 Introduction

The widespread adoption of distributed computing has accentuated the need for an effective
set of support tools to facilitate debugging and monitoring of distributed programs. Unfor-
tunately for distributed programs, this is not a trivial task. Many distributed programs are
inherently non-deterministic in nature.

Debugging a single sequential program itself is not a trivial task. The added complexity
of debugging concurrent programs makes it even harder. There are several problems in
debugging concurrent programs. The biggest problem being non-determinacy. This non-
determinacy gives rise to non-repeatability. The same programs when executed on the
same input may give different results on different runs. Another important factor that
makes analysis of distributed programs difficult is the lack of a synchronized global clock
[1]. Without a global clock it may be difficult to determine the precise order of events
occurring in distinct concurrently executing processors.

The approach usually used in debugging sequential programs is to execute the program till
an error occurs. Then, the same program is re-executed with breakpoints or debug state-
ments placed at strategic points in the program. The program is stopped during execution,
its state examined and then continued or re-executed. This method is called cyclic debug-
ging. Distributed programs do not, unfortunately, lend themselves easily to this style of
debugging.

Consider a system of three processes 1, 2 and 3 as shown in figure 1. Here the messages
ml and m2 race with each other. Depending on the scheduling and message latencies, m1
can be received by process 2 before m2 as shown in figure 1, or m2 can be received before
m1 by process 2 as shown in figure 2. This leads to non-determinacy. In fact, it is possible
that if the undesirable behavior occurs with a low probability, the programmer may not be
able to reproduce the error situation.

To facilitate cyclic debugging, the event histories in distributed programs are recorded.
Events usually are the Send and Receive events. The event histories can then be used for
re-executing the programs, with the same execution sequence as in the original execution.
The event histories eliminate all the non-determinism. Re-executing the distributed pro-
grams under the control of event histories is called ‘replay’. The event histories allow the
debugger to re-execute the programs such that the order of events is same as that in the
original execution. The re-execution can be done in debug mode and more information can
be gathered. Additional debug statements can be added and the re-execution will still give
the same results. For example, in figure 1, m1 is received by process 2 before m2. This is
recorded in the event history. So, no matter what the scheduling delay, network traffic or
message delays, m1 will be delivered before m2 during the replay. If message m2 physically
arrives at processes 2 before m1, then it is held in a buffer and actually delivered after m1.

Send
ml
a b
Recv Recv
m2
Send

time ——=

Figure 1: Non-Determinism in Distributed System.

m2

time ——=

Figure 2: Non-Determinism in Distributed System.

This added synchronization can dramatically slow down the programs. In fact some long
running programs that send a lot of messages may make cyclic debugging impossible.. For
replaying distributed message passing programs, the common strategy is to trace all the
messages between processes; so that the execution can be made repeatable. The critical
cost in tracing and replaying programs is the cost of tracing messages. In a typical trace and
replay scheme, the order in which messages are delivered is first traced during execution.
These traces are then used during replay to force each message to be delivered to the same
operation as during the traced execution [11].

The algorithms presented in this paper reduce the cost of message tracing, by reducing the
number of messages traced. The basic idea was first proposed by Netzer and Miller [10].
However, their algorithm produces optimal message trace only when the message races are
transitive’. We improve on this by making the best tracing decisions, given the fact that
messages are traced when they are received. In that sense, our message tracing algorithm
is optimal. We also improve on the storage requirement for each process, in spite of the
fact that, the message tracing decision is made by looking at the complete past history of
a process. We also show a simple proof that, no algorithm can exist which will give an
optimal trace in general, if messages are traced by looking only at the past history. To our
knowledge these results have not been presented before.

2 System Model

The system consists of multiple processes that communicate only through messages. Fach
process in the system has a unique id which is known to all other processes in the system.
The only synchronization events are Send and Recv. A Send operation can send messages
to other process(es), e.g., a unicast or a broadcast. A Recv operation can receive a single
message from another process. The Send event specifies the process id to which the message
is to be sent in the case of a unicast, or the list of process ids in case of a multicast. The
delay in delivering messages is not known. For each process i that can send messages to
process j, there is a one-way FIFO channel, from process i to process j. A Recv event, can
receive messages only from the channels that are specified in the event, e.g., Recv(all) can
receive messages over any channel incident on and directed towards the process executing
the Recv event, Recv(j,k) can receive messages only from processes j and k. All the channels
in the system are first-in-first-out (FIFO). If two messages m1 and m2 are sent by process
i to process j, and m1 was sent before m2 then m1 will be received before m2 at process j,
although the delay between them is non-deterministic.

The events in the distributed system follow Lamport’s [1] ‘happened-before’ relationships.
This relationship denoted by ‘—’ is an irreflexive transitive closure. The definition of a race
between two messages is the same as in [10]. Informally, two messages race if either could
have been accepted first by some receive event, due to variations in message latencies or

process scheduling. More formally, a message from send event a to receive event b races
with message from send event ¢ to receive event d, if and only if there is a frontier that can
be drawn, that leads to a frontier race. For details on frontier and frontier races refer [10].

3 Motivation and Related Work

There is plenty of work done in the area of distributed debugging and replaying distributed
programs. For replaying distributed message passing programs, the common strategy is to
trace all the messages between processes so that the execution can be made repeatable.
LeBlanc and Mellor-Crummey [7] suggest a method for distributed debugging called ‘In-
stant Replay’, which differs from the strategy of trace and replay. In this method, during
program execution, the relative order of significant events is saved as they occur, and not
the data associated with such events. As a result, this requires less time and space. The
assumption made here is that all the processes are piece-wise deterministic. When the
relative order of different IPC events or access of shared objects is saved, then the same
data is generated, during replay. It is then guaranteed to reproduce the program behavior
during the debugging cycle by using the same input from the external environment and by
imposing the same relative order on events during replay that occurred during the original
program execution. This technique does not depend on any form of interprocess communi-
cation. No centralized bottlenecks are introduced, nor does it require a synchronized global
clock. But, a single process cannot be replayed in isolation, all the processes have to be
run, as the actual data is not saved.

Netzer and Miller [10] present a technique for tracing and replaying message passing dis-
tributed programs, that has a good performance, but is optimal (least number of messages
traced) only when the message races are transitive. Their algorithm reduces the messages
traced based on the facts that, only messages that race have to be saved and if two mes-
sages race, tracing only one of them is sufficient. Run-time tracing decisions are made to
trace only a fraction of the total number of messages. This decreases the execution time
overhead, as well as the space requirements.

The critical cost in tracing and replaying programs is the cost of tracing messages. In a
typical trace and replay scheme, the order in which messages are delivered (but not their
contents) is first traced during execution [11]. These traces are then used during replay to
force each message to be delivered to the same event as during the traced execution. In
the technique presented in [10], a check is made for each message to determine if it races
with another message, and only one of the racing messages is traced. When a message is
received a race check is performed by analyzing the execution order between the previous
receive operation in the same process and the message sender. The ordering information
necessary for this check is maintained during execution by appending vector time-stamps
onto user messages.

Given that tracing decision is made when the message arrives, the algorithm in [10] does
not result in optimal trace, for the general case. The algorithm results in optimal tracing
of messages only if all the races are transitive. We call this algorithm as N&M algorithm.
It is reproduced here in figure 3.

1. Send = event that sent Msg.

2. PrevRecv = previous event (in the same process) willing to receive from
the channel over which Msg was sent.

3. if (PrevRecv # Send)

trace the message delivered from Send to Recv.

Figure 3: N&M Algorithm.

Consider the example in figure 1. Messages m1 and m2 race with each other. Now, if it is
recorded that message m1 was delivered to process 2 during the first Recv and message m2
was delivered during the second Recv, this information is sufficient to replay the processes
1, 2 and 3. However, it is not necessary to record both the messages. If m1 is recorded as
the message that was delivered during the first Recv, then m2 has nowhere to go but to the
second Recv. It is easily seen that it is optimal (minimal number of messages traced) to
trace only one message in this example. It is proved in [10], that only racing messages need
to be traced, and we need trace only one message in each race. Non-racing messages cannot
introduce non-determinacy and thus their deliveries need not be enforced during replay.

Though this technique[10] provides optimal message tracing in most cases, it is not optimal
in all cases. Consider the example in figure 4. The N&M algorithm will trace messages m2
and m3. Whereas, the optimal tracing is when only m2 is traced, as m1 and m3 do not race
with each other. This non-optimality manifests itself because in step 3 of N&M algorithm,
a blind check is performed irrespective of whether the message received at PrevRecv was
traced or not.

In [10] it is shown that the minimum vertex cover problem can be reduced to the problem
of finding the optimal message trace. Here each vertex represents a message, and an edge
represents a race between two messages. e.g., an edge between vertices A and B means the
message represented by A races with the message represented by B. The minimum vertex
cover problem is know to be NP-complete, and therefore so is the problem of finding an
optimal message trace.

ml
2 Recv(3,4) Recv(4)
Recv(1,3)
m2
3
Send
m3
4
Send

Figure 4: Non-Optimality of N&M Algorithm.

4 Impossibility of Obtaining Optimal Trace with Run-Time
Tracing Decisions

It is impossible to come up with an algorithm that will give an optimal trace of any ex-
ecution, under the constraint that tracing decisions are made at the instant messages are
received, i.e., when a message is traced, no knowledge about the future is available. Also,
this means that if a message is not traced when it is delivered, it will never be traced. A
decision is made at run-time whether a message is traced or not. Once a decision is made
it cannot be changed in the future.

A simple proof (by contradiction) to support this impossibility claim is given next. Let us
agsume that such an algorithm exists and gives an optimal trace, let us call it Opt_Alg. It is
sufficient to give an example that contradicts this assumption. Consider the example given
in figure 5. Part A shows the execution of process 2. At event b, message m1 is received.
Now Opt_Alg will make a tracing decision at event b without the knowledge of the future.
The decision has a binary value, either to trace or not to trace.

Case 1: Opt_Alg traces message m1l. Now let the future after event b unfold as shown in
part A. As shown in figure 5, the minimum vertex cover is just vertex m2. Opt_Alg has
traced m1 already, so to remove the non-determinacy, it will have to either trace m2 or m3.
Either choice results in a non-optimal trace leading to a contradiction.

Case2: Opt_Alg does not trace m1. Now let the future after event b unfold as shown in
part B. As shown in figure 5, the minimum vertex cover is just vertex m1. Opt_Alg has not
traced m1, so to remove the non-determinacy, it will have to trace m2 and m3 resulting in
a non-optimal trace, leading to a contradiction.

Thus, we conclude that Opt_Alg cannot exist.

5 Algorithms for Run-Time Tracing

The basic ideas behind our algorithm are: 1) A message has to be traced only if it is involved
in a race with another message. 2) If a message is traced, then it should not be considered
for future races.

The algorithm is based on the fact that, if two messages race with each other then only one
of them needs to be traced, for replay of programs [10]. If a message does not race with
any other message then it need not be traced. If two messages m1 and m2 (refer figure 1)
race with each other then for repeatable execution of the program it is sufficient to trace
just one of them [10]. If m1 is traced, then during replay, if m2 arrives before m1 (because
of scheduling and message delays) the receive event a will not accept m2. It will wait till
m1l arrives, accept m1 and then m2 will be accepted at event b.

If m2 is traced, then during replay, if m2 arrives before m1 (because of scheduling and
message delays) m2 again will not be accepted at event a. The receive event will wait till
another untraced message (ml) arrives.

The above can be implemented as follows: when a message is traced its Send Sequence
Number (SSN) and Receive Sequence Number (RSN) are recorded. During replay, if a
message was traced then the corresponding send event is modified, so that the message sent
during replay is tagged with its SSN and RSN. At the receiver end, the receive event is
also modified, so that it receives a message with the same RSN as in the original execution.
Now, if the tagged message arrives early, other receive events will not receive the mes-
sage because the RSN will not match. If the message arrives late, its corresponding receive
event will be waiting for this message, and will reject all other messages with incorrect SSN.

We will first present a naive algorithm called Algorithm A, that incorporates the above
ideas, and then improve on it in Algorithm B. Algorithm A has excessive storage storage
requirement and a long execution time, which are eliminated in Algorithm B.

5.1 Algorithm A

To describe this algorithm, we need to first define some data structure. The system consists
of n processes communicating with each other through messages. Fach process i, can there-

1 2 3 1 2 3
a a
c [
ml ml
b b
Recv(1,3,6 m?2 Recv(1,3,6 m2
d d
Recv(any) Recv(3)
5 6
m3 m3
e e
f | Recv(4,5) f] Recv(6)
A. ml traced A. ml not traced
m2 m2
ml ml
m3 m3

Figure 5: Impossibility of Obtaining Optimal Trace, with Run-Time Decision.

10

fore, receive messages from (n-1) processes over (n-1) channels. Each process i maintains
(n-1) linked lists LL;, (1 < j < n, j # i) for each channel j, from process j to process i.
When a message m1 is received by process i at receive event el, the receive event is added
to some of the linked lists depending on the event el that received that message. For all j,
(1 <j<mn,j#1i),if the receive event el listened over channel j, then event el is inserted at
the head of linked list LL;. For example, if the receive event el was Recv(all), insert el in
all the linked lists, whereas if the receive event was Recv(j,k,l), then insert el in LL;, LLy,
LL;. Algorithm A is given in the form of a C-like pseudo-code in figure 6 and explained
below.

Algorithm_A (NewSend, NewRecv)
{

/* NewMsg is the message sent by event NewSend
* to event NewRecv on channel C
*/
trace = FALSE
trace_decision(C, NewRecv, NewSend)
if trace = TRUE
trace NewMsg
forj = 1 to n-1
if (NewRecv listened over channel j)
insert NewRecv in LLJ
end for

trace_decision(j, NewRecv, NewSend)

PrevRecv = head of LL
do until tail of LL; is reached
if (PrevRecv — NewSend)
break;
else if PrevRecv not traced
trace = TRUE
break;
else
PrevRecv = next element of LLJ

Figure 6: Algorithm A.

The algorithm is invoked by any process i, whenever a message NewMsg sent by event
NewSend at process k (k # i) is received by event NewRecv at process i. The variable
traca, used to store the tracing decision, has a binary value. The function trace_decision is
called with argument C, the channel over which the message was received. For each channel
j over which NewRecv listened the NewRecv event is inserted in the corresponding LL;.
In the function trace_decision(), a check is performed for a ‘happened-before’ relation
between events PrevRecv and NewSend, where PrevRecv is the receive event at process
i, which ‘happened-before’ NewRecv. This PrevRecv event is obtained from the head
of the linked-list LL;. If PrevRecv ‘happened-before’ NewSend, it implies that the
NewMsg does not race with any message on channel j and need not be traced. If there

11

is no ‘happened-before’ relation and if the message received at event PrevRecv was not
traced, then NewMsg is traced. If the message received at PrevRecv was traced, then
the algorithm does the same check for the previous element in the linked list, till the tail of
the list.

5.2 Correctness of Algorithm A

Algorithm A is correct (a pair of messages which race and neither was traced, doesn’t exist)
and run-time optimal because, for every channel the whole past is stored, and used for
tracing decision making.

The correctness of algorithm A can also be proved by contradiction: Let m1 and m2 be two
messages received by process i. Let m1 be sent by event Send1 and received at event Recvl.
Let m2 be sent by event Send2 and received at event Recv2. Let Recvl occur before Recv2.
Let m2 race with m1 over some channel C. Therefore there is no happened-before relation
between Recvl and Send2. Since m1 and m2 race over channel C, therefore Recvl listened
over channel C. Which implies that Recv1 is inserted in LL..

Assume that algorithm A does not trace either m1 or m2. The only way this can happen
is when m2 is received, there is an event in LL. (say, LL.(a)) such that LL.(a) — Send2
and LL.(a) occurred after Recvl, i.e.; Recvl — LL.(a). By transitivity of the ‘— relation
we have Recvl — Send2. Which leads to the conclusion that m2 does not race with m1, a
contradiction. Therefore we conclude that if two messages race then at least one of them is
traced by algorithm A.

5.3 Example 1

Consider the previous example of figure 4, when m1 is received, the corresponding receive
event is inserted in LI, and LL3 at process 2. m1 is not traced as there are no PrevRecvs.
When m2 is received, there is no ‘happened-before’ relation between the receive at ml
and the send of m2, and since m1 is not traced, m2 is traced. The receive event of m2 is
also inserted in LLs and LI, at process 2 and marked as traced. When m3 is received,
it is seen that m3 races with m2, but m2 is already traced. Also, m3 does not race with
any other message in the linked list L14, so m3 is not traced. The receive event at m3 is
inserted in LL4. At the end of receive of m3 the linked lists at process 2 are as shown below.

LLi: ml; LLs: m2-m1; LLy: m3-m2;
The difference between N&M and this algorithm is that when two messages race, the new
algorithm checks whether the previous message was traced. If it was traced then the algo-

rithm goes back in time to see if the current message raced with any other message in the
past.

12

ml
) Recv(any) Recv(any)
Recv(any)
m2
3
Send
m3
4
Send

Figure 7: Example 2.

5.4 Example 2

Refer figure 7. When m1 is received, it is not traced, as there are no messages received
before it. m2 is traced as it races with m1 and ml is not traced. When m3 is received, a
race check is made with m2. Although m3 races with m2, m2 was traced therefore, the race
between m2 and m3 is ignored. So we go back in past and see that m3 raced with m1 and
ml was not traced; resulting in the tracing of message m3. This is again an optimal trace
given that tracing decisions are made when the messages are received. The linked lists at
the end of the algorithm are as shown below:

LLi: m3-m2-m1; LLs: m3-m2-m1; LLy: m3-m2-ml;

The correctness of the algorithm follows from [10] and the observation that traced messages
effectively do not race with any other message.

5.5 Algorithm B

For algorithm A, it can be seen that all the information about the past receive events is
saved in the linked lists. This will result in enormous wastage of memory. For long running
programs or programs with lot of message passing activity, this may render tracing and
replaying impossible. If a condition is found which will allow past receive events to be
purged from the lists, without affecting the correctness or optimality of the algorithm, then
the number of receive events stored in the lists can be limited. As shown in Theorem 1, we

13

1 Recv(2) Recv(2)

ml m2

Send Send

Figure 8: Messages from the same process do not race with each other.

need to keep only one message per channel, per process. Le., (n-1) linked lists per process
can be replaced with just an array of size (n-1) for the past receive events.

Theorem 1: For a message passing system, given that tracing decisions are made at the
instant when a message is received at a process, for optimal tracing of messages, a check
has to be made only with C number of receive events, in the worst case, where C is the
number of channels incident on and directed towards the process.

In other words, only C receive events need to be stored per process, for optimal tracing.

Assumptions:

A1l. There are n processes in the message passing system.

A2. Tracing decision is made at each process i, when it receives a message (decision is
made with no information about the future).

A3. All channels are FIFO.

A4. A process i can receive messages from (n-1) processes over (n-1) channels. Where 1 <
i<n.

Lemma 1: A message from process j to processes i will not race with any other message
from process j to processes i. In other words, a message from process j to process i can race
with messages from (n-2) processes only.

This result follows directly from [1] and A3. Since all events in a single process are totally
ordered, if two messages are sent from process j to process i, there is a ‘happened before’
relation between the two send events in process j. From assumption A3, the message sent
at the first ‘Send’ event will always be delivered before the message from the second ‘Send’
event. In figure 8, m1 will always be delivered before m2. Thus, a message from a process
races only with messages from (n-2) processes.

Lemma 2: If a message is traced, effectively, it does not race with any other message.

If a message is traced, then in the replay, the corresponding Receive event will not receive

14

messages from any other Send event but the one from which it received the message in the
original execution, which was traced. This means that for the algorithm, a traced message
need not be considered for race checks.

Lemma 3: A message from process j to process i can race with a message from process k
to process i, only if at least one receive event (out of the two Receive events) was ready to
receive a message from either process.

This is based on the functionality of the function ‘Recv’. It is obvious from the fact that if
a receive event was Recv(j), it will not receive messages from any other channel but that
from process j to process i, whereas a message received at the event Recv(j, k, ...) can
potentially race with messages from other processes.

Proof of the Theorem:
Let us assume that message mt from process j to process i races with t messages (m0, m1,
m(t-1)) from process k to process i. (We are considering messages that were received
only in the past from assumption A2). All t messages are not traced (if they were, then by
Lemma 2 above, they will not race with mt). By assumption A2, tracing decision is made
at the instant the message arrives; this implies that m0, m1, ..., m(t-1) will never be traced
(as they belong to the past). The decision to be made is: should mt be traced or not? The
decision is ‘YES’ if mt raced with any of the m0, m1, ..., m(t-1) messages else it is ‘NO’
(unless it races with a message from some other process). Without loss of generality we can
assume that the messages received from process k be in the time order m0, m1, ... ,m(t-1).
It will never happen that mt races with any of m0, ml1, ..., m(t-2), but not with m(t-1).
This can be proved by contradiction.

Let us assume that mt races with at least one of m0, m1, ..., m(t-2) say ma, but not with
m(t-1) (a < t-1). By this assumption we have Receive of m(t-1) — Send of mt, because
m(t-1) and mt do not race and Receive of mt could NOT have occurred before that of
m(t-1). But, Receive of ma — Receive of m(t-1). By transitivity Receive of ma ! Send of
mt. Leading to a contradiction that mt did not race with ma.

The tracing decision depends only on whether mt races with m(t-1). i.e., we need to keep
only one untraced receive event per channel per process.

For algorithm A, we keep (n-1) linked-lists, one for each channel, in every process. In each
list we keep all the Receive events that received a message with a potential race condition
over that channel. From the above result, we never need keep more than (n-1) Receive
events in each list, one for a message from each process.

In each list there will never be more than (n-1) Receive events as proved above, but the
messages corresponding to the Receive event are from different processes and they race

15

m3

ml m2

3

Figure 9: Example 3.

with each other. But, if they race with each other, then all of them (but one) would have
been traced. Therefore, there will never be more than one Receive event in each list. Thus
proving theorem 1. It follows that each process will have maximum of (n-1) Receive events
stored from its past.

O

5.6 Example 3

One may tend to think that the above result is incorrect, as it is not very intuitive. Consider
the example shown in figure 9. It can be easily seen that if m3 races with m2, it may or may
not race with m1. But, if m3 does not race with m2 (there is a ‘happened before’ relation
between receive of m2 and that if m3), then m3 does not race with m1 either. Thus it is
sufficient to determine if m3 races with m2. We therefore do not need to save the receive
event of m1. Thus, a race check with m2 will result in tracing of message m3. If for some
reason m2 raced with another message (received before m3, e.g. m’) and was traced, then
we do not need to save the receive event of m2 as it does not race with any message (by
Lemma 2). When m3 is received, a race check is performed with receive event of m1, which
will again lead to the tracing of m3.

Algorithm B is given in figure 10. The algorithm is invoked by any process i, whenever
a message NewMsg sent by event NewSend at process k (k # i) is received by event
NewRecv at process i over channel C. If there is no happened-before relation between
LL[C] and NewSend, then the message is traced and the array LL is not updated. If there
is a happened-before relation between LL[C] and NewSend then, for each channel j over
which NewRecv was listening the element LL[j] is updated to NewRecv.

16

Algorithm B (NewSend, NewRecv) {
/* NewMsg is the message sent by event NewSend to event
* NewRecv on channel C
*
if LL[C] # NewSend
trace NewMsg
return
forj = 1 to n-1
ifj == C
continue
if (NewMsg could have been received over channel j)
LL[j] = NewRecv
end for

}

Figure 10: Algorithm B.

5.7 Example 4

In section 4 we showed that its impossible to obtain an optimal trace, given the fact that
tracing decision is made at the instant a message arrives at the destination. This example
illustrates the non-optimality of algorithm B. In figure 7, if the second Receive event is
changed to Recv(1,3) and the third Receive event is changed to Recv(1,4), then the trace
obtained by algorithm B is non-optimal. The optimal trace would be to trace just message
ml, as m1 races with m2 and m3 but m2 does not race with m3. Algorithm B will not trace
ml as there are no ‘PrevRecv’s. Instead it will trace m2 and m3 leading to a non-optimal
trace.

6 Summary and Future Research Directions

In this paper we have presented an algorithm that traces messages optimally, given the con-
straint that tracing decisions are made at the instant a message is received by a process. We
have also improved on the memory requirements for this algorithm. Using this technique,
message traces required for distributed debugging can be significantly reduced. This will
lead to less debugging overheads, which include reduced memory, storage, and execution
time. For long running distributed programs this is very critical. If the debugging overheads
are high, it is not possible to debug the programs using cyclic debugging techniques if every
message is traced. We have also shown that if tracing decisions are to be made at run-time
(i.e., at the instant a message is received by a process), it is impossible to have an algorithm
which will trace messages optimally.

Finding an algorithm that will give an optimal trace under every possibility is equivalent
to finding the minimum vertex cover, which is known to be NP-complete. One way to do
this can be to save all the message that are received by the process. At the end of the
execution run an algorithm (which will run in exponential time) to calculate the optimal

17

trace and trace only those message. This can be done even if the process crashed (because
of a bug), as the node it is running on has not failed (as opposed to situation occurring
for requirements of fault-tolerance). But, this defeats the purpose of producing optimal
message trace. The time required by this optimal algorithm will be very large and we are
better off instead, by tracing all the messages.

Future work includes implementation of the algorithm given in this paper to see how it
affects the number of messages traced for different classes of application and the amount
of actual time saved. This can then be compared with the implementation results in [10].
Better tracing strategies include considering algorithms which make tracing decisions with
the knowledge about the events in a future window, where the future window is of fixed (or
varying for adaptive algorithms) size. The size of the window will have to be determined
from experimental results or some heuristics. For example, when a tracing decision is made
about a receive event ‘a’ in process i, n number (where n is the size of the future window)
of events in process i that occurred after event ‘a’ have already occurred. In other words,
tracing decision for event ‘a’is made at an event which is separated by n events in the future.

Acknowledgements

The authors would like to thank Jennifer Welch’s (Texas A&M University) for her com-
ments on the initial draft of this report.

References

[1] Leslie Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communication of ACM, vol 21, no 7, July 1978.

[2] Allen D. Malony and Daniel A. Reed, “Models for Performance Perturbation Analysis,”
ACM/ONR Workshop on Parallel and Distributed Debugging, pp 15-25, Santa Cruz, CA,
May 1991.

[3] J. P. Black and M. H. Coffin and D. J. Taylor and T. Kunz and T. Basten, “Linking
Specification, Abstraction, and Debugging,” University of Waterloo, Canada, Tech Report
TR-94-02, November 1993.

[4] Stuart I. Feldman and Channing B. Brown, “IGOR: A System for Program Debugg ing
via Reversible Execution,” Proceedings of the SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging, pp112-123, Madison, WI, May 1988.

[5] Perry Emrath and Sanjoy Ghosh and David Padua, “Detecting Non-determinacy in
Parallel Programs,” IEFFE Software 9,1, pp.69-77, January 1992.

18

[6] Charles E. McDowell and David P. Helmbold, “Debugging Concurrent Programs,” ACM
Computing Surveys, vol 21, no 4, pp 593-622, December 1989.

[7] Thomas J. LeBlanc and John M. Mellor-Crummey, “Debugging Parallel Programs with
Instant Replay,” IFEFE Transactions on Computers, C-36, 4, pp 471-482, April 1987.

[8] Colin Fidge, “Fundamentals of Distributed System Observation,” The Universi ty of
Queensland, Australia, Tech Report 93-15, November 1993.

[9] Z Yang and T.A. Marsland, “Global Snapshots for Distributed Debugging: An Overview,”
University of Alberta CS, Tech Report TR, 92-03, 1992.

[10] Robert H. B. Netzer and Barton P. Miller, “Optimal Tracing and Replay for Debugging
Message-Passing Parallel Programs,” Proceedings of Supercomputing 92, Minneapolis, MN,
pp 502-511, November 1992.

[11] Larry D. Wittie, “Debugging Distributed C Programs by Real Time Replay,” Proceed-
ings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging,
pph7-67, vol 24, no 1, January 1989.

[12] Robert H. B. Netzer, Sairam Subramanian and Jian Xu, “Critical-Path-Based Message

Logging for Incremental Replay of Message-Passing Programs,” Internation al Conference
on Distributed Computing Systems, 1994.

19

