Distributed Shared Memory: Recoverable
and Non-recoverable Limited Update Protocols

Jai-Hoon Kim Nitin H. Vaidya
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112
Phone: (409) 847-8609
FAX: (409) 847-8578

E-mail: jhkim@cs.tamu.edu

Technical Report 95-025
May 1995

Abstract

In the recent years, many protocols for implementing Distributed shared Memory (DSM) have been
proposed. The implementations can be broadly divided into two classes: invalidation-based schemes and
update-based schemes. Many approaches have also been proposed to make the DSM system recoverable
from a failure. However, much of this work is restricted to reliable DSM based on invalidation.

In this report, we propose a reliable DSM that uses a limited update protocol and the release
consistency model. In this update protocol, multiple copies of each page may be maintained at different
nodes. However, it is also possible for a page to exist in only one node, as some copies of the page
may be invalidated. We propose an implementation that makes the limited update protocol recoverable
from a single node failure, by guaranteeing that at least two copies of each page exist. The proposed
recoverable DSM incorporates the release consistency model.

The report presents preliminary evaluation of the recoverable DSM (using trace-driven simulation).
It is shown that the overhead of making the DSM recoverable is small.

Index Terms: distributed shared memory, fault-tolerance, update protocol, release consistency.

1 Introduction

Distributed shared memory (DSM) systems have many advantages over message passing systems [19, 16].
Since DSM provides a user a simple shared memory abstraction, the user does not have to be concerned
with data movement between hosts. Many applications programmed for a multiprocessor system with
shared memory can be executed in DSM without significant modifications.

Many approaches have been proposed to implement distributed shared memory [6, 8, 14, 19]. The
DSM implementations are based on write-invalidation and/or write-update. In the past, write-update
protocols were often inefficient due to the overhead of updating multiple copies of a page. However, the
recent implementations of DSM use relaxed memory consistency models such as release consistency [6].
For such implementations, write-update protocols are often superior than write-invalidate protocols.

A simple implementation of a write-update protocol is likely to be inefficient, as many copies of a
page may be updated, even if some of them are not going to be accessed in the future. In this report,
we present a reliable DSM based on an approach that invalidates a copy of a page at some node A,
if it is updated by other nodes “too many” times before node A accesses it. This protocol is called
the limited update protocol, and is based on a similar protocol for cache-coherence in hardware shared
memory systems [1, 7]. The proposed reliable DSM can tolerate a single node failure without significant
recovery overhead. Also, the proposed scheme incorporates the release consistency model.

For future reference, note that we use the terms node and processor interchangeably. A node may
execute one or more processes, however, failure of a node results in the failure of all such processes.

This report is organized as follows. Section 2 discusses release consistency and summarizes the
limited update protocol. The proposed recoverable DSM scheme is presented in Section 3. Performance
evaluation of the proposed scheme is presented in Section 4. Related work is discussed in Section 5.

Section 6 concludes the report.

2 Limited Update Protocol

In a protocol that performs write-update, when a node accesses a page for the first time, a copy of the
page is brought into the local memory of the node. This copy of the page is updated whenever another
node modifies the page. (In contrast, in protocols based on write-invalidate, whenever a remote node
modifies a page, the local copy is invalidated.)

A disadvantage of the update protocol is that, over the course of the execution, many nodes may
obtain a copy of the page in their local memory. Whenever any node modifies the page, an update
message must be sent to all these nodes, incurring significant overhead. Two approaches have been
used to mitigate this overhead. First, a relaxed consistency model such as release consistency is used

in recent implementations. Second, some copies of a page are invalidated if they are not likely to be

used in the future (some heuristic may be used to determine which copies can be invalidated). Now, we

summarize each of these approaches.

Release Consistency

Here we present only a brief overview of release consistency, as necessary to describe the proposed
reliable DSM scheme. The release consistency protocol is based on the observation that, in a typical
program, accesses to shared variables are separated by synchronization operations — in release consis-
tency [6], these operations are termed acquire and release. If an access by a process to some shared
data is likely to cause a race condition, then the process first performs an acquire operation. When the
process has completed its accesses to the shared data, it performs a release operation. If one process
has already performed an acquire, another process’ acquire will block until the first process performs
a release. This ensures that while one process is modifying some shared data, another process will
not attempt to access the data. Implementations of release consistency can take advantage of this
observation to improve performance, as follows. Consider a process on node A that has performed
an acquire, subsequently performed multiple writes to shared data, and is now performing a release
operation. Because of release consistency, it is adequate if node A sends a single update message (to all
nodes that have a copy of the modified pages) corresponding to all the writes performed by the process
since its most recent acquire. In implementations that use sequential consistency (instead of release
consistency), it is necessary to send one update message for every write performed by node A. Due
to release consistency, it is necessary to perform at most one update for every release performed by a
process. This implementation of release consistency reduces the number of messages, thereby improving
performance. Note that the release operation blocks until the updates are propagated to all relevant

nodes and acknowledgment are received from them.

Invalidation

In an update protocol, when a node accesses a page, a copy of the page is created in the local
memory. This copy of the page must be updated (by means of an update message) whenever another
node modifies the page. It is conceivable that some node A may access a page infrequently — in this case,
it is advantageous to invalidate the page’s copy at node A (as compared to updating it whenever some
other node modifies it). Carter et al. [6] suggest a time-out protocol to determine when a page copy
should be invalidated — essentially, the local copy of a page at node A is invalidated if it is not accessed
by node A for a significant duration of time. As described below, we consider a different approach,
called limited update, to determine when a page should be invalidated. The reliable DSM proposed in

this report is based on the limited update protocol.

Limited Update Protocol

The limited update protocol presented here is intended for a software implementation of DSM
that uses release consistency (summarized above). This protocol is similar to two protocols previously
proposed for maintaining sequential consistency in hardware caches [1, 7]. The advantage of this protocol
is that it facilitates a simple implementation of a recoverable DSM.

The basic idea of the limited protocol is to update those copies of a page that are expected to
be used in the near future, while selectively invalidating other copies. Now we summarize the limited

update protocol.

Information Structure
We assume an implementation that is similar to Munin [6], with a few modifications to facilitate
limited updates. Each node maintains an information structure for each page resident in its memory.

The information structure contains many pieces of information, as summarized below.

e update-counter: Counts how many times this page has been updated by other nodes, since the last
local access to this page. When a page is brought into the local memory, the counter is initialized
to 0. Also, when a local process accesses this page, the counter is cleared to 0. The counter is

incremented at every remote update of the page.
e verston: Counts how many times this page has been updated since the beginning of the execution.

e limit L: Either set by user or transparently by the DSM protocol. The lLimit for each page

determines the performance of the limited update protocol.

o last-updater: ldentity of the node that updated this page most recently. The last-updater is
identical for all copies of a page. (last-updater is the originator of the most recent update message

for the page).

o copyset: Set of nodes that are assumed to have a copy of this page. The copyset at different nodes,
that have a copy of the same page, may be different. In general, a node may not know exactly
which other nodes have a copy of the page [6]. However, when a node performs an update (when
it does a release), at the end of the update protocol, that node knows precisely the set of nodes,
that hold the copies of the page, that were updated. The “updater” node collects this information
by means of acknowledgment messages sent as a part of the update protocol. It is a simple matter
to modify the update protocol to obtain the value of the update-counter for the modified page,

from each node that received the update. This observation will be used in the recoverable DSM.

e probOwner: Points towards the “owner” of the page [6].

o back-up: To be explained later.

Note that each node maintains the above structure for each page in its local memory. In the
following, when we use a phrase such as “the update-counter at node A”, we are referring to “the
update-counter for the page under consideration at node A”. It is implicit that the “update-counter”

(or some other information) pertains to a specific page.

Use of the Update-counter

During the execution, update-counter of each copy of a page changes dynamically, as explained
below. A copy of a page is tnvalidated whenever its update-counter becomes equal to the limit.

When a node, say A, receives from another node a copy of a page, say P, its update-counter is
initialized to 0. The update-counter is incremented whenever node A receives an update message, for
page P, from any other node. If a process on node A accesses page P, then the update-counter for page
P at node A is cleared to 0. If, at any time, the update counter for page P at node A becomes equal to
the limit L, then node A invalidates its copy of page P. Thus, page P on node A is invalidated only when
L updates to the page, by other nodes, occur without an intervening access to the page by a process on
node A. Thus, the limited update protocol invalidates those pages that are accessed “less frequently” —
the protocol can be tuned to a given application by a proper choice of limit L. As discussed later, the
limit can also be changed dynamically.

Update-counter is analogous to téimeout mechanism in Munin [6]. Our scheme bounds the update
overhead by using a limit L on the number of updates without an intervening local access, while
timeout approach uses the freeze time mechanism. Two mechanisms use similar concept: copy of a page
is invalidated if it is expected not to be used in the near future (by evaluating the cost for updates).
It is reasonable that the cost is evaluated by the number of updates, rather than time, between two
sequential updates without an intervening local access. Consider two scenarios as shown in Figure 1:
(i) a copy is updated by other nodes many times but each update occurs after an interval greater than
freeze time; (ii) a copy is updated by other nodes only twice within a freeze time. With the timeout
mechanism, the copy will be invalidated in case (ii), while updated in case (i). With the limited update
protocol, with limit L = 3, the copy will be invalidated in (i), and updated in (ii). Therefore, although

the two approaches (limit and timeout) have similar goals, they do not behave identically.

Example
Figure 2 illustrates how the limited update protocol works, by focusing on a single page in the DSM.
For this example, let us assume that the limit L associated with this page is fixed at 3. In the figure,

iL. and iU denote acquire and release operations.! Also, iR and iW denote read and write operations

! Although we obtained the notation 7L and iW by abbreviating i-Lock and i- Unlock, it should be noted that acquire

Loca Remote Remote Remote Remote Remote

access write write write write write
1 1 1 1 1 1 Time
e el e I
freezetime freezetime freezetime freezetime
scenario (i)
Local Remote Remote Local access Remote Remote Local access
access write write (following pagefault) write write (following page fault)
} | | | | | | Tlme
- = >l
freezetime freezetime
scenario (ii)

Figure 1: Timeout Mechanism

Memory Access 1L} IR| 1U| 2L | 2R| 2U| OL| OW OW OU| AL | IR| 1W 1U| OL| OW OU| OL | OW OU] OL

Update-counter: 0 | 0| 0| 0 0| O] 0| O] O] O/ O[O] O| O] O 1| 1| 0] O] 0| O] O

Update-counter: 1 0| 0| 0| 0| O] O] O] O] 1| 1/ 0f Ol OfO|Of11]1]2

Update-counter: 2 0(0] 0] O] O] 1] 2| 1| 1] 2| 2|2

Figure 2: Update-counter

performed on this page by node i. The second row of the table presents a total ordering on the memory
accesses performed by nodes 0, 1 and 2 on the page under consideration. The last three rows list
the values of the update-counters at the three nodes at various times, e.g., the update-counter:0 row
corresponds to node 0. A “blank” in the table implies that the corresponding node does not have a
copy of the page at that time.

Initially, only node 0 has a copy of the page whose update-counter is 0 (column 0 in the table). Next,
node 1 performs an acquire and tries to read the page (columns 1-2 in the figure). As it does not have
a copy of the page yet, it receives a copy from node 0, and the update-counter for this copy is set to 0
(column 2 in the figure). Node 1 then performs a release (column 3). As node 1 did not perform any
writes, no updates are needed at the release. Next, node 2 also performs acquire-read-release (columns
4-6). Again, a copy of the page is brought to the local memory of node 2, and its update-counter is set
to 0 (column 5).

Next, node 0 performs an acquire and performs two write accesses to the page, and then performs
a release. As node 0 has performed a local access to the page, its update-counter is cleared? to 0 (in
this case, of course, it was already 0). In the software implementation of release consistency protocol,
the updates are not propagated to other nodes until node 0 performs a release. Therefore, the update-
counters at nodes 1 and 2 are unchanged in columns 7, 8 and 9. When node 0 performs a release, the
updates by node 0 are propagated to nodes 1 and 2. When the update message is received, nodes 1 and
2 incorporate the updates, and increment the respective update-counters by 1 (column 10). Next, node
1 performs an acquire-read-write-release sequence (columns 11-14). As node 1 has performed a local
access, its update-counter is cleared to 0 (column 12). When node 1 performs the release, the updates
are propagated to nodes 0 and 2, and their update-counters are incremented to 1 and 2, respectively
(column 14). Next, node 0 performs a acquire-write-release sequence (columns 15-17). The update-
counter of node 0 is cleared because of the local access (column 16). The update-counters at nodes 1
and 2 are incremented to 1 and 3, respectively, when the update is received from node 0 (column 17).
Now, because the update-counter at node 2 has become equal to 3, the limit for the page, the local
copy of the page at node 2 is invalidated. (The X in the figure denotes an invalidation.) Subsequently,
node 0 performs two acquire-write-release sequences, at the end of which, the update-counter at node
1 becomes 3 (column 23). Therefore, the page copy at node 1 is also invalidated. At the end, only node
0 has a copy of the page, with update-counter 0 (column 23). O

Observe that, in the above protocol, at least one node must have a copy of the page, namely the

and release operations in release consistency are not necessarily equivalent to lock and unlock.

Z Actually, in practice, only if the update-counter is non-zero, any action need be taken. This can be implemented as
follows. When the update-counter for a page becomes non-zero, the page is read/write-protected, so that any local access
the page will result in a page fault. On such a page fault, the fault handler will set the update-counter to 0, and remove

the read/write-protection. Thus, any further local access to the page can proceed without any performance penalty.

node that wrote to the page most recently. The update-counter at this node will be equal to 0, and
therefore this copy of the page will not be invalidated. However, it is possible that a page may exist at
only one node, as illustrated in the above example (column 23). This can happen when a single node
performs consecutive L updates to the page (where L is the limit), without an intervening access by
some other node. If no node performs consecutive L updates to the page, then at least two nodes must

have a copy of the page (namely, the two most recent “updaters” of the page).

Generalization of the Limited Update Protocol

Unlike other similar schemes [1, 7], implemented in hardware caches (with sequential consistency),
the software implementation can be more flexible. Note that the limited update protocol is designed
for the release consistency model, unlike [1, 7]. The above protocol can be generalized in four ways, as

summarized below:

e Multiple Consistency Protocol: Multiple consistency protocol was presented by Carter [6],
which can perform efficiently by using the appropriate protocol for each data object of different
access pattern, The generalized limited update approach can provide a different protocol for each
page by adjusting the limit parameter independently for each page. By setting the lim:t to 1, the
limited update protocol becomes equivalent to invalidate protocol, while the protocol is equivalent
to the traditional update protocol when “limit” is infinity (or large). Intermediate values of “limit”
will interpolate between invalidate and update protocols. Thus, the generalized limited update
protocol can effectively be used as a “multiple” consistency protocol, simply by using a different

limit for each page.

e Hybrid Protocol: Hybrid protocol is more appropriate than a “pure” protocol for a DSM,
if the memory access pattern to the same page is different in each node. TOP-1 [17], a tightly
coupled snoop-cache-based multiprocessor, has a hybrid coherence protocol which allows an update
protocol and an invalidate protocol, which can be dynamically changed, to coexist simultaneously.
However, TOP-1 needs additional hardware design, cache mode register (to specify a cache mode:
update mode and invalidate mode) and CH (Cache Hit) bus line (to indicate a snoop hit). Hybrid
protocol is also implemented in Munin [6] by using the timeout mechanism. When a node writes
and its update is propagated to other nodes, default copies are updated, while some copies are
self-invalidated if the copies are not locally accessed for more than the freeze time since the last
update. However, the limit update protocol can be extended to hybrid protocol without any
additional hardware or timeout mechanism. By allowing each node to use a different limit for the
local copy of the same page, the limit update protocol can become a hybrid protocol in which an

update protocol, an invalidate protocol, and limited update protocol coexist for the same page.

e Dynamic Protocol: It is possible to change the limit associated with each page dynamically.
This feature is useful when the pattern of accesses to a page changes with time. This feature is
also useful when, initially, the “optimal” value of the limit is unknown. Some heuristic can be
used to adapt the protocol to dynamically determine the appropriate limit, so as to minimize the

overhead.

e System-Dependent Protocol: Instead of incrementing the limit by 1 each time an update
occurs, we allow the limit to be incremented by a different amount. When an update message is
received by a node, the amount of increment in the update-counter can be made a function of the
node from which the update message is received. When the “cost” of an update is dependent on
the identity of the sender node, this feature is useful to tune the limited update protocol to the

underlying hardware architecture.

3 Recoverable Limited Update Protocol

In this section, we present a recoverable DSM system based on the limited update protocol described
above. Section 5 compares the proposed scheme with other recoverable DSM schemes.

Recoverable scheme for a DSM, based on the limited update based protocol, is relatively simple.
The basic idea behind the proposed scheme is to maintain, at all times, at least two copies of each
page (at two different nodes). This will allow the DSM to recover from a single node failure without a
rollback (provided the non-shared data is also recoverable, as discussed later).

As discussed previously, when the limited update protocol is used, it is possible that a page may
be resident in only one node. Therefore, to tolerate a single node failure, it is necessary to modify the
limited update protocol, to ensure that at least two nodes have a copy of each page. Thus, there are

two issues that must be dealt with to make the DSM fault tolerant (for single node failures).
1. Modification of the limited update protocol to guarantee two copies of each shared memory page.
2. Some mechanism needs to be incorporated to make the non-shared data recoverable.

We first focus on the first of the above two issues.

Maintaining at least two copies of each page

To simplify the discussion, we assume that each page has the same fixed limit L. The proposed
scheme can be readily extended to allow all the generalizations of the limited update protocol.

The limited update protocol needs to be modified to ensure that at least one additional copy of the
page exists, in addition to that present at the most recent updater of the page. As pointed out earlier,

in the original limited update protocol, if a single node, say A, performs consecutive L updates to a

page, without an intervening access by some other node, all copies of the page, except that at node A,
will be invalidated. Thus, to make the DSM recoverable, we must modify the limited update protocol,
such that some copy of the page is not invalidated, even if its update counter is equal to the limit L.
This is achieved by designating, for each update, one of the nodes as the “back-up”. The copy of a page
at the back-up node cannot be invalidated, irrespective of the value of its update-counter. Note that
the back-up is specified for each update, and may change from one update to the next update of the
same page. The performance of the recoverable DSM depends on the choice of the back-up — in our
approach, as described below, the node chosen as the back-up is the one that is expected to access the
page in the near future.

Each node maintains an information structure, described earlier, for each page in its local memory.
One of the fields in this information structure is back-up. Consider a node A that performs a release
and sends update messages for a page P as a part of the release. Let the identifier stored in the back-up
field in the information structure corresponding to page P at node A be B. Then, when the update
message from node A is sent to node B, the message is tagged by a special “marker” flag — the marker
flag informs node B that it cannot invalidate its copy of the page (even if the update-counter becomes

large).

Maintaining the back-up

Initially, a page is loaded in any two nodes, say X and Y, and one of them, say X, is considered to
be the last-updater. The update-counter at both nodes is initialized to 0, the back-up field at node X
is set to Y, and vice-versa.

When a node A obtains a copy of a page P from some other node B, node B also sends identifier of
the last-updater of page P. Node A, on receiving the page, sets its last-updater as well as back-up equal
to the last-updater received from node B.

Contents of a back-up field can change in two different ways. Let us consider the copy of a page P

at a node A.

1. Node A receives an update message for page P from some other node, say C: In this case, the

back-up field at node A is set equal to C.

2. Node A performs a release and sends update messages, for page P, to other nodes: When the
other nodes receive these update messages, they acknowledge the update message, and send their
update-counters along with the acknowledgement. Node A finds the node, say D, whose update-

counter is the smallest (ties broken arbitrarily), and sets back-up equal to D.

Note that, for a given page, the back-up at different nodes may be different.
The motivation behind the above procedure is to identify a node as the back-up only if it has accessed

the page recently (this, in turn, is motivated by the principle of locality). However, it is possible that,

if the most recent access to a page is a read, the node that performed the read may not be identified
as the back-up in the other nodes. This can happen because a read can be performed locally without
other nodes knowing about it. There are two aspects to this issue: (i) First, it is adequate if the node
identified as the back-up has accessed the page recently, not necessarily most recently. (ii) Secondly,
reads that cause a page fault can often be used to modify the back-up.

Note that, the above procedure for maintaining the back-up works correctly with all the generaliza-

tions of the limited update protocol, described in Section 2.

The modified (recoverable) limited update protocol

The modified protocol is essentially identical to the original limited update protocol with one differ-
ence: A node that is designated as the back-up for an update does not invalidate the local copy of the
page even if the update-counter becomes equal to limit L or exceeds L. (As explained before, update
message sent to the back-up node is tagged by a special marker.) Any other node, whose update-counter
is > L invalidates its local copy of the page. This procedure ensures that, at any time, at least two
copies of a page are in existence.

The back-up for an update is always a node that has accessed the page in the recent past. Therefore,
from the locality principle, this node is likely to access the page in the near future as well. The
modified update protocol forces this node to retain a copy of the page. This protocol may be viewed
as incorporating a “pre-fetch” mechanism. As the page copy is likely to be used in the near future, the
overhead of updating the copy is often compensated by a reduction in the number of page faults.

Note that “cost” (e.g., number of messages) of the the recoverable protocol can be larger than that of
the non-recoverable protocol, only when the non-recoverable protocol would result in a page having only
one copy. Whenever, the non-recoverable protocol results in multiple copies of a page, the recoverable
protocol does not result in any additional cost. Thus, the difference between the costs of the recoverable

and non-recoverable protocols is greatest when limit is 1, and reduces as limit becomes larger.

Example

Figure 3 illustrates how the back-up is maintained. We would like to caution that the example is
somewhat long. (The format for the table is similar to Figure 2.) For this example, assume that the
limit L is 3. The system is assumed to contain three nodes, 0, 1 and 2. Initially, the page is loaded in
the local memory of two nodes (0 and 1 in our example), and one of them (node 0) is considered to be
the last-updater. Back-up at nodes 0 and 1 is initialized to 1 and 0, respectively. The memory access
row in Figure 3 presents a total ordering on the accesses to the page under consideration. The next
three rows present values of the update-counters at the three nodes. (The values in column % correspond

to the update-counters after the memory access in column 7 is performed.) The next row of the table

10

0| 1| 2| 3| 4| 5| 6| 7| 8| 9/10|11]|12|13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23| 24| 25| 26
Memory Access 2L| 2R|2U| OL| OW OW OU| 1L| 1R| IW 1U| OL| OW OU| OL| OW OU| OL | OW OU| 2L| 2R| 2U| 2L | 2W 2U
Update-counter: 0 | 0 0 0| 0| 0| O O| 0| O] O] O] 1| 1| O] O] O| O] O] O] O| O| O] O] O] O| O] 1
Update-counter: 1 | 0| 0] 0| 0] 0| 0] O 1| 1| 0] 0| O] O| O 1| 1| 1| 2| 2| 2| 3| 3| 3| 3| 3| 3
Update-counter: 2 0/ 0] 0] O] Of 1| 1| 1|1]2]22 0| 0| 0] 0|0
Last-updater 0| 0| 0| O] O] O| O] O] O Of O] 2 1} 1| 0| 0| O] O O] O] O|O0]O0O|OOQ]O0|2
Back-up: 0 01 1)1y 11y 2y 2) 2202111 1)) 1) 1)2f1}1)2)1]1]151]2
Back-up: 1 0| 0| 0| O/ O] O| O/ O] O| O] O] O] O| O] O] O/ O] O| O| O] O] O] O] O] O|O
Back-up: 2 0| 0| 0| 0] O] O] O] O] Of 1] 1|1 0] 0] 0| 0] O

Figure 3: Update Counter for Recoverable DSM

lists the last-updater variable at each node (it is identical at all nodes). The last three rows list the value
of the back-up variable for the page at each node. (Again, the values in column ¢ denote the back-ups
after the memory access in column ¢ is performed.) For future reference, note that last-updater and
back-up change only when a release is performed, whereas, update-counter at a node A changes when
either (i) node A performs a local access to the node, or (ii) another node performs an update to the
page.

The initial state is illustrated in column 0 of the table. The first acquire is performed by node 2,
followed by a read and a release (columns 1-3). As shown in column 2, a copy of the page is brought to
node 2 when it reads the page, its update-counter is set to 0, and the back-up is set to 0 (the last-updater
for the page).

Next, node 0 performs a acquire-write-write-release sequence (columns 4-7). When node 0 performs
a release (column 7), it sends update messages to other nodes. As the back-up at node 0, immediately
before the release is performed, is node 1, the update message sent to node 1 is tagged by a marker to
inform node 1 that it is the back-up. When the acknowledgements for the update messages are received,
node 0 determines its new back-up by finding the minimum of the update-counters received with the
acknowledgement. As both nodes 1 and 2 return update-counter 1, node 0 arbitrarily chooses node 2
to be the back-up for its next update. The new back-up is shown in column 7 of the “back-up:0” row
in the table. Nodes 1 and 2 set their back-up variable to 0, because they received an update from node
0 (column 7).

Next, node 1 performs acquire-read-write-release sequence (columns 8-11). When node 1 performs
a release (column 11), the update message sent to node 0 is tagged with a marker, as node 0 is the
back-up for this access (as shown in column 10, row “back-up:1”). When all the acknowledgements and
update-counters are received, node 1 determines the new back-up as the node whose update-counter is

the smallest, namely node 0. (The new back-up is shown in column 11, row “back-up:1”). Nodes 0 and

11

2 change their back-ups to 1, as they received an update from node 1 (column 11).

At this point (column 11), the update-counters for nodes 0, 1 and 2 are 1, 0 and 2, respectively.
Next, node 0 performs an acquire-write-release sequence (columns 12-14). At the release by node 0
(column 14), the update message sent to node 1 is tagged by a marker, whereas that sent to node 2 is
not tagged, as node 1 is the back-up for this update (see column 13, row back-up:0). When the update
message is received by node 2, it performs the update and increments its update-counter to 3. Now,
node 2 invalidates the local copy of the page because, (a) its update-counter has become equal to limit
3, and (b) the update message sent to node 2 was not tagged by a marker (which means that node 2 is
not the back-up for the update). When node 0 receives the acknowledgements, it determines that node
1 is its new back-up. Also, node 1 sets its back-up to 0, when it receives the update-message.

Now, node 0 again performs acquire-write-release (columns 15-17) followed by another acquire-write-
release (columns 18-20). At the second release (column 20), update-counter for node 1 becomes equal to
3. At each of the release, node 0 sends an update message to node 1 tagged with the marker. Therefore,
node 1 cannot invalidate its copy of the page. Note that the update-counter at node 1 has become 3
(column 20), but the page is not invalidated.

Node 2 now performs acquire-read-release (column 21-23), therefore, it receives a copy of the page.
Along with the page, it also receives identifier of the last-updater for the page. On receiving the page,
its update-counter is set to 0, and back-up set equal to the last-updater. As node 2 did not write to the
page, no update is necessary at the release (column 23).

Subsequently, node 2 performs acquire-write-release (columns 24-26). At the release, node 2 sends
update messages to nodes 0 and 1, the message sent to node 0 being tagged with a marker. When
node 1 receives the update, its update-counter becomes 4. Node 1 invalidates the page, as the update

message was not tagged with a marker, and the update-counter is larger than the limit. O

Multiple Copy for Non-Shared Data

As discussed above, our protocol can guarantee that at least two copies of each page of shared data
are maintained. The protocol described above ensures that the shared data remains available in spite
of a single node failure. It does not (as yet) ensure that the faulty node can be recovered to its recent
state. In some cases, it is adequate to ensure availability of the shared data.

When it is necessary to ensure that the faulty node can be recovered, the non-shared data must also
be duplicated. We suggest a modification to the protocol described above. When a node writes shared
data and updates other copies of the data, the non-shared data at the node is sent, along with the
update message, to any one node. Although no additional messages are required, the size of one of the
messages will be larger. The amount of non-shared data transferred can be reduced by sending only the

modifications to the local data since the most recent update performed by the node. This incremental

12

approach makes recovery more complicated, as the non-shared data of a node can be scattered at various
nodes in the system.

An alternative is to specify for each node (say A), another node (say B) to which the incremental
changes in the non-shared data are sent, when node A performs an update to some shared data. While

this will simplify recovery, it may increase the number of messages.

Recovery

The proposed DSM system is recoverable from all single node failures (fail-stop) because all shared
memory pages and non-shared memory pages (if necessary) have at least two copies. The recovery is
straightforward. After a single node failure, the shared memory remains available. If the faulty node
is to be recovered, then its non-shared state is obtained from other nodes (the non-shared state is

duplicated, as described above). Two issues need further elaboration.

e Since failure can occurs at any time, contents of the copies of the same page may be different
(if the failure occurs while an update is in progress). In this case, some copies are out-of-date.
This problem can be resolved by searching the most up-to-date copy — to facilitate this a version
number attached to each page to count the number of updates performed to the page from the
beginning of execution. The copy with the largest version number is the most up-to-date copy
(this is similar to [20]). If a node fails after it has written to a page, but before it has performed a
release, then the modifications made by the node are lost when the node fails. This is acceptable,

as the system state will still be consistent after the failure.

e It is necessary to ensure that, after recovery, each shared memory page has at least two copies.
Therefore, after failure, if only one node has a copy of a page, then another copy is created on any
other node. Now we assume that two copies of each page exist. The recovery algorithm must also
ensure that all the last-updater and back-up fields are correct. We now illustrate how this can be

achieved. Consider a page P. Two cases are possible.

(a) If the last-updater for page P fails, then any other node having the page is designated as the
last-updater, and its update-counter is cleared to 0. All relevant nodes are informed of the new
last-updater. These nodes set their last-updater as well as the back-up fields to point to the new
last-updater. The new last-updater sets its back-up field to point to any other node that has a
copy of the page.

(b) If some node other then the last-updater is faulty, then it is possible that the back-up field at
the last-updater may be pointing to the faulty node. It is only necessary to set the back-up to
point to any other node that has a copy of the page.

13

4 Performance Evaluation

In this section, we present preliminary results on performance of the proposed approach.

Methodology

We measured overhead for maintaining recoverable shared data by comparing the “cost” for non-
recoverable protocol and recoverable protocol. The “cost” metrics used here are (i) number of messages,
(ii) amount of information transferred between the nodes, and (iii) number of page faults. We used
trace-driven simulation method for the experiments.

As a preliminary test, we generated synthetic trace data by using a trace generator. The trace
generator can produce trace data according to the memory access behavior which we can define as
input. We also modified the Proteus [3] to produce trace data for shared memory operations, acquire,
release, read, and write. The trace data, produced by our synthetic trace generator or modified Proteus,
are used as input for our simulator which computed the cost (the number of page faults, the number of
messages, and the amount of data exchanged). We assume that the DSM system consists of 16 nodes,
and that the page size is 1024 bytes.

For the simulation, we assume an implementation similar to Munin, i.e., based on the dynamic

distributed ownership mechanism [6].

Cost Measurement

On a page fault, the number of messages required varies because of the dynamic distributed owner-
ship mechanism. The page request is forwarded along the probOwner link until a node that has a copy
of the page is reached (when L > 1), or till the page “owner” is reached (when L = 1). We assume
that an acquire and release are implemented as special procedures using a message passing library — an
acquire is assumed to require three messages, similar to [12]. On a release, two messages are required
per copy of the modified pages — one for sending a request and the other for acknowledgment. Some ap-
plication programs traced using Proteus use semaphores to achieve synchronization — we appropriately
interpreted these as acquires and releases.

Message size for an update at a release is proportional to on the number of writes performed since

the recent acquire. Other short messages (e.g., acknowledgement) are assumed to be 8 bytes.

Results

Figures 4, 5, and 6 show the result of our experiments with synthetic trace data. We assumed
distributed shared memory system of 16 nodes. 10,000 memory accesses for a single page are simulated
for three different read ratios (70%, 80%, and 90%) to compute overhead for the recoverable scheme. The

results of the simulation converge by 10,000 accesses. In the figures, “non-recoverable:x%” means the

14

The Number of Page Faults

O-g T T T T
@ "non-recoverable: 70%' ——
3 08 ra. "recoverable 70%' -+
< X 8 "non-recoverahle:80%' =
2 0.7 - ‘recoverable:80%’ x- 1
% sk "non-recoverable:90%' -+
3 0.6 %2 "recoverable90%’ -x-- -
g 05 | :
2
B 04 1
Q
§’ 03 r 1
© i |
o 0.2
Ke]
g 01t 1
z
0 ‘
0 5 10 15 20 25 30 35

Updates Limit (L)

Figure 4: The number of page faults (synthetic trace)

cost for the limited update protocol without recoverable scheme at x% read ratio and “recoverable:x%”
means the cost for the recoverable limited update protocol at x% read ratio.

Figure 4 shows that the number of page faults decreases as the update limit (L) increases because
the number of page copies increases by allowing more updates. Observe that the number of page faults
of recoverable scheme is less than that of non-recoverable scheme for low limit (L). Maintaining at least
two copies for the recoverable scheme causes page “pre-fetch” effect which reduces the number of page
faults.

Figure 5 shows that the number of messages increases, especially at high limit (L), as read ratio
decreases. At low limit (L), the number of messages for the recoverable scheme is greater than that
of non-recoverable scheme, because recoverable scheme needs extra messages to maintain at least two
copies. However, note that the increase in the number of messages is not too large.

Figure 6 shows that small amount of data is transferred between the nodes, per memory access, at
high limit (L) and/or high read ratio. (A page fault needs to copy the whole page, whereas, the amount
of data transfer needed due to updates is small for the synthetic traces.) For small L, the recoverable

scheme requires less data transfer, as it reduces the page fault rate.

15

10
i 9
o
<
o)
2 8
&
s 7
T
o
R 6
I
s
5 4
T
o]
g 3
zZ

2
Figure 5:
§ 900
g 800
&
p 700
g
= 600
4]
5 500
B
: 400
%
= 300
B
g 200
[a)
5 100
£
3 0
=
<

The Number of Messages

"non-recoverable:70%’ ——
"recoverable70%’ -+

"non-recoverable:80%' =
"recoverable:80%'

"non-recoverable:90%' ----
"recoverable90%' -x--

B B oo =
X /g',/
,B"E/ 4
| 1\%* e e — e — e e — #* * |
0 5 10 15 20 25 30 35
Updates Limit (L)
The number of messages (synthetic trace)
The Amount of Data
o "non-recoverable:70%’ ——
Mo "recoverable:70%' -+ |
%%, "non-recoverable:80%' --=--
o "recoverable:80%6 -x-
et "non-recoverable:90%' -4--
et 8 "recoverable:90%' -x-- -
x
= ’*\ ™ @-~-&.,,,,,...,__,,_4,‘_,,_,mh S T
SR % %
0 5 10 15 20 25 30 35

Updates Limit (L)

Figure 6: The amount of data (synthetic trace)

16

Application Shared Memory Access | Read Ratio Input
MP3D 822,639 65.7 1,600 molecules, 10 time steps
Floyd-Warshall 1,450,630 98.0 64 nodes
FFT 787,614 66.6 213 points
Gauss-Jacobi 184,877 84.9 16 by 16

Table 1. Applications.

Four application programs, as shown in Table 1, were used to evaluate the overhead of recoverable
limited update protocol. Figures 7, 8, 9, and 10 show the results. Observe that, in most cases, the
recoverable scheme has a comparable or smaller “cost” than the non-recoverable protocol.

As noted previously, the difference in the “cost” of the recoverable protocol and the non-recoverable
protocol is likely to be the greatest when the limit, is small. The simulation results presented above
suggest that the cost of the recoverable scheme is comparable or smaller than that of the non-recoverable

scheme, for all values of the limat.

5 Related Work

As discussed earlier, the limited update protocol is based on [1, 7]. As the focus of this report is on
recoverable DSM, we now summarize the related work in this area.

Many recoverable DSM schemes have been presented in the literature. Many of them use stable stor-
age (disk) to save recovery data [22, 21, 18, 11, 10, 5]. Some of them use main memory for checkpointing,
replicating shared memory or logging the shared memory accesses [20, 2, 4, 15, 9, 13]. Proposed recov-
erable DSM belongs to the second category (uses main memory). [20], like proposed protocol, is based
on update (full-replication) protocol, while [2, 4, 15, 9, 13] are based on invalidate (read-replication)
protocol.

Stumm and Zhou extended four basic DSM algorithms to tolerate single node failures [20]. One of
their algorithms is for an update protocol. But, implementations of our algorithm is different because
their algorithm is based on update protocol where all copies of a page are updated, whereas our scheme
is based on “limited” update protocol (some copies are invalidated to reduce overhead). Additionally,
our scheme supports release consistency.

Backward error recovery on a Cache Only Memory Architecture is implemented using the standard
memories by Banatre et al. [2]. (A similar scheme was implemented on an Intel Paragon by Kermarrec
et al. [13].) This scheme periodically take system-wide consistent checkpoints. Recovery data are

replicated and mixed with current data in node memories in a transparent way using an extended

17

The Number of Page Faults (MP3D)
180000 T T T T

"non-recoverable’ ——
‘recoverable’ -+

160000
140000
120000
100000

80000

60000

Total Number of Page Faults

40000
20000

15 20 25 30 35
Update Limit (L)

The Number of Messages (MP3D)
550000 T T T T

L 'non-recoverable’ —— |
500000 ‘recoverable’ -—+---

450000
400000
350000
300000
250000
200000
150000 |
100000 |
50000

Total Number of Messages

0 5 10 15 20 25 30 35
Update Limit (L)

The Amounts of Data (MP3D)
1.3e+08 T T T T T
'non-recoverable’ —<— |
'recoverable’ --+---

1.2e+08
1.1e+08
1e+08
9e+07
8e+07
Te+07
6e+07

Total Amounts of Data (Bytes)

5e+07
4e+07

3e+07 : . .
0 5 10 15 20 25 30 35
Update Limit (L)

Figure 7: Overhead for Recoverable Scheme (MP3D)

18

The Number of Page Faults (Floyd-Warshall)

25000 T
"non-recoverable’ ——
‘recoverable’ -—+---
o) 20000 | | .
a i
Lo
& !
g 15000 f ! 1
k]
o]
Ko}
E 10000 f 1
4
z
O
= 5000 .
0 n n
0 5 10 15 20 25 30 35
Update Limit (L)
The Number of Messages (Floyd-Warshall)
90000 T T T T T
"non-recoverable’ ——
+ "recoverable’ -+---
80000 | | .
8 yv
g 70000 | | -
S '
“6 \
ot 60000 |- E
e}
€
z
T 50000 1
O
'_
40000 1
0 5 10 15 20 25 30 35
Update Limit (L)
The Amounts of Data (Floyd-Warshall)
2e+07 T T T T T
'non-recoverable’ ——
18e+07 ‘recoverable’ -+
i)
< 1.6et07 R
8 Lldesor | ;
o
@ Ll2et07 ¢ 1
=
=
g 1e+07 .
<
®
g 8e+06 - .
'_
6e+06 R
4e+06 D n
0 5 10 15 20 25 30 35

Update Limit (L)

Figure 8: Overhead for Recoverable Scheme (Floyd-Warshall)

19

The Number of Page Faults (FFT)

3000 T T T T
"non-recoverable’ ——
2800 | ‘recoverable’ -+ |
2
B 2600 - 1
& \
g 2400 |} .
5 |
g i
£ 2200 i b
5 |
z !
ot 2000 1
O
'_
1800 R
1600 L L L L -
0 5 10 15 20 25 30 35
Update Limit (L)
The Number of Messages (FFT)
8500 T T T T T
"non-recoverable’ ——
‘recoverable’ -—+---
%
=
ks]
5 |
e}
€
>
Z m
8
O
'_
5500
0 5 10 15 20 25 30 35
Update Limit (L)
The Amounts of Data (FFT)
3et+07 T T T T T
"non-recoverable’ ——
‘recoverable’ -—+---
. 25et07 | :
8
a8
=1 2e+07 E
®
[a}
@ 15et07 1
=
=
g i
< 1et07 | b
E i
2 i
5e+06 | | ,
0
0 5 10 15 20 25 30 35

Update Limit (L)

Figure 9: Overhead for Recoverable Scheme (FFT)

20

The Number of Page Faults (Gauss-Jacobi)
18000 T T T T

"non-recoverable’ ——
16000 1 "recoverable’ -+ |

12000 | |

10000

Total Number of Page Faults

0 . . . :
0 5 10 15 20 25 30 35
Update Limit (L)

The Number of Messages (Gauss-Jacobi)
90000 — T T T T

| "non-recoverable’ ——
85000 ‘recoverable’ -+ |

80000 I
75000 |- |
70000 |
65000 |
60000 |
55000 [

Total Number of Messages

40000 : . .
0 5 10 15 20 25 30 35
Update Limit (L)

The Amounts of Data (Gauss-Jacobi)

1.8e+07
"non-recoverable’ ——
16e+07 ‘recoverable’ -+
1.4e+07
1.2e+07
1e+07
8e+06

6e+06

Total Amounts of Data (bytes)

2e+06 . . .
0 5 10 15 20 25 30 35
Update Limit (L)

Figure 10: Overhead for Recoverable Scheme (Gauss-Jacobi)

21

coherence protocol based on inwalidate protocol. Replicas are needed in order to ensure that two
checkpoint copies for each page always exist. The memory overhead induced by this protocol varies
with time (at least two copies are needed for each page, three copies are maintained for the modified
pages, and four copies may be needed while establishing a consistent checkpoint). After a node fails,
all nodes need to rollback to the last checkpoint.

Brown and Wu presented recoverable DSM, based on an invalidate protocol, that can tolerate single
point failure [4]. A dynamic snooper keeps a backup copy of each page and takes over if the page owner
fails. The snooper keeps track of the page contents, location of page replicas, and the identity of the
page owner. The snooper can respond on behalf of a failed owner. Our scheme also maintains at least
two copies of a page, however, the scheme is based on an update protocol, unlike [4]. Additionally, our
protocol incorporates the release consistency model, unlike the sequential consistency model used in [4]
as well as [2, 13]

Neves et al. presented a checkpoint protocol for a multi-threaded distributed shared memory system
based on the entry consistency memory model [15]. Their algorithm needs to maintain log of shared
data accesses in the volatile memory. These logs are used to reconstruct failed processes from the last
checkpoint. Fuchi and Tokoro proposed a mechanism for recoverable shared virtual memory [9]. Their
scheme maintains backup process for every primary process. When the primary process sends/receives
a message to/from another process (or writes/reads a shared memory), the primary process sends this
information to backup process so that the backup process can log the events of the primary process.
When the node of primary process fails, the backup process re-executes with the logged events from the
last checkpoint. Above two scheme are similar to our scheme in the sense that they use volatile memory
and provide recoverability from a single point of failure. However, they recover processes by a “replay”
mechanism, whereas in our scheme no replay is necessary.

Janssens and Fuchs [11] present a recoverable DSM that uses relaxed consistency models. However,
their approach is based on checkpointing, and results in a large number of checkpoints. Our approach,

on the other hand, achieves recoverability by maintaining at least two copies of each page.

6 Conclusion and Future Work

This report presented a scheme to implement a software DSM that is recoverable in the presence of a
single node failure. Qur scheme differs from the previous work in that the proposed scheme is based on
the limited update protocol, which combines the advantages of invalidate as well as traditional update
protocols. In addition, our approach is integrated with the release consistency model for maintaining
memory consistency.

In the basic limited update protocol, the number of copies of a page varies dynamically — in the

22

extreme, only one node may have a copy of the page or all nodes may have a copy of the page. Our
approach is based on the simple observation that, to make the DSM recoverable from a single failure,
it is adequate to ensure that each page has at least two copies at all times. To achieve this we suggest
a modification to the basic limited update protocol. Recovery is simple because an active back-up copy
exists for each page.

With a small number of exceptions, the previous work on recoverable DSM deals with the invalidate
protocol and sequential consistency model. The report presents a comparison of the proposed scheme
with the previous work.

Preliminary performance evaluation results indicate that the proposed scheme does not significantly
increase the number or size of messages required by an application. Additional work is necessary to

evaluate the performance of this scheme experimentally.

References

[1] J. Archibald, “A cache coherence approach for large multiprocessor systems,” in International
Conference on Supercomputing, pp. 337-345, July 1988.

[2] M. Banatre, A. Gefflaut, and C. Morin, “Tolerating node failures in cache only memory architec-
tures,” Tech. Rep. 853, INRIA, 1994.

[3] E. Brewer and C. Dellarocas, Proteus User Documentation, 1992.

[4] L. Brown and J. Wu, “Dynamic snooping in a fault-tolerant distributed shared memory,” in Sym-
postum on Distributed Computing Systems, pp. 218-226, 1994.

[5] G. Cabillic, G. Muller, and I. Puaut, “The performance of consistent checkpointing in distributed
shared memory systems,” Tech. Rep. 924, INRIA, 1995.

[6] J. B. Carter, Efficient Distributed Shared Memory Based On Multi- Protocol Release Consistency.
PhD thesis, Rice University, Sept. 1993.

[7] F. Dahlgren, M. Dubois, and P. Stenstrom, “Combined performance gains of simple cache protocol
extentions,” in Proceedings of the 21st Annual International Symposium on Computer Architecture,
pp. 187-197, Apr. 1994.

[8] S. Eggers and R. Katz, “A characterization of sharing in parallel prograns and its application to
coherency protocol evaluation,” in Proceedings of the 15th Annual International Symposium on
Computer Architecture, pp. 373-382, May 1988.

[9] T. Fuchi and M. Tokoro, “A mechanism for recoverable shared virtual memory,” 1994.

[10] G. Janakiraman and Y. Tamir, “Coordinated checkpointing-rollback error recovery for distributed
shared memory multicomputer,” in 13th Symposium on Reliable Distributed Systems, Oct. 1994.

[11] B. Janssens and W. K. Fuchs, “Relaxing consistency in recoverable distributed shared memory,”
in Proc. 23rd Int. Symp. on Fault-Tolerant Computing, pp. 155-163, 1993.

23

[12] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release consistency for software distributed shared
memory,” in Proceedings of the 19th Annual International Symposium on Computer Architecture,
pp- 13-21, May 1992.

[13] A.-M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and I. Puaut, “A recoverable distributed
shared memory integrating coherence and recoverability,” Tech. Rep. 897, INRIA, 1995.

[14] K. Li and P. Hudak, “Memory coherence in shared virtual memory systems,” ACM Transactions
on Computer Systems, vol. 7, pp. 321-359, Nov. 1989.

[15] N. Neves, M. Castro, and P. Guedes, “A checkpoint protocol for an entry consistent shared memory
system,” in Symposium on Principles of Distributed Computing, pp. 121-129, Aug. 1994.

[16] B. Nitzberg and V. Lo, “Distributed shared memory: A survey of issues and algorithms,” IFFF
Computer, vol. 24, pp. 52-60, Aug. 1991.

[17] N. Oba, A. Moriwaki, and S. Shimizu, “Top-1: A snoop-cache-based multiprocessor,” in Proc. 1990
International Phoeniz Conference on Computers and Communication, pp. 101-108, Oct. 1990.

[18] G. Richard and M. Singhal, “Using logging and asynchronous checkpointing to implement recov-
erable distributed shared memory,” in 12th Symposium on Reliable Distributed Systems, 1993.

[19] M. Stumm and S. Zhou, “Algorithms implementing distributed shared memory,” IEEE Computer,
pp- b4-64, May 1990.

[20] M. Stumm and S. Zhou, “Fault tolerant distributed shared memory algorithms,” in Proceedings of
International Conference on Parallel and Distributed Processing, pp. 719-724, 1990.

[21] V.-O. Tam and M. Hsu, “Fast recovery in distributed shared virtual memory systems,”

stum on Distributed Computing Systems, pp. 38-45, June 1990.

in Sympo-

[22] K.-L. Wu and W. K. Fuchs, “Recoverable distributed shared virtual memory: Memory coherence
and storage structures,” in Proc. 19th Int. Symp. on Fault-Tolerant Computing, pp. 520-527, 1989.

24

