
Distributed Shared Memory: Recoverableand Non-recoverable Limited Update ProtocolsJai-Hoon Kim Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112Phone: (409) 847-8609FAX: (409) 847-8578E-mail: jhkim@cs.tamu.eduTechnical Report 95-025May 1995AbstractIn the recent years, many protocols for implementing Distributed shared Memory (DSM) have beenproposed. The implementations can be broadly divided into two classes: invalidation-based schemes andupdate-based schemes. Many approaches have also been proposed to make the DSM system recoverablefrom a failure. However, much of this work is restricted to reliable DSM based on invalidation.In this report, we propose a reliable DSM that uses a limited update protocol and the releaseconsistency model. In this update protocol, multiple copies of each page may be maintained at di�erentnodes. However, it is also possible for a page to exist in only one node, as some copies of the pagemay be invalidated. We propose an implementation that makes the limited update protocol recoverablefrom a single node failure, by guaranteeing that at least two copies of each page exist. The proposedrecoverable DSM incorporates the release consistency model.The report presents preliminary evaluation of the recoverable DSM (using trace-driven simulation).It is shown that the overhead of making the DSM recoverable is small.Index Terms: distributed shared memory, fault-tolerance, update protocol, release consistency.



1 IntroductionDistributed shared memory (DSM) systems have many advantages over message passing systems [19, 16].Since DSM provides a user a simple shared memory abstraction, the user does not have to be concernedwith data movement between hosts. Many applications programmed for a multiprocessor system withshared memory can be executed in DSM without signi�cant modi�cations.Many approaches have been proposed to implement distributed shared memory [6, 8, 14, 19]. TheDSM implementations are based on write-invalidation and/or write-update. In the past, write-updateprotocols were often ine�cient due to the overhead of updating multiple copies of a page. However, therecent implementations of DSM use relaxed memory consistency models such as release consistency [6].For such implementations, write-update protocols are often superior than write-invalidate protocols.A simple implementation of a write-update protocol is likely to be ine�cient, as many copies of apage may be updated, even if some of them are not going to be accessed in the future. In this report,we present a reliable DSM based on an approach that invalidates a copy of a page at some node A,if it is updated by other nodes \too many" times before node A accesses it. This protocol is calledthe limited update protocol, and is based on a similar protocol for cache-coherence in hardware sharedmemory systems [1, 7]. The proposed reliable DSM can tolerate a single node failure without signi�cantrecovery overhead. Also, the proposed scheme incorporates the release consistency model.For future reference, note that we use the terms node and processor interchangeably. A node mayexecute one or more processes, however, failure of a node results in the failure of all such processes.This report is organized as follows. Section 2 discusses release consistency and summarizes thelimited update protocol. The proposed recoverable DSM scheme is presented in Section 3. Performanceevaluation of the proposed scheme is presented in Section 4. Related work is discussed in Section 5.Section 6 concludes the report.2 Limited Update ProtocolIn a protocol that performs write-update, when a node accesses a page for the �rst time, a copy of thepage is brought into the local memory of the node. This copy of the page is updated whenever anothernode modi�es the page. (In contrast, in protocols based on write-invalidate, whenever a remote nodemodi�es a page, the local copy is invalidated.)A disadvantage of the update protocol is that, over the course of the execution, many nodes mayobtain a copy of the page in their local memory. Whenever any node modi�es the page, an updatemessage must be sent to all these nodes, incurring signi�cant overhead. Two approaches have beenused to mitigate this overhead. First, a relaxed consistency model such as release consistency is usedin recent implementations. Second, some copies of a page are invalidated if they are not likely to be1



used in the future (some heuristic may be used to determine which copies can be invalidated). Now, wesummarize each of these approaches.Release ConsistencyHere we present only a brief overview of release consistency, as necessary to describe the proposedreliable DSM scheme. The release consistency protocol is based on the observation that, in a typicalprogram, accesses to shared variables are separated by synchronization operations { in release consis-tency [6], these operations are termed acquire and release. If an access by a process to some shareddata is likely to cause a race condition, then the process �rst performs an acquire operation. When theprocess has completed its accesses to the shared data, it performs a release operation. If one processhas already performed an acquire, another process' acquire will block until the �rst process performsa release. This ensures that while one process is modifying some shared data, another process willnot attempt to access the data. Implementations of release consistency can take advantage of thisobservation to improve performance, as follows. Consider a process on node A that has performedan acquire, subsequently performed multiple writes to shared data, and is now performing a releaseoperation. Because of release consistency, it is adequate if node A sends a single update message (to allnodes that have a copy of the modi�ed pages) corresponding to all the writes performed by the processsince its most recent acquire. In implementations that use sequential consistency (instead of releaseconsistency), it is necessary to send one update message for every write performed by node A. Dueto release consistency, it is necessary to perform at most one update for every release performed by aprocess. This implementation of release consistency reduces the number of messages, thereby improvingperformance. Note that the release operation blocks until the updates are propagated to all relevantnodes and acknowledgment are received from them.InvalidationIn an update protocol, when a node accesses a page, a copy of the page is created in the localmemory. This copy of the page must be updated (by means of an update message) whenever anothernode modi�es the page. It is conceivable that some node A may access a page infrequently { in this case,it is advantageous to invalidate the page's copy at node A (as compared to updating it whenever someother node modi�es it). Carter et al. [6] suggest a time-out protocol to determine when a page copyshould be invalidated { essentially, the local copy of a page at node A is invalidated if it is not accessedby node A for a signi�cant duration of time. As described below, we consider a di�erent approach,called limited update, to determine when a page should be invalidated. The reliable DSM proposed inthis report is based on the limited update protocol.2



Limited Update ProtocolThe limited update protocol presented here is intended for a software implementation of DSMthat uses release consistency (summarized above). This protocol is similar to two protocols previouslyproposed for maintaining sequential consistency in hardware caches [1, 7]. The advantage of this protocolis that it facilitates a simple implementation of a recoverable DSM.The basic idea of the limited protocol is to update those copies of a page that are expected tobe used in the near future, while selectively invalidating other copies. Now we summarize the limitedupdate protocol.Information StructureWe assume an implementation that is similar to Munin [6], with a few modi�cations to facilitatelimited updates. Each node maintains an information structure for each page resident in its memory.The information structure contains many pieces of information, as summarized below.� update-counter: Counts how many times this page has been updated by other nodes, since the lastlocal access to this page. When a page is brought into the local memory, the counter is initializedto 0. Also, when a local process accesses this page, the counter is cleared to 0. The counter isincremented at every remote update of the page.� version: Counts how many times this page has been updated since the beginning of the execution.� limit L: Either set by user or transparently by the DSM protocol. The limit for each pagedetermines the performance of the limited update protocol.� last-updater: Identity of the node that updated this page most recently. The last-updater isidentical for all copies of a page. (last-updater is the originator of the most recent update messagefor the page).� copyset: Set of nodes that are assumed to have a copy of this page. The copyset at di�erent nodes,that have a copy of the same page, may be di�erent. In general, a node may not know exactlywhich other nodes have a copy of the page [6]. However, when a node performs an update (whenit does a release ), at the end of the update protocol, that node knows precisely the set of nodes,that hold the copies of the page, that were updated. The \updater" node collects this informationby means of acknowledgment messages sent as a part of the update protocol. It is a simple matterto modify the update protocol to obtain the value of the update-counter for the modi�ed page,from each node that received the update. This observation will be used in the recoverable DSM.� probOwner: Points towards the \owner" of the page [6].3



� back-up: To be explained later.Note that each node maintains the above structure for each page in its local memory. In thefollowing, when we use a phrase such as \the update-counter at node A", we are referring to \theupdate-counter for the page under consideration at node A". It is implicit that the \update-counter"(or some other information) pertains to a speci�c page.Use of the Update-counterDuring the execution, update-counter of each copy of a page changes dynamically, as explainedbelow. A copy of a page is invalidated whenever its update-counter becomes equal to the limit.When a node, say A, receives from another node a copy of a page, say P, its update-counter isinitialized to 0. The update-counter is incremented whenever node A receives an update message, forpage P, from any other node. If a process on node A accesses page P, then the update-counter for pageP at node A is cleared to 0. If, at any time, the update counter for page P at node A becomes equal tothe limit L, then node A invalidates its copy of page P. Thus, page P on node A is invalidated only whenL updates to the page, by other nodes, occur without an intervening access to the page by a process onnode A. Thus, the limited update protocol invalidates those pages that are accessed \less frequently" {the protocol can be tuned to a given application by a proper choice of limit L. As discussed later, thelimit can also be changed dynamically.Update-counter is analogous to timeout mechanism in Munin [6]. Our scheme bounds the updateoverhead by using a limit L on the number of updates without an intervening local access, whiletimeout approach uses the freeze time mechanism. Two mechanisms use similar concept: copy of a pageis invalidated if it is expected not to be used in the near future (by evaluating the cost for updates).It is reasonable that the cost is evaluated by the number of updates, rather than time, between twosequential updates without an intervening local access. Consider two scenarios as shown in Figure 1:(i) a copy is updated by other nodes many times but each update occurs after an interval greater thanfreeze time; (ii) a copy is updated by other nodes only twice within a freeze time. With the timeoutmechanism, the copy will be invalidated in case (ii), while updated in case (i). With the limited updateprotocol, with limit L = 3, the copy will be invalidated in (i), and updated in (ii). Therefore, althoughthe two approaches (limit and timeout ) have similar goals, they do not behave identically.ExampleFigure 2 illustrates how the limited update protocol works, by focusing on a single page in the DSM.For this example, let us assume that the limit L associated with this page is �xed at 3. In the �gure,iL and iU denote acquire and release operations.1 Also, iR and iW denote read and write operations1Although we obtained the notation iL and iW by abbreviating i-Lock and i-Unlock, it should be noted that acquire4



Local
access write

Remote Remote 
write

Time
write

Remote Remote 
writewrite

Remote 

freeze time freeze time freeze time freeze time

Time
access (following page fault)

Local accessLocal Remote 
write

Remote 
write

freeze timefreeze time

write
Remote Remote 

write
Local access

(following page fault)
Local access

scenario (i)

scenario (ii)Figure 1: Timeout Mechanism
0

0

Update-counter: 1

Update-counter: 2

Memory Access

Update-counter: 0

2R

0

0

0

1R

0

0

2L 2U1U1L

0 0 0 0

0 0 0

0

1 2

0L

0

0

0

0W 0W 0U

0

0

0

0

0

0

0

1

1

1L

0

1

1

1R 1W 1U

0

1

0 0

0

1

1

0

2

0L 0W 0U

1

0

2

0

0

2

0

1

3

0L 0W 0U 0L 0W 0U

0 0 0 0 0 0

1 1 2 2 2 3

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23Figure 2: Update-counter5



performed on this page by node i. The second row of the table presents a total ordering on the memoryaccesses performed by nodes 0, 1 and 2 on the page under consideration. The last three rows listthe values of the update-counters at the three nodes at various times, e.g., the update-counter:0 rowcorresponds to node 0. A \blank" in the table implies that the corresponding node does not have acopy of the page at that time.Initially, only node 0 has a copy of the page whose update-counter is 0 (column 0 in the table). Next,node 1 performs an acquire and tries to read the page (columns 1-2 in the �gure). As it does not havea copy of the page yet, it receives a copy from node 0, and the update-counter for this copy is set to 0(column 2 in the �gure). Node 1 then performs a release (column 3). As node 1 did not perform anywrites, no updates are needed at the release. Next, node 2 also performs acquire-read-release (columns4-6). Again, a copy of the page is brought to the local memory of node 2, and its update-counter is setto 0 (column 5).Next, node 0 performs an acquire and performs two write accesses to the page, and then performsa release. As node 0 has performed a local access to the page, its update-counter is cleared2 to 0 (inthis case, of course, it was already 0). In the software implementation of release consistency protocol,the updates are not propagated to other nodes until node 0 performs a release. Therefore, the update-counters at nodes 1 and 2 are unchanged in columns 7, 8 and 9. When node 0 performs a release, theupdates by node 0 are propagated to nodes 1 and 2. When the update message is received, nodes 1 and2 incorporate the updates, and increment the respective update-counters by 1 (column 10). Next, node1 performs an acquire-read-write-release sequence (columns 11-14). As node 1 has performed a localaccess, its update-counter is cleared to 0 (column 12). When node 1 performs the release, the updatesare propagated to nodes 0 and 2, and their update-counters are incremented to 1 and 2, respectively(column 14). Next, node 0 performs a acquire-write-release sequence (columns 15-17). The update-counter of node 0 is cleared because of the local access (column 16). The update-counters at nodes 1and 2 are incremented to 1 and 3, respectively, when the update is received from node 0 (column 17).Now, because the update-counter at node 2 has become equal to 3, the limit for the page, the localcopy of the page at node 2 is invalidated. (The X in the �gure denotes an invalidation.) Subsequently,node 0 performs two acquire-write-release sequences, at the end of which, the update-counter at node1 becomes 3 (column 23). Therefore, the page copy at node 1 is also invalidated. At the end, only node0 has a copy of the page, with update-counter 0 (column 23). 2Observe that, in the above protocol, at least one node must have a copy of the page, namely theand release operations in release consistency are not necessarily equivalent to lock and unlock.2Actually, in practice, only if the update-counter is non-zero, any action need be taken. This can be implemented asfollows. When the update-counter for a page becomes non-zero, the page is read/write-protected, so that any local accessthe page will result in a page fault. On such a page fault, the fault handler will set the update-counter to 0, and removethe read/write-protection. Thus, any further local access to the page can proceed without any performance penalty.6



node that wrote to the page most recently. The update-counter at this node will be equal to 0, andtherefore this copy of the page will not be invalidated. However, it is possible that a page may exist atonly one node, as illustrated in the above example (column 23). This can happen when a single nodeperforms consecutive L updates to the page (where L is the limit), without an intervening access bysome other node. If no node performs consecutive L updates to the page, then at least two nodes musthave a copy of the page (namely, the two most recent \updaters" of the page).Generalization of the Limited Update ProtocolUnlike other similar schemes [1, 7], implemented in hardware caches (with sequential consistency),the software implementation can be more exible. Note that the limited update protocol is designedfor the release consistency model, unlike [1, 7]. The above protocol can be generalized in four ways, assummarized below:� Multiple Consistency Protocol: Multiple consistency protocol was presented by Carter [6],which can perform e�ciently by using the appropriate protocol for each data object of di�erentaccess pattern, The generalized limited update approach can provide a di�erent protocol for eachpage by adjusting the limit parameter independently for each page. By setting the limit to 1, thelimited update protocol becomes equivalent to invalidate protocol, while the protocol is equivalentto the traditional update protocol when \limit" is in�nity (or large). Intermediate values of \limit"will interpolate between invalidate and update protocols. Thus, the generalized limited updateprotocol can e�ectively be used as a \multiple" consistency protocol, simply by using a di�erentlimit for each page.� Hybrid Protocol: Hybrid protocol is more appropriate than a \pure" protocol for a DSM,if the memory access pattern to the same page is di�erent in each node. TOP-1 [17], a tightlycoupled snoop-cache-based multiprocessor, has a hybrid coherence protocol which allows an updateprotocol and an invalidate protocol, which can be dynamically changed, to coexist simultaneously.However, TOP-1 needs additional hardware design, cache mode register (to specify a cache mode:update mode and invalidate mode) and CH (Cache Hit) bus line (to indicate a snoop hit). Hybridprotocol is also implemented in Munin [6] by using the timeout mechanism. When a node writesand its update is propagated to other nodes, default copies are updated, while some copies areself-invalidated if the copies are not locally accessed for more than the freeze time since the lastupdate. However, the limit update protocol can be extended to hybrid protocol without anyadditional hardware or timeout mechanism. By allowing each node to use a di�erent limit for thelocal copy of the same page, the limit update protocol can become a hybrid protocol in which anupdate protocol, an invalidate protocol, and limited update protocol coexist for the same page.7



� Dynamic Protocol: It is possible to change the limit associated with each page dynamically.This feature is useful when the pattern of accesses to a page changes with time. This feature isalso useful when, initially, the \optimal" value of the limit is unknown. Some heuristic can beused to adapt the protocol to dynamically determine the appropriate limit, so as to minimize theoverhead.� System-Dependent Protocol: Instead of incrementing the limit by 1 each time an updateoccurs, we allow the limit to be incremented by a di�erent amount. When an update message isreceived by a node, the amount of increment in the update-counter can be made a function of thenode from which the update message is received. When the \cost" of an update is dependent onthe identity of the sender node, this feature is useful to tune the limited update protocol to theunderlying hardware architecture.3 Recoverable Limited Update ProtocolIn this section, we present a recoverable DSM system based on the limited update protocol describedabove. Section 5 compares the proposed scheme with other recoverable DSM schemes.Recoverable scheme for a DSM, based on the limited update based protocol, is relatively simple.The basic idea behind the proposed scheme is to maintain, at all times, at least two copies of eachpage (at two di�erent nodes). This will allow the DSM to recover from a single node failure without arollback (provided the non-shared data is also recoverable, as discussed later).As discussed previously, when the limited update protocol is used, it is possible that a page maybe resident in only one node. Therefore, to tolerate a single node failure, it is necessary to modify thelimited update protocol, to ensure that at least two nodes have a copy of each page. Thus, there aretwo issues that must be dealt with to make the DSM fault tolerant (for single node failures).1. Modi�cation of the limited update protocol to guarantee two copies of each shared memory page.2. Some mechanism needs to be incorporated to make the non-shared data recoverable.We �rst focus on the �rst of the above two issues.Maintaining at least two copies of each pageTo simplify the discussion, we assume that each page has the same �xed limit L. The proposedscheme can be readily extended to allow all the generalizations of the limited update protocol.The limited update protocol needs to be modi�ed to ensure that at least one additional copy of thepage exists, in addition to that present at the most recent updater of the page. As pointed out earlier,in the original limited update protocol, if a single node, say A, performs consecutive L updates to a8



page, without an intervening access by some other node, all copies of the page, except that at node A,will be invalidated. Thus, to make the DSM recoverable, we must modify the limited update protocol,such that some copy of the page is not invalidated, even if its update counter is equal to the limit L.This is achieved by designating, for each update, one of the nodes as the \back-up". The copy of a pageat the back-up node cannot be invalidated, irrespective of the value of its update-counter. Note thatthe back-up is speci�ed for each update, and may change from one update to the next update of thesame page. The performance of the recoverable DSM depends on the choice of the back-up { in ourapproach, as described below, the node chosen as the back-up is the one that is expected to access thepage in the near future.Each node maintains an information structure, described earlier, for each page in its local memory.One of the �elds in this information structure is back-up. Consider a node A that performs a releaseand sends update messages for a page P as a part of the release. Let the identi�er stored in the back-up�eld in the information structure corresponding to page P at node A be B. Then, when the updatemessage from node A is sent to node B, the message is tagged by a special \marker" ag { the markerag informs node B that it cannot invalidate its copy of the page (even if the update-counter becomeslarge).Maintaining the back-upInitially, a page is loaded in any two nodes, say X and Y, and one of them, say X, is considered tobe the last-updater. The update-counter at both nodes is initialized to 0, the back-up �eld at node Xis set to Y, and vice-versa.When a node A obtains a copy of a page P from some other node B, node B also sends identi�er ofthe last-updater of page P. Node A, on receiving the page, sets its last-updater as well as back-up equalto the last-updater received from node B.Contents of a back-up �eld can change in two di�erent ways. Let us consider the copy of a page Pat a node A.1. Node A receives an update message for page P from some other node, say C: In this case, theback-up �eld at node A is set equal to C.2. Node A performs a release and sends update messages, for page P, to other nodes: When theother nodes receive these update messages, they acknowledge the update message, and send theirupdate-counters along with the acknowledgement. Node A �nds the node, say D, whose update-counter is the smallest (ties broken arbitrarily), and sets back-up equal to D.Note that, for a given page, the back-up at di�erent nodes may be di�erent.The motivation behind the above procedure is to identify a node as the back-up only if it has accessedthe page recently (this, in turn, is motivated by the principle of locality). However, it is possible that,9



if the most recent access to a page is a read, the node that performed the read may not be identi�edas the back-up in the other nodes. This can happen because a read can be performed locally withoutother nodes knowing about it. There are two aspects to this issue: (i) First, it is adequate if the nodeidenti�ed as the back-up has accessed the page recently, not necessarily most recently. (ii) Secondly,reads that cause a page fault can often be used to modify the back-up.Note that, the above procedure for maintaining the back-up works correctly with all the generaliza-tions of the limited update protocol, described in Section 2.The modi�ed (recoverable) limited update protocolThe modi�ed protocol is essentially identical to the original limited update protocol with one di�er-ence: A node that is designated as the back-up for an update does not invalidate the local copy of thepage even if the update-counter becomes equal to limit L or exceeds L. (As explained before, updatemessage sent to the back-up node is tagged by a special marker.) Any other node, whose update-counteris � L invalidates its local copy of the page. This procedure ensures that, at any time, at least twocopies of a page are in existence.The back-up for an update is always a node that has accessed the page in the recent past. Therefore,from the locality principle, this node is likely to access the page in the near future as well. Themodi�ed update protocol forces this node to retain a copy of the page. This protocol may be viewedas incorporating a \pre-fetch" mechanism. As the page copy is likely to be used in the near future, theoverhead of updating the copy is often compensated by a reduction in the number of page faults.Note that \cost" (e.g., number of messages) of the the recoverable protocol can be larger than that ofthe non-recoverable protocol, only when the non-recoverable protocol would result in a page having onlyone copy. Whenever, the non-recoverable protocol results in multiple copies of a page, the recoverableprotocol does not result in any additional cost. Thus, the di�erence between the costs of the recoverableand non-recoverable protocols is greatest when limit is 1, and reduces as limit becomes larger.ExampleFigure 3 illustrates how the back-up is maintained. We would like to caution that the example issomewhat long. (The format for the table is similar to Figure 2.) For this example, assume that thelimit L is 3. The system is assumed to contain three nodes, 0, 1 and 2. Initially, the page is loaded inthe local memory of two nodes (0 and 1 in our example), and one of them (node 0) is considered to bethe last-updater. Back-up at nodes 0 and 1 is initialized to 1 and 0, respectively. The memory accessrow in Figure 3 presents a total ordering on the accesses to the page under consideration. The nextthree rows present values of the update-counters at the three nodes. (The values in column i correspondto the update-counters after the memory access in column i is performed.) The next row of the table10



1

0

0

1

0

0

0

Memory Access

Last-updater

Back-up: 0

Back-up: 1

Back-up: 2

Update-counter: 0

Update-counter: 1

Update-counter: 2

2R

0

0

0

0

1

0

0

2U2W2L2U2R2L0W0L0U0W0L0W 0U0L1U1W1R1L0U0W0L 0U

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1

1 1

1 1 1 1 1 1 1 1

2 2 2

2 2 2

2

3 3

3

4

1

0

0 0

0

22 2

0

0

00

1

0

1

0

0

10

1 1

0

1

0

0

0

1

0

00

1

0

1

1 1

0

1

3 3

0 2

0

0

0 0

00

1

0

3

0

1

0 0 1 1 0 1

0

12

1

0

3

1

0W

10 0 0 0

0

0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2L 2U

0

0

0

0

1

0

0

0

0

1

0

0

1 1Figure 3: Update Counter for Recoverable DSMlists the last-updater variable at each node (it is identical at all nodes). The last three rows list the valueof the back-up variable for the page at each node. (Again, the values in column i denote the back-upsafter the memory access in column i is performed.) For future reference, note that last-updater andback-up change only when a release is performed, whereas, update-counter at a node A changes wheneither (i) node A performs a local access to the node, or (ii) another node performs an update to thepage.The initial state is illustrated in column 0 of the table. The �rst acquire is performed by node 2,followed by a read and a release (columns 1-3). As shown in column 2, a copy of the page is brought tonode 2 when it reads the page, its update-counter is set to 0, and the back-up is set to 0 (the last-updaterfor the page).Next, node 0 performs a acquire-write-write-release sequence (columns 4-7). When node 0 performsa release (column 7), it sends update messages to other nodes. As the back-up at node 0, immediatelybefore the release is performed, is node 1, the update message sent to node 1 is tagged by a marker toinform node 1 that it is the back-up. When the acknowledgements for the update messages are received,node 0 determines its new back-up by �nding the minimum of the update-counters received with theacknowledgement. As both nodes 1 and 2 return update-counter 1, node 0 arbitrarily chooses node 2to be the back-up for its next update. The new back-up is shown in column 7 of the \back-up:0" rowin the table. Nodes 1 and 2 set their back-up variable to 0, because they received an update from node0 (column 7).Next, node 1 performs acquire-read-write-release sequence (columns 8-11). When node 1 performsa release (column 11), the update message sent to node 0 is tagged with a marker, as node 0 is theback-up for this access (as shown in column 10, row \back-up:1"). When all the acknowledgements andupdate-counters are received, node 1 determines the new back-up as the node whose update-counter isthe smallest, namely node 0. (The new back-up is shown in column 11, row \back-up:1"). Nodes 0 and11



2 change their back-ups to 1, as they received an update from node 1 (column 11).At this point (column 11), the update-counters for nodes 0, 1 and 2 are 1, 0 and 2, respectively.Next, node 0 performs an acquire-write-release sequence (columns 12-14). At the release by node 0(column 14), the update message sent to node 1 is tagged by a marker, whereas that sent to node 2 isnot tagged, as node 1 is the back-up for this update (see column 13, row back-up:0). When the updatemessage is received by node 2, it performs the update and increments its update-counter to 3. Now,node 2 invalidates the local copy of the page because, (a) its update-counter has become equal to limit3, and (b) the update message sent to node 2 was not tagged by a marker (which means that node 2 isnot the back-up for the update). When node 0 receives the acknowledgements, it determines that node1 is its new back-up. Also, node 1 sets its back-up to 0, when it receives the update-message.Now, node 0 again performs acquire-write-release (columns 15-17) followed by another acquire-write-release (columns 18-20). At the second release (column 20), update-counter for node 1 becomes equal to3. At each of the release, node 0 sends an update message to node 1 tagged with the marker. Therefore,node 1 cannot invalidate its copy of the page. Note that the update-counter at node 1 has become 3(column 20), but the page is not invalidated.Node 2 now performs acquire-read-release (column 21-23), therefore, it receives a copy of the page.Along with the page, it also receives identi�er of the last-updater for the page. On receiving the page,its update-counter is set to 0, and back-up set equal to the last-updater. As node 2 did not write to thepage, no update is necessary at the release (column 23).Subsequently, node 2 performs acquire-write-release (columns 24-26). At the release, node 2 sendsupdate messages to nodes 0 and 1, the message sent to node 0 being tagged with a marker. Whennode 1 receives the update, its update-counter becomes 4. Node 1 invalidates the page, as the updatemessage was not tagged with a marker, and the update-counter is larger than the limit. 2Multiple Copy for Non-Shared DataAs discussed above, our protocol can guarantee that at least two copies of each page of shared dataare maintained. The protocol described above ensures that the shared data remains available in spiteof a single node failure. It does not (as yet) ensure that the faulty node can be recovered to its recentstate. In some cases, it is adequate to ensure availability of the shared data.When it is necessary to ensure that the faulty node can be recovered, the non-shared data must alsobe duplicated. We suggest a modi�cation to the protocol described above. When a node writes shareddata and updates other copies of the data, the non-shared data at the node is sent, along with theupdate message, to any one node. Although no additional messages are required, the size of one of themessages will be larger. The amount of non-shared data transferred can be reduced by sending only themodi�cations to the local data since the most recent update performed by the node. This incremental12



approach makes recovery more complicated, as the non-shared data of a node can be scattered at variousnodes in the system.An alternative is to specify for each node (say A), another node (say B) to which the incrementalchanges in the non-shared data are sent, when node A performs an update to some shared data. Whilethis will simplify recovery, it may increase the number of messages.RecoveryThe proposed DSM system is recoverable from all single node failures (fail-stop) because all sharedmemory pages and non-shared memory pages (if necessary) have at least two copies. The recovery isstraightforward. After a single node failure, the shared memory remains available. If the faulty nodeis to be recovered, then its non-shared state is obtained from other nodes (the non-shared state isduplicated, as described above). Two issues need further elaboration.� Since failure can occurs at any time, contents of the copies of the same page may be di�erent(if the failure occurs while an update is in progress). In this case, some copies are out-of-date.This problem can be resolved by searching the most up-to-date copy { to facilitate this a versionnumber attached to each page to count the number of updates performed to the page from thebeginning of execution. The copy with the largest version number is the most up-to-date copy(this is similar to [20]). If a node fails after it has written to a page, but before it has performed arelease, then the modi�cations made by the node are lost when the node fails. This is acceptable,as the system state will still be consistent after the failure.� It is necessary to ensure that, after recovery, each shared memory page has at least two copies.Therefore, after failure, if only one node has a copy of a page, then another copy is created on anyother node. Now we assume that two copies of each page exist. The recovery algorithm must alsoensure that all the last-updater and back-up �elds are correct. We now illustrate how this can beachieved. Consider a page P. Two cases are possible.(a) If the last-updater for page P fails, then any other node having the page is designated as thelast-updater, and its update-counter is cleared to 0. All relevant nodes are informed of the newlast-updater. These nodes set their last-updater as well as the back-up �elds to point to the newlast-updater. The new last-updater sets its back-up �eld to point to any other node that has acopy of the page.(b) If some node other then the last-updater is faulty, then it is possible that the back-up �eld atthe last-updater may be pointing to the faulty node. It is only necessary to set the back-up topoint to any other node that has a copy of the page.13



4 Performance EvaluationIn this section, we present preliminary results on performance of the proposed approach.MethodologyWe measured overhead for maintaining recoverable shared data by comparing the \cost" for non-recoverable protocol and recoverable protocol. The \cost" metrics used here are (i) number of messages,(ii) amount of information transferred between the nodes, and (iii) number of page faults. We usedtrace-driven simulation method for the experiments.As a preliminary test, we generated synthetic trace data by using a trace generator. The tracegenerator can produce trace data according to the memory access behavior which we can de�ne asinput. We also modi�ed the Proteus [3] to produce trace data for shared memory operations, acquire,release, read, and write. The trace data, produced by our synthetic trace generator or modi�ed Proteus,are used as input for our simulator which computed the cost (the number of page faults, the number ofmessages, and the amount of data exchanged). We assume that the DSM system consists of 16 nodes,and that the page size is 1024 bytes.For the simulation, we assume an implementation similar to Munin, i.e., based on the dynamicdistributed ownership mechanism [6].Cost MeasurementOn a page fault, the number of messages required varies because of the dynamic distributed owner-ship mechanism. The page request is forwarded along the probOwner link until a node that has a copyof the page is reached (when L > 1), or till the page \owner" is reached (when L = 1). We assumethat an acquire and release are implemented as special procedures using a message passing library { anacquire is assumed to require three messages, similar to [12]. On a release, two messages are requiredper copy of the modi�ed pages { one for sending a request and the other for acknowledgment. Some ap-plication programs traced using Proteus use semaphores to achieve synchronization { we appropriatelyinterpreted these as acquires and releases.Message size for an update at a release is proportional to on the number of writes performed sincethe recent acquire. Other short messages (e.g., acknowledgement) are assumed to be 8 bytes.ResultsFigures 4, 5, and 6 show the result of our experiments with synthetic trace data. We assumeddistributed shared memory system of 16 nodes. 10,000 memory accesses for a single page are simulatedfor three di�erent read ratios (70%, 80%, and 90%) to compute overhead for the recoverable scheme. Theresults of the simulation converge by 10,000 accesses. In the �gures, \non-recoverable:x%" means the14



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35

N
um

be
r 

of
 P

ag
e 

F
au

lt
s 

pe
r 

M
em

or
y 

A
cc

es
s

Updates Limit (L)

The Number of Page Faults 

’non-recoverable:70%’
’recoverable:70%’

’non-recoverable:80%’
’recoverable:80%’

’non-recoverable:90%’
’recoverable:90%’

Figure 4: The number of page faults (synthetic trace)cost for the limited update protocol without recoverable scheme at x% read ratio and \recoverable:x%"means the cost for the recoverable limited update protocol at x% read ratio.Figure 4 shows that the number of page faults decreases as the update limit (L) increases becausethe number of page copies increases by allowing more updates. Observe that the number of page faultsof recoverable scheme is less than that of non-recoverable scheme for low limit (L). Maintaining at leasttwo copies for the recoverable scheme causes page \pre-fetch" e�ect which reduces the number of pagefaults.Figure 5 shows that the number of messages increases, especially at high limit (L), as read ratiodecreases. At low limit (L), the number of messages for the recoverable scheme is greater than thatof non-recoverable scheme, because recoverable scheme needs extra messages to maintain at least twocopies. However, note that the increase in the number of messages is not too large.Figure 6 shows that small amount of data is transferred between the nodes, per memory access, athigh limit (L) and/or high read ratio. (A page fault needs to copy the whole page, whereas, the amountof data transfer needed due to updates is small for the synthetic traces.) For small L, the recoverablescheme requires less data transfer, as it reduces the page fault rate.
15



2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35

N
um

be
r 

of
 M

es
sa

ge
s 

pe
r 

M
em

or
y 

A
cc

es
s

Updates Limit (L)

The Number of Messages

’non-recoverable:70%’
’recoverable:70%’

’non-recoverable:80%’
’recoverable:80%’

’non-recoverable:90%’
’recoverable:90%’

Figure 5: The number of messages (synthetic trace)
0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35

A
m

ou
nt

 o
f 

D
at

a 
T

ra
ns

fe
rr

ed
 (

B
yt

es
) 

pe
r 

M
em

or
y 

A
cc

es
s

Updates Limit (L)

The Amount of Data

’non-recoverable:70%’
’recoverable:70%’

’non-recoverable:80%’
’recoverable:80%’

’non-recoverable:90%’
’recoverable:90%’

Figure 6: The amount of data (synthetic trace)16



Application Shared Memory Access Read Ratio InputMP3D 822,639 65.7 1,600 molecules, 10 time stepsFloyd-Warshall 1,450,630 98.0 64 nodesFFT 787,614 66.6 213 pointsGauss-Jacobi 184,877 84.9 16 by 16Table 1. Applications.Four application programs, as shown in Table 1, were used to evaluate the overhead of recoverablelimited update protocol. Figures 7, 8, 9, and 10 show the results. Observe that, in most cases, therecoverable scheme has a comparable or smaller \cost" than the non-recoverable protocol.As noted previously, the di�erence in the \cost" of the recoverable protocol and the non-recoverableprotocol is likely to be the greatest when the limit, is small. The simulation results presented abovesuggest that the cost of the recoverable scheme is comparable or smaller than that of the non-recoverablescheme, for all values of the limit.5 Related WorkAs discussed earlier, the limited update protocol is based on [1, 7]. As the focus of this report is onrecoverable DSM, we now summarize the related work in this area.Many recoverable DSM schemes have been presented in the literature. Many of them use stable stor-age (disk) to save recovery data [22, 21, 18, 11, 10, 5]. Some of them use main memory for checkpointing,replicating shared memory or logging the shared memory accesses [20, 2, 4, 15, 9, 13]. Proposed recov-erable DSM belongs to the second category (uses main memory). [20], like proposed protocol, is basedon update (full-replication) protocol, while [2, 4, 15, 9, 13] are based on invalidate (read-replication)protocol.Stumm and Zhou extended four basic DSM algorithms to tolerate single node failures [20]. One oftheir algorithms is for an update protocol. But, implementations of our algorithm is di�erent becausetheir algorithm is based on update protocol where all copies of a page are updated, whereas our schemeis based on \limited" update protocol (some copies are invalidated to reduce overhead). Additionally,our scheme supports release consistency.Backward error recovery on a Cache Only Memory Architecture is implemented using the standardmemories by Banatre et al. [2]. (A similar scheme was implemented on an Intel Paragon by Kermarrecet al. [13].) This scheme periodically take system-wide consistent checkpoints. Recovery data arereplicated and mixed with current data in node memories in a transparent way using an extended17



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 P
ag

e 
F

au
lt

s

Update Limit (L)

The Number of Page Faults (MP3D)

’non-recoverable’
’recoverable’

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 M
es

sa
ge

s

Update Limit (L)

The Number of Messages (MP3D)

’non-recoverable’
’recoverable’

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

1.1e+08

1.2e+08

1.3e+08

0 5 10 15 20 25 30 35

T
ot

al
 A

m
ou

nt
s 

of
 D

at
a 

(B
yt

es
)

Update Limit (L)

The Amounts of Data (MP3D)

’non-recoverable’
’recoverable’

Figure 7: Overhead for Recoverable Scheme (MP3D)18



0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 P
ag

e 
F

au
lt

s

Update Limit (L)

The Number of Page Faults (Floyd-Warshall)

’non-recoverable’
’recoverable’

30000

40000

50000

60000

70000

80000

90000

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 M
es

sa
ge

s

Update Limit (L)

The Number of Messages (Floyd-Warshall)

’non-recoverable’
’recoverable’

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 5 10 15 20 25 30 35

T
ot

al
 A

m
ou

nt
s 

of
 D

at
a 

(b
yt

es
)

Update Limit (L)

The Amounts of Data (Floyd-Warshall)

’non-recoverable’
’recoverable’

Figure 8: Overhead for Recoverable Scheme (Floyd-Warshall)19



1600

1800

2000

2200

2400

2600

2800

3000

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 P
ag

e 
F

au
lt

s

Update Limit (L)

The Number of Page Faults (FFT)

’non-recoverable’
’recoverable’

5500

6000

6500

7000

7500

8000

8500

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 M
es

sa
ge

s

Update Limit (L)

The Number of Messages (FFT)

’non-recoverable’
’recoverable’

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

0 5 10 15 20 25 30 35

T
ot

al
 A

m
ou

nt
s 

of
 D

at
a 

(b
yt

es
)

Update Limit (L)

The Amounts of Data (FFT)

’non-recoverable’
’recoverable’

Figure 9: Overhead for Recoverable Scheme (FFT)20



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 P
ag

e 
F

au
lt

s

Update Limit (L)

The Number of Page Faults (Gauss-Jacobi)

’non-recoverable’
’recoverable’

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 M
es

sa
ge

s

Update Limit (L)

The Number of Messages (Gauss-Jacobi)

’non-recoverable’
’recoverable’

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

0 5 10 15 20 25 30 35

T
ot

al
 A

m
ou

nt
s 

of
 D

at
a 

(b
yt

es
)

Update Limit (L)

The Amounts of Data (Gauss-Jacobi)

’non-recoverable’
’recoverable’

Figure 10: Overhead for Recoverable Scheme (Gauss-Jacobi)21



coherence protocol based on invalidate protocol. Replicas are needed in order to ensure that twocheckpoint copies for each page always exist. The memory overhead induced by this protocol varieswith time (at least two copies are needed for each page, three copies are maintained for the modi�edpages, and four copies may be needed while establishing a consistent checkpoint). After a node fails,all nodes need to rollback to the last checkpoint.Brown and Wu presented recoverable DSM, based on an invalidate protocol, that can tolerate singlepoint failure [4]. A dynamic snooper keeps a backup copy of each page and takes over if the page ownerfails. The snooper keeps track of the page contents, location of page replicas, and the identity of thepage owner. The snooper can respond on behalf of a failed owner. Our scheme also maintains at leasttwo copies of a page, however, the scheme is based on an update protocol, unlike [4]. Additionally, ourprotocol incorporates the release consistency model, unlike the sequential consistency model used in [4]as well as [2, 13]Neves et al. presented a checkpoint protocol for a multi-threaded distributed shared memory systembased on the entry consistency memory model [15]. Their algorithm needs to maintain log of shareddata accesses in the volatile memory. These logs are used to reconstruct failed processes from the lastcheckpoint. Fuchi and Tokoro proposed a mechanism for recoverable shared virtual memory [9]. Theirscheme maintains backup process for every primary process. When the primary process sends/receivesa message to/from another process (or writes/reads a shared memory), the primary process sends thisinformation to backup process so that the backup process can log the events of the primary process.When the node of primary process fails, the backup process re-executes with the logged events from thelast checkpoint. Above two scheme are similar to our scheme in the sense that they use volatile memoryand provide recoverability from a single point of failure. However, they recover processes by a \replay"mechanism, whereas in our scheme no replay is necessary.Janssens and Fuchs [11] present a recoverable DSM that uses relaxed consistency models. However,their approach is based on checkpointing, and results in a large number of checkpoints. Our approach,on the other hand, achieves recoverability by maintaining at least two copies of each page.6 Conclusion and Future WorkThis report presented a scheme to implement a software DSM that is recoverable in the presence of asingle node failure. Our scheme di�ers from the previous work in that the proposed scheme is based onthe limited update protocol, which combines the advantages of invalidate as well as traditional updateprotocols. In addition, our approach is integrated with the release consistency model for maintainingmemory consistency.In the basic limited update protocol, the number of copies of a page varies dynamically { in the22



extreme, only one node may have a copy of the page or all nodes may have a copy of the page. Ourapproach is based on the simple observation that, to make the DSM recoverable from a single failure,it is adequate to ensure that each page has at least two copies at all times. To achieve this we suggesta modi�cation to the basic limited update protocol. Recovery is simple because an active back-up copyexists for each page.With a small number of exceptions, the previous work on recoverable DSM deals with the invalidateprotocol and sequential consistency model. The report presents a comparison of the proposed schemewith the previous work.Preliminary performance evaluation results indicate that the proposed scheme does not signi�cantlyincrease the number or size of messages required by an application. Additional work is necessary toevaluate the performance of this scheme experimentally.References[1] J. Archibald, \A cache coherence approach for large multiprocessor systems," in InternationalConference on Supercomputing, pp. 337{345, July 1988.[2] M. Banatre, A. Ge�aut, and C. Morin, \Tolerating node failures in cache only memory architec-tures," Tech. Rep. 853, INRIA, 1994.[3] E. Brewer and C. Dellarocas, Proteus User Documentation, 1992.[4] L. Brown and J. Wu, \Dynamic snooping in a fault-tolerant distributed shared memory," in Sym-posium on Distributed Computing Systems, pp. 218{226, 1994.[5] G. Cabillic, G. Muller, and I. Puaut, \The performance of consistent checkpointing in distributedshared memory systems," Tech. Rep. 924, INRIA, 1995.[6] J. B. Carter, E�cient Distributed Shared Memory Based On Multi-Protocol Release Consistency.PhD thesis, Rice University, Sept. 1993.[7] F. Dahlgren, M. Dubois, and P. Stenstrom, \Combined performance gains of simple cache protocolextentions," in Proceedings of the 21st Annual International Symposium on Computer Architecture,pp. 187{197, Apr. 1994.[8] S. Eggers and R. Katz, \A characterization of sharing in parallel prograns and its application tocoherency protocol evaluation," in Proceedings of the 15th Annual International Symposium onComputer Architecture, pp. 373{382, May 1988.[9] T. Fuchi and M. Tokoro, \A mechanism for recoverable shared virtual memory," 1994.[10] G. Janakiraman and Y. Tamir, \Coordinated checkpointing-rollback error recovery for distributedshared memory multicomputer," in 13th Symposium on Reliable Distributed Systems, Oct. 1994.[11] B. Janssens and W. K. Fuchs, \Relaxing consistency in recoverable distributed shared memory,"in Proc. 23rd Int. Symp. on Fault-Tolerant Computing, pp. 155{163, 1993.23



[12] P. Keleher, A. L. Cox, and W. Zwaenepoel, \Lazy release consistency for software distributed sharedmemory," in Proceedings of the 19th Annual International Symposium on Computer Architecture,pp. 13{21, May 1992.[13] A.-M. Kermarrec, G. Cabillic, A. Ge�aut, C. Morin, and I. Puaut, \A recoverable distributedshared memory integrating coherence and recoverability," Tech. Rep. 897, INRIA, 1995.[14] K. Li and P. Hudak, \Memory coherence in shared virtual memory systems," ACM Transactionson Computer Systems, vol. 7, pp. 321{359, Nov. 1989.[15] N. Neves, M. Castro, and P. Guedes, \A checkpoint protocol for an entry consistent shared memorysystem," in Symposium on Principles of Distributed Computing, pp. 121{129, Aug. 1994.[16] B. Nitzberg and V. Lo, \Distributed shared memory: A survey of issues and algorithms," IEEEComputer, vol. 24, pp. 52{60, Aug. 1991.[17] N. Oba, A. Moriwaki, and S. Shimizu, \Top-1: A snoop-cache-based multiprocessor," in Proc. 1990International Phoenix Conference on Computers and Communication, pp. 101{108, Oct. 1990.[18] G. Richard and M. Singhal, \Using logging and asynchronous checkpointing to implement recov-erable distributed shared memory," in 12th Symposium on Reliable Distributed Systems, 1993.[19] M. Stumm and S. Zhou, \Algorithms implementing distributed shared memory," IEEE Computer,pp. 54{64, May 1990.[20] M. Stumm and S. Zhou, \Fault tolerant distributed shared memory algorithms," in Proceedings ofInternational Conference on Parallel and Distributed Processing, pp. 719{724, 1990.[21] V.-O. Tam and M. Hsu, \Fast recovery in distributed shared virtual memory systems," in Sympo-sium on Distributed Computing Systems, pp. 38{45, June 1990.[22] K.-L. Wu and W. K. Fuchs, \Recoverable distributed shared virtual memory: Memory coherenceand storage structures," in Proc. 19th Int. Symp. on Fault-Tolerant Computing, pp. 520{527, 1989.

24


