Towards an Adaptive Distributed Shared Memory'

(Preliminary Version?)

Jai-Hoon Kim Nitin H. Vaidya
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112
E-mail: {jhkim,vaidya}@cs.tamu.edu
Web: http://www.cs.tamu.edu/faculty/vaidya/

Technical Report 95-037
September 1995

Index Terms: distributed shared memory, adaptive protocol, multiple protocol, hybrid pro-

tocol, competitive update protocol, invalidate protocol, update protocol.

Abstract

The focus of this report is on software implementations of Distributed Shared Memory (DSM). In the
recent years, many protocols for implementing DSM have been proposed. The protocols can be broadly
divided into two classes: invalidation-based schemes and update-based schemes. Performance of these proto-
cols depends on the memory access behavior of the applications. Some researchers have proposed DSMs that
provide a family of consistency protocols or application specific protocols, and the programmer is allowed
to choose any one of them for each shared memory object (or page) or each stage of an application. While
such implementations have a potential for achieving optimal performance, they impose undue burden on
the programmer. An adaptive implementation that automatically chooses the appropriate protocol for each
shared memory page (at run-time) will ease the task of programming for DSM.

This report presents a simple approach for implementing adaptive DSMs. The approach is illustrated
with the example of an adaptive DSM based on the competitive update protocol. The objective of the
adaptive scheme is to minimize a pre-defined “cost” function. The cost functions considered here are number
of messages and size of messages. (Other cost functions can also be used similarly.)

The proposed scheme allows each node to independently choose (at run-time) a different protocol for
each page. The report presents preliminary evaluation of the adaptive DSM. Preliminary results shows that

the performance is improved by dynamically selecting the appropriate protocol.

!This work is supported in part by the National Science Foundation under grant MIP-9502563.

2This report will be revised to include more discussion, generalizations of the proposed approach, and
further experimental results. This preliminary version presents the basic adaptive scheme and evaluation of

a synthetic application.

1 Introduction

Distributed shared memory (DSM) systems have many advantages over message passing
systems [30, 23]. Since DSM provides a user a simple shared memory abstraction, the user
does not have to be concerned with data movement between hosts. Many applications
programmed for a multiprocessor system with shared memory can be executed in DSM
without significant modifications.

Many approaches have been proposed to implement distributed shared memory [7, 12, 19,
30, 16, 6, 15, 26, 9, 27]. The DSM implementations are based on variations of write-invalidate
and/or write-update protocols. Recent implementations of DSM use relaxed memory con-
sistency models such as release consistency [7]. As no single protocol is optimal for all
applications, researchers have proposed DSM implementations that provide a choice of mul-
tiple consistency protocols (e.g. [7]). The programmer may specify the appropriate protocol
to be used for each shared memory object (or page). While this approach has the potential
for achieving good performance, it imposes undue burden on the programmer. An adaptive
implementation that automatically chooses the appropriate protocol (at run-time) for each
shared memory page will ease the task of programming for DSM.

This report considers one approach for implementing adaptive DSM. This approach is
similar to adaptive mechanisms used to solve many other problems *, and can be summarized

as follows (to be elaborated later):

1. Collect statistics over a sampling period. (Accesses to each memory page are divided

into sampling periods.)
2. Using the statistics, determine the protocol that is “optimal” for the page.
3. Use the optimal protocol over the next sampling period.
4. Repeat above steps.

Essentially, the proposed implementation would use statistics collected during current execu-

tion to predict the optimal consistency protocol for the near-future. This prediction should

3For example, to predict the next CPU burst of a task, a Shortest-Job-First CPU scheduling algorithm

may use an exponential average of the measured lengths of previous CPU bursts [25].

be accurate, provided that the memory access patterns change relatively infrequently. (The
research presented in [26, 31] is closely related to that presented in this report. Section 6
discusses [26, 31] and other related research.)

To demonstrate our approach, we choose the competitive update protocol [1, 9, 14, 10].
This protocol is defined by a “threshold” parameter (we will rename the threshold as the
“limit”). Different choices of the limit parameter yield different consistency protocols. Our
goal is to determine the appropriate value of the limit so as to minimize a pre-defined “cost”
metric. The preliminary experiments show that our approach can indeed reduce the cost,
thus motivating further work.

This report is organized as follows. Section 2 summarizes the competitive update pro-
tocol [1, 9, 14, 10] and its generalizations. The proposed adaptive protocol is presented in
Section 3. Section 4 shows the performance evaluation of the proposed scheme. Related

work is discussed in Section 6. Section 7 concludes the report.

2 Competitive Update Protocol [1, 9, 14, 10] and Its

Generalizations

A simple implementation of a write-update protocol is likely to be inefficient, because many
copies of a page may be updated, even if some of them are not going to be accessed in the
near future. Munin [7] incorporates a time-out mechanism to invalidate those copies of a page
which have not been accessed by a node for a long time. [1, 9, 14, 10] present competitive-
update mechanisms to invalidate a copy of a page at a node, if the copy is updated by
other nodes “too many times” without an intervening local access. ([2] presents a similar
scheme.) The advantage of this approach, as compared to [7], is as follows: the decision
mechanism used in this approach (to determine when to invalidate a page) is dependent
only on the application’s access pattern, instead of real time as in Munin [7]. Quarks [16]
also incorporates a mechanism similar to that presented in [1, 9, 14, 10].

We consider a software implementation of the competitive update protocol for a DSM

that uses release consistency. This section presents details of the implementation, and

also discusses some generalizations of the basic competitive update protocol. The adaptive
scheme uses these generalizations of the original protocol.

The competitive update protocol defines a limit for each page at each node. If the number
of update messages received for a page P at some node A — without an intervening access
by node A — exceeds the limit for page P at node A, then the local copy of the page at node
A is invalidated (other copies of the page are not affected).

Information Structure

We assume an implementation that is similar to Munin [7] and Quarks [16], with a
few modifications to facilitate competitive updates. Each node maintains an information
structure for each page resident in its memory. The information structure contains many

pieces of information, as summarized below.

o update_counter: Counts how many times this page has been updated by other nodes,
since the last local access to this page. When a page is brought into the local memory
of a node, the counter is initialized to 0. Also, when a local process accesses (read
or write) this page, the counter is cleared to 0.* The counter is incremented at every

remote update of the page by any other node.

o limit L: Either set by user or transparently by the DSM protocol. The limit for each
page determines the performance of the competitive update protocol. (As discussed

later, we allow a different limit for each copy of each page.)
Quarks® [16] also maintains information similar to our update_counter and limit. Sec-

tion 6 discusses the differences.

o last_updater: Identity of the node that updated this page most recently. (last_updater

is the originator of the most recent update message for the page).

o copyset: Set of nodes that are assumed to have a copy of this page. The copyset at

different nodes, that have a copy of the same page, may be different. In general, a node

%A simple optimization can avoid clearing the counter on every local access.

5Quarks Beta release 0.8.

may not know exactly which other nodes have a copy of the page [7]. However, when
a node updates remote copies of a page (when it does a release), at the end of the
update procedure, that node knows precisely the set of nodes, that hold the copies of
the page, that were updated. The “updater” node collects this information by means

of acknowledgment messages sent as a part of the update procedure.

o probOuwner: Points towards the “owner” of the page [7]. On a page fault, a node
requests the page from the probOuwner. If the probOwner does not have a copy of the
page, it forwards the request to its probQwner. The request is thus forwarded until a

node having a copy of the page is reached.

Note that each node maintains the above structure for each page in its local memory. In
the following, when we use a phrase such as “the update_counter at node A”, we are referring
to “the update-counter for the page under consideration at node A”. It is implicit that the

“update_counter” (or some other information) pertains to a specific page.

Use of the Update_counter

During the execution, update_counter of each copy of a page changes dynamically, as
explained below. A copy of a page is invalidated whenever its update-counter becomes equal
to the limit 6. (Initially, we assume that the limit for a page is fixed. In the adaptive
protocol, however, the limit changes with time, depending on the memory access pattern.)

When a node, say A, receives from another node a copy of a page, say P, its update-
counter is initialized to 0. The update-counter is incremented whenever node A receives an
update message, for page P, from any other node. If a process on node A accesses page P,
then the update-counter for page P at node A is cleared to 0. If, at any time, the update
counter for page P at node A becomes equal to the limit L, then node A invalidates its copy
of page P. Thus, page P on node A is invalidated only when L updates to the page, by other
nodes, occur without an intervening access to the page by a process on node A. Thus, the
competitive update protocol invalidates those pages that are accessed “less frequently” — the

protocol can be tuned to a given application by a proper choice of limit L [1, 9, 14, 10].

6In case of write-sharing, a local copy of a page should not be invalidated if local copy has been modified

(the modification needs to be sent to the other nodes).

As discussed later, the limit can also be changed dynamically (at run-time) to adapt to the

time-varying memory access patterns.

Example

Figure 1 illustrates how the competitive update protocol works, by focusing on a single
page in the DSM. For this example, let us assume that the limit L associated with this
page is fixed at 3. In the figure, i and iU denote acquire and release operations by node
i.” Also, iR and iW denote read and write operations performed on this page by node .
The second row of the table presents a total ordering on the memory accesses performed
by nodes 0, 1 and 2 on the page under consideration. The last three rows list the values
of the update-counters at the three nodes at various times, e.g., the update-counter:0 row
corresponds to node 0. A “blank” in the table implies that the corresponding node does not
have a copy of the page at that time. The reader familiar with competitive updates can omit
rest of this example without a loss of continuity.

Initially, only node 0 has a copy of the page whose update-counter is 0 (column 0 in the
table). Next, node 1 performs an acquire and tries to read the page (columns 1-2 in the
figure). As it does not have a copy of the page yet, it receives a copy from node 0, and the
update-counter for this copy is set to 0 (column 2 in the figure). Node 1 then performs a
release (column 3). As node 1 did not perform any writes, no updates are needed at the
release. Next, node 2 also performs acquire-read-release (columns 4-6). Again, a copy of the
page is brought to the local memory of node 2, and its update-counter is set to 0 (column
5).

Next, node 0 performs an acquire and performs two write accesses to the page, and then
performs a release. As node 0 has performed a local access to the page, its update-counter

is cleared® to 0 (in this case, of course, it was already 0). In the software implementation

"Although we obtained the notation iL and iU by abbreviating i-Lock and i- Unlock, it should be noted

that acquire and release operations in release consistency are not equivalent to lock and unlock.

8 Actually, in practice, only if the update-counter is non-zero, any action need be taken. This can be
implemented as follows. When the update-counter for a page becomes non-zero, the page is read/write-
protected, so that any local access to the page will result in a page fault. On such a page fault, the fault
handler will set the update-counter to 0, and remove the read/write-protection. Thus, any further local
access to the page can proceed without any performance penalty. A similar optimization is used in Munin

Memory Access L] IR 1U[2L | 2R| 2U| OL| OW OW OU| 1L | 1R| IW 1U| OL| OW OU| OL | OW OU| OL | OW OU
Update-counter: 0 | 0| 0 0| 0| O 0| 0| O] O] O] 0| O| O] O 1| 1| O] O[O] O] O] 0] 0| O
Update-counter: 1 0| 0 0] O] O] Oy O[O} 1] 21/00[0[0[0| 121212 22
Update-counter: 2 0(0] 0] O] O] 1| 1| 1| 1] 2|2]|2

Figure 1: Update_counter

of release consistency protocol, the updates are not propagated to other nodes until node
0 performs a release. Therefore, the update-counters at nodes 1 and 2 are unchanged in
columns 7, 8 and 9. When node 0 performs a release, the updates by node 0 are propagated to
nodes 1 and 2. When the update message is received, nodes 1 and 2 incorporate the updates,
and increment the respective update-counters by 1 (column 10). Next, node 1 performs an
acquire-read-write-release sequence (columns 11-14). As node 1 has performed a local access,
its update-counter is cleared to 0 (column 12). When node 1 performs the release, the updates
are propagated to nodes 0 and 2, and their update-counters are incremented to 1 and 2,
respectively (column 14). Next, node 0 performs a acquire-write-release sequence (columns
15-17). The update-counter of node 0 is cleared because of the local access (column 16). The
update-counters at nodes 1 and 2 are incremented to 1 and 3, respectively, when the update
is received from node 0 (column 17). Now, because the update-counter at node 2 has become
equal to 3, the limit for the page, the local copy of the page at node 2 is invalidated. (The X
in the figure denotes an invalidation.) When the copy is invalidated, node 2 sends a negative
acknowledgment to the node from which the update message is received. Subsequently, node
0 performs two acquire-write-release sequences, at the end of which, the update-counter at
node 1 becomes 3 (column 23). Therefore, the page copy at node 1 is also invalidated. At
the end, only node 0 has a copy of the page, with update-counter 0 (column 23). O

[7] to implement its time-out mechanism.

2.1 Generalization of the Competitive Update Protocol

Unlike other similar schemes [2, 1, 9, 14, 10], implemented in hardware caches, the software
implementation can be more flexible and complex (without affecting the performance ad-
versely). The basic competitive protocol can be generalized in four ways, as summarized

below. The adaptive protocol presented later uses these generalizations.

o The generalized competitive update approach can provide a different protocol for each
page by adjusting the limit parameter independently for each page. By setting the
limit to 1, the competitive update protocol becomes similar to the invalidate protocol,
while the protocol is equivalent to the traditional update protocol when lzmit is infinity
(or large). Thus, the generalized competitive update protocol can effectively be used

as a “multiple” consistency protocol [7], simply by using a different limit for each page.

o If the access pattern to the same page is different for different nodes, a “hybrid” protocol
[24] is more appropriate than a “pure” protocol. The competitive update protocol can
act as a “hybrid” protocol by allowing each node to use a different limit for the local

copy of the same page.

e It is possible to change the limit associated with each page (in fact, each copy of a
page) dynamically. This feature is useful when the pattern of accesses to a page changes
with time. This feature is also useful when, initially, the “optimal” value of the limit is
unknown. Some heuristic can be used to adapt the protocol to dynamically determine
the appropriate limit, so as to minimize the overhead. Such an adaptive protocol is the

subject of this report.

o Instead of incrementing the limit by 1 each time an update occurs, we can allow the
limit to be incremented by a different amount. When an update message is received
by a node, the amount of increment in the update-counter can be made a function of
the node from which the update message is received. When the “cost” of an update
is dependent on the identity of the sender node, this feature is useful to tune the

competitive update protocol to the underlying hardware architecture.

3 Adaptive Protocol

Our ultimate objective is to implement an adaptive DSM that can adapt to the time-varying
memory access patterns of an application. The competitive update approach defines a family
of protocols each characterized by a different value of limit L. An optimal implementation
must, of course, choose the appropriate value of the limit.

An adaptive DSM based on the competitive update protocol would choose, at run-time,
the appropriate value of L (between 1 and o) for each copy of each page. Also, if necessary,
the limit will be changed, at run-time, if the access patterns change. The range of possible
values of limit is large (1 to oo), making it hard to design a heuristic for choosing the
appropriate limit.

As a first step, this report focuses on a much simpler problem, where the choice of the
limit is restricted to either 1 or co. With limit 1, the competitive update protocol is similar
(but not exactly identical) to the traditional invalidate protocol, and with limit oo, similar
to traditional update protocol. Thus, the simplified problem is to choose between invalidate
(limit = 1) and update (limit = oo) for each copy of each page.

At run-time, the proposed adaptive scheme collects some information (number and size
of messages sent) that is used to periodically determine the new value of the limit for each
copy of a page. The protocol is completely distributed. Now, we present a cost analysis to

motivate our heuristics for choosing the limit.

3.1 Cost Analysis

The objective of our adaptive protocol is to minimize the “cost” metric of interest. Three

possibilities for the cost metric are:
e The number of messages.
e The amount of data transferred.
e Execution time.

The objectives of minimizing these cost are inter-related. This report deals with the first

two metrics.

remote access Bwrite Cwrite D write Bwrite Cwrite B write

S I

| | |
Pagel;’me!o Tl Tz 3 4 5l Ts T7 Ts Tg 10 Tn 12/ TB

Aread Awrite Aread A write

segments % Segment 1 % Segment 2 %F Segment3>|%

Figure 2: Segments

[30, 13, 31] present similar cost analysis for coherency overhead. [30] is based on read
to write ratio and fault ratio, and [13] is based on the write-run model. [31] associates
different costs with different events (such as cache hit, invalidate, update, and cache load).
Our approach is based on the number of updates by other nodes between consecutive local

accesses.

Number of Messages

Let us focus on the accesses to a particular page P as observed at a node A. These
accesses can be partitioned into “segments”. A new segment begins with the first access by
node A following an update to the page by another node °. Figure 2 illustrates this with an
example: (a) node A starts segment 1 for page P at time 1, (b) copy of page P on node A
is updated by nodes B, C, and D. After that, (c) node A starts segment 2 by local access at
time 6. Similarly, (d) node A starts segment 3 by local access at time 11 following remote
updates by nodes B and (' at time 9 and 10, respectively.

Now we evaluate the number of messages sent during each segment when L = 1 and
L = oo. For simplicity, in the present discussion, we do not consider the messages required

to perform an acquire.

9Segment is a sequence of remote updates between two consecutive local accesses. Write-run [13] and
no-synch run [4] models are introduced by others. A write-run is a sequence of local writes between two
consecutive remote accesses. no-synch runis a sequence of accesses to a single object by any thread between
two synchronization points in a particular thread. The write-run model was presented by Eggers [13] to
predict the cache coherency overhead for a bus based multiprocessor system. This model measures the
overhead by the number of sequences of single processor writes to an individual shared address, and the

length of these sequences.

10

e update protocol (limit L = o0): When L = oo, a copy of the page is never invalidated.
To evaluate the number of messages sent in each segment, we need to measure the
number of updates made by other nodes during the segment. Let U be the average
number of updates to the local copy during a segment. An acknowledgement is sent for
each update message received. Therefore, the average number of messages needed in
one segment, denoted by Mypdate, 1s 2U. As shown in Figure 3, for example, 6 messages
are needed in segment 1 because page P is updated 3 times by other nodes. (The
numbers in parentheses in the figure denote number of messages associated with an
event.) Similarly, 4 and 2 messages are needed in segment 2 and segment 3, respectively.

For the three segments shown in the figure, the average number of updates per segment

isU = % = 2. Therefore, Mypdote = 2U = 4.

e invalidate protocol (limit L = 1): From the definition of a segment, it is clear that,
when L = 1, each segment begins with a page fault. On a page fault, F' + 1 messages
are required to obtain the page, where F' is the average number of times the request
for the page is forwarded before reaching a node that has the page (one additional
message is required to send the page). With L = 1, when the first update message for
the page (during the segment) is received from another node, the local copy of the page
is invalidated. This invalidation requires two messages — one for the update message
and one for a negative acknowledgement to the sender of the update. Ideally, once
a page is invalidated, no more update messages will be sent to the node during the
segment. (The reality, however, can be a little different, as discussed later.) Therefore,
when L = 1, (ideally) the average number of messages needed in one segment (denoted
by Minyatidate), is F' + 3 (regardless of the value of U). As shown in Figure 4, F + 3

messages are needed in a segment on the average.

The analysis for arbitrary limit (other than 1 and oo) is excluded in this report (to be
considered in future work). Critical value of the number of updates, Ue iticar, where L = 1

and L = oo require the same number of messages, is computed as follows:

Mupdate — Minvalidate

=2 Ucritical = F + 3

11

remote access Bwrite Cwrite D write Bwrite Cwrite B write

L o
R A

e\’e"tsi ot wh wi

update (2) update (2) updatei(Z) update (2) update (2)
a L =infinity
(#message)

Figure 3: Illustrations for memory access and cost (update protocol)

remote access Bwrite Cwrite D write Bwrite Cwrite Bwrite
by other node
Page P | l l J/ | l l | l |
time | 0 Tl Tz 3 4 5 Te T? Ts Tg 10! Tn 1! Tla
local access | ! ! :
bynodeA | Aread Awrte ‘Aread Awrite Aread Awrite 1 Aread ' A write
segments ’% Segment 1 % Segment 2 %'é Segment3>'%
update (2) wdde(2) 1 updde(2):
events | I I [L
aL=1 |] [[[
(#message) page fault (F+1) page fault (F+1) pagefault (F+1) pagefault (F+1)

Figure 4: Illustrations for memory access and cost (invalidate protocol)

12

F+3
= Ucritical — T—I_

Therefore, if U < %, update protocol performs better. If U > %, invalidate protocol
performs better. Our adaptive DSM implementation estimates U at run-time and sets L = 1
(for page P at node A) if U > Ugiticat, and L = oo otherwise. Note that F' varies according
to memory access patterns and the number of nodes. Although F' can be estimated at run-

time, previous work [19] suggests that F' is less than 3 up to 32 nodes. For this discussion, we

F43

assume F' = 2 (future work will consider estimating F' at run-time). Then, Ueriticar = ==

% = 2.5. In figure 2, update protocol would be chosen since (U = 2) < (Ueriticar = 2.5).
Amount of Data Transferred

In the above analysis, we consider the number of messages as the cost. However, the
amount of data transferred is also a factor in evaluating the cost of a DSM. The average

amount of data transferred per segment can be evaluated similar to the number of messages.

o Let D;yatidate be the average amount of data transferred in one segment for the in-
validate protocol (L = 1). Then, Dinvatidate = Pupdate + (1 + F') Peontrol + Ppage, Where
PDupdate 15 the average size of an update message, peontror 1 the size of a control message
(page request, acknowledgment of update, etc.), and pyage is the size of a message that

is required to send a page from one node to another.

o Let Dyydqte be the average amount of data transferred in one segment for the update

protocol (L = co). Then, it follows that, Dupdate = (Pupdate + Peontrot) U-

Critical value of pypgete Where the two protocols require the same amount of data, is

computed as follows:

-Dupdate — Dinvalidate
= (pupdate(critical) + pcontrol) U = pupdate(critical) + (]- + F)pcontrol + Ppage

(]_ + F— U)pcontrol + Ppage
Pupdate(critical) — U—-1

13

. 10 “; .
Since peontrots F'y and ppege are constant '°, the critical value of pypgate (i-e., pupdate(critical))
can be determined, using the estimate for U. Having determined pypdate(critical), L is chosen

to be 1 if the estimated pupdate > Pupdate(critical)> and oo otherwise.

General Cost Functions

In general, the “cost” may be an arbitrary function. For instance, the cost may be some
function of the message size. A procedure similar to that described above can be used to
choose the appropriate value of L for such a cost function.

Let the “cost” of sending or receiving a message of size m be a function of m, say ¢(m).
(For example, ¢(m) may be K; + K, m, where K;, K, are constants.) Total cost, C, is

computed as follows:

L4 update — (c(pupdate_msg) + c(pcontrol)) U

L4 invalidate — c(pupdate_msg) + (]- + F) c(pcontrol) + c(ppage)

where m denotes the average cost of an update message. Appropriate limit can
be chosen, by comparing the above costs estimated at run-time.

We believe that a general “cost” function can be used to reduce the total execution time.
Such a cost function may have parameters other than message size. The difficulty, however,
is in determining the appropriate cost function. We have not yet experimented with the
general cost function.

The present implementation chooses the appropriate limit to minimize the number of
messages or the amount of data transferred. (Any one of the two can be minimized at any

time, not both.)

3.2 Implementation

As shown in the above analysis, the average number of updates since the last local access (U)
and the average size of update message (pypdate) are important factors to decide which pro-

tocol is better. Our adaptive protocol estimates these values over consecutive IV, segments

10F is actually not a constant — but, as discussed earlier, we will assume it to be a constant for this

discussion.

14

| |
1 2 3 = Ns
Ns Segments

| |
1 2 3 Ns
Ns Segments

[
1 2 3 - Ns

—
|
NsSegments |
|
|

= Sampling Period 1% Sampling Period 2% Sampling Period 3%

Figure 5: Segments and Sampling Periods

(let us call it a “sampling period”) and selects appropriate protocol for the next sampling
period. Figure 5 illustrates segments and sampling periods. The U (or pypdate) value esti-
mated during sampling period ¢ is used to determine the value of limit L to be used during
sampling period ¢ + 1.

Note that each node estimates U and pypdeee independently for each page. To facilitate

estimation of U and pypdete at run-time, each node maintains the following information for

each page (in addition to that summarized in section 2).

o version: Counts how many times this page has been updated since the beginning of

execution of the application. version is initialized to zero at the beginning of execution.

e dynamic_version: The version (defined above) of the page at the last local access.
dynamaic_version is initialized to zero at the beginning of execution, and set to version
after a page fault or on performing an update. dynamic_version does not have to be

updated on every local access — more details are presented below.

o zdata: Total amount of data transferred for updating copies of this page since the
beginning of execution of the application. zdata is initialized to zero at the beginning

of execution. (zdata is mnemonic for “exchanged data”.)

o dynamic_zdata: The zdata (defined above) of the page at the last local access. dy-
namic_zdata is initialized to zero at the beginning of execution and set to zdata after

a page fault or on performing an update (as described below).

o update: The number of updates by other nodes during the current sampling period.
update is initialized to zero at the beginning of execution and is cleared to zero at the

end of every sampling period.

15

o d_update: The amount of data received to update local copy of the page in the current
sampling period. d_update is initialized to zero at the beginning of execution and is

cleared to zero at the end of every sampling period.

o counter: Total number of segments during the current sampling period. counter is
initialized to zero at the beginning of execution and is cleared to zero at the end of

every sampling period.

The procedure for estimating U and pypgate 1s as follows. In the following, we focus on a

single page P at a node A — the same procedure is used for each page at each node.

1. On receiving an update message for page P, node A increments the version of page P
by 1, and increments zdata by the size of the update message. Similarly, when node A
modifies page P and sends update messages to other nodes that have a copy of page
P, version is incremented by 1, and zdata is incremented by the size of the update

message. This can be summarized as:

version <«— wversion + 1

tdata «— xdata + size of the update message

In addition, when node A sends update messages, dynamic_version is set equal to

version and dynamic_zdata is set equal to zdata.

dynamic_version <«— wversion

dynamic_zdata +— zdata

2. On a page fault, when a copy of page P is received by node A, the sender of the page
also sends its zdata and version along with the page. On receiving the page, zdata
and version in the local page table entry (for page P) at node A are set equal to those

received with the page.

16

tdata «— zdata received with the page

version <«— version received with the page

Also, dynamic_version in the local page table entry is compared to version received
with the page. If there is a difference (let d = version — dynamic_version), then the
update variable for page P (at node A) is increased by d, d_update is increased by

(zdata — dynamic_zdata), and the counter increases by one. That is, if d > 0, then:

update «— update + (version - dynamic_version)
d_update «— d_update 4+ (zdata - dynamic_zdata)

counter +«— counter + 1

At this point, a new segment begins. Therefore, the dynamic_version is set equal to

version and dynamic_zdata is set to zdata.

dynamic_version <«— wversion

dynamic_zdata +— zdata

3. When counter becomes N,, a sampling period is completed. Now, U is estimated as

update
U=,
PDupdate 15 estimated as
_ d_update
Pupdate — update P

and update, d_update, and counter are cleared to zero.

The estimated value U (or pypaate) is used to decide which protocol is better — this protocol

is used during the next sampling period. The protocol is selected as follows *!:

Note that invalidate protocol is selected at the beginning of execution in the example below. Alterna-

tively, L = oo may be chosen as the initial value.

17

1/ 2| 30 4 5] 6 7] 8] 9]10] 11| 12| 13] 14] 15] 16] 17| 18] 197 20| 21 22| 23" 24] 25 26] 27 28 20] 301 31
Memory Access | 1R 1W 2R 2W 1R| 2Ri 2W 1R| 20 3w 1R| 2W 3W 2 3 2W 3w 2W 1Ri 1W 2R 2W 3R! 3W 2W 3W| 1R| 3R 3W 1R! 1
Version: 1 0/ 1] 1! 2| 2| 2 3| 3| 4| 5| 5| 6| 7| 8] 9|10 11|12|12! 13| 13! 14| 14' 15| 16| 17| 17| 17! 18| 18' 19
Dynamic_Verson:1| 00 1) 1: 1| 2| 21 2| 3| 3| 3| 5| 5| 5/ 5/ 5 5| 121 13| 131 13| 13 13 13| 13[17| 171 17| 18! 19
Update: 1 0,0/ 0 01| 1,12 2|24 0/0 00 0| 707/ 7. 7| 7. 7] 7| 7|11|11: 11|12, 0
Counter: 1 o' ol o o| 1] 1 1] 2| 2| 2[3] o] 0] o] 0 o 111 111 1 1] 1 1] 2[2 2] 3 0
U(Avg. Updates:1 | 1 | 13 |40
Selected Protocol: 2 | Iy I| Iy L[1| 1y 1| 1| 1] 1|U[U|U|U|U|U[U|U[UU|UU|U; U UU[U|UU]|T;]I
Segments 1 2 3 1 2 3 1
Sampling Periods 1 2

Figure 6: An Example: Minimizing the Number of Messages

e To minimize number of messages: If U > U,,;tca1, invalidate protocol is selected; else,
update protocol is selected. Figure 6 shows an example of how node 1 uses the adaptive
protocol to select the appropriate L for a page P. Assume that U,,icq; = 2.5 and N, = 3.
Note that information shown in this figure is maintained for page P at node 1. Release
and acquire operations are not shown in the figure. A “solid” vertical line represents
a release followed by an acquire. For example, the solid vertical line between columns
2 and 3 denotes that node 1 performed a release followed by an acquire by node 2.
The identity of the node that performs the release (acquire) is identical to the node
that performs the access immediately to the left (right) of the solid line. At the end
of every segment (at column 5, 8, 11, 19, 27, and 30), update and counter are updated.
At the end of every sampling sampling period (at column 11 and 30), U is evaluated
and the appropriate protocol is selected (update protocol is selected at column 11, and

invalidate protocol is selected at column 30).

¢ To minimize amount of data: If pupdate = Pupdate(criticat), then invalidate protocol is
selected, else update protocol is selected. (Expression for Pupdate(critical) Was obtained

in Section 3.1.)

18

4 Performance Evaluation

Experiments are being performed to evaluate the performance of the adaptive DSM by
running applications on an implementation of the adaptive protocol. We implemented the
protocol by modifying another DSM, Quarks (Beta release 0.8) [16, 6]. The performance

evaluation is in progress. This section presents some preliminary results.

Methodology

We executed a synthetic application gtest with the adaptive DSM. (Other benchmark
applications will also be evaluated.) gtest is a simple shared memory access application: all
nodes access the shared data concurrently. A process acquires mutual exclusion before each
access and releases it after that. We measured the cost (i.e., number of messages and size of
data transferred) by executing different instances of the synthetic application, as described
below. Sampling period (V) is 30 for experiment 1 and 2, and sampling period (V) is 2 for
experiment 3, 4, and 5.
Results

The body of the first instance of the gtest program is as follows:

repeat NLOOP times {
acquire(lock_id);
for (n = 1 to NSIZE)
shmem[n]++; /* increment */

release(lock_id);

Each node performs the above task. All the shared data accessed in this application
is confined to a single page. For this application, Figure 7 and 8 show the measured cost
by increasing the number of nodes (V). The costs are plotted per “transaction” basis. A
transaction denotes the set of operations — acquire, shared memory access, and release — in

one loop of the gtest main routine. The curve for the adaptive scheme in Figure 7 is plotted

19

using the heuristic for minimizing the number of messages, the curve in Figure 8 is plotted
using the heuristic for minimizing the amount of data transferred.

Each node executes the repeat loop 300 times (NLOOP = 300). The size of shared data
(NSIZE) is 2048 bytes — all in one page — page size being 4096 bytes. Adaptive protocol
starts with an update protocol (i.e., L is initialized to oo for each page at each node). At
the end of each sampling period (N, = 30), each node evaluates U (or pypgate) for the page
and selects the appropriate L — this L is used during the next sampling period.

Note that the adaptive DSM does not minimize number of messages and amount of data
transferred simultaneously — either one of them can be minimized at any time by the choice
of appropriate heuristic.

Figure 7 shows the comparisons of the number of messages transferred per transaction.
(A transaction is defined above.) In this figure, “message:protocol” denotes the number of
messages required by the specified protocol, and “#update” denotes the average number
of updates (U) calculated over the entire application. As N increases, the average number
of updates (U) increases proportionally. The number of messages for an update protocol
increases as U increases. Previous analysis showed that (Mypgate = 2U). However, since
this does not include messages for acquire, total number of messages required is greater than
2U. Based on the previous analysis, the number of messages for an invalidate protocol
may be expected to be independent of the average number of updates (U) (recall that
Mnvatidate = F + 3). However, the number of messages for an invalidate protocol increases
a little bit (as IV increases) probably because F' and the number of messages for acquire
increase as [N increases.

From our approximate analysis, U, .1 Was expected to be 2.5, however, for the above
application, U, sicq; is just over 3. This is probably because our analysis assumed the ideal
situation where a node that has invalidated a page does not receive any updates for the page.
However, in the implementation, this is not the case - the node may still receive some updates
after invalidating the page. These updates are, of course, unnecessary. These unnecessary
messages can be avoided if (1) the “updater” node first sends the update to the last_updater
(the node which updated the page most recently), and obtains from that node the most

20

c

3= 16 ‘ ‘ ‘

a 'messagesiinvalidate’ =~
§ 14 ' messages. update’—="
g 12| x

8

g 10} |
s e

5 8 - -
=)

~ 0¥ o
B

g

o 4 B X —
:) X

ke | . |
s 2

Q

g 0 1 ! | |))

z

2 25 3 35 4 45 5 55 6
Number of Node (N)

Figure 7: Experiment 1: The Average Number of Updates (U) and Messages per Transaction

recent information for the “copyset” (defined in section 2), and (2) “newborn” copyset'? is
maintained. In spite of the approximate estimate of U.,,;;0q; used in the experiment, the
adaptive protocol performed well (except at N = 4). The number of messages required
by the adaptive protocol is near the minimum of invalidate (L = 1) and update (L = o)
protocols.

Figure 8 shows the comparison of the amount of data transferred per transaction. Since
qtest application modifies large amount of data (NSIZE = 2048 bytes), an update protocol
requires large amount of data transfer as the number of nodes (N) increases. However,
an invalidate protocol requires nearly same amount of data for all N. Adaptive scheme
chooses the appropriate protocol for each value of N, thereby minimizing the amount of
data transferred.

The second experiment was performed with the main loop shown below:

repeat NLOOP times {
acquire(lock_id);

for (n = 1 to NSIZE) {

12A node in the “newborn” copyset has a page which has not been updated since the node obtained the

page from some other node.

21

5 11000 | | |

g "datainvalidate —~— |
10000 'dataupdate’ -+

§ ' data:adaptive’ -5~

t 9000 |- 7

T

Q

B 8000 7

2 7000 7

§ ff"/ [

i 6000 |- - i

© -

w

a 5000 7

5 e

3 4000 o 7

:

< 3000 7

[0) P

C o

= 2000 ‘ ‘ | | | |

2 25 3 35 4 45 5 55 6
Number of Node (N)

Figure 8: Experiment 1: The Amount of Data Transferred per Transaction

if (random() < read_ratio) /* O <= random <= 1 */

r_value = shmem[n]; /* read */
else
shmem[n] = w_value; /* write */

}

release(lock_id);

All the shared data accessed in this application is confined to a single page. For this
experiment, we assume a small amount of shared data access per iteration of the repeat
loop (NSIZE = 4). Additionally, each iteration of the repeat loop either reads or writes the
shared data depending on whether a random number (random()) is smaller than the read
ratio or not. This allows us to control the frequency of write accesses to the shared data.
Each node accesses the shared data 100 times (NLOOP = 100). (We observed that the
results converge quite quickly.) Figure 9 presents the number of messages per transaction.

As shown, the adaptive scheme performs well for all read ratios. We also measured the

22

c

S 20 ; ; ; ‘

a 18 'messagesinvalidate’ ——
g i 'messages.update’ -+ |
= 16 B T ' messages.adaptive’ -e-- |
] g "#updates

8 14 +

P ool

=

5 10

S 8 1

g 6|

-D X

[=%

) 4t

ke

g 2t)

Q

g O Il Il Il Il Il Il Il Il

z

0 10 20 30 40 50 60 70 80 9
Read Ratio

Figure 9: Experiment 2: The Average Number of Updates (U) and Messages per Transaction

amount of data transferred. Measurements (omitted here) also show that, when the amount
of data transfer is the cost criterion, update protocol is better than invalidate protocol for
all read ratios, because a small amount of shared data is accessed per iteration of the repeat
loop (NSIZE = 4). Therefore, in this case, the adaptive protocol performs similar to the
update protocol. (As the gtest application used here is simple, more experiments are needed
to evaluate the full impact of read ratio on adaptive DSM performance.)

The third experiment was performed with another instance of the gtest application. This

experiment was performed with the main loop shown below:

for (k =1 to 3) { /* three stages */
for (1 = 1 to NLOOP/3) { /* NLOOP/3 iterations per stage */
acquire(lock_id);
for (j = 1 to 3) /* j = page number */
if(((node_id + j + k) mod 3 != 0) or (1 mod 10 == 0))
for (n = 1 to NSIZE)
shmem[n]++; /* increment */

release(lock_id);

23

We executed this applications with three nodes (N = 3) which share 3 pages (numbered
1, 2 and 3). Page size is 4096 bytes and each loop iteration may increment (not always, as
described next) 2048 bytes (NSIZE = 2048) in each shared page. Total of 300 iterations
(NLOOP = 300) in each node are divided into three stages (numbered 1, 2 and 3). In each
stage, one of three pages is accessed less frequently than the other two pages. Specifically, let
t, J and k be the node number, page number, and the stage number. Then, node 7 accesses
page j during each iteration of stage k if (¢ + 7 + k) mod 3 # 0. If (¢ 4+ j + k) mod 3 = 0,
then node ¢ accesses page j only during each 10-th iteration in stage k. This access pattern
is time-varying — pattern of accesses by each node to each page changes with time.

To cope with this, the adaptive protocol is used in all its generality: (i) possibly different
protocol is used for each page (“multiple” protocol), i.e., different limit for each page, (ii)
different nodes may use different values of limit for the same page (“hybrid” protocol), and
(iii) adapt to the time-varying access pattern by periodically computing the average number
of updates (U) and the average amount of data for updates pypgate, and modifying the limits
accordingly.

Figure 10 presents the total number of messages sent over the execution of the application,
and the total amount of data transferred for update, invalidate and adaptive protocols. Even
though access patterns are different in each node as well as in each page, and vary during the
execution, adaptive protocol can adapt to this. As shown in Figure 10, the adaptive protocol
requires less number of messages and less amount of data than the other two protocols. (As
noted earlier, either the number of messages or the data size can be minimized at any time,
not both.)

The fourth experiment was performed with an instance of the g¢test application similar
to the third experiment. We executed this applications with eight nodes (N = 8) which
share 4 pages (numbered 1 through 4). Page size is 4096 bytes and each loop iteration
may increment 1024 bytes (NSIZE = 1024) in each shared page. Total of 400 iterations
(NLOOP = 400) in each node are divided into four stages (numbered 1 through 4). In each

24

15000 15000 K
14000 — — 14000 K ?
B 13000 — — 13000 K 4
g 12000 — — 12000 K %
11000 — — 11000 K ko]
= o
- 10000 — — 10000 K .
o 9000 — — 9000 K i<
o >
[S 8000 — — 8000K Q
=] 1S
= 7000 — —| 7000K <
No | | <
= 6000 6000 K 5
= 5000 |— — 5000 K =
D 4000 — — 000K I

3000 — — 3000K

2000 — — 2000K

1000 — — 1000K

0 0K

Update Invalidate Dynamic

Figure 10: Experiment 3: Performance Comparison: Total costs over the entire application

stage, one of four pages is accessed more frequently than the other three pages. Specifically,
let ¢, 5 and k& be the node number, page number, and the stage number. Then, node
accesses page j during each iteration of stage k if (¢ + 7 + k) mod 4 = 0. If (: + 5 + k) mod
4 # 0, then node 7 accesses page j only during each 10-th iteration in stage k. This access
pattern is also time-varying — pattern of accesses by each node to each page changes with
time.

As shown in Figure 11, the adaptive protocol requires less number of messages and less
amount of data than the other two protocols. Observe that invalidate protocol performs bet-
ter than update protocol, whereas update protocol performs better than invalidate protocol
in the third experiment since the number of nodes is small.

The fifth experiment was performed with an instance of the gtest application similar to
experiment 4, except for memory access frequency. In each stage, two of four pages are
accessed more frequently than the other two pages. Specifically, let ¢, 7 and k be the node
number, page number, and the stage number. Then, node 7 accesses page j during each
iteration of stage k if (¢ + j + k) mod 2 =0. If (¢ + j + k) mod 2 # 0, then node 7 accesses
page 7 only during each 10-th iteration in stage k.

As shown in Figure 12, update protocol performs worst because four nodes access each
page frequently which causes U to be large much of the time. When U > U_,;tca1, invalidate
protocol is better than update protocol. Therefore, the adaptive protocol behaves like the

25

80,000
— 30,000 K
70,000 — —
60,000 — —
50,000 — — 20,000 K
40,000 — —
30,000 — —

— 10,000 K
20,000 — —

[0 Total Number of Messages
EE Tota Amount of Data (Bytes)

10,000 — —

Update Invalidate Dynamic

Figure 11: Experiment 4: Performance Comparison: Total costs over the entire application

invalidate protocol, and results in costs comparable with the invalidate protocol.
The preliminary results presented above suggest that the adaptive scheme can perform
well. More work is needed to evaluate the performance using other benchmark applications,

and to explore other optimizations to the adaptive scheme.

5 Comparison with Competitive Update Protocol

As shown in section 4, adaptive protocol performs better than the update and invalidate
protocols. The question that arises is, how does the adaptive protocol compare with a
competitive update protocol for which 1 < L < oo. The adaptive protocol presented above
chooses between L = 1 and L = oo. Therefore, it is unlikely that it will perform well for
all applications when compared to competitive update protocol with a fixed L in the range
1 <L < o,say L =4. To perform better that such a protocol, the adaptive protocol must
also be given the choice of using values of limit L other than 1 and co. We are presently
developing and evaluating heuristics that will allow the adaptive protocol to choose such
values of L. We expect that, with such heuristics, the adaptive protocol will be able to
perform better than the competitive update protocol with a fixed limit.

In the rest of this section, we compare the above adaptive protocol with competitive up-

date protocol and present a simple modification to the adaptive protocol. We use a fixed limit

26

150,000
- — 70000K =
8
g - i &
- — K
@7 60,000 \%5/
= [a}
S 100,000 — — 50000K 5
g - - £
o] >
[S — — 40,000 K Q
= 1S
= - - <
g — — 30000k 8
= 50,000 [— — =
D - — 20,000K I
- — 10,000 K
0 0

Update Invalidate Dynamic

Figure 12: Experiment 5: Performance Comparison: Total costs over the entire application

L = 4 for the competitive update protocol. We use the same applications as in experiments
3,4, and 5 — let us number the new experiments 6, 7, and 8, respectively.

Figures 13, 14, and 15 present results for the above adaptive protocol (bars marked as
adaptive) and the competitive update protocol. Observe that adaptive protocol does not
always achieve a lower cost than competitive update protocol.

To improve the performance of adaptive protocol, we modified it as follows:

e Adjust the critical value of the number of updates (Ueriticar): As observed in the previ-
ous experiments, Ugisicar 18 actually larger than 2.5 that we obtained by an approximate

analysis. For the modified protocol we use U, ticar = 4.

e The previous adaptive protocol is modified such that, when U < Ugiscar, L is set
equal to 4 (instead of oco). The protocol with the above two modification is named
adaptive2. In Figures 13, 14, and 15, observe that adaptive2 outperforms competitive

update protocol with I = 4 as well as the previous adaptive protocol.

The above observation suggests that more work is needed to obtain an appropriate heuris-
tic to choose arbitrary values of L. As the range of possible values of L is large (1 < L < o),
one alternative may be restrict L to a small set of values, for instance {1,2,4,6,00} — of course,

the appropriate set of values needs to be determined first.

27

15000 15000 K
14000 (— - 14000K
) 13000 (— —| 13000 K 2
%‘ 12000 |— — 12000K %
— 11000 [— — 11000 K g
s 10000 (— — 10000K
3z 9000 |— — 9000 K =
g 8000 — — 8000K g
= 7000 — — 7000 K <
g 6000 — — eo00K B
= 5000 — —| 5000 K =
D 4000 | — 4000 K I

3000 |— — 3000K

2000 — — 2000k

1000 — — 1000 K

0 0K

Adaptive Competitive Adaptive2

Figure 13: Experiment 6: Performance Comparison: Total costs over the entire application

80,000
— — 30,000 K
70,000 — —
60,000 — —
50,000 — — 20,000 K
40,000 — —
30,000 — —

— — 10,000 K
20,000 — —

[0 Total Number of Messages
E Tota Amount of Data (Bytes)

10,000 — —

Adaptive Competitive Adaptive2

Figure 14: Experiment 7: Performance Comparison: Total costs over the entire application

28

150,000
- — 70000K =
8
g - i &
- — K
@7 60,000 \%/
= [a}
S 100,000 — — 50000K 5
g - - £
o] >
[S — — 40,000 K Q
= 1S
= - - <
g — — 30000k 8
= 50,000 [— — =
D - — 20,000K I
- — 10,000 K
0 0

Adaptive Competitive Adaptive2

Figure 15: Experiment 8: Performance Comparison: Total costs over the entire application

6 Related Work

Many schemes have been proposed to reduce overhead by adapting to memory access patterns

2, 33,11, 8, 29, 24, 9, 1, 14, 10, 4, 7, 20, 5, 26, 27, 3, 21, 16, 6]:

e The approach proposed in this paper is related to the work by Veenstra and Fowler
[31]. [31] evaluates the performance of three types of off-line algorithms: (i) an al-
gorithm that chooses statically, at the beginning of the program, either invalidate or
update protocols on a per-page basis, (ii) an algorithm that chooses statically either
invalidate or update protocols for each cache block, and (iii) an algorithm that can
choose invalidate or update protocols at each write. Algorithms (i) and (ii) are similar
to multiple protocols in [7, 16], and (iii) is similar to our adaptive protocols which can
choose the appropriate protocol at run-time. However, in [31], the chosen protocol is
applicable to all copies of a cache block, whereas in our scheme, the protocol used for
each copy of a page may be different. [31] considers off-line algorithms, for a bus-based
system. On the other hand, this report considers adaptive (on-line) algorithms that

are applicable to distributed systems.

¢ [32] examines the performance of on-line hybrid protocols that combine the best aspects

of several protocols (invalidate protocol, update protocol, migratory protocol, etc.), on

29

bus-based cache-coherent multiprocessors. The results shows that the hybrid protocols

outperform any single pure protocol in most applications.

Ramachandran et al. [26, 28] present new mechanisms for explicit communication
in shared memory multiprocessors. They propose explicit communication primitives
which allows selectively updating a set of processors, or requesting a stream of data
ahead of its intended use (prefetch). Their scheme can also adapt to time-varying shar-
ing pattern by dynamically changing the set of nodes to be updated (or invalidated).
The basic difference between our approach and [26] is that our scheme does not need to
know whether a particular synchronization controls access to a given shared memory
page or not. The scheme in [26] makes use of such information to determine whether

a copy of the page should be updated or invalidated.

Dynamic cache coherence approach presented by Archibald [2] dynamically chooses
to update or invalidate copies of a shared data object. If there are three writes by a
single processor without intervening references by any other processor, all other cached

copies are invalidated.

Optimizations for migratory sharing have also been proposed [8, 29, 9, 22]. These
protocols dynamically identify migratory shared data and switch to migratory protocol
in order to reduce the overhead. [8, 29] are based on invalidate protocol, and [22, 9]

are based on competitive update protocol.

Quarks [16] limits the number of updates independently for each page and each copy.
If a copy of the page is updated more than limit times without local access, the copy
is invalidated. From the source code for the Beta release 0.8 of Quarks, we understand
that Quarks detects all local accesses for write, however, it can not detect local accesses
for read if the copy exists locally (page hit). The counter for the number of updates
is cleared on detected local accesses. The initial limit is set when the page table is
initialized, and is doubled at a page fault, until it reaches a predefined maximum. The

limit in Quarks does not seem to decrease once it has increased.

30

The adaptive protocol proposed in this report can detect all relevant!® local accesses
(read as well as write), and the limit is changed based on access patterns in the previous

sampling period (the limit may decrease or increase).

e Tempest [27, 3] allows programmers and compilers to use user-level mechanism to im-
plement shared memory “policies” that are appropriate to a particular program or
data structure. Tempest consists of four types of mechanisms (low-overhead messag-
ing, bulk data transfer, virtual memory management, and fine-grained memory access

control).

e Munin [7] incorporates an update timeout mechanism. The main idea of this mecha-
nism is to invalidate local copy of a page that has not been accessed for a certain period
of time, freeze time, after it was last updated. Although the two approaches (limit and
timeout) have similar goals, they do not behave identically [17]. Whereas the time
limit, freeze time, is fixed in Munin, our adaptive protocol can adapt to time-varying

memory access patterns by changing the update limit at run-time.

e Multiple consistency protocol was proposed in [7, 16]. Several categories of shared data
objects are identified: conventional, read-only, migratory, write-shared, and synchro-
nization. They developed many memory coherence techniques that perform efficiently
for these categories of shared data objects. But programmer should know the memory

access behaviors on each shared variable to specify a protocol used for the variable.

e Lebeck and Wood [18] introduce dynamic self-invalidation (DSI) scheme to reduce
overhead in directory-based write-invalidate cache coherence protocol. The directory
identifies blocks for self-invalidation. The directory conveys the self-invalidation in-
formation to the cache when responding to a cache miss. The cache controller self-

invalidates the blocks.

e Lindemann and Schon [20] add LOCAL state, to SHARED, INVALID, and EXCLU-

SIVE states, to relax the consistency model. All memory accesses to the shared pages

13Tt is not necessary to detect all local accesses, only the first access — read or write — after a remote update

of a page needs to be detected.

31

are performed locally at the node which has invoked the define local system call. The
global image of the shared pages are updated with the local images by invoking the
define global system call.

Bianchini and LeBlanc address software caching which can adapt to changes in memory
reference behavior by making a new copy of data and repartitioning the data as needed

for each phase of execution [5].

[21] presents a flexible communication mechanism. Their scheme uses a programmable
node controller, called MAGIC. MAGIC is responsible for implementing the cache-

coherence and message-passing protocols.

Hybrid protocol is more appropriate than a “pure” protocol for a DSM, if the access
pattern for the same page is different in each node. TOP-1 [24], a tightly coupled
snoop-cache-based multiprocessor, has a hybrid coherence protocol which allows an
update protocol and an invalidate protocol, which can be dynamically changed, to
coexist simultaneously. However, TOP-1 needs additional hardware design, cache mode
register (to specify a cache mode: update mode and invalidate mode) and CH (Cache

Hit) bus line (to indicate a snoop hit).

An adaptive cache coherence protocol is presented by Yang, Thangadurai, and Bhuyan
[33]. This scheme is based on a hardware approach that handles multiple shared reads
efficiently. Their protocol allows multiple copies of a shared data block in a hierarchi-
cal network with minimum cache coherence overhead by dynamically partitioning the

network into sharing and nonsharing regions based on program behavior.

Adjustable block size coherent caching scheme is proposed by C. Dubnicki and T.
LeBlanc [11]. Their cache structure dynamically adjusts the cache block size according
to recently observed reference behavior. Cache blocks are split across cache lines when

false sharing occurs, and merged into a single cache line to exploit spatial locality.

32

7 Conclusion and Future Work

Our objective is to design an adaptive DSM that can adapt to time-varying pattern of
accesses to the shared memory. Our approach continually gathers statistics, at run-time,
and periodically determines the appropriate protocol for each copy of each page. The choice
of the protocol is determined by the “cost” metric that needs to be minimized. The cost
metrics considered in this report are number and size of messages required for executing
an application using the DSM implementation. A generalization to minimize arbitrary cost
metrics is also presented.

The proposed adaptive approach is illustrated by means of an adaptive DSM scheme that
chooses either update or invalidate protocol for each copy of a page — the choice changes with
time, as the access patterns change. The update and invalidate protocols are implemented as
special cases of the competitive update protocol. The report presents preliminary evaluation
of the adaptive DSM using an implementation. Preliminary results from the implementation
suggest that the proposed adaptive approach can indeed reduce the cost.

Further work is needed to fully evaluate the effectiveness of the proposed adaptive ap-

proach. Issues being addressed include the following;:

¢ Extensive evaluation of the adaptive scheme is necessary to determine whether it will
perform well with real applications. The g¢test application is quite simple. Therefore,

We plan to evaluate the adaptive scheme with several benchmark applications.

e Another issue that needs to be addressed is the choice of N, that determines the length
of the sampling period. Instead of keeping N, fixed, it may be possible to choose the

appropriate value at run-time.

o The cost metrics considered in the report are number and size of messages. Other cost
metrics need to be considered. In particular, impact of our heuristics on application

execution time needs to be evaluated.

o The report presented a heuristic for choosing between two protocols. In general, the

DSM may provide a larger set of protocols, and the appropriate protocol should be

33

adaptively chosen from this set. For instance, the choices may include mugratory pro-
tocol, and competitive update protocol with L = 1,2,4,6,00. A heuristic for choosing

between one of these, at run-time, needs to be developed to implement more eflicient

DSMs.
Comparison of the proposed approach with previously proposed adaptive schemes.

The adaptive approach (based on collection of statistics) presented here can be com-
bined with ideas developed by other researchers (e.g., [26]) to obtain further improve-

ment in DSM performance. As yet, we have not explored this possibility.

Acknowledgements

We thank John Carter and D. Khandekar at the University of Utah for making Quarks [16]

source code available in public domain.

References

1]

2]

A. Karlin et al., “Competitive snoopy caching,” in Proc. of the 27’th Annual Symposium
on Foundations of Computer Science, pp. 244-254, 1986.

J. Archibald, “A cache coherence approach for large multiprocessor systems,” in Inter-
national Conference on Supercomputing, pp. 337-345, July 1988.

B. Falsafi et al., “Application-specific protocols for user-level shared memory,” in Inter-
national Conference on Supercomputing, pp. 380-389, Nov. 1994.

J. Bennett, J. Carter, and W. Zwaenepoel, “Adaptive software cache management for
distributed shared memory architectures,” in Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, pp. 125-134, May 1990.

R. Bianchini and T. LeBlanc, “Software caching on cache-coherent multiprocessors,” in
Proceedings of International Conference on Parallel and Distributed Processing, pp. 521-
526, 1992.

J. Carter, D. Khandekar, and L. Kamb, “Distributed shared memory: Where we are
and where we should be headed,” in Proc. of the Fifth Workshop on Hot Topics in
Operating Systems, pp. 119-122, May 1995.

34

7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

J. B. Carter, Efficient Distributed Shared Memory Based On Multi-Protocol Release
Consistency. PhD thesis, Rice University, Sept. 1993.

A. Cox and R. Fowler, “Adaptive cache coherency for detecting migratory shared data,”
in Proceedings of the 20th Annual International Symposium on Computer Architecture,

pp- 98-108, May 1993.

F. Dahlgren, M. Dubois, and P. Stenstrom, “Combined performance gains of simple
cache protocol extentions,” in Proceedings of the 21st Annual International Symposium
on Computer Architecture, pp. 187-197, Apr. 1994.

F. Dahlgren and P. Stenstrom, “Using write caches to improve performance of cache
coherence protocols in shared-memory multiprocessors,” Journal of Parallel and Duis-
tributed Computing, vol. 26, pp. 193-210, Apr. 1995.

C. Dubnicki and T. LeBlanc, “Adjustable block size coherent caches,” in Proceedings
of the 19th Annual International Symposium on Computer Architecture, pp. 170-180,
May 1992.

S. Eggers and R. Katz, “A characterization of sharing in parallel prograns and its
application to coherency protocol evaluation,” in Proceedings of the 15th Annual Inter-
national Symposium on Computer Architecture, pp. 373-382, May 1988.

S. J. Eggers, “Simplicity versus accuracy in a model of cache coherency overhead,” IEEE
Transactions on Computers, vol. 40, pp. 893-906, Aug. 1991.

H. Grahn, P. Stenstrom, and M. Dubois, “Implementation and evaluation of update-
based cache protocols under relaxed memory consistency models,” Future Generation
Computer Systems, vol. 11, pp. 247-271, June 1995.

P. Keleher, Lazy Release Consistency for Distributed Shared Memory. PhD thesis, Rice
University, Jan. 1995.

D. Khandekar, “Quarks: Portable dsm on unix,” tech. rep., University of Utah.

J.-H. Kim and N. H. Vaidya, “Distributed shared memory: Recoverable and non-
recoverable limited update protocols,” Tech. Rep. 95-025, Texas A&M University, Col-
lege Station, 1995. To appear in Proc. of 1995 Pacific Rim International Symposium on
Fault-Tolerant Systems.

A. Lebeck and D. Wood, “Dynamic self-invalidation: Reducing coherence overhead
in shared-memory multiprocessors,” in Proceedings of the 22nd Annual International
Symposium on Computer Architecture, 1995. To appear.

K. Li and P. Hudak, “Memory coherence in shared virtual memory systems,” ACM
Transactions on Computer Systems, vol. 7, pp. 321-359, Nov. 1989.

35

[20]

[21]

[22]

23]

[24]

[25]

[26]

28]

[29]

C. Lindemann and F. Schon, “Performance evaluation of consistency models for mul-
ticomputers with virtually shared memory,” in System Science, 1993 Annual Hawaii
International Conf., vol. 11, pp. 154-163, 1993.

M. Heinrich et al., “The performance impact of flexibility in the stanford flash multi-
processor,” in Proc. of the Sizth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 274-285, Oct. 1994.

H. Nilson and P. Stenstrom, “An adaptive update-based cache coherence protocol for
reduction of miss rate and traffic,” tech. rep., Lund University. To appear in Parallel
Architectures and Languages Europe, July 1994.

B. Nitzberg and V. Lo, “Distributed shared memory: A survey of issues and algorithms,”
IEEE Computer, vol. 24, pp. 52-60, Aug. 1991.

N. Oba, A. Moriwaki, and S. Shimizu, “Top-1: A snoop-cache-based multiprocessor,”
in Proc. 1990 International Phoeniz Conference on Computers and Communication,

pp- 101-108, Oct. 1990.

J. Peterson and A. Silberschatz, Operating System Concepts, pp. 105-108. Addison-
Wesley Publishing Company, Inc., 1983.

U. Ramachandran, G. Shah, A. Sivasubramaniam, A. Singla, and I. Yanasak, “Archi-
tectural mechanisms for explicit communication in shared memory multiproccessors,”
Tech. Rep. GIT-CC-94-59, Georgia Institute of Technology, Dec. 1994. To appear in

Proc. of International Conference on Supercomputing 1995.

S. Reinhardt, J. Larus, and D. Wood, “Tempest and typoon: User-level shared memory,”
in Proceedings of the 21st Annual International Symposium on Computer Architecture,

pp. 325-336, Apr. 1994.

G. Shah, A. Singla, and U. Ramachandran, “The quest for a zero overhead shared mem-
ory parallel machine,” in Proceedings of International Conference on Parallel Procesing,

vol. 1, 1995.

P. Stenstrom, M. Brorsson, and L. Sandberg, “An adaptive cache coherence protocol
optimized for migratory sharing,” in Proceedings of the 20th Annual International Sym-
posium on Computer Architecture, pp. 109-118, May 1993.

M. Stumm and S. Zhou, “Algorithms implementing distributed shared memory,” IEEE
Computer, pp. b4-64, May 1990.

J. Veenstra and R. Fowler, “A performance evaluation of optimal hybrid cache coherency
protocols,” in Proc. of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 149-160, Oct. 1992.

36

[32] J. Veenstra and R. Fowler, “The prospects for on-line hybrid coherency protocols on
bus-based multiprocessors,” Tech. Rep. 490, The University of Rochester, Mar. 1994.

[33] Q. Yang, G. Thangadurai, and L. Bhuyan, “Design of an adaptive cache coherence
protocol for large scale multiprocessors,” IEEFE Transaction on Parallel and Distributed
Systems, vol. 3, pp. 281-293, May 1992.

37

