
Towards an Adaptive Distributed Shared Memory1(Preliminary Version2)Jai-Hoon Kim Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112E-mail: fjhkim,vaidyag@cs.tamu.eduWeb: http://www.cs.tamu.edu/faculty/vaidya/Technical Report 95-037September 1995Index Terms: distributed shared memory, adaptive protocol, multiple protocol, hybrid pro-tocol, competitive update protocol, invalidate protocol, update protocol.AbstractThe focus of this report is on software implementations of Distributed Shared Memory (DSM). In therecent years, many protocols for implementing DSM have been proposed. The protocols can be broadlydivided into two classes: invalidation-based schemes and update-based schemes. Performance of these proto-cols depends on the memory access behavior of the applications. Some researchers have proposed DSMs thatprovide a family of consistency protocols or application speci�c protocols, and the programmer is allowedto choose any one of them for each shared memory object (or page) or each stage of an application. Whilesuch implementations have a potential for achieving optimal performance, they impose undue burden onthe programmer. An adaptive implementation that automatically chooses the appropriate protocol for eachshared memory page (at run-time) will ease the task of programming for DSM.This report presents a simple approach for implementing adaptive DSMs. The approach is illustratedwith the example of an adaptive DSM based on the competitive update protocol. The objective of theadaptive scheme is to minimize a pre-de�ned \cost" function. The cost functions considered here are numberof messages and size of messages. (Other cost functions can also be used similarly.)The proposed scheme allows each node to independently choose (at run-time) a di�erent protocol foreach page. The report presents preliminary evaluation of the adaptive DSM. Preliminary results shows thatthe performance is improved by dynamically selecting the appropriate protocol.1This work is supported in part by the National Science Foundation under grant MIP-9502563.2This report will be revised to include more discussion, generalizations of the proposed approach, andfurther experimental results. This preliminary version presents the basic adaptive scheme and evaluation ofa synthetic application. 1

1 IntroductionDistributed shared memory (DSM) systems have many advantages over message passingsystems [30, 23]. Since DSM provides a user a simple shared memory abstraction, the userdoes not have to be concerned with data movement between hosts. Many applicationsprogrammed for a multiprocessor system with shared memory can be executed in DSMwithout signi�cant modi�cations.Many approaches have been proposed to implement distributed shared memory [7, 12, 19,30, 16, 6, 15, 26, 9, 27]. The DSM implementations are based on variations of write-invalidateand/or write-update protocols. Recent implementations of DSM use relaxed memory con-sistency models such as release consistency [7]. As no single protocol is optimal for allapplications, researchers have proposed DSM implementations that provide a choice of mul-tiple consistency protocols (e.g. [7]). The programmer may specify the appropriate protocolto be used for each shared memory object (or page). While this approach has the potentialfor achieving good performance, it imposes undue burden on the programmer. An adaptiveimplementation that automatically chooses the appropriate protocol (at run-time) for eachshared memory page will ease the task of programming for DSM.This report considers one approach for implementing adaptive DSM. This approach issimilar to adaptive mechanisms used to solve many other problems 3, and can be summarizedas follows (to be elaborated later):1. Collect statistics over a sampling period. (Accesses to each memory page are dividedinto sampling periods.)2. Using the statistics, determine the protocol that is \optimal" for the page.3. Use the optimal protocol over the next sampling period.4. Repeat above steps.Essentially, the proposed implementation would use statistics collected during current execu-tion to predict the optimal consistency protocol for the near-future. This prediction should3For example, to predict the next CPU burst of a task, a Shortest-Job-First CPU scheduling algorithmmay use an exponential average of the measured lengths of previous CPU bursts [25].2

be accurate, provided that the memory access patterns change relatively infrequently. (Theresearch presented in [26, 31] is closely related to that presented in this report. Section 6discusses [26, 31] and other related research.)To demonstrate our approach, we choose the competitive update protocol [1, 9, 14, 10].This protocol is de�ned by a \threshold" parameter (we will rename the threshold as the\limit"). Di�erent choices of the limit parameter yield di�erent consistency protocols. Ourgoal is to determine the appropriate value of the limit so as to minimize a pre-de�ned \cost"metric. The preliminary experiments show that our approach can indeed reduce the cost,thus motivating further work.This report is organized as follows. Section 2 summarizes the competitive update pro-tocol [1, 9, 14, 10] and its generalizations. The proposed adaptive protocol is presented inSection 3. Section 4 shows the performance evaluation of the proposed scheme. Relatedwork is discussed in Section 6. Section 7 concludes the report.2 Competitive Update Protocol [1, 9, 14, 10] and ItsGeneralizationsA simple implementation of a write-update protocol is likely to be ine�cient, because manycopies of a page may be updated, even if some of them are not going to be accessed in thenear future. Munin [7] incorporates a time-out mechanism to invalidate those copies of a pagewhich have not been accessed by a node for a long time. [1, 9, 14, 10] present competitive-update mechanisms to invalidate a copy of a page at a node, if the copy is updated byother nodes \too many times" without an intervening local access. ([2] presents a similarscheme.) The advantage of this approach, as compared to [7], is as follows: the decisionmechanism used in this approach (to determine when to invalidate a page) is dependentonly on the application's access pattern, instead of real time as in Munin [7]. Quarks [16]also incorporates a mechanism similar to that presented in [1, 9, 14, 10].We consider a software implementation of the competitive update protocol for a DSMthat uses release consistency. This section presents details of the implementation, and3

also discusses some generalizations of the basic competitive update protocol. The adaptivescheme uses these generalizations of the original protocol.The competitive update protocol de�nes a limit for each page at each node. If the numberof update messages received for a page P at some node A { without an intervening accessby node A { exceeds the limit for page P at node A, then the local copy of the page at nodeA is invalidated (other copies of the page are not a�ected).Information StructureWe assume an implementation that is similar to Munin [7] and Quarks [16], with afew modi�cations to facilitate competitive updates. Each node maintains an informationstructure for each page resident in its memory. The information structure contains manypieces of information, as summarized below.� update counter: Counts how many times this page has been updated by other nodes,since the last local access to this page. When a page is brought into the local memoryof a node, the counter is initialized to 0. Also, when a local process accesses (reador write) this page, the counter is cleared to 0.4 The counter is incremented at everyremote update of the page by any other node.� limit L: Either set by user or transparently by the DSM protocol. The limit for eachpage determines the performance of the competitive update protocol. (As discussedlater, we allow a di�erent limit for each copy of each page.)Quarks5 [16] also maintains information similar to our update counter and limit. Sec-tion 6 discusses the di�erences.� last updater: Identity of the node that updated this page most recently. (last updateris the originator of the most recent update message for the page).� copyset: Set of nodes that are assumed to have a copy of this page. The copyset atdi�erent nodes, that have a copy of the same page, may be di�erent. In general, a node4A simple optimization can avoid clearing the counter on every local access.5Quarks Beta release 0.8. 4

may not know exactly which other nodes have a copy of the page [7]. However, whena node updates remote copies of a page (when it does a release), at the end of theupdate procedure, that node knows precisely the set of nodes, that hold the copies ofthe page, that were updated. The \updater" node collects this information by meansof acknowledgment messages sent as a part of the update procedure.� probOwner: Points towards the \owner" of the page [7]. On a page fault, a noderequests the page from the probOwner. If the probOwner does not have a copy of thepage, it forwards the request to its probOwner. The request is thus forwarded until anode having a copy of the page is reached.Note that each node maintains the above structure for each page in its local memory. Inthe following, when we use a phrase such as \the update counter at node A", we are referringto \the update-counter for the page under consideration at node A". It is implicit that the\update counter" (or some other information) pertains to a speci�c page.Use of the Update counterDuring the execution, update counter of each copy of a page changes dynamically, asexplained below. A copy of a page is invalidated whenever its update-counter becomes equalto the limit 6. (Initially, we assume that the limit for a page is �xed. In the adaptiveprotocol, however, the limit changes with time, depending on the memory access pattern.)When a node, say A, receives from another node a copy of a page, say P, its update-counter is initialized to 0. The update-counter is incremented whenever node A receives anupdate message, for page P, from any other node. If a process on node A accesses page P,then the update-counter for page P at node A is cleared to 0. If, at any time, the updatecounter for page P at node A becomes equal to the limit L, then node A invalidates its copyof page P. Thus, page P on node A is invalidated only when L updates to the page, by othernodes, occur without an intervening access to the page by a process on node A. Thus, thecompetitive update protocol invalidates those pages that are accessed \less frequently" { theprotocol can be tuned to a given application by a proper choice of limit L [1, 9, 14, 10].6In case of write-sharing, a local copy of a page should not be invalidated if local copy has been modi�ed(the modi�cation needs to be sent to the other nodes).5

As discussed later, the limit can also be changed dynamically (at run-time) to adapt to thetime-varying memory access patterns.ExampleFigure 1 illustrates how the competitive update protocol works, by focusing on a singlepage in the DSM. For this example, let us assume that the limit L associated with thispage is �xed at 3. In the �gure, iL and iU denote acquire and release operations by nodei.7 Also, iR and iW denote read and write operations performed on this page by node i.The second row of the table presents a total ordering on the memory accesses performedby nodes 0, 1 and 2 on the page under consideration. The last three rows list the valuesof the update-counters at the three nodes at various times, e.g., the update-counter:0 rowcorresponds to node 0. A \blank" in the table implies that the corresponding node does nothave a copy of the page at that time. The reader familiar with competitive updates can omitrest of this example without a loss of continuity.Initially, only node 0 has a copy of the page whose update-counter is 0 (column 0 in thetable). Next, node 1 performs an acquire and tries to read the page (columns 1-2 in the�gure). As it does not have a copy of the page yet, it receives a copy from node 0, and theupdate-counter for this copy is set to 0 (column 2 in the �gure). Node 1 then performs arelease (column 3). As node 1 did not perform any writes, no updates are needed at therelease. Next, node 2 also performs acquire-read-release (columns 4-6). Again, a copy of thepage is brought to the local memory of node 2, and its update-counter is set to 0 (column5). Next, node 0 performs an acquire and performs two write accesses to the page, and thenperforms a release. As node 0 has performed a local access to the page, its update-counteris cleared8 to 0 (in this case, of course, it was already 0). In the software implementation7Although we obtained the notation iL and iU by abbreviating i-Lock and i-Unlock, it should be notedthat acquire and release operations in release consistency are not equivalent to lock and unlock.8Actually, in practice, only if the update-counter is non-zero, any action need be taken. This can beimplemented as follows. When the update-counter for a page becomes non-zero, the page is read/write-protected, so that any local access to the page will result in a page fault. On such a page fault, the faulthandler will set the update-counter to 0, and remove the read/write-protection. Thus, any further localaccess to the page can proceed without any performance penalty. A similar optimization is used in Munin6

0

0

Update-counter: 1

Update-counter: 2

Memory Access

Update-counter: 0

2R

0

0

0

1R

0

0

2L 2U1U1L

0 0 0 0

0 0 0

0

1 2

0L

0

0

0

0W 0W 0U

0

0

0

0

0

0

0

1

1

1L

0

1

1

1R 1W 1U

0

1

0 0

0

1

1

0

2

0L 0W 0U

1

0

2

0

0

2

0

1

3

0L 0W 0U 0L 0W 0U

0 0 0 0 0 0

1 1 2 2 2 3

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23Figure 1: Update counterof release consistency protocol, the updates are not propagated to other nodes until node0 performs a release. Therefore, the update-counters at nodes 1 and 2 are unchanged incolumns 7, 8 and 9. When node 0 performs a release, the updates by node 0 are propagated tonodes 1 and 2. When the update message is received, nodes 1 and 2 incorporate the updates,and increment the respective update-counters by 1 (column 10). Next, node 1 performs anacquire-read-write-release sequence (columns 11-14). As node 1 has performed a local access,its update-counter is cleared to 0 (column 12). When node 1 performs the release, the updatesare propagated to nodes 0 and 2, and their update-counters are incremented to 1 and 2,respectively (column 14). Next, node 0 performs a acquire-write-release sequence (columns15-17). The update-counter of node 0 is cleared because of the local access (column 16). Theupdate-counters at nodes 1 and 2 are incremented to 1 and 3, respectively, when the updateis received from node 0 (column 17). Now, because the update-counter at node 2 has becomeequal to 3, the limit for the page, the local copy of the page at node 2 is invalidated. (The Xin the �gure denotes an invalidation.) When the copy is invalidated, node 2 sends a negativeacknowledgment to the node from which the update message is received. Subsequently, node0 performs two acquire-write-release sequences, at the end of which, the update-counter atnode 1 becomes 3 (column 23). Therefore, the page copy at node 1 is also invalidated. Atthe end, only node 0 has a copy of the page, with update-counter 0 (column 23). 2[7] to implement its time-out mechanism. 7

2.1 Generalization of the Competitive Update ProtocolUnlike other similar schemes [2, 1, 9, 14, 10], implemented in hardware caches, the softwareimplementation can be more
exible and complex (without a�ecting the performance ad-versely). The basic competitive protocol can be generalized in four ways, as summarizedbelow. The adaptive protocol presented later uses these generalizations.� The generalized competitive update approach can provide a di�erent protocol for eachpage by adjusting the limit parameter independently for each page. By setting thelimit to 1, the competitive update protocol becomes similar to the invalidate protocol,while the protocol is equivalent to the traditional update protocol when limit is in�nity(or large). Thus, the generalized competitive update protocol can e�ectively be usedas a \multiple" consistency protocol [7], simply by using a di�erent limit for each page.� If the access pattern to the same page is di�erent for di�erent nodes, a \hybrid" protocol[24] is more appropriate than a \pure" protocol. The competitive update protocol canact as a \hybrid" protocol by allowing each node to use a di�erent limit for the localcopy of the same page.� It is possible to change the limit associated with each page (in fact, each copy of apage) dynamically. This feature is useful when the pattern of accesses to a page changeswith time. This feature is also useful when, initially, the \optimal" value of the limit isunknown. Some heuristic can be used to adapt the protocol to dynamically determinethe appropriate limit, so as to minimize the overhead. Such an adaptive protocol is thesubject of this report.� Instead of incrementing the limit by 1 each time an update occurs, we can allow thelimit to be incremented by a di�erent amount. When an update message is receivedby a node, the amount of increment in the update-counter can be made a function ofthe node from which the update message is received. When the \cost" of an updateis dependent on the identity of the sender node, this feature is useful to tune thecompetitive update protocol to the underlying hardware architecture.8

3 Adaptive ProtocolOur ultimate objective is to implement an adaptive DSM that can adapt to the time-varyingmemory access patterns of an application. The competitive update approach de�nes a familyof protocols each characterized by a di�erent value of limit L. An optimal implementationmust, of course, choose the appropriate value of the limit.An adaptive DSM based on the competitive update protocol would choose, at run-time,the appropriate value of L (between 1 and1) for each copy of each page. Also, if necessary,the limit will be changed, at run-time, if the access patterns change. The range of possiblevalues of limit is large (1 to 1), making it hard to design a heuristic for choosing theappropriate limit.As a �rst step, this report focuses on a much simpler problem, where the choice of thelimit is restricted to either 1 or 1. With limit 1, the competitive update protocol is similar(but not exactly identical) to the traditional invalidate protocol, and with limit 1, similarto traditional update protocol. Thus, the simpli�ed problem is to choose between invalidate(limit = 1) and update (limit = 1) for each copy of each page.At run-time, the proposed adaptive scheme collects some information (number and sizeof messages sent) that is used to periodically determine the new value of the limit for eachcopy of a page. The protocol is completely distributed. Now, we present a cost analysis tomotivate our heuristics for choosing the limit.3.1 Cost AnalysisThe objective of our adaptive protocol is to minimize the \cost" metric of interest. Threepossibilities for the cost metric are:� The number of messages.� The amount of data transferred.� Execution time.The objectives of minimizing these cost are inter-related. This report deals with the �rsttwo metrics. 9

1 2 3 4 5 6 7 8 9 10 11 12 13time 0

Segment 1 Segment 2 Segment 3

remote access

by other node

Page P

local access
by node A

segments

B writeB writeD writeB write C write C write

A write A read A writeA read A writeA readA writeA readFigure 2: Segments[30, 13, 31] present similar cost analysis for coherency overhead. [30] is based on readto write ratio and fault ratio, and [13] is based on the write-run model. [31] associatesdi�erent costs with di�erent events (such as cache hit, invalidate, update, and cache load).Our approach is based on the number of updates by other nodes between consecutive localaccesses.Number of MessagesLet us focus on the accesses to a particular page P as observed at a node A. Theseaccesses can be partitioned into \segments". A new segment begins with the �rst access bynode A following an update to the page by another node 9. Figure 2 illustrates this with anexample: (a) node A starts segment 1 for page P at time 1, (b) copy of page P on node Ais updated by nodes B, C, and D. After that, (c) node A starts segment 2 by local access attime 6. Similarly, (d) node A starts segment 3 by local access at time 11 following remoteupdates by nodes B and C at time 9 and 10, respectively.Now we evaluate the number of messages sent during each segment when L = 1 andL =1. For simplicity, in the present discussion, we do not consider the messages requiredto perform an acquire.9Segment is a sequence of remote updates between two consecutive local accesses. Write-run [13] andno-synch run [4] models are introduced by others. A write-run is a sequence of local writes between twoconsecutive remote accesses. no-synch run is a sequence of accesses to a single object by any thread betweentwo synchronization points in a particular thread. The write-run model was presented by Eggers [13] topredict the cache coherency overhead for a bus based multiprocessor system. This model measures theoverhead by the number of sequences of single processor writes to an individual shared address, and thelength of these sequences. 10

� update protocol (limit L =1): When L =1, a copy of the page is never invalidated.To evaluate the number of messages sent in each segment, we need to measure thenumber of updates made by other nodes during the segment. Let U be the averagenumber of updates to the local copy during a segment. An acknowledgement is sent foreach update message received. Therefore, the average number of messages needed inone segment, denoted byMupdate, is 2U . As shown in Figure 3, for example, 6 messagesare needed in segment 1 because page P is updated 3 times by other nodes. (Thenumbers in parentheses in the �gure denote number of messages associated with anevent.) Similarly, 4 and 2 messages are needed in segment 2 and segment 3, respectively.For the three segments shown in the �gure, the average number of updates per segmentis U = 3+2+13 = 2. Therefore, Mupdate = 2U = 4.� invalidate protocol (limit L = 1): From the de�nition of a segment, it is clear that,when L = 1, each segment begins with a page fault. On a page fault, F + 1 messagesare required to obtain the page, where F is the average number of times the requestfor the page is forwarded before reaching a node that has the page (one additionalmessage is required to send the page). With L = 1, when the �rst update message forthe page (during the segment) is received from another node, the local copy of the pageis invalidated. This invalidation requires two messages { one for the update messageand one for a negative acknowledgement to the sender of the update. Ideally, oncea page is invalidated, no more update messages will be sent to the node during thesegment. (The reality, however, can be a little di�erent, as discussed later.) Therefore,when L = 1, (ideally) the average number of messages needed in one segment (denotedby Minvalidate), is F + 3 (regardless of the value of U). As shown in Figure 4, F + 3messages are needed in a segment on the average.The analysis for arbitrary limit (other than 1 and 1) is excluded in this report (to beconsidered in future work). Critical value of the number of updates, Ucritical, where L = 1and L =1 require the same number of messages, is computed as follows:Mupdate = Minvalidate) 2Ucritical = F + 311

1 2 3 4 5 6 7 8 9 10 11 12 13time 0

Segment 1 Segment 2 Segment 3

remote access

by other node

Page P

local access
by node A

segments

B writeB writeD writeB write C write C write

A write A read A writeA read A writeA readA writeA read

update (2)update (2) update (2) update (2) update (2)
update (2)

events
at L = infinity
(#message)Figure 3: Illustrations for memory access and cost (update protocol)

1 2 3 4 5 6 7 8 9 10 11 12 13time 0

Segment 1 Segment 2 Segment 3

remote access

by other node

Page P

local access
by node A

segments

B writeB writeD writeB write C write C write

A write A read A writeA read A writeA readA writeA read

page fault (F+1) page fault (F+1) page fault (F+1)page fault (F+1)

update (2)update (2) update (2)
events
at L = 1

(#message)Figure 4: Illustrations for memory access and cost (invalidate protocol)12

) Ucritical = F + 32Therefore, if U < F+32 , update protocol performs better. If U > F+32 , invalidate protocolperforms better. Our adaptive DSM implementation estimates U at run-time and sets L = 1(for page P at node A) if U > Ucritical, and L =1 otherwise. Note that F varies accordingto memory access patterns and the number of nodes. Although F can be estimated at run-time, previous work [19] suggests that F is less than 3 up to 32 nodes. For this discussion, weassume F = 2 (future work will consider estimating F at run-time). Then, Ucritical = F+32 =2+32 = 2:5. In �gure 2, update protocol would be chosen since (U = 2) < (Ucritical = 2:5).Amount of Data TransferredIn the above analysis, we consider the number of messages as the cost. However, theamount of data transferred is also a factor in evaluating the cost of a DSM. The averageamount of data transferred per segment can be evaluated similar to the number of messages.� Let Dinvalidate be the average amount of data transferred in one segment for the in-validate protocol (L = 1). Then, Dinvalidate = pupdate + (1 + F) pcontrol + ppage, wherepupdate is the average size of an update message, pcontrol is the size of a control message(page request, acknowledgment of update, etc.), and ppage is the size of a message thatis required to send a page from one node to another.� Let Dupdate be the average amount of data transferred in one segment for the updateprotocol (L =1). Then, it follows that, Dupdate = (pupdate + pcontrol)U .Critical value of pupdate where the two protocols require the same amount of data, iscomputed as follows: Dupdate = Dinvalidate) (pupdate(critical) + pcontrol)U = pupdate(critical) + (1 + F) pcontrol + ppagepupdate(critical) = (1 + F � U)pcontrol + ppageU � 113

Since pcontrol, F , and ppage are constant 10, the critical value of pupdate (i.e., pupdate(critical))can be determined, using the estimate for U . Having determined pupdate(critical), L is chosento be 1 if the estimated pupdate > pupdate(critical), and 1 otherwise.General Cost FunctionsIn general, the \cost" may be an arbitrary function. For instance, the cost may be somefunction of the message size. A procedure similar to that described above can be used tochoose the appropriate value of L for such a cost function.Let the \cost" of sending or receiving a message of size m be a function of m, say c(m).(For example, c(m) may be K1 + K2m, where K1;K2 are constants.) Total cost, C, iscomputed as follows:� Cupdate = (c(pupdate msg) + c(pcontrol))U� Cinvalidate = c(pupdate msg) + (1 + F) c(pcontrol) + c(ppage)where c(pupdate msg) denotes the average cost of an update message. Appropriate limit canbe chosen, by comparing the above costs estimated at run-time.We believe that a general \cost" function can be used to reduce the total execution time.Such a cost function may have parameters other than message size. The di�culty, however,is in determining the appropriate cost function. We have not yet experimented with thegeneral cost function.The present implementation chooses the appropriate limit to minimize the number ofmessages or the amount of data transferred. (Any one of the two can be minimized at anytime, not both.)3.2 ImplementationAs shown in the above analysis, the average number of updates since the last local access (U)and the average size of update message (pupdate) are important factors to decide which pro-tocol is better. Our adaptive protocol estimates these values over consecutive Ns segments10F is actually not a constant { but, as discussed earlier, we will assume it to be a constant for thisdiscussion. 14

Sampling Period 1

1 2 3 Ns 1 2 3 Ns 1 2 3 Ns
Ns Segments Ns Segments Ns Segments

Sampling Period 2 Sampling Period 3Figure 5: Segments and Sampling Periods(let us call it a \sampling period") and selects appropriate protocol for the next samplingperiod. Figure 5 illustrates segments and sampling periods. The U (or pupdate) value esti-mated during sampling period i is used to determine the value of limit L to be used duringsampling period i+ 1.Note that each node estimates U and pupdate independently for each page. To facilitateestimation of U and pupdate at run-time, each node maintains the following information foreach page (in addition to that summarized in section 2).� version: Counts how many times this page has been updated since the beginning ofexecution of the application. version is initialized to zero at the beginning of execution.� dynamic version: The version (de�ned above) of the page at the last local access.dynamic version is initialized to zero at the beginning of execution, and set to versionafter a page fault or on performing an update. dynamic version does not have to beupdated on every local access { more details are presented below.� xdata: Total amount of data transferred for updating copies of this page since thebeginning of execution of the application. xdata is initialized to zero at the beginningof execution. (xdata is mnemonic for \exchanged data".)� dynamic xdata: The xdata (de�ned above) of the page at the last local access. dy-namic xdata is initialized to zero at the beginning of execution and set to xdata aftera page fault or on performing an update (as described below).� update: The number of updates by other nodes during the current sampling period.update is initialized to zero at the beginning of execution and is cleared to zero at theend of every sampling period. 15

� d update: The amount of data received to update local copy of the page in the currentsampling period. d update is initialized to zero at the beginning of execution and iscleared to zero at the end of every sampling period.� counter: Total number of segments during the current sampling period. counter isinitialized to zero at the beginning of execution and is cleared to zero at the end ofevery sampling period.The procedure for estimating U and pupdate is as follows. In the following, we focus on asingle page P at a node A { the same procedure is used for each page at each node.1. On receiving an update message for page P, node A increments the version of page Pby 1, and increments xdata by the size of the update message. Similarly, when node Amodi�es page P and sends update messages to other nodes that have a copy of pageP, version is incremented by 1, and xdata is incremented by the size of the updatemessage. This can be summarized as:version � version + 1xdata � xdata + size of the update messageIn addition, when node A sends update messages, dynamic version is set equal toversion and dynamic xdata is set equal to xdata.dynamic version � versiondynamic xdata � xdata2. On a page fault, when a copy of page P is received by node A, the sender of the pagealso sends its xdata and version along with the page. On receiving the page, xdataand version in the local page table entry (for page P) at node A are set equal to thosereceived with the page. 16

xdata � xdata received with the pageversion � version received with the pageAlso, dynamic version in the local page table entry is compared to version receivedwith the page. If there is a di�erence (let d = version � dynamic version), then theupdate variable for page P (at node A) is increased by d, d update is increased by(xdata � dynamic xdata), and the counter increases by one. That is, if d > 0, then:update � update + (version - dynamic version)d update � d update + (xdata - dynamic xdata)counter � counter + 1At this point, a new segment begins. Therefore, the dynamic version is set equal toversion and dynamic xdata is set to xdata.dynamic version � versiondynamic xdata � xdata3. When counter becomes Ns, a sampling period is completed. Now, U is estimated asU = updateNs ;pupdate is estimated as pupdate = d updateupdate ;and update, d update, and counter are cleared to zero.The estimated value U (or pupdate) is used to decide which protocol is better { this protocolis used during the next sampling period. The protocol is selected as follows 11:11Note that invalidate protocol is selected at the beginning of execution in the example below. Alterna-tively, L =1 may be chosen as the initial value. 17

Memory Access 1R 1W 2R 2W 2R 2W 1R 2W 3W 1R 2W 1R 1W 2R 2W 3R 3W 2W 3W 1R 3R 3W 1R 1W

0

0

I

2

1

0

I

1R

2

1

1

I

2

1

1

I

2

3

2

1

3

2

2

2

2

5

5

0

3W 2W 3W 2W 3W 2W

U

12

5 5 5 5

0

0

U U U U U U U

12

12

13

13

7

13

13

7 7

1

14

13

1

U

15

1

U

13

16

13

1

U

17

13

7

2

U

17

11

2

18

2

18

18 19

0

0

0

0

 I I

0

0

1

1 1

1

0

I

3

I I I

21

4

3

2

2

3

5

0

6

5

7

5

0

0

U U U U U U U I I

7

1 1 1

7 7 7

1

11

17

17

17

17

11 12

3

0

0

19

13

141110

0

0

9

0

0

4

3

8

0

0

0

0

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Dynamic_Version: 1

Selected Protocol: 1

Version: 1

U (Avg. Updates): 1

Update: 1

Counter: 1

21 3 1 2 3 1
1 2 3

1.3 4.0

Segments

Sampling PeriodsFigure 6: An Example: Minimizing the Number of Messages� To minimize number of messages: If U > Ucritical, invalidate protocol is selected; else,update protocol is selected. Figure 6 shows an example of how node 1 uses the adaptiveprotocol to select the appropriate L for a page P. Assume that Ucritical = 2:5 andNs = 3.Note that information shown in this �gure is maintained for page P at node 1. Releaseand acquire operations are not shown in the �gure. A \solid" vertical line representsa release followed by an acquire. For example, the solid vertical line between columns2 and 3 denotes that node 1 performed a release followed by an acquire by node 2.The identity of the node that performs the release (acquire) is identical to the nodethat performs the access immediately to the left (right) of the solid line. At the endof every segment (at column 5, 8, 11, 19, 27, and 30), update and counter are updated.At the end of every sampling sampling period (at column 11 and 30), U is evaluatedand the appropriate protocol is selected (update protocol is selected at column 11, andinvalidate protocol is selected at column 30).� To minimize amount of data: If pupdate � pupdate(critical), then invalidate protocol isselected, else update protocol is selected. (Expression for pupdate(critical) was obtainedin Section 3.1.)
18

4 Performance EvaluationExperiments are being performed to evaluate the performance of the adaptive DSM byrunning applications on an implementation of the adaptive protocol. We implemented theprotocol by modifying another DSM, Quarks (Beta release 0.8) [16, 6]. The performanceevaluation is in progress. This section presents some preliminary results.MethodologyWe executed a synthetic application qtest with the adaptive DSM. (Other benchmarkapplications will also be evaluated.) qtest is a simple shared memory access application: allnodes access the shared data concurrently. A process acquires mutual exclusion before eachaccess and releases it after that. We measured the cost (i.e., number of messages and size ofdata transferred) by executing di�erent instances of the synthetic application, as describedbelow. Sampling period (Ns) is 30 for experiment 1 and 2, and sampling period (Ns) is 2 forexperiment 3, 4, and 5.ResultsThe body of the �rst instance of the qtest program is as follows:repeat NLOOP times {acquire(lock_id);for (n = 1 to NSIZE)shmem[n]++; /* increment */release(lock_id);}Each node performs the above task. All the shared data accessed in this applicationis con�ned to a single page. For this application, Figure 7 and 8 show the measured costby increasing the number of nodes (N). The costs are plotted per \transaction" basis. Atransaction denotes the set of operations { acquire, shared memory access, and release { inone loop of the qtest main routine. The curve for the adaptive scheme in Figure 7 is plotted19

using the heuristic for minimizing the number of messages, the curve in Figure 8 is plottedusing the heuristic for minimizing the amount of data transferred.Each node executes the repeat loop 300 times (NLOOP = 300). The size of shared data(NSIZE) is 2048 bytes { all in one page { page size being 4096 bytes. Adaptive protocolstarts with an update protocol (i.e., L is initialized to 1 for each page at each node). Atthe end of each sampling period (Ns = 30), each node evaluates U (or pupdate) for the pageand selects the appropriate L { this L is used during the next sampling period.Note that the adaptive DSM does not minimize number of messages and amount of datatransferred simultaneously { either one of them can be minimized at any time by the choiceof appropriate heuristic.Figure 7 shows the comparisons of the number of messages transferred per transaction.(A transaction is de�ned above.) In this �gure, \message:protocol" denotes the number ofmessages required by the speci�ed protocol, and \#update" denotes the average numberof updates (U) calculated over the entire application. As N increases, the average numberof updates (U) increases proportionally. The number of messages for an update protocolincreases as U increases. Previous analysis showed that (Mupdate = 2U). However, sincethis does not include messages for acquire, total number of messages required is greater than2U . Based on the previous analysis, the number of messages for an invalidate protocolmay be expected to be independent of the average number of updates (U) (recall thatMinvalidate = F + 3). However, the number of messages for an invalidate protocol increasesa little bit (as N increases) probably because F and the number of messages for acquireincrease as N increases.From our approximate analysis, Ucritical was expected to be 2:5, however, for the aboveapplication, Ucritical is just over 3. This is probably because our analysis assumed the idealsituation where a node that has invalidated a page does not receive any updates for the page.However, in the implementation, this is not the case - the node may still receive some updatesafter invalidating the page. These updates are, of course, unnecessary. These unnecessarymessages can be avoided if (1) the \updater" node �rst sends the update to the last updater(the node which updated the page most recently), and obtains from that node the most20

0

2

4

6

8

10

12

14

16

2 2.5 3 3.5 4 4.5 5 5.5 6N
um

be
r

of
 U

pd
at

es
 (

U
)

or
 M

es
sa

ge
s

pe
r

T
ra

ns
ac

ti
on

Number of Node (N)

’messages:invalidate’
’messages:update’

’messages:adaptive’
’#updates’

Figure 7: Experiment 1: The Average Number of Updates (U) and Messages per Transactionrecent information for the \copyset" (de�ned in section 2), and (2) \newborn" copyset12 ismaintained. In spite of the approximate estimate of Ucritical used in the experiment, theadaptive protocol performed well (except at N = 4). The number of messages requiredby the adaptive protocol is near the minimum of invalidate (L = 1) and update (L = 1)protocols.Figure 8 shows the comparison of the amount of data transferred per transaction. Sinceqtest application modi�es large amount of data (NSIZE = 2048 bytes), an update protocolrequires large amount of data transfer as the number of nodes (N) increases. However,an invalidate protocol requires nearly same amount of data for all N . Adaptive schemechooses the appropriate protocol for each value of N , thereby minimizing the amount ofdata transferred.The second experiment was performed with the main loop shown below:repeat NLOOP times {acquire(lock_id);for (n = 1 to NSIZE) {12A node in the \newborn" copyset has a page which has not been updated since the node obtained thepage from some other node. 21

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

2 2.5 3 3.5 4 4.5 5 5.5 6

T
he

 A
m

ou
nt

 o
f

D
at

a
T

ra
ns

fe
rr

ed
 p

er
 T

ra
ns

ac
ti

on

Number of Node (N)

’data:invalidate’
’data:update’

’data:adaptive’

Figure 8: Experiment 1: The Amount of Data Transferred per Transactionif (random() < read_ratio) /* 0 <= random <= 1 */r_value = shmem[n]; /* read */elseshmem[n] = w_value; /* write */}release(lock_id);}All the shared data accessed in this application is con�ned to a single page. For thisexperiment, we assume a small amount of shared data access per iteration of the repeatloop (NSIZE = 4). Additionally, each iteration of the repeat loop either reads or writes theshared data depending on whether a random number (random()) is smaller than the readratio or not. This allows us to control the frequency of write accesses to the shared data.Each node accesses the shared data 100 times (NLOOP = 100). (We observed that theresults converge quite quickly.) Figure 9 presents the number of messages per transaction.As shown, the adaptive scheme performs well for all read ratios. We also measured the22

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90N
um

be
r

of
 U

pd
at

es
 (

U
)

or
 M

es
sa

ge
s

pe
r

T
ra

ns
ac

ti
on

Read Ratio

’messages:invalidate’
’messages:update’

’messages:adaptive’
’#updates’

Figure 9: Experiment 2: The Average Number of Updates (U) and Messages per Transactionamount of data transferred. Measurements (omitted here) also show that, when the amountof data transfer is the cost criterion, update protocol is better than invalidate protocol forall read ratios, because a small amount of shared data is accessed per iteration of the repeatloop (NSIZE = 4). Therefore, in this case, the adaptive protocol performs similar to theupdate protocol. (As the qtest application used here is simple, more experiments are neededto evaluate the full impact of read ratio on adaptive DSM performance.)The third experiment was performed with another instance of the qtest application. Thisexperiment was performed with the main loop shown below:for (k = 1 to 3) { /* three stages */for (l = 1 to NLOOP/3) { /* NLOOP/3 iterations per stage */acquire(lock_id);for (j = 1 to 3) /* j = page number */if(((node_id + j + k) mod 3 != 0) or (l mod 10 == 0))for (n = 1 to NSIZE)shmem[n]++; /* increment */release(lock_id);} 23

}We executed this applications with three nodes (N = 3) which share 3 pages (numbered1, 2 and 3). Page size is 4096 bytes and each loop iteration may increment (not always, asdescribed next) 2048 bytes (NSIZE = 2048) in each shared page. Total of 300 iterations(NLOOP = 300) in each node are divided into three stages (numbered 1, 2 and 3). In eachstage, one of three pages is accessed less frequently than the other two pages. Speci�cally, leti, j and k be the node number, page number, and the stage number. Then, node i accessespage j during each iteration of stage k if (i + j + k) mod 3 6= 0. If (i+ j + k) mod 3 = 0,then node i accesses page j only during each 10-th iteration in stage k. This access patternis time-varying { pattern of accesses by each node to each page changes with time.To cope with this, the adaptive protocol is used in all its generality: (i) possibly di�erentprotocol is used for each page (\multiple" protocol), i.e., di�erent limit for each page, (ii)di�erent nodes may use di�erent values of limit for the same page (\hybrid" protocol), and(iii) adapt to the time-varying access pattern by periodically computing the average numberof updates (U) and the average amount of data for updates pupdate, and modifying the limitsaccordingly.Figure 10 presents the total number of messages sent over the execution of the application,and the total amount of data transferred for update, invalidate and adaptive protocols. Eventhough access patterns are di�erent in each node as well as in each page, and vary during theexecution, adaptive protocol can adapt to this. As shown in Figure 10, the adaptive protocolrequires less number of messages and less amount of data than the other two protocols. (Asnoted earlier, either the number of messages or the data size can be minimized at any time,not both.)The fourth experiment was performed with an instance of the qtest application similarto the third experiment. We executed this applications with eight nodes (N = 8) whichshare 4 pages (numbered 1 through 4). Page size is 4096 bytes and each loop iterationmay increment 1024 bytes (NSIZE = 1024) in each shared page. Total of 400 iterations(NLOOP = 400) in each node are divided into four stages (numbered 1 through 4). In each24

To
ta

l A
m

ou
nt

 o
f D

at
a

(B
yt

es
)

15000

14000

13000

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

12000 K

9000 K

10000 K

11000 K

8000 K

7000 K

6000 K

5000 K

4000 K

3000 K

2000 K

1000 K

0 K

13000 K

15000 K

14000 K

Update Invalidate Dynamic

To
ta

l N
um

be
r o

f M
es

sa
ge

s

Figure 10: Experiment 3: Performance Comparison: Total costs over the entire applicationstage, one of four pages is accessed more frequently than the other three pages. Speci�cally,let i, j and k be the node number, page number, and the stage number. Then, node iaccesses page j during each iteration of stage k if (i+ j + k) mod 4 = 0. If (i+ j + k) mod4 6= 0, then node i accesses page j only during each 10-th iteration in stage k. This accesspattern is also time-varying { pattern of accesses by each node to each page changes withtime.As shown in Figure 11, the adaptive protocol requires less number of messages and lessamount of data than the other two protocols. Observe that invalidate protocol performs bet-ter than update protocol, whereas update protocol performs better than invalidate protocolin the third experiment since the number of nodes is small.The �fth experiment was performed with an instance of the qtest application similar toexperiment 4, except for memory access frequency. In each stage, two of four pages areaccessed more frequently than the other two pages. Speci�cally, let i, j and k be the nodenumber, page number, and the stage number. Then, node i accesses page j during eachiteration of stage k if (i+ j + k) mod 2 = 0. If (i+ j + k) mod 2 6= 0, then node i accessespage j only during each 10-th iteration in stage k.As shown in Figure 12, update protocol performs worst because four nodes access eachpage frequently which causes U to be large much of the time. When U > Ucritical, invalidateprotocol is better than update protocol. Therefore, the adaptive protocol behaves like the25

To
ta

l A
m

ou
nt

 o
f D

at
a

(B
yt

es
)

0

Update Invalidate Dynamic

10,000

20,000

40,000

50,000

70,000

80,000

60,000

30,000

10,000 K

20,000 K

30,000 K

0 K

To
ta

l N
um

be
r o

f M
es

sa
ge

s

Figure 11: Experiment 4: Performance Comparison: Total costs over the entire applicationinvalidate protocol, and results in costs comparable with the invalidate protocol.The preliminary results presented above suggest that the adaptive scheme can performwell. More work is needed to evaluate the performance using other benchmark applications,and to explore other optimizations to the adaptive scheme.5 Comparison with Competitive Update ProtocolAs shown in section 4, adaptive protocol performs better than the update and invalidateprotocols. The question that arises is, how does the adaptive protocol compare with acompetitive update protocol for which 1 < L <1. The adaptive protocol presented abovechooses between L = 1 and L = 1. Therefore, it is unlikely that it will perform well forall applications when compared to competitive update protocol with a �xed L in the range1 < L <1, say L = 4. To perform better that such a protocol, the adaptive protocol mustalso be given the choice of using values of limit L other than 1 and 1. We are presentlydeveloping and evaluating heuristics that will allow the adaptive protocol to choose suchvalues of L. We expect that, with such heuristics, the adaptive protocol will be able toperform better than the competitive update protocol with a �xed limit.In the rest of this section, we compare the above adaptive protocol with competitive up-date protocol and present a simple modi�cation to the adaptive protocol. We use a �xed limit26

Update Invalidate Dynamic

0

To
ta

l N
um

be
r o

f M
es

sa
ge

s

150,000

100,000

50,000

0

70,000 K

60,000 K

50,000 K

40,000 K

30,000 K

20,000 K

10,000 K

To
ta

l A
m

ou
nt

 o
f D

at
a

(B
yt

es
)

Figure 12: Experiment 5: Performance Comparison: Total costs over the entire applicationL = 4 for the competitive update protocol. We use the same applications as in experiments3, 4, and 5 { let us number the new experiments 6, 7, and 8, respectively.Figures 13, 14, and 15 present results for the above adaptive protocol (bars marked asadaptive) and the competitive update protocol. Observe that adaptive protocol does notalways achieve a lower cost than competitive update protocol.To improve the performance of adaptive protocol, we modi�ed it as follows:� Adjust the critical value of the number of updates (Ucritical): As observed in the previ-ous experiments, Ucritical is actually larger than 2.5 that we obtained by an approximateanalysis. For the modi�ed protocol we use Ucritical = 4.� The previous adaptive protocol is modi�ed such that, when U < Ucritical, L is setequal to 4 (instead of 1). The protocol with the above two modi�cation is namedadaptive2. In Figures 13, 14, and 15, observe that adaptive2 outperforms competitiveupdate protocol with L = 4 as well as the previous adaptive protocol.The above observation suggests that more work is needed to obtain an appropriate heuris-tic to choose arbitrary values of L. As the range of possible values of L is large (1 � L � 1),one alternative may be restrict L to a small set of values, for instance f1,2,4,6,1g { of course,the appropriate set of values needs to be determined �rst.27

To
ta

l A
m

ou
nt

 o
f D

at
a

(B
yt

es
)

15000

14000

13000

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

12000 K

9000 K

10000 K

11000 K

8000 K

7000 K

6000 K

5000 K

4000 K

3000 K

2000 K

1000 K

0 K

13000 K

15000 K

14000 K

Competitive

To
ta

l N
um

be
r o

f M
es

sa
ge

s

Adaptive Adaptive2Figure 13: Experiment 6: Performance Comparison: Total costs over the entire application
To

ta
l A

m
ou

nt
 o

f D
at

a
(B

yt
es

)

0

10,000

20,000

40,000

50,000

70,000

80,000

60,000

30,000

10,000 K

20,000 K

30,000 K

0 K

Adaptive2Adaptive Competitive

To
ta

l N
um

be
r o

f M
es

sa
ge

s

Figure 14: Experiment 7: Performance Comparison: Total costs over the entire application28

0

Adaptive Competitive Adaptive2

To
ta

l N
um

be
r o

f M
es

sa
ge

s

150,000

100,000

50,000

0

To
ta

l A
m

ou
nt

 o
f D

at
a

(B
yt

es
)70,000 K

60,000 K

50,000 K

40,000 K

30,000 K

20,000 K

10,000 KFigure 15: Experiment 8: Performance Comparison: Total costs over the entire application6 Related WorkMany schemes have been proposed to reduce overhead by adapting to memory access patterns[2, 33, 11, 8, 29, 24, 9, 1, 14, 10, 4, 7, 20, 5, 26, 27, 3, 21, 16, 6]:� The approach proposed in this paper is related to the work by Veenstra and Fowler[31]. [31] evaluates the performance of three types of o�-line algorithms: (i) an al-gorithm that chooses statically, at the beginning of the program, either invalidate orupdate protocols on a per-page basis, (ii) an algorithm that chooses statically eitherinvalidate or update protocols for each cache block, and (iii) an algorithm that canchoose invalidate or update protocols at each write. Algorithms (i) and (ii) are similarto multiple protocols in [7, 16], and (iii) is similar to our adaptive protocols which canchoose the appropriate protocol at run-time. However, in [31], the chosen protocol isapplicable to all copies of a cache block, whereas in our scheme, the protocol used foreach copy of a page may be di�erent. [31] considers o�-line algorithms, for a bus-basedsystem. On the other hand, this report considers adaptive (on-line) algorithms thatare applicable to distributed systems.� [32] examines the performance of on-line hybrid protocols that combine the best aspectsof several protocols (invalidate protocol, update protocol, migratory protocol, etc.), on29

bus-based cache-coherent multiprocessors. The results shows that the hybrid protocolsoutperform any single pure protocol in most applications.� Ramachandran et al. [26, 28] present new mechanisms for explicit communicationin shared memory multiprocessors. They propose explicit communication primitiveswhich allows selectively updating a set of processors, or requesting a stream of dataahead of its intended use (prefetch). Their scheme can also adapt to time-varying shar-ing pattern by dynamically changing the set of nodes to be updated (or invalidated).The basic di�erence between our approach and [26] is that our scheme does not need toknow whether a particular synchronization controls access to a given shared memorypage or not. The scheme in [26] makes use of such information to determine whethera copy of the page should be updated or invalidated.� Dynamic cache coherence approach presented by Archibald [2] dynamically choosesto update or invalidate copies of a shared data object. If there are three writes by asingle processor without intervening references by any other processor, all other cachedcopies are invalidated.� Optimizations for migratory sharing have also been proposed [8, 29, 9, 22]. Theseprotocols dynamically identify migratory shared data and switch to migratory protocolin order to reduce the overhead. [8, 29] are based on invalidate protocol, and [22, 9]are based on competitive update protocol.� Quarks [16] limits the number of updates independently for each page and each copy.If a copy of the page is updated more than limit times without local access, the copyis invalidated. From the source code for the Beta release 0.8 of Quarks, we understandthat Quarks detects all local accesses for write, however, it can not detect local accessesfor read if the copy exists locally (page hit). The counter for the number of updatesis cleared on detected local accesses. The initial limit is set when the page table isinitialized, and is doubled at a page fault, until it reaches a prede�ned maximum. Thelimit in Quarks does not seem to decrease once it has increased.30

The adaptive protocol proposed in this report can detect all relevant13 local accesses(read as well as write), and the limit is changed based on access patterns in the previoussampling period (the limit may decrease or increase).� Tempest [27, 3] allows programmers and compilers to use user-level mechanism to im-plement shared memory \policies" that are appropriate to a particular program ordata structure. Tempest consists of four types of mechanisms (low-overhead messag-ing, bulk data transfer, virtual memory management, and �ne-grained memory accesscontrol).� Munin [7] incorporates an update timeout mechanism. The main idea of this mecha-nism is to invalidate local copy of a page that has not been accessed for a certain periodof time, freeze time, after it was last updated. Although the two approaches (limit andtimeout) have similar goals, they do not behave identically [17]. Whereas the timelimit, freeze time, is �xed in Munin, our adaptive protocol can adapt to time-varyingmemory access patterns by changing the update limit at run-time.� Multiple consistency protocol was proposed in [7, 16]. Several categories of shared dataobjects are identi�ed: conventional, read-only, migratory, write-shared, and synchro-nization. They developed many memory coherence techniques that perform e�cientlyfor these categories of shared data objects. But programmer should know the memoryaccess behaviors on each shared variable to specify a protocol used for the variable.� Lebeck and Wood [18] introduce dynamic self-invalidation (DSI) scheme to reduceoverhead in directory-based write-invalidate cache coherence protocol. The directoryidenti�es blocks for self-invalidation. The directory conveys the self-invalidation in-formation to the cache when responding to a cache miss. The cache controller self-invalidates the blocks.� Lindemann and Schon [20] add LOCAL state, to SHARED, INVALID, and EXCLU-SIVE states, to relax the consistency model. All memory accesses to the shared pages13It is not necessary to detect all local accesses, only the �rst access { read or write { after a remote updateof a page needs to be detected. 31

are performed locally at the node which has invoked the de�ne local system call. Theglobal image of the shared pages are updated with the local images by invoking thede�ne global system call.� Bianchini and LeBlanc address software caching which can adapt to changes in memoryreference behavior by making a new copy of data and repartitioning the data as neededfor each phase of execution [5].� [21] presents a
exible communication mechanism. Their scheme uses a programmablenode controller, called MAGIC. MAGIC is responsible for implementing the cache-coherence and message-passing protocols.� Hybrid protocol is more appropriate than a \pure" protocol for a DSM, if the accesspattern for the same page is di�erent in each node. TOP-1 [24], a tightly coupledsnoop-cache-based multiprocessor, has a hybrid coherence protocol which allows anupdate protocol and an invalidate protocol, which can be dynamically changed, tocoexist simultaneously. However, TOP-1 needs additional hardware design, cache moderegister (to specify a cache mode: update mode and invalidate mode) and CH (CacheHit) bus line (to indicate a snoop hit).� An adaptive cache coherence protocol is presented by Yang, Thangadurai, and Bhuyan[33]. This scheme is based on a hardware approach that handles multiple shared readse�ciently. Their protocol allows multiple copies of a shared data block in a hierarchi-cal network with minimum cache coherence overhead by dynamically partitioning thenetwork into sharing and nonsharing regions based on program behavior.� Adjustable block size coherent caching scheme is proposed by C. Dubnicki and T.LeBlanc [11]. Their cache structure dynamically adjusts the cache block size accordingto recently observed reference behavior. Cache blocks are split across cache lines whenfalse sharing occurs, and merged into a single cache line to exploit spatial locality.32

7 Conclusion and Future WorkOur objective is to design an adaptive DSM that can adapt to time-varying pattern ofaccesses to the shared memory. Our approach continually gathers statistics, at run-time,and periodically determines the appropriate protocol for each copy of each page. The choiceof the protocol is determined by the \cost" metric that needs to be minimized. The costmetrics considered in this report are number and size of messages required for executingan application using the DSM implementation. A generalization to minimize arbitrary costmetrics is also presented.The proposed adaptive approach is illustrated by means of an adaptive DSM scheme thatchooses either update or invalidate protocol for each copy of a page { the choice changes withtime, as the access patterns change. The update and invalidate protocols are implemented asspecial cases of the competitive update protocol. The report presents preliminary evaluationof the adaptive DSM using an implementation. Preliminary results from the implementationsuggest that the proposed adaptive approach can indeed reduce the cost.Further work is needed to fully evaluate the e�ectiveness of the proposed adaptive ap-proach. Issues being addressed include the following:� Extensive evaluation of the adaptive scheme is necessary to determine whether it willperform well with real applications. The qtest application is quite simple. Therefore,We plan to evaluate the adaptive scheme with several benchmark applications.� Another issue that needs to be addressed is the choice of Ns that determines the lengthof the sampling period. Instead of keeping Ns �xed, it may be possible to choose theappropriate value at run-time.� The cost metrics considered in the report are number and size of messages. Other costmetrics need to be considered. In particular, impact of our heuristics on applicationexecution time needs to be evaluated.� The report presented a heuristic for choosing between two protocols. In general, theDSM may provide a larger set of protocols, and the appropriate protocol should be33

adaptively chosen from this set. For instance, the choices may include migratory pro-tocol, and competitive update protocol with L = 1; 2; 4; 6;1. A heuristic for choosingbetween one of these, at run-time, needs to be developed to implement more e�cientDSMs.� Comparison of the proposed approach with previously proposed adaptive schemes.� The adaptive approach (based on collection of statistics) presented here can be com-bined with ideas developed by other researchers (e.g., [26]) to obtain further improve-ment in DSM performance. As yet, we have not explored this possibility.AcknowledgementsWe thank John Carter and D. Khandekar at the University of Utah for making Quarks [16]source code available in public domain.References[1] A. Karlin et al., \Competitive snoopy caching," in Proc. of the 27'th Annual Symposiumon Foundations of Computer Science, pp. 244{254, 1986.[2] J. Archibald, \A cache coherence approach for large multiprocessor systems," in Inter-national Conference on Supercomputing, pp. 337{345, July 1988.[3] B. Falsa� et al., \Application-speci�c protocols for user-level shared memory," in Inter-national Conference on Supercomputing, pp. 380{389, Nov. 1994.[4] J. Bennett, J. Carter, and W. Zwaenepoel, \Adaptive software cache management fordistributed shared memory architectures," in Proceedings of the 17th Annual Interna-tional Symposium on Computer Architecture, pp. 125{134, May 1990.[5] R. Bianchini and T. LeBlanc, \Software caching on cache-coherent multiprocessors," inProceedings of International Conference on Parallel and Distributed Processing, pp. 521{526, 1992.[6] J. Carter, D. Khandekar, and L. Kamb, \Distributed shared memory: Where we areand where we should be headed," in Proc. of the Fifth Workshop on Hot Topics inOperating Systems, pp. 119{122, May 1995.34

[7] J. B. Carter, E�cient Distributed Shared Memory Based On Multi-Protocol ReleaseConsistency. PhD thesis, Rice University, Sept. 1993.[8] A. Cox and R. Fowler, \Adaptive cache coherency for detecting migratory shared data,"in Proceedings of the 20th Annual International Symposium on Computer Architecture,pp. 98{108, May 1993.[9] F. Dahlgren, M. Dubois, and P. Stenstrom, \Combined performance gains of simplecache protocol extentions," in Proceedings of the 21st Annual International Symposiumon Computer Architecture, pp. 187{197, Apr. 1994.[10] F. Dahlgren and P. Stenstrom, \Using write caches to improve performance of cachecoherence protocols in shared-memory multiprocessors," Journal of Parallel and Dis-tributed Computing, vol. 26, pp. 193{210, Apr. 1995.[11] C. Dubnicki and T. LeBlanc, \Adjustable block size coherent caches," in Proceedingsof the 19th Annual International Symposium on Computer Architecture, pp. 170{180,May 1992.[12] S. Eggers and R. Katz, \A characterization of sharing in parallel prograns and itsapplication to coherency protocol evaluation," in Proceedings of the 15th Annual Inter-national Symposium on Computer Architecture, pp. 373{382, May 1988.[13] S. J. Eggers, \Simplicity versus accuracy in a model of cache coherency overhead," IEEETransactions on Computers, vol. 40, pp. 893{906, Aug. 1991.[14] H. Grahn, P. Stenstrom, and M. Dubois, \Implementation and evaluation of update-based cache protocols under relaxed memory consistency models," Future GenerationComputer Systems, vol. 11, pp. 247{271, June 1995.[15] P. Keleher, Lazy Release Consistency for Distributed Shared Memory. PhD thesis, RiceUniversity, Jan. 1995.[16] D. Khandekar, \Quarks: Portable dsm on unix," tech. rep., University of Utah.[17] J.-H. Kim and N. H. Vaidya, \Distributed shared memory: Recoverable and non-recoverable limited update protocols," Tech. Rep. 95-025, Texas A&M University, Col-lege Station, 1995. To appear in Proc. of 1995 Paci�c Rim International Symposium onFault-Tolerant Systems.[18] A. Lebeck and D. Wood, \Dynamic self-invalidation: Reducing coherence overheadin shared-memory multiprocessors," in Proceedings of the 22nd Annual InternationalSymposium on Computer Architecture, 1995. To appear.[19] K. Li and P. Hudak, \Memory coherence in shared virtual memory systems," ACMTransactions on Computer Systems, vol. 7, pp. 321{359, Nov. 1989.35

[20] C. Lindemann and F. Schon, \Performance evaluation of consistency models for mul-ticomputers with virtually shared memory," in System Science, 1993 Annual HawaiiInternational Conf., vol. II, pp. 154{163, 1993.[21] M. Heinrich et al., \The performance impact of
exibility in the stanford
ash multi-processor," in Proc. of the Sixth International Conference on Architectural Support forProgramming Languages and Operating Systems, pp. 274{285, Oct. 1994.[22] H. Nilson and P. Stenstrom, \An adaptive update-based cache coherence protocol forreduction of miss rate and tra�c," tech. rep., Lund University. To appear in ParallelArchitectures and Languages Europe, July 1994.[23] B. Nitzberg and V. Lo, \Distributed shared memory: A survey of issues and algorithms,"IEEE Computer, vol. 24, pp. 52{60, Aug. 1991.[24] N. Oba, A. Moriwaki, and S. Shimizu, \Top-1: A snoop-cache-based multiprocessor,"in Proc. 1990 International Phoenix Conference on Computers and Communication,pp. 101{108, Oct. 1990.[25] J. Peterson and A. Silberschatz, Operating System Concepts, pp. 105{108. Addison-Wesley Publishing Company, Inc., 1983.[26] U. Ramachandran, G. Shah, A. Sivasubramaniam, A. Singla, and I. Yanasak, \Archi-tectural mechanisms for explicit communication in shared memory multiproccessors,"Tech. Rep. GIT-CC-94-59, Georgia Institute of Technology, Dec. 1994. To appear inProc. of International Conference on Supercomputing 1995.[27] S. Reinhardt, J. Larus, and D.Wood, \Tempest and typoon: User-level shared memory,"in Proceedings of the 21st Annual International Symposium on Computer Architecture,pp. 325{336, Apr. 1994.[28] G. Shah, A. Singla, and U. Ramachandran, \The quest for a zero overhead shared mem-ory parallel machine," in Proceedings of International Conference on Parallel Procesing,vol. I, 1995.[29] P. Stenstrom, M. Brorsson, and L. Sandberg, \An adaptive cache coherence protocoloptimized for migratory sharing," in Proceedings of the 20th Annual International Sym-posium on Computer Architecture, pp. 109{118, May 1993.[30] M. Stumm and S. Zhou, \Algorithms implementing distributed shared memory," IEEEComputer, pp. 54{64, May 1990.[31] J. Veenstra and R. Fowler, \A performance evaluation of optimal hybrid cache coherencyprotocols," in Proc. of the Fifth International Conference on Architectural Support forProgramming Languages and Operating Systems, pp. 149{160, Oct. 1992.36

[32] J. Veenstra and R. Fowler, \The prospects for on-line hybrid coherency protocols onbus-based multiprocessors," Tech. Rep. 490, The University of Rochester, Mar. 1994.[33] Q. Yang, G. Thangadurai, and L. Bhuyan, \Design of an adaptive cache coherenceprotocol for large scale multiprocessors," IEEE Transaction on Parallel and DistributedSystems, vol. 3, pp. 281{293, May 1992.

37

