
Optimal Run-Time Tracing of Message-Passing ProgramsAnish Karmarkar and Nitin Vaidya1Department of Computer Science, Texas A&M University,College Station, Tx - 77843.Robert H B NetzerDepartment of Computer Science, Brown UniversityProvidence, RI 02912.Tecnical Report TR95-040.Sept., 19952

1Supported in part by National Science Foundation grant, MIP9502563.2Revised Nov., 1995. 1

AbstractThe widespread adoption of distributed computing has accentuated the need for an e�ectiveset of support tools to facilitate debugging and monitoring of distributed programs. Unfor-tunately for distributed programs, this is not a trivial task. Many distributed programs areinherently non-deterministic in nature. Two runs of the same programs with the same inputdata may not result in the same execution sequence. Cyclic debugging is one of the mostcommon strategies used in debugging. To allow cyclic debugging, messages are traced forrepeatable execution. In this paper we present a simple proof that it is impossible to have analgorithm, which will produce an optimal message trace (least number on messages traced),in general. We then present two tracing algorithms, Algorithm A and Algorithm B. Boththe algorithms trace messages at run-time, i.e., when a message is received at a process.Algorithm A does optimal tracing of messages, given the fact that messages are traced atrun-time, and no information about the future is available when these decisions are made.Algorithm B improves on the storage requirement and execution time of Algorithm A, andis based on the observation that only (n-1) bu�ers are required per process for optimal run-time decision making, where n is the number of processes in the system. This algorithm isan improvement over the algorithm presented in [10], which does optimal tracing only whenthe races amongst messages are transitive.

2

1 IntroductionThe widespread adoption of distributed computing has accentuated the need for an e�ectiveset of support tools to facilitate debugging and monitoring of distributed programs. Unfor-tunately for distributed programs, this is not a trivial task. Many distributed programs areinherently non-deterministic in nature.Debugging a single sequential program itself is not a trivial task. The added complexityof debugging concurrent programs makes it even harder. There are several problems indebugging concurrent programs. The biggest problem being non-determinacy. This non-determinacy gives rise to non-repeatability. The same programs when executed on thesame input may give di�erent results on di�erent runs. Another important factor thatmakes analysis of distributed programs di�cult is the lack of a synchronized global clock[1]. Without a global clock it may be di�cult to determine the precise order of eventsoccurring in distinct concurrently executing processors.The approach usually used in debugging sequential programs is to execute the program tillan error occurs. Then, the same program is re-executed with breakpoints or debug state-ments placed at strategic points in the program. The program is stopped during execution,its state examined and then continued or re-executed. This method is called cyclic debug-ging. Distributed programs do not, unfortunately, lend themselves easily to this style ofdebugging.Consider a system of three processes 1, 2 and 3 as shown in �gure 1. Here the messagesm1 and m2 race with each other. Depending on the scheduling and message latencies, m1can be received by process 2 before m2 as shown in �gure 1, or m2 can be received beforem1 by process 2 as shown in �gure 2. This leads to non-determinacy. In fact, it is possiblethat if the undesirable behavior occurs with a low probability, the programmer may not beable to reproduce the error situation.To facilitate cyclic debugging, the event histories in distributed programs are recorded.Events usually are the Send and Receive events. The event histories can then be used forre-executing the programs, with the same execution sequence as in the original execution.The event histories eliminate all the non-determinism. Re-executing the distributed pro-grams under the control of event histories is called `replay'. The event histories allow thedebugger to re-execute the programs such that the order of events is same as that in theoriginal execution. The re-execution can be done in debug mode and more information canbe gathered. Additional debug statements can be added and the re-execution will still givethe same results. For example, in �gure 1, m1 is received by process 2 before m2. This isrecorded in the event history. So, no matter what the scheduling delay, network tra�c ormessage delays, m1 will be delivered before m2 during the replay. If message m2 physicallyarrives at processes 2 before m1, then it is held in a bu�er and actually delivered after m1.3

Send

m1

Recv

Send

Recv

m2

time

1

2

3

a b

Figure 1: Non-Determinism in Distributed System.
Send

Send

time

1

2

3

m1

m2

a b

Recv RecvFigure 2: Non-Determinism in Distributed System.4

This added synchronization can dramatically slow down the programs. In fact some longrunning programs that send a lot of messages may make cyclic debugging impossible.. Forreplaying distributed message passing programs, the common strategy is to trace all themessages between processes; so that the execution can be made repeatable. The criticalcost in tracing and replaying programs is the cost of tracing messages. In a typical trace andreplay scheme, the order in which messages are delivered is �rst traced during execution.These traces are then used during replay to force each message to be delivered to the sameoperation as during the traced execution [11].The algorithms presented in this paper reduce the cost of message tracing, by reducing thenumber of messages traced. The basic idea was �rst proposed by Netzer and Miller [10].However, their algorithm produces optimal message trace only when the message races are'transitive'. We improve on this by making the best tracing decisions, given the fact thatmessages are traced when they are received. In that sense, our message tracing algorithmis optimal. We also improve on the storage requirement for each process, in spite of thefact that, the message tracing decision is made by looking at the complete past history ofa process. We also show a simple proof that, no algorithm can exist which will give anoptimal trace in general, if messages are traced by looking only at the past history. To ourknowledge these results have not been presented before.2 System ModelThe system consists of multiple processes that communicate only through messages. Eachprocess in the system has a unique id which is known to all other processes in the system.The only synchronization events are Send and Recv. A Send operation can send messagesto other process(es), e.g., a unicast or a broadcast. A Recv operation can receive a singlemessage from another process. The Send event speci�es the process id to which the messageis to be sent in the case of a unicast, or the list of process ids in case of a multicast. Thedelay in delivering messages is not known. For each process i that can send messages toprocess j, there is a one-way FIFO channel, from process i to process j. A Recv event, canreceive messages only from the channels that are speci�ed in the event, e.g., Recv(all) canreceive messages over any channel incident on and directed towards the process executingthe Recv event, Recv(j,k) can receive messages only from processes j and k. All the channelsin the system are �rst-in-�rst-out (FIFO). If two messages m1 and m2 are sent by processi to process j, and m1 was sent before m2 then m1 will be received before m2 at process j,although the delay between them is non-deterministic.The events in the distributed system follow Lamport's [1] `happened-before' relationships.This relationship denoted by `!' is an irre
exive transitive closure. The de�nition of a racebetween two messages is the same as in [10]. Informally, two messages race if either couldhave been accepted �rst by some receive event, due to variations in message latencies or5

process scheduling. More formally, a message from send event a to receive event b raceswith message from send event c to receive event d, if and only if there is a frontier that canbe drawn, that leads to a frontier race. For details on frontier and frontier races refer [10].3 Motivation and Related WorkThere is plenty of work done in the area of distributed debugging and replaying distributedprograms. For replaying distributed message passing programs, the common strategy is totrace all the messages between processes so that the execution can be made repeatable.LeBlanc and Mellor-Crummey [7] suggest a method for distributed debugging called `In-stant Replay', which di�ers from the strategy of trace and replay. In this method, duringprogram execution, the relative order of signi�cant events is saved as they occur, and notthe data associated with such events. As a result, this requires less time and space. Theassumption made here is that all the processes are piece-wise deterministic. When therelative order of di�erent IPC events or access of shared objects is saved, then the samedata is generated, during replay. It is then guaranteed to reproduce the program behaviorduring the debugging cycle by using the same input from the external environment and byimposing the same relative order on events during replay that occurred during the originalprogram execution. This technique does not depend on any form of interprocess communi-cation. No centralized bottlenecks are introduced, nor does it require a synchronized globalclock. But, a single process cannot be replayed in isolation, all the processes have to berun, as the actual data is not saved.Netzer and Miller [10] present a technique for tracing and replaying message passing dis-tributed programs, that has a good performance, but is optimal (least number of messagestraced) only when the message races are transitive. Their algorithm reduces the messagestraced based on the facts that, only messages that race have to be saved and if two mes-sages race, tracing only one of them is su�cient. Run-time tracing decisions are made totrace only a fraction of the total number of messages. This decreases the execution timeoverhead, as well as the space requirements.The critical cost in tracing and replaying programs is the cost of tracing messages. In atypical trace and replay scheme, the order in which messages are delivered (but not theircontents) is �rst traced during execution [11]. These traces are then used during replay toforce each message to be delivered to the same event as during the traced execution. Inthe technique presented in [10], a check is made for each message to determine if it raceswith another message, and only one of the racing messages is traced. When a message isreceived a race check is performed by analyzing the execution order between the previousreceive operation in the same process and the message sender. The ordering informationnecessary for this check is maintained during execution by appending vector time-stampsonto user messages. 6

Given that tracing decision is made when the message arrives, the algorithm in [10] doesnot result in optimal trace, for the general case. The algorithm results in optimal tracingof messages only if all the races are transitive. We call this algorithm as N&M algorithm.It is reproduced here in �gure 3.1. Send = event that sent Msg.2. PrevRecv = previous event (in the same process) willing to receive fromthe channel over which Msg was sent.3. if (PrevRecv 6! Send)trace the message delivered from Send to Recv.Figure 3: N&M Algorithm.Consider the example in �gure 1. Messages m1 and m2 race with each other. Now, if it isrecorded that message m1 was delivered to process 2 during the �rst Recv and message m2was delivered during the second Recv, this information is su�cient to replay the processes1, 2 and 3. However, it is not necessary to record both the messages. If m1 is recorded asthe message that was delivered during the �rst Recv, then m2 has nowhere to go but to thesecond Recv. It is easily seen that it is optimal (minimal number of messages traced) totrace only one message in this example. It is proved in [10], that only racing messages needto be traced, and we need trace only one message in each race. Non-racing messages cannotintroduce non-determinacy and thus their deliveries need not be enforced during replay.Though this technique[10] provides optimal message tracing in most cases, it is not optimalin all cases. Consider the example in �gure 4. The N&M algorithm will trace messages m2and m3. Whereas, the optimal tracing is when only m2 is traced, as m1 and m3 do not racewith each other. This non-optimality manifests itself because in step 3 of N&M algorithm,a blind check is performed irrespective of whether the message received at PrevRecv wastraced or not.In [10] it is shown that the minimum vertex cover problem can be reduced to the problemof �nding the optimal message trace. Here each vertex represents a message, and an edgerepresents a race between two messages. e.g., an edge between vertices A and B means themessage represented by A races with the message represented by B. The minimum vertexcover problem is know to be NP-complete, and therefore so is the problem of �nding anoptimal message trace. 7

1

2

3

4

m1

m2

m3

Send

Send

Send

Recv(1,3)

Recv(3,4) Recv(4)

Figure 4: Non-Optimality of N&M Algorithm.4 Impossibility of Obtaining Optimal Trace with Run-TimeTracing DecisionsIt is impossible to come up with an algorithm that will give an optimal trace of any ex-ecution, under the constraint that tracing decisions are made at the instant messages arereceived, i.e., when a message is traced, no knowledge about the future is available. Also,this means that if a message is not traced when it is delivered, it will never be traced. Adecision is made at run-time whether a message is traced or not. Once a decision is madeit cannot be changed in the future.A simple proof (by contradiction) to support this impossibility claim is given next. Let usassume that such an algorithm exists and gives an optimal trace, let us call it Opt Alg. It issu�cient to give an example that contradicts this assumption. Consider the example givenin �gure 5. Part A shows the execution of process 2. At event b, message m1 is received.Now Opt Alg will make a tracing decision at event b without the knowledge of the future.The decision has a binary value, either to trace or not to trace.Case 1: Opt Alg traces message m1. Now let the future after event b unfold as shown inpart A. As shown in �gure 5, the minimum vertex cover is just vertex m2. Opt Alg hastraced m1 already, so to remove the non-determinacy, it will have to either trace m2 or m3.Either choice results in a non-optimal trace leading to a contradiction.8

Case2: Opt Alg does not trace m1. Now let the future after event b unfold as shown inpart B. As shown in �gure 5, the minimum vertex cover is just vertex m1. Opt Alg has nottraced m1, so to remove the non-determinacy, it will have to trace m2 and m3 resulting ina non-optimal trace, leading to a contradiction.Thus, we conclude that Opt Alg cannot exist.5 Algorithms for Run-Time TracingThe basic ideas behind our algorithm are: 1) A message has to be traced only if it is involvedin a race with another message. 2) If a message is traced, then it should not be consideredfor future races.The algorithm is based on the fact that, if two messages race with each other then only oneof them needs to be traced, for replay of programs [10]. If a message does not race withany other message then it need not be traced. If two messages m1 and m2 (refer �gure 1)race with each other then for repeatable execution of the program it is su�cient to tracejust one of them [10]. If m1 is traced, then during replay, if m2 arrives before m1 (becauseof scheduling and message delays) the receive event a will not accept m2. It will wait tillm1 arrives, accept m1 and then m2 will be accepted at event b.If m2 is traced, then during replay, if m2 arrives before m1 (because of scheduling andmessage delays) m2 again will not be accepted at event a. The receive event will wait tillanother untraced message (m1) arrives.The above can be implemented as follows: when a message is traced its Send SequenceNumber (SSN) and Receive Sequence Number (RSN) are recorded. During replay, if amessage was traced then the corresponding send event is modi�ed, so that the message sentduring replay is tagged with its SSN and RSN. At the receiver end, the receive event isalso modi�ed, so that it receives a message with the same RSN as in the original execution.Now, if the tagged message arrives early, other receive events will not receive the mes-sage because the RSN will not match. If the message arrives late, its corresponding receiveevent will be waiting for this message, and will reject all other messages with incorrect SSN.We will �rst present a naive algorithm called Algorithm A, that incorporates the aboveideas, and then improve on it in Algorithm B. Algorithm A has excessive storage storagerequirement and a long execution time, which are eliminated in Algorithm B.5.1 Algorithm ATo describe this algorithm, we need to �rst de�ne some data structure. The system consistsof n processes communicating with each other through messages. Each process i, can there-9

1 2 3

5

m3

m1

m2

Recv(any)

Recv(4,5)f

e

d

b

a
c

Recv(1,3,6)

1 2 3

m3

m1

m2

f

e

d

b

a
c

Recv(1,3,6)

Recv(6)

6

Recv(3)

A. m1 traced A. m1 not traced

m1

m2

m3

m1

m2

m3Figure 5: Impossibility of Obtaining Optimal Trace, with Run-Time Decision.10

fore, receive messages from (n-1) processes over (n-1) channels. Each process i maintains(n-1) linked lists LLj , (1 � j � n, j 6= i) for each channel j, from process j to process i.When a message m1 is received by process i at receive event e1, the receive event is addedto some of the linked lists depending on the event e1 that received that message. For all j,(1 � j � n, j 6= i), if the receive event e1 listened over channel j, then event e1 is inserted atthe head of linked list LLj . For example, if the receive event e1 was Recv(all), insert e1 inall the linked lists, whereas if the receive event was Recv(j,k,l), then insert e1 in LLj , LLk ,LLl. Algorithm A is given in the form of a C-like pseudo-code in �gure 6 and explainedbelow. Algorithm A (NewSend, NewRecv)f /* NewMsg is the message sent by event NewSend* to event NewRecv on channel C*/trace = FALSEtrace decision(C, NewRecv, NewSend)if trace = TRUEtrace NewMsgfor j = 1 to n-1if (NewRecv listened over channel j)insert NewRecv in LLjend forgtrace decision(j, NewRecv, NewSend)f PrevRecv = head of LLjdo until tail of LLj is reachedif (PrevRecv ! NewSend)break;else if PrevRecv not tracedtrace = TRUEbreak;elsePrevRecv = next element of LLjg Figure 6: Algorithm A.The algorithm is invoked by any process i, whenever a message NewMsg sent by eventNewSend at process k (k 6= i) is received by event NewRecv at process i. The variabletraca, used to store the tracing decision, has a binary value. The function trace decision iscalled with argument C, the channel over which the message was received. For each channelj over which NewRecv listened the NewRecv event is inserted in the corresponding LLj .In the function trace decision(), a check is performed for a `happened-before' relationbetween events PrevRecv andNewSend, where PrevRecv is the receive event at processi, which `happened-before' NewRecv. This PrevRecv event is obtained from the headof the linked-list LLj . If PrevRecv `happened-before' NewSend, it implies that theNewMsg does not race with any message on channel j and need not be traced. If there11

is no `happened-before' relation and if the message received at event PrevRecv was nottraced, then NewMsg is traced. If the message received at PrevRecv was traced, thenthe algorithm does the same check for the previous element in the linked list, till the tail ofthe list.5.2 Correctness of Algorithm AAlgorithm A is correct (a pair of messages which race and neither was traced, doesn't exist)and run-time optimal because, for every channel the whole past is stored, and used fortracing decision making.The correctness of algorithm A can also be proved by contradiction: Let m1 and m2 be twomessages received by process i. Let m1 be sent by event Send1 and received at event Recv1.Let m2 be sent by event Send2 and received at event Recv2. Let Recv1 occur before Recv2.Let m2 race with m1 over some channel C. Therefore there is no happened-before relationbetween Recv1 and Send2. Since m1 and m2 race over channel C, therefore Recv1 listenedover channel C. Which implies that Recv1 is inserted in LLc.Assume that algorithm A does not trace either m1 or m2. The only way this can happenis when m2 is received, there is an event in LLc (say, LLc(a)) such that LLc(a) ! Send2and LLc(a) occurred after Recv1, i.e.; Recv1 ! LLc(a). By transitivity of the `! relationwe have Recv1 ! Send2. Which leads to the conclusion that m2 does not race with m1, acontradiction. Therefore we conclude that if two messages race then at least one of them istraced by algorithm A.5.3 Example 1Consider the previous example of �gure 4, when m1 is received, the corresponding receiveevent is inserted in LL1 and LL3 at process 2. m1 is not traced as there are no PrevRecvs.When m2 is received, there is no `happened-before' relation between the receive at m1and the send of m2, and since m1 is not traced, m2 is traced. The receive event of m2 isalso inserted in LL3 and LL4 at process 2 and marked as traced. When m3 is received,it is seen that m3 races with m2, but m2 is already traced. Also, m3 does not race withany other message in the linked list LL4, so m3 is not traced. The receive event at m3 isinserted in LL4. At the end of receive of m3 the linked lists at process 2 are as shown below.LL1: m1; LL3: m2-m1; LL4: m3-m2;The di�erence between N&M and this algorithm is that when two messages race, the newalgorithm checks whether the previous message was traced. If it was traced then the algo-rithm goes back in time to see if the current message raced with any other message in thepast. 12

1

2

3

4

m1

m2

m3

Send

Send

Send

Recv(any)

Recv(any) Recv(any)

Figure 7: Example 2.5.4 Example 2Refer �gure 7. When m1 is received, it is not traced, as there are no messages receivedbefore it. m2 is traced as it races with m1 and m1 is not traced. When m3 is received, arace check is made with m2. Although m3 races with m2, m2 was traced therefore, the racebetween m2 and m3 is ignored. So we go back in past and see that m3 raced with m1 andm1 was not traced; resulting in the tracing of message m3. This is again an optimal tracegiven that tracing decisions are made when the messages are received. The linked lists atthe end of the algorithm are as shown below:LL1: m3-m2-m1; LL3: m3-m2-m1; LL4: m3-m2-m1;The correctness of the algorithm follows from [10] and the observation that traced messagese�ectively do not race with any other message.5.5 Algorithm BFor algorithm A, it can be seen that all the information about the past receive events issaved in the linked lists. This will result in enormous wastage of memory. For long runningprograms or programs with lot of message passing activity, this may render tracing andreplaying impossible. If a condition is found which will allow past receive events to bepurged from the lists, without a�ecting the correctness or optimality of the algorithm, thenthe number of receive events stored in the lists can be limited. As shown in Theorem 1, we13

1

2

m1 m2

Send Send

Recv(2) Recv(2)Figure 8: Messages from the same process do not race with each other.need to keep only one message per channel, per process. I.e., (n-1) linked lists per processcan be replaced with just an array of size (n-1) for the past receive events.Theorem 1: For a message passing system, given that tracing decisions are made at theinstant when a message is received at a process, for optimal tracing of messages, a checkhas to be made only with C number of receive events, in the worst case, where C is thenumber of channels incident on and directed towards the process.In other words, only C receive events need to be stored per process, for optimal tracing.Assumptions:A1. There are n processes in the message passing system.A2. Tracing decision is made at each process i, when it receives a message (decision ismade with no information about the future).A3. All channels are FIFO.A4. A process i can receive messages from (n-1) processes over (n-1) channels. Where 1 �i � n.Lemma 1: A message from process j to processes i will not race with any other messagefrom process j to processes i. In other words, a message from process j to process i can racewith messages from (n-2) processes only.This result follows directly from [1] and A3. Since all events in a single process are totallyordered, if two messages are sent from process j to process i, there is a `happened before'relation between the two send events in process j. From assumption A3, the message sentat the �rst `Send' event will always be delivered before the message from the second `Send'event. In �gure 8, m1 will always be delivered before m2. Thus, a message from a processraces only with messages from (n-2) processes.Lemma 2: If a message is traced, e�ectively, it does not race with any other message.If a message is traced, then in the replay, the corresponding Receive event will not receive14

messages from any other Send event but the one from which it received the message in theoriginal execution, which was traced. This means that for the algorithm, a traced messageneed not be considered for race checks.Lemma 3: A message from process j to process i can race with a message from process kto process i, only if at least one receive event (out of the two Receive events) was ready toreceive a message from either process.This is based on the functionality of the function `Recv'. It is obvious from the fact that ifa receive event was Recv(j), it will not receive messages from any other channel but thatfrom process j to process i, whereas a message received at the event Recv(j, k, ...) canpotentially race with messages from other processes.Proof of the Theorem:Let us assume that message mt from process j to process i races with t messages (m0, m1,..., m(t-1)) from process k to process i. (We are considering messages that were receivedonly in the past from assumption A2). All t messages are not traced (if they were, then byLemma 2 above, they will not race with mt). By assumption A2, tracing decision is madeat the instant the message arrives; this implies that m0, m1, ..., m(t-1) will never be traced(as they belong to the past). The decision to be made is: should mt be traced or not? Thedecision is `YES' if mt raced with any of the m0, m1, ..., m(t-1) messages else it is `NO'(unless it races with a message from some other process). Without loss of generality we canassume that the messages received from process k be in the time order m0, m1, ... ,m(t-1).It will never happen that mt races with any of m0, m1, ..., m(t-2), but not with m(t-1).This can be proved by contradiction.Let us assume that mt races with at least one of m0, m1, ..., m(t-2) say ma, but not withm(t-1) (a < t-1). By this assumption we have Receive of m(t-1) ! Send of mt, becausem(t-1) and mt do not race and Receive of mt could NOT have occurred before that ofm(t-1). But, Receive of ma ! Receive of m(t-1). By transitivity Receive of ma ! Send ofmt. Leading to a contradiction that mt did not race with ma.The tracing decision depends only on whether mt races with m(t-1). i.e., we need to keeponly one untraced receive event per channel per process.For algorithm A, we keep (n-1) linked-lists, one for each channel, in every process. In eachlist we keep all the Receive events that received a message with a potential race conditionover that channel. From the above result, we never need keep more than (n-1) Receiveevents in each list, one for a message from each process.In each list there will never be more than (n-1) Receive events as proved above, but themessages corresponding to the Receive event are from di�erent processes and they race15

1

2

3

m1 m2

m3

Figure 9: Example 3.with each other. But, if they race with each other, then all of them (but one) would havebeen traced. Therefore, there will never be more than one Receive event in each list. Thusproving theorem 1. It follows that each process will have maximum of (n-1) Receive eventsstored from its past.25.6 Example 3One may tend to think that the above result is incorrect, as it is not very intuitive. Considerthe example shown in �gure 9. It can be easily seen that if m3 races with m2, it may or maynot race with m1. But, if m3 does not race with m2 (there is a `happened before' relationbetween receive of m2 and that if m3), then m3 does not race with m1 either. Thus it issu�cient to determine if m3 races with m2. We therefore do not need to save the receiveevent of m1. Thus, a race check with m2 will result in tracing of message m3. If for somereason m2 raced with another message (received before m3, e.g. m') and was traced, thenwe do not need to save the receive event of m2 as it does not race with any message (byLemma 2). When m3 is received, a race check is performed with receive event of m1, whichwill again lead to the tracing of m3.Algorithm B is given in �gure 10. The algorithm is invoked by any process i, whenevera message NewMsg sent by event NewSend at process k (k 6= i) is received by eventNewRecv at process i over channel C. If there is no happened-before relation betweenLL[C] and NewSend, then the message is traced and the array LL is not updated. If thereis a happened-before relation between LL[C] and NewSend then, for each channel j overwhich NewRecv was listening the element LL[j] is updated to NewRecv.16

Algorithm B (NewSend, NewRecv) f/* NewMsg is the message sent by event NewSend to event* NewRecv on channel C*/if LL[C] 6! NewSendtrace NewMsgreturnfor j = 1 to n-1if j == Ccontinueif (NewMsg could have been received over channel j)LL[j] = NewRecvend forg Figure 10: Algorithm B.5.7 Example 4In section 4 we showed that its impossible to obtain an optimal trace, given the fact thattracing decision is made at the instant a message arrives at the destination. This exampleillustrates the non-optimality of algorithm B. In �gure 7, if the second Receive event ischanged to Recv(1,3) and the third Receive event is changed to Recv(1,4), then the traceobtained by algorithm B is non-optimal. The optimal trace would be to trace just messagem1, as m1 races with m2 and m3 but m2 does not race with m3. Algorithm B will not tracem1 as there are no `PrevRecv's. Instead it will trace m2 and m3 leading to a non-optimaltrace.6 Summary and Future Research DirectionsIn this paper we have presented an algorithm that traces messages optimally, given the con-straint that tracing decisions are made at the instant a message is received by a process. Wehave also improved on the memory requirements for this algorithm. Using this technique,message traces required for distributed debugging can be signi�cantly reduced. This willlead to less debugging overheads, which include reduced memory, storage, and executiontime. For long running distributed programs this is very critical. If the debugging overheadsare high, it is not possible to debug the programs using cyclic debugging techniques if everymessage is traced. We have also shown that if tracing decisions are to be made at run-time(i.e., at the instant a message is received by a process), it is impossible to have an algorithmwhich will trace messages optimally.Finding an algorithm that will give an optimal trace under every possibility is equivalentto �nding the minimum vertex cover, which is known to be NP-complete. One way to dothis can be to save all the message that are received by the process. At the end of theexecution run an algorithm (which will run in exponential time) to calculate the optimal17

trace and trace only those message. This can be done even if the process crashed (becauseof a bug), as the node it is running on has not failed (as opposed to situation occurringfor requirements of fault-tolerance). But, this defeats the purpose of producing optimalmessage trace. The time required by this optimal algorithm will be very large and we arebetter o� instead, by tracing all the messages.Future work includes implementation of the algorithm given in this paper to see how ita�ects the number of messages traced for di�erent classes of application and the amountof actual time saved. This can then be compared with the implementation results in [10].Better tracing strategies include considering algorithms which make tracing decisions withthe knowledge about the events in a future window, where the future window is of �xed (orvarying for adaptive algorithms) size. The size of the window will have to be determinedfrom experimental results or some heuristics. For example, when a tracing decision is madeabout a receive event `a' in process i, n number (where n is the size of the future window)of events in process i that occurred after event `a' have already occurred. In other words,tracing decision for event `a' is made at an event which is separated by n events in the future.AcknowledgementsThe authors would like to thank Jennifer Welch's (Texas A&M University) for her com-ments on the initial draft of this report.References[1] Leslie Lamport, \Time, Clocks, and the Ordering of Events in a Distributed System,"Communication of ACM, vol 21, no 7, July 1978.[2] Allen D. Malony and Daniel A. Reed, \Models for Performance Perturbation Analysis,"ACM/ONR Workshop on Parallel and Distributed Debugging, pp 15-25, Santa Cruz, CA,May 1991.[3] J. P. Black and M. H. Co�n and D. J. Taylor and T. Kunz and T. Basten, \LinkingSpeci�cation, Abstraction, and Debugging," University of Waterloo, Canada, Tech ReportTR-94-02, November 1993.[4] Stuart I. Feldman and Channing B. Brown, \IGOR: A System for Program Debugg ingvia Reversible Execution," Proceedings of the SIGPLAN/SIGOPS Workshop on Paralleland Distributed Debugging, pp112-123, Madison, WI, May 1988.[5] Perry Emrath and Sanjoy Ghosh and David Padua, \Detecting Non-determinacy inParallel Programs," IEEE Software 9,1, pp.69-77, January 1992.18

[6] Charles E. McDowell and David P. Helmbold, \Debugging Concurrent Programs,"ACMComputing Surveys, vol 21, no 4, pp 593-622, December 1989.[7] Thomas J. LeBlanc and John M. Mellor-Crummey, \Debugging Parallel Programs withInstant Replay," IEEE Transactions on Computers, C-36, 4, pp 471-482, April 1987.[8] Colin Fidge, \Fundamentals of Distributed System Observation," The Universi ty ofQueensland, Australia, Tech Report 93-15, November 1993.[9] Z Yang and T.A.Marsland, \Global Snapshots for Distributed Debugging: An Overview,"University of Alberta CS, Tech Report TR 92-03, 1992.[10] Robert H. B. Netzer and Barton P. Miller, \Optimal Tracing and Replay for DebuggingMessage-Passing Parallel Programs," Proceedings of Supercomputing '92, Minneapolis, MN,pp 502-511, November 1992.[11] Larry D. Wittie, \Debugging Distributed C Programs by Real Time Replay," Proceed-ings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging,pp57-67, vol 24, no 1, January 1989.[12] Robert H. B. Netzer, Sairam Subramanian and Jian Xu, \Critical-Path-Based MessageLogging for Incremental Replay of Message-Passing Programs," Internation al Conferenceon Distributed Computing Systems, 1994.
19

