
Another Two-Level Failure Recovery Scheme:Performance Impact of Checkpoint Placement andCheckpoint Latency�Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112E-mail: vaidya@cs.tamu.eduTechnical Report 94-068December 1994yAbstractThis report deals with the design and evaluation of a \two-level" failure recov-ery scheme for distributed systems. In our previous work [30, 32], we motivated a\two-level" recovery approach that tolerates the more probable failures with a lowoverhead, and less probable failures with possibly higher overhead. The two-level ap-proach can achieve a smaller overhead as compared to traditional recovery schemes.The contributions of this report are summarized below:� We present and evaluate a \two-level" recovery scheme that is suitable for a net-work of workstations, each workstation having a local disk. The recovery schemepresented in the report can tolerate transient processor failures with a low over-head, while other failures require a larger overhead. The report presents analysisof the average (expected) task completion time using the proposed scheme. Thisscheme has been implemented on a workstation cluster. Our analysis indicatesthat the proposed two-level recovery scheme can achieve better performance ascompared to existing \one-level" recovery schemes.� The report also evaluates the impact of checkpoint latency on the performance ofthe recovery scheme. To our knowledge, no analysis of the performance impactof checkpoint latency has been carried out previously.� Experimental measurements of checkpoint latency and checkpoint overhead forfour applications are presented.�References [32, 30] present material related to this report. The interested reader can obtain thesereferences via anonymous ftp from ftp.cs.tamu.edu:/pub/vaidya.yThis report was revised several times in January 1995. The purpose of these revisions was to addSections 10 and 11, and to revise Section 1. 1

1 IntroductionMany applications require massive parallelism to solve the problem in a reasonable amount oftime. Despite the increase in hardware reliability, such applications encounter a high failurerate due to large multiplicity of hardware components. In the absence of a failure recoveryscheme, the task must be restarted (from beginning) whenever a failure occurs. This leadsto unacceptable performance overhead for long-running applications. Some failure recoveryscheme must be used to minimize the performance overhead. During failure-free operation,failure recovery schemes periodically save information such as process state and messages;this information is used to recover from a failure. The performance overhead of a recoveryscheme consists of two components:� Overhead during failure-free operation (failure-free overhead), e.g., checkpointing andmessage logging.� Overhead during recovery (recovery overhead), e.g., loss of computation due to rollback.This report analyzes an approach to reduce the average performance overhead.The design principle \make the common case fast" has been successfully used indesigning many components of a computer system (e.g., cache memory, RISC [18]) andsome aspects of checkpointing and rollback [21, 36]. However, the designers of distributedrollback recovery schemes have largely ignored this guideline. In any system, some failurescenarios have a greater probability of occurring as compared to other failure scenarios.In the context of failure recovery, the \common case" consists of the more probable failurescenarios. The above guideline suggests that a recovery scheme should provide low-overheadprotection against more probable failures, providing protection against other failures with,possibly, a higher overhead. We refer to recovery schemes having this capability as two-levelrecovery schemes. This approach can be generalized to multi-level recovery [30]. It wasrecently brought to our attention [2] that, for transaction-oriented systems, Gelenbe [8]previously proposed an approach similar to the multi-level recovery approach. Gelenbe'swork is summarized in Section 11.Most existing recovery schemes are \one-level" in the sense that their actions duringfailure-free execution are designed to tolerate the worst case failure scenario. For example,the traditional consistent checkpointing algorithms are designed to tolerate simultaneousfailure of all components in the system [11, 20]. The two-level recovery approach can achievelower overhead than one-level schemes by di�erentiating between the more probable failuresand the less probable failures.Previously, we demonstrated that, it is often advantageous to use two-level recoveryschemes as compared to traditional one-level recovery schemes [30, 32]. In this report wepresent design and analysis of a new two-level recovery scheme. Also, the report summarizes2

the two-level recovery scheme analyzed in our previous work [30, 32]. This report achievesthree objectives:� The report carries out a detailed analysis of the proposed two-level recovery schemeand presents performance results. It demonstrates that two-level recovery can achievea better performance than a one-level recovery scheme. Although a large number ofresearchers have analyzed checkpointing and recovery [3, 6, 7, 9, 10, 12, 13, 17, 22,25, 26, 28, 33, 34], to our knowledge, except for Gelenbe [8], no analysis of two-levelrecovery schemes has been attempted by other researchers.� Another objective of this report is to analyze the impact of checkpoint latency on theperformance of the recovery schemes. Checkpoint latency is the duration of time ittakes to establish a checkpoint. For example, if a consistent checkpoint of a distributedsystem is initiated at time t1 and completed at time t2, then checkpoint latency is(t2 � t1).Checkpoint overhead is the increase in the execution time of an application due to acheckpoint. In simple-minded implementations of checkpointing, checkpoint latencyequals the checkpoint overhead. However, in some (more e�cient) implementations,checkpoint latency is much larger than the checkpoint overhead (e.g., copy-on-write[15]). In this report, we study the impact of checkpoint latency on the average perfor-mance overhead. To our knowledge, there has not been any previous work on modelingand analysis of checkpoint latency.Terminology: Plank [20] uses the term checkpoint time to denote what we callcheckpoint latency. Plank uses the term checkpoint latency to mean something else.Note: As will be elaborated in Section 10, it turns out that checkpoint latency cansometimes be smaller than checkpoint overhead. This is somewhat counter-intuitive.However, in any viable implementation of checkpointing, latency will be at least aslarge as the overhead. Therefore, in the analysis, we do not consider the case wherecheckpoint latency is smaller than checkpoint overhead.� The report presents experimental measurements of checkpoint latency and checkpointoverhead for four applications. (The proposed two-level scheme has been implementedon a network of workstations.)This report is organized as follows. Section 2 summarizes a two-level scheme that wehad proposed previously. Section 3 presents the system model used in designing the two-level checkpointing scheme proposed in this report. The proposed checkpointing scheme isdiscussed in Section 4. Section 5 discusses the recovery algorithm. Performance analysis ofthe proposed scheme is discussed in Section 7. Section 8 presents some numerical results toillustrate the bene�t of the proposed approach. Impact of checkpoint latency is analyzedin Section 9. Section 10 discusses an experimental implementation of the proposed scheme.Related work is discussed in Section 11. The report concludes with Section 12.3

2 Brief Description of a Two-Level Scheme [30, 32]This section summarizes a two-level recovery scheme that was proposed and analyzed pre-viously [30, 32]. This two-level recovery scheme is useful in an environment consisting ofdisk-less workstations that can access a stable storage over the network. In the environmentunder consideration, small number of failures are more probable than a large number offailures. Speci�cally, single processor failures are more probable than all other failure sce-narios. The two-level recovery scheme consists of two components , one component recoveryscheme designed for single failure tolerance, and the second component scheme designed fortolerating all other failure scenarios. For this scheme, it is assumed that a single process isscheduled on each processor.1 (This assumption is not necessary for the scheme proposedand analyzed later in this report.) The two component recovery schemes are summarizedhere:� The �rst component is the single process failure tolerance scheme presented in [1]. Inthis scheme, the processes periodically take checkpoints (which need not be consistentwith each other). The checkpoint of a process can be saved in any volatile storageexcept that of its own processor. The messages are saved by their senders in theirvolatile storage.This component scheme is capable of tolerating only a single failure. To tolerate asingle failure, the faulty process is rolled back to its previous checkpoint (which issaved on a non-faulty processor). Subsequently, the messages that the faulty processhad received before failure are re-sent to recover its state. These messages are availablein the volatile memory of the message senders.If a second failure occurs before the system has recovered from the �rst failure, it ispossible that the system may not be able to recover from the failure.We refer to the checkpoints taken by this component scheme as 1-checkpoints, as theyare useful to recover from single failures only. A checkpoint interval is the durationbetween two adjacent checkpoint. For this scheme, the failure-free overhead per check-point interval is denoted by C1. C1 is the increase in the execution time of a checkpointinterval due to the use of this recovery scheme.� The second component recovery scheme periodically saves consistent 2 checkpoints onthe stable storage. To establish the checkpoint, the processes coordinate with eachother and ensure that their states saved on the stable storage are consistent with eachother. Such a checkpoint is useful to recover from an arbitrary number of failures.1This limitation can be eliminated using the single processor failure tolerance scheme presented in [31]instead of a single process failure tolerance scheme, as described below.2A consistent checkpoint consists of one checkpoint per process such that a message sent after the check-point of one process is not received by another process before taking its checkpoint [4, 11].4

Therefore, these checkpoints are called N-checkpoints. For this component scheme, thefailure-free overhead per checkpoint interval is denoted by CN .Volatile storage access is cheaper than accessing the shared stable storage. Therefore,C1 is expected to be smaller than CN .The two-level recovery scheme consists of the above two components [30, 32]. Thetwo-level scheme takes 1-checkpoints more frequently and N -checkpoints less frequently. Asthe 1-checkpoints are taken more frequently, recovery overhead for a single processor failureis smaller. Also, overhead of taking 1-checkpoints is lower than that of N -checkpoints. Asdemonstrated in [30, 32], the two-level scheme can achieve better performance as comparedto either component recovery scheme.To further clarify the concept of two-level recovery, the tables below present an anal-ogy of the two-level recovery scheme with cache memory organizations.Cache and main memory (two-level) hierarchyaccess type served by latencyaddress in cache cache smalladdress not in cache main mem. largeaverage access latency = small Two-level recovery schemefailure scenario failure tolerated by overheadsingle failure 1st component scheme smallother 2nd component scheme largeaverage performance overhead = smallZiv and Bruck [36] present a checkpointing and rollback scheme for duplex systems,that also takes two types of checkpoints, similar to the above two-level scheme. Section 11discusses their scheme.The rest of this report presents another two-level recovery scheme and its perfor-mance evaluation. The next section discusses the system model assumed while designingthe proposed two-level recovery scheme.3 System ModelThe system architecture is illustrated in Figure 1. The system is assumed to consist of Nprocessors. Each processor may execute one or more processes. Each processor has accessto a memory (such as a RAM) and a local storage (such as a disk), and it can also accessa stable storage over the network. (More than one stable storage may also be accessible.)Accessing the local storage incurs less overhead as compared to the stable storage, as thestable storage access is made over the network.Memory and local storage are both accessible to the processor locally, i.e., withoutgoing over the network. Thus, one can potentially consider the memory and the local storagetogether as a single locally accessible storage. The reason for separating the locally accessiblestorage into two types (i.e.,memory and local storage) is that the failure of a processor always5

storage
local

storage
local

storage
local

processor & memoryprocessor & memoryprocessor & memory processor & memory

communication network

stable

storagestorage

stable Figure 1: System Architectureresults in the loss of memory contents, but not necessarily in the loss of local storage contents.We will address this issue again shortly.The above architecture is suitable for workstation clusters, where each workstationhas a memory (RAM), a local storage (a local disk), and each workstation can also access astable storage by going over the network.Alternate architectures: The discussion in this report often refers to a systemconsisting of workstations with local disks. However, the above model and the analysis inthis report is also applicable to any system where a processor has a local access to twotypes of memory storages, such that failure of one memory storage is weakly correlated (oruncorrelated) with that of the processor. Thus, both the storages may be RAMs, but oneof them may be on the same card as the processor, and another on a di�erent card. If theprobability of correlated failure of the two cards is small, then the scheme proposed in thereport is useful for this system.Failure ModelIn this report, we consider only fail-stop failures [24]. We �rst describe the failure modelassumed in this report, followed by another failure model that may be applicable to somesystems. The analysis presented in the report assumes the �rst model, however, the analysisis applicable to the second model with a minor modi�cation.A processor is subject to transient as well as permanent failures. Failure of a processorresults in the loss of its memory contents, however, it does not cause a failure of its localstorage. Thus, the contents of the local storage can survive the failure of the associatedprocessor. The local storage, however, is not a stable storage.A local storage is also subject to transient and permanent failures. Failure of the localstorage corrupts the information stored on the local storage. Subsequent to a transient fail-ure, the local storage can still be written to, though the data stored before the failure is lost.6

Subsequent to a permanent failure, the local storage cannot be accessed. This necessitatesthat the processes on the corresponding processor be moved to another processor. It turnsout that, for the purpose of our analysis, there is no need to di�erentiate between transientand permanent failure of a local storage. Note that to be able to access the local storage of aprocessor, the processor itself must be operational. Permanent failure of a processor makesits local storage inaccessible to other processors.We assume that the failure (transient or permanent) of a local storage always crashesthe associated processor. This assumption is quite accurate in the case of workstations.The local disk of a workstation often stores swapped out process memory, temporary �lesaccessed by an application as well as many �les that are accessed by the operating system.Failure of the local disk is, therefore, likely to crash the system. When the above assumptiondoes not hold, our analysis can be revised to reect the accurate system model.Failures of the N processors are independent of each other, similarly the local storagefailures are independent of each other. Let the inter-failure interval for a processor begoverned by an exponential distribution with mean 1=�p. The probability that a processorfailure is permanent is denoted by p, (1 � p) being the probability that a processor failureis transient. Let the time interval between detection of consecutive local storage failures begoverned by an exponential distribution with mean 1=�l. Let � denote �p+�l. It is expectedthat, in practice, transient processor failures will be more probable than permanent processorfailures or local storage failures.In the event of a permanent processor failure or any local storage failure, the processscheduled on that processor must be rescheduled on another processor. This overhead isincluded in the overhead of rollback. We discuss the various overheads in more detail, in thefollowing.Alternate failure model: As noted above, a permanent processor failure makes its localstorage inaccessible to other processors. In some systems, it is possible that a transientfailure of the processor may also cause a correlated local storage failure. In such systems,de�ne r as the probability that a processor failure either makes the local storage inaccessibleor causes a correlated local storage failure. It is clear that r � p. The analysis presentedhere becomes applicable to this model if p is replaced by r in all the expressions derived inthe report.4 Checkpointing SchemeThe processes periodically take consistent checkpoints using some consistent checkpointingalgorithm, for example, Chandy-Lamport [4]. (For uni-process applications, trivially, anycheckpoint of the process is a \consistent" checkpoint.) The consistent checkpoints areassumed to be equidistant. (In practice, the checkpoints will not be exactly equidistant,7

but can be made approximately equidistant.) Every k-th consistent checkpoint is stored onthe stable storage, all other checkpoints being stored on local storages. No checkpoint istaken at the beginning or at the completion of the task. We use the term local checkpoint torefer to a checkpoint that is stored on a local storage. Similarly, the term stable checkpointrefers to a checkpoint that is stored on the stable storage. Figure 2 illustrates local andstable checkpoints for k = 3. The horizontal line depicts task execution. Observe thatcheckpoints CP3, CP6 and CP9 are stable checkpoints, while the other checkpoints are localcheckpoints. (In this �gure, we assume that checkpoint overhead and latency are identical,this assumption will soon be relaxed.)
Failure-free execution of an example task
with execution time of 11 T

k = 3
T T

stable checkpoint

local checkpoint

Task endsTask begins

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 CP10

time

Figure 2: Local and stable checkpointsThe checkpointing operation incurs some overhead (e.g., messages required for es-tablishing consistency, overhead in saving the state on the storage, etc.). Let the overheadin taking a local checkpoint be Cl. This implies that if the application takes one consistentcheckpoint, where each processor stores its state on the local storage, then the total execu-tion time of the task will be increased by Cl. Similar to Cl, let the overhead in taking astable checkpoint be Cs. In most systems, one would expect Cl to be signi�cantly smallerthan Cs.It is clear that, in practice, Cl is likely to be di�erent for di�erent checkpoints.However, in this analysis we assume Cl to be the average overhead of a local consistentcheckpoint.3 We use averages for some other parameters as well (including Cs).Another parameter that may a�ect performance is the checkpoint latency. Checkpointlatency is the duration, from the instant at which a checkpoint operation is initiated, till theinstant when the checkpoint operation is completed. Checkpoint overhead is the increase inthe execution time of the application due to a checkpoint operation. Checkpoint latency isusually at least as large as the checkpoint overhead. (As stated in Section 1, our analysisdoes not consider implementations where the latency is smaller than checkpoint overhead.)3Our assumption is similar to [10]. Some researchers [7] assume that the checkpoint overhead is exponen-tially distributed, though, to our knowledge there has been no experimental justi�cation of this assumption.8

For many implementations of checkpointing (e.g., copy-on-write), checkpoint latency is largerthan the checkpoint overhead.4 Let the checkpoint latency for a local checkpoint be Ll andthat for a stable checkpoint be Ls. Note that a checkpoint is an image of the system stateat the beginning of the latency period.For the purpose of the analysis, it will su�ce to assume that all the overhead of acheckpoint is incurred at the start of the checkpoint latency period. This is illustrated inFigure 3. As shown in the �gure, we will assume (without loss of correctness in the analysis)that the �rst Cl time units, during latency Ll of a local checkpoint, are spent in savingthe state on local storage, while the remaining Ll � Cl time units are spent doing usefulwork. However, the checkpoint is not considered to have been established until the end ofthe checkpoint latency period. (We will return to this issue when discussing recovery.)
overhead C l of a

latency L l of a

overhead C s of a

latency L s of a

stable checkpoint

local checkpoint stable checkpoint

checkpoint considered to be "established"
at this point in time

local checkpointFigure 3: Checkpoint latency and checkpoint overheadMeasurements: The proposed checkpointing scheme has been implemented on a networkof workstations. Results of its experimental evaluation are included in Section 10. As theanalysis is independent of the implementation details, we defer discussion of the experimentalmeasurements until Section 10.5 Recovery AlgorithmWhen a failure occurs, the system recovers by rolling back to a previous checkpoint. Thechoice of checkpoint to be used (to rollback) depends on what is faulty and the timing of thefailure. Failures can occur during normal operation, during checkpointing or during recovery.(A failure can occur before the system has recovered from a previous failure.) Recovery is4Example: In some implementations, when a process wants to take a checkpoint, it forks a child process[19]. The child process saves the state (which is identical to the parent process' state when it executed fork),while the parent process continues to perform computation. With this approach, the child process requiresa longer duration of time to save the state, as compared to the overhead incurred by the parent process.9

initiated immediately after a processor failure or a local storage failure is detected. Thefollowing three cases of failures are possible.Case 1: A processor has a transient failure: In this case, the failure is recovered by rollingback to the most recent checkpoint (which may be a local or a stable checkpoint), as shownin Figure 4. When a processor has a transient failure, its local storage contents are notcorrupted, therefore, the local checkpoint can be used for recovery. Note that a transientprocessor failure any time during the checkpoint latency period requires a rollback to theprevious checkpoint. For example, in Figure 4(b), a processor fails during the latency periodfor checkpoint CP2. As checkpoint CP2 is not established by the time of failure, to recoverfrom the failure, the processors must roll back to checkpoint CP1.
a transient
processor
failurecheckpoint checkpoint

CP1 CP2

rollback to checkpoint CP1

(b)(a)

checkpoint
CP1

rollback to checkpoint CP1

a transient
processor
failure

timetime

Figure 4: Case 1: A processor has a transient failureCase 2: A processor has a permanent failure: In this case, the local storage of the faultyprocessor is inaccessible, as the processor failure is permanent. Thus, the system cannot rollback to the previous local checkpoint, and recovery requires that the processors roll back tothe most recent stable checkpoint. This is illustrated in Figure 5. (If no stable checkpointis established before the failure, then the task must be restarted from the beginning.) Asnoted earlier, if a failure occurs during the checkpoint latency period for a checkpoint, sayCP, then checkpoint CP cannot be used for recovery. Figure 5(b) illustrates this.Case 3: A local storage has a failure (transient or permanent): In this case, failure of thelocal storage will also crash the corresponding processor. To recover from this failure, theprocessors must rollback to the most recent stable checkpoint (because a local checkpointcannot be recovered). The recovery in case 3 is identical to that in case 2 above.In cases 2 and 3 both, the processors roll back to the most recent stable checkpoint.Whenever a rollback to the stable checkpoint occurs, a fault-free processor loads its statefrom the stable storage. The state of the faulty processor and the executable both mustbe loaded to a new processor (if the failure is permanent) or to the same processor (if thefailure is transient). In both cases, the overhead is likely to be identical.10

a stable a local
checkpoint checkpoint

rollback to recent
stable checkpoint

when the failure occurred

a permanent
processor failure

checkpoint
 CP

(b)

timerollback to recent
stable checkpoint

a stable
checkpoint

a permanent
processor failurea local

checkpoint

(a)

this checkpoint is not established

Figure 5: Case 2: A processor has a permanent failure6 Some TerminologyComputation performed between two consecutive consistent checkpoints is called a checkpointinterval. Let the total number of checkpoint intervals during the execution of the task be �.Thus, a total of (� � 1) consistent checkpoints will be taken (no checkpoint is taken at theend of the last checkpoint interval). Every k-th consistent checkpoint is stored on the stablestorage. Thus, of the (��1) checkpoints, b(��1)=kc checkpoints will be stable checkpoints,and the remaining checkpoints will be local checkpoints.Two extreme cases occur when k = 1 or k = �. When k = 1, all the consistent check-points are stable checkpoints { this corresponds to traditional implementations of consistentcheckpointing (e.g. [5]). When k = �, the recovery scheme takes only local checkpoints. Inthis case, if a permanent processor failure or a local storage failure occurs, the applicationmust be restarted from the beginning.As shown in Figure 6, some portion of a checkpoint interval is spent during thecheckpoint latency period for the checkpoint preceding the checkpoint interval. The onlyexception to this is the �rst checkpoint interval, as there is no checkpoint taken at thebeginning of the task.Length of a task (application) is the execution time of the task in a failure-free en-vironment (without using any recovery scheme). Length of the task is denoted by �. Thelength of each checkpoint interval is identical, and is denoted by T . Length of the task � is11

latency period
checkpoint and its
denotes a local

denotes a stable
checkpoint and its
latency period

T

checkpoint intervals (a part of the checkpoint interval overlaps with latency period of the previous checkpoint)

T T

segment 1 segment 2 segment 3

 (type 1) (type 2) (type 3)
task
begins

task
endsFigure 6: Failure-free execution of an example taskan integral multiple of T , speci�cally, T = �=� (where � is an integer). However, length ofthe task is not necessarily an integral multiple of kT .The time required to perform a rollback to a stable checkpoint is denoted by Rs.(This does not include the time required for re-execution.) Similarly, the time required toperform a rollback to a local checkpoint is denoted by Rl. Rs will be typically larger thanRl, for two reasons: (i) rolling back to a stable checkpoint requires checkpoint transfers overthe network, (ii) rolling back to a stable checkpoint requires loading of the executable codeof any faulty processes.Similar to the checkpoint overhead, the rollback overhead is likely to be di�erent fordi�erent checkpoints. However, in this analysis we assume them to be constant (essentially,Rl and Rs denote the average rollback overheads).The number of checkpoint intervals � may not be an integral multiple of k. Thisimplies that the number of checkpoint intervals after the last stable checkpoint may be lessthan k. The number of checkpoint intervals between two consecutive stable checkpoints isalways k. For example, in Figure 6, length of the task is 8T and k = 3. Therefore, thecomputation time between adjacent stable checkpoints is 3T . However, the computationtime from the last stable checkpoint to the completion of the task is 2T .The execution of the task is divided into certain number of segments. A segmentterminates either with a stable checkpoint or with the completion of the task. For example,in Figure 6, the task is divided into three segments. Segments 1 and 2 terminate withstable checkpoints, whereas segment 3 terminates with task completion. The segments aredivided into three types. The �rst segment of the task is of type 1, the last segment of thetask is of type 3, and all other segments in the middle are of type 2. A type 1 segmentbegins at the start of the task, and ends when the �rst stable checkpoint is established.12

Recall that a checkpoint is said to be established only at the end of the checkpoint latencyperiod. Thus, for a checkpoint to be established, the task must execute the latency periodonce. (Part of the computation in the latency period may be repeated if a failure occursafter establishing the checkpoint.) A type 2 segments begins immediately after a stablecheckpoint is established and ends when the next stable checkpoint is established. A type3 segment begins after the last stable checkpoint is established and ends when the task iscompleted. The example task in Figure 6 has 3 segments. In general, a task contains d�=kesegments.Note: A degenerate case occurs when the task contains only one segment. In this case, nostable checkpoints are taken during the execution of the task. This segment neither beginsnor ends with a stable checkpoint. Such a segment is said to be a type 4 segment.Re-execution time: Consider a failure that can be tolerated by rolling back to a certaincheckpoint CP. If the failure is detected when t time units of computation was performedafter checkpoint CP, then it is assumed that t units of execution is required to re-do the lostcomputation (in absence of further failures), excluding checkpoint overhead. In the past,many researchers have assumed (e.g., [3]) that the time required to re-do the computationis � t for some constant �. Thus, we assume � = 1 here. This assumption is reasonable forparallel applications of interest. Our analysis can be easily revised when � 6= 1.7 Performance AnalysisThe performance metric of interest here is the average overhead of the recovery scheme. Let� denote the time required to complete the task using the given recovery scheme. Then,E(�) is the expected (or average) task completion time. The average overhead is evaluatedas a fraction of � (task length). Speci�cally, average overhead is de�ned asE(�)� � 1Average percentage overhead is obtained by multiplying the average overhead by 100. (Wewill denote the expected or average value of any random variable x as E(x).)This section presents an analysis of the average overhead. The results of the analysishave been veri�ed using simulations. The simulation results are within less than 1% of theanalytical results, therefore, the simulation results are not presented separately.The average overhead can be obtained once we know the average execution timeE(�). To evaluate E(�), we �rst evaluate average execution time for each segment and thenadd them to obtain E(�). Recall that the task contains d�=ke segments. Let Si denote the13

execution time for the i-th segment. Then,E(�) = d�=keXi=1 E(Si):The analysis of the average execution time of a segment is somewhat di�erent for the seg-ments of the four types. In this report, we present detailed analysis for type 2 segments, theother segments can be analyzed similarly (as elaborated later).7.1 Average Execution Time of a Type 2 SegmentRecall that a type 2 segment begins after a stable checkpoint is established, and ends whenthe next stable checkpoint is established. During the execution of the segment, (k� 1) localcheckpoints are also established. Figure 7 illustrates the execution of a type 2 segment,assuming k = 3. Figure 7(a) illustrates a failure-free execution. Observe that, in the absenceof a failure, the computation performed before the �rst checkpoint in the segment requires(T � Ls + Cs) time units (as shown in the �gure). (Note: Ls � Cs units of computation inthe �rst checkpoint interval of the segment is performed during the latency period of theprevious stable checkpoint.) The meaning of the various states in the �gure will be explainedlater. Figure 7(b) illustrates an execution of the segment where three failures occur. The�rst failure is a transient processor failure, and it occurs soon after the segment beginsexecution. The transient processor failure requires a rollback to the recent checkpoint, whichhappens to be a stable checkpoint. The rollback incurs an overhead of Rs. After the rollback,T units of computation is required before the next checkpoint can be initiated. (Note: Afterthe rollback, the Ls � Cs units of computation performed during the latency period of theprevious checkpoint must also be repeated.) The second failure is also a transient processorfailure. This failure is tolerated by rolling back to the most recent checkpoint, which happensto be a local checkpoint. This rollback incurs an overhead of Rl time units. The third failureis a local storage failure. This failure necessitates a rollback to the stable checkpoint at thestart of the segment. No failure occurs after this rollback. (The next section explains themeaning of various states in Figure 7.)7.1.1 Markov Chain for the Execution of a Type 2 SegmentTo evaluate the expected execution time of the task, we construct a �nite-state Markovchain [27]. Markov chains have been used for evaluating expected execution time by Zivand Bruck also [35]. The procedure for constructing the Markov chain is presented later, we�rst present some preliminaries. The Markov chain has an unique start state and an uniqueabsorbing state. For a given k, the Markov chain contains 2k + 1 states. A state transition14

LsRs+T

T

rollback to recent rolback to recent rollback to recent
(stable) checkpoint (local) checkpoint stable checkpoint

segment begins segment ends

state
 0 state 0’ 1 state 1’ 2 state 0’ state 1 state 2

state state

denotes rollback
(state 3)

R +T+Lll lRs+T+L

denotes a failure

(b) an execution with three failures

T-Ls+Cs LsCs

segment
begins

segment
ends

(state 3)

state 0 state 1 state 2

T-Ls+Cs+L l

(a) failure-free execution

T+Cl
Ls

Figure 7: Execution of a type 2 segment: k = 315

probability is associated with each state transition in the Markov chain. In addition, wealso associate a weight with each transition. Weight of a transition from state X to state Yequals the expected (average) time spent in state X before making the transition to stateY . The probability of a transition from state X to state Y is denoted as PXY and thecorresponding weight is denoted as WXY .The analysis for k = 1 and k > 1 has a few minor di�erences. In the following, wefocus on k > 1. Figure 8 illustrates the Markov chain for k > 1. The Markov chain contains(2k + 1) states named 0, 0', 1, 1', ..., i, i', ..., (k � 1), (k � 1)', k. (There is no state k'.)State k is the absorbing state. The transitions out of the other states are as follows: Fromstate i (0 � i < k), transitions can occur to states i', i + 1 and 0'. Similarly, from state i'(0 � i < k) transitions can occur to states i', i+ 1 and 0'.A state i is reached when the i-th checkpoint after the start of the segment is es-tablished. State i' is reached when a rollback to the i-th checkpoint occurs. (As the k-thcheckpoint is the last checkpoint of the segment, we do not account for rollback to the k-thcheckpoint when evaluating the execution time of this segment. These rollbacks will betaken into account when evaluating the execution time of the next segment of the task.Therefore, there is no need for a state named k'.) If a transient processor failure occurswhile in state i, then a transition is made to state i' (because the system rolls back to thei-th checkpoint taken since the start of the segment). If a permanent processor failure or alocal storage failure occurs while in state i, then a transition is made to state 0' (becausethe system rolls back to the stable checkpoint at the start of the segment). Figure 7 showsthe states entered during two executions of an example task.
0 1 k

 0’ 1’ i’(i-1)’ (i+1)’

k-1i+1ii-1
start

(k-1)’

state
absorbing

Figure 8: Markov chain for k > 016

Note that there are no transitions out of state k. States 0 and 0' di�er from theother states because the most recent checkpoint accessible while in states 0 and 0' is a stablecheckpoint (refer Figure 7). For all other states, the most recent checkpoint accessible whilein those states is a local checkpoint. Similarly, states (k�1) and (k�1)' di�er from the otherstates because, in the absence of a failure, the checkpoint established after entering states(k � 1) and (k � 1)' is a stable checkpoint. For all other states, the checkpoint establishedafter entering the states is a local checkpoint. Therefore, the states are divided into foursets: (a) states i and i', 0 < i < k � 1, (b) states 0 and 0', (c) states (k � 1) and (k � 1)',and (d) absorbing state k. We �rst consider states i and i', where 0 < i < k� 1, and obtainthe transition probabilities and weights for the transitions out of these states.Transition from state i to state (i+1) : State i is entered when the i-th local checkpoint(0 < i < k � 1) after the start of the segment is established. The system makes a transitionfrom state i to state (i + 1) when the next checkpoint is established without any failureoccurring after entering state i. In the absence of failures, T + Cl units of time5 is spent instate i before entering state i+1 (e.g., refer state 1 in Figure 7(a)). Therefore, the probabilityof the transition from state i to (i + 1) is equal to the probability that no failure occursduring T + Cl units of execution. Thus, Pi(i+1) = e�N�(T+Cl). (Recall that � = �p + �l.)The weight (Wi(i+1)) of this transition is equal to T + Cl, as T + Cl units of time isrequired to reach state (i+ 1) after entering state i, if no failure occurs.Transition from state i to state i' : This transition takes place when a transientprocessor failure occurs after entering state i, but before the next checkpoint is established.The probability of this transition is equal to the probability that a failure occurs duringT + Cl units of execution and that the failure is a transient processor failure. Thus,Pii0 = (1 � e�N�(T+Cl)) (1� p)�p�p + �l = (1 � Pi(i+1)) (1� p)�p�The weight of this transition is equal to the expected time spent in state i, until atransition to state i' is made. The probability density function (pdf) for the time to failure,given that a transient processor failure has occurred within T +Cl units and given that thetransient processor failure occurred before a permanent processor failure or a local storagefailure could have occurred, is given by N�e�N�t1� e�N�(T+Cl)5Of the T +Cl time units, T � Ll +Cl is spent in executing the (i + 1)-th checkpoint interval and Ll inlatency period of the (i + 1)-th checkpoint. Of the latency period Ll, Ll � Cl is spent executing a part ofthe (i + 2)-th checkpoint interval. 17

This pdf turns out to be identical to the pdf for the time to failure, given that a failure hasoccurred within T +Cl units (the type of failure is unspeci�ed). Now that we know the pdf,it follows thatWii0 = Z T+Cl0 (t) N�e�N�t1� e�N�(T+Cl)dt = (N�)�1 � (T + Cl)e�N�(T+Cl)1 � eN�(T+Cl) = (N�)�1 � T + CleN�(T+Cl) � 1At a �rst glance, it may seem counter-intuitive that the above expression contains � (=�p + �l) and not just �p. However, note that a transition is made to state i' only if atransient processor failure occurs before a local storage or permanent processor failure canoccur. Therefore, weight Wii0 is a function of �p as well as �l.Transition from state i to state 00 : This transition takes place when a permanentprocessor failure or a local storage failure occurs after entering state i, but before the nextcheckpoint is established. The probability of this transition is equal to the probability that afailure occurs during T +Cl units of execution and that the failure is a permanent processorfailure or a local storage failure. Thus,Pi00 = (1� e�N�(T+Cl)) p�p + �l�p + �l = (1� Pi(i+1)) p�p + �l� = 1 � Pi(i+1) � Pii0The weight (Wi00) of this transition is identical to Wii0 obtained above.The transitions out of state i' are similar to those out of state i. Recall that presentlywe assume 0 < i < k � 1 and k > 1.Transition from state i' to state (i+1) : The probability of this transition is equal tothe probability that no failure occurs during Rl+ T +Ll units of execution (e.g., refer state1' in Figure 7(b)). Thus, Pi0(i+1) = e�N�(Rl+T+Ll).The weight (Wi0(i+1)) of this transition is equal to Rl + T + Ll, as Rl + T + Ll unitsof time is required (in state i) before the next local checkpoint is established, provided nofailure occurs.Transition from state i0 to state i' : Probability of this transition is equal to theprobability that a failure occurs during Rl + T + Ll units of execution and that the failureis a transient processor failure. Thus,Pi0i0 = (1� e�N�(Rl+T+Ll)) (1 � p)�p�p + �l = (1� Pi0(i+1)) (1 � p)�p�18

The weight of this transition is equal to the expected time spent in state i0, until a transitionback to state i' is made. It can be seen thatWi0i0 = Z Rl+T+Ll0 (t) N�e�N�t1 � e�N�(Rl+T+Ll)dt = (N�)�1 � Rl + T + LleN�(Rl+T+Ll) � 1Transition from state i0 to state 00 : This transition takes place when a permanentprocessor failure or a local storage failure occurs after entering state i0, but before the nextlocal checkpoint is established. The probability of this transition is equal to the probabilitythat a failure occurs during Rl+T+Ll units of execution and that the failure is a permanentprocessor failure or a local storage failure. Thus,Pi000 = (1� e�N�(Rl+T+Ll)) p�p + �l�p + �l = (1� Pi0(i+1)) p�p + �l� = 1� Pi0(i+1) � Pi0i0The weight (Wi000) of this transition is identical to Wi0i0 obtained above.Transition probabilities and weights for the transitions out of states 0, 0', (k�1) and(k � 1)' can be obtained similarly, as summarized below. (Recall that, at present, we areanalyzing a type 2 segment with k > 1.)P01 = e�N�(T�Ls+Cs+Ll) W01 = T � Ls + Cs + LlP000 = 1� P01 W000 = (N�)�1 � T�Ls+Cs+LleN�(T�Ls+Cs+Ll)�1P001 = e�N�(Rs+T+Ll) W001 = Rs + T + LlP0000 = 1� P001 W0000 = (N�)�1 � Rs+T+LleN�(Rs+T+Ll)�1P(k�1)k = e�N�(T�Ll+Cl+Ls) W(k�1)k = T � Ll + Cl + LsP(k�1)(k�1)0 = (1 � P(k�1)k) (1�p)�p� W(k�1)(k�1)0 = (N�)�1 � T�Ll+Cl+LseN�(T�Ll+Cl+Ls)�1P(k�1)00 = 1� P(k�1)k � P(k�1)(k�1)0 W(k�1)00 = W(k�1)(k�1)0P(k�1)0k = e�N�(Rl+T+Ls) W(k�1)0k = Rl + T + LsP(k�1)0(k�1)0 = (1 � P(k�1)0k) (1�p)�p� W(k�1)0(k�1)0 = (N�)�1 � Rl+T+LseN�(Rl+T+Ls)�1P(k�1)000 = 1 � P(k�1)0k � P(k�1)0(k�1)0 W(k�1)000 = W(k�1)0(k�1)07.1.2 Evaluating the expected segment completion timeTo evaluate the expected time required to execute a segment of type 2, we �rst reduce thenumber of states in the above Markov chain. Then, we evaluate the expected number ofentries into each state in the Markov chain. The expected segment completion time can beevaluated using the expected number of entries, as elaborated below.The �rst step is is to reduce the number of states by merging states i and i' for1 � i � k � 1. The new Markov chain is shown in Figure 9 (recall that k > 1). State19

0

0’

1 i k-1 k2
start Figure 9: Reducing the number of statesi, 1 � i � (k � 1) in the new Markov chain is obtained by merging states i and i' in theoriginal Markov chain. (States 0 and 0' are not merged.)Let Qab denote the state transition probability for the transition from state a to stateb in the new Markov chain. Also, let Vab denote the weight of the transition from state a tostate b in the new Markov chain in Figure 9. Then, it can be seen that,Q01 = P01 V01 =W01Q000 = P000 V000 = W000Q001 = P001 V001 = W001Q0000 = P0000 V0000 = W0000To obtain Qi(i+1) and Vi(i+1) (1 � i � (k � 1)) observe that, in Figure 8, state (i + 1) canbe reached from state i by two paths which do not go through state 0'. The �rst path issimply the direct transition from state i to i+ 1. The other path includes a transition fromstate i to i' and then a transition from state i' to i+ 1. Note, however, that once state i' isreached, on average, Pi0i0=(1�Pi0i0) transitions are made back to i' before a transition out ofstate i' occurs. Based on these observations the following expressions for Qi(i+1) and Vi(i+1)are obtained. Similar observations also lead to the following expressions for Qi00 and Vi00.Also, for 1 � i � (k � 1)Qi(i+1) = Pi(i+1) + Pii0Pi0(i+1)Pi0(i+1) + Pi000Vi(i+1) = Wi(i+1)Pi(i+1) + (Wii0 +Wi0i0Pi0i0=(1 � Pi0i0) +Wi0(i+1))� Pii0Pi0(i+1)Pi0(i+1)+Pi000�Pi(i+1) + Pii0Pi0(i+1)Pi0(i+1)+Pi000Qi00 = Pi00 + Pii0Pi000Pi0(i+1) + Pi000Vi00 = Wi00Pi00 + (Wii0 +Wi0i0Pi0i0=(1� Pi0i0) +Wi000)� Pii0Pi000Pi0(i+1)+Pi000 �Pi00 + Pii0Pi000Pi0(i+1)+Pi00020

The next step is to calculate the expected (average) number of entries into each stateof the Markov chain in Figure 9. Let Ns denote the expected number of entries into states. Clearly, N0 = Nk = 1. The other Ns's can be obtained using standard techniques [27], asfollows.N00 = Q000 +Q01Q100 + � � � +Q01Q12 � � �Q(k�2)(k�1)Q(k�1)00Q001Q12Q23 � � �Q(k�1)k = Q000 +Pk�1n=1 ��n�1j=0Qj(j+1)�Qn00Q001 �k�1j=1Qj(j+1)For 1 � i � (k � 1)Ni = 1Qi(i+1)Q(i+2)(i+3) � � �Q(k�1)k = 1�k�1j=iQj(j+1)The expected number of times a transition (a; b), from state a to state b, is takencan be obtained as QabNa. Then, the expected (average) segment completion time can beobtained as X(a;b)Vab Qab Nawhere, the summation is over all transitions in the Markov chain in Figure 9.As elaborated below, analysis of the segments of type 1, 3 and 4 is similar to theabove analysis of a type 2 segment. Once we know the expected execution time for eachsegment of the task, the expected task completion time can be obtained by summing theexpected completion time for all the segments of the task.7.2 Average Execution Time of a Type 1 SegmentAnalysis of a type 1 segment is similar to that of a type 2 segment. The Markov chain for atype 1 segment is essentially identical to that for type 2. The only di�erence is in the statetransition probabilities and the weights for the transitions out of state 0 in Figure 8. Thereason for this di�erence is that a segment of type 1 does not begin after a stable checkpoint,instead, this segment begins with the beginning of the task. The segment terminates witha stable checkpoint, similar to a segment of type 2.For a type 1 segment, The state transition probabilities and the weights for thetransitions out of state 0 are as follows:P01 = e�N�(T+Ll)21

P000 = 1� P01W01 = T + LlW000 = (N�)�1 � T + LleN�(T+Ll) � 1The rest of the analysis for a type 1 segment is identical to that for a type 2 segment.7.3 Average Execution Time of a Type 3 SegmentAnalysis of a type 3 segment is also similar to that of a type 2 segment. The Markov chainfor a type 3 is essentially identical to that for type 2. The only di�erence is in the statetransition probabilities and the weights for the transitions out of states (k � 1) and (k � 1)'in Figure 8. The reason for this di�erence is that a segment of type 3 does not terminatewith a stable checkpoint, instead this segment terminates with the completion of the task.The type 3 segment begins after a stable checkpoint, similar to the segment of type 2.For a type 3 segment, The state transition probabilities and the weights for thetransitions out of states (k � 1) and (k � 1)' in Figure 8 are as follows (k > 1):P(k�1)k = e�N�(T�Ll+Cl)P(k�1)(k�1)0 = (1� P(k�1)k)(1� p)�p�p + �lP(k�1)00 = 1� P(k�1)k � P(k�1)(k�1)0P(k�1)0k = e�N�(Rl+T)P(k�1)0(k�1)0 = (1� P(k�1)0k)(1� p)�p�p + �lP(k�1)000 = 1� P(k�1)0k � P(k�1)0(k�1)0W(k�1)k = T � Ll + ClW(k�1)(k�1)0 = (N�)�1 � T � Ll + CleN�(T�Ll+Cl) � 1W(k�1)00 = W(k�1)(k�1)0W(k�1)0k = Rl + TW(k�1)0(k�1)0 = (N�)�1 � Rl + TeN�(Rl+T) � 1W(k�1)000 = W(k�1)0(k�1)022

The rest of the analysis for a type 1 segment is identical to that for a type 2 segment.When � is not an integral multiple of k, the number of checkpoint intervals in a type 3segment is less than k, say c. In that case, the expected execution time can be obtained byreplacing k by c in the above analysis.7.4 Average Execution Time of a Type 4 SegmentAnalysis of a type 4 segment is also similar to that of a type 2 segment. In this case, thetransition probabilities and weights for states 0, (k�1) and (k�1)' are di�erent from thosefor type 2. The new probabilities and the weights are identical to those listed above for type1 and 3 segments. The remaining analysis is identical to a type 2 segment.In the above, we assume k > 1. The analysis for k = 1 is much simpler, and isomitted here for brevity.8 Numerical ResultsIn this section, we present numerical results to determine optimal values of k and � for agiven set of parameter values. Signi�cant e�ort has been devoted in the past for analyticallydetermining optimal checkpoint intervals for checkpointing and rollback recovery schemes[3, 7, 12, 25, 33, 34]. Due to the complexity of the expressions for the two-level recoveryscheme under consideration, an analytical approach for determining optimal k and � is notvery attractive. Instead, we choose to determine the optimal values numerically.Two goals of the analysis:� To demonstrates that sometime a two-level recovery scheme can perform better thanone-level schemes. We show this by evaluating the average task completion time foran example task.� To analyze the impact of checkpoint latency on the performance overhead.In this report, we present analytical results for a hypothetical task. The chosenparameter values are motivated by the experimental results presented in Section 10, andreference [16]. Conclusions drawn from the numerical results presented in this section areapplicable to a wide range of parameters. Assuming the parameters shown in Table 1,Figure 10 plots the average task completion time for various values of k and �. Presently weassume Ls = Cs and Ll = Cl. We will consider the situations where Ls > Cs and Ll > Cllater in Section 9.Due to the limitations of our graph-plotting software, � is denoted as mu inthe graphs. Similar convention is followed for other greek letters also.23

�p = 0.0001 �l = 0.00001 p = 0:05N = 256 � = 80Cs = Ls = Rs = 2:0Cl = Ll = Rl = 0:6Table 1: Example parameters
30

35

40

45

50

55

60

65

70

4 6 8 10 12 14 16 18

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

mu

k = 1
k = 2
k = 3
k = 4

Figure 10: The curves are not always convexThe �rst interesting feature of the two-level recovery scheme is that the curves foraverage overhead may have multiple minimas { this is illustrated by the curve for k = 2in Figure 10. These curves are not always convex, unlike the traditional checkpointing androllback schemes (e.g., [3]).The curve for k = 1 is also shown in Figure 10. When k = 1, all the checkpoints arestable checkpoints, and the two-level recovery scheme reduces to traditional checkpointingschemes. Therefore, as shown previously [3], the curve for k = 1 is convex and has exactlyone minimum.As seen in Figure 10, k = 4 can achieve a lower overhead as compared to k = 1; 2; 3.Figure 11 shows the curves for k = 4; 5; 6; 7. Observe that k = 4 can achieve a lower overheadthan k = 5; 6; 7 also. In fact, our numerical search indicates that the average overhead isminimized when k = 4 and � = 12.The fact that the average overhead is minimized when k = 4 implies that k = 1 does24

34

36

38

40

42

44

46

48

8 10 12 14 16 18 20 22

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

mu

k = 4
k = 5
k = 6
k = 7

Figure 11: Minimum achieved when k = 4 and � = 12not yield optimal performance. As k = 1 corresponds to taking only stable checkpoints, thegraphs imply that a \one-level" recovery scheme that takes only stable checkpoints is notalways optimal. Also, in this example, note that the optimal overhead is achieved whenk 6= �. As the recovery scheme that takes only local checkpoints is obtained when k = �,the above results imply that taking only local checkpoints is also not optimal. In summary,the two-level scheme can achieve a better performance than the one-level recovery schemesthat take only stable checkpoints or only local checkpoints.To be fair, we should note that whether the two-level recovery scheme can achievebetter performance or not depends completely on the parameter values. The above exampleillustrates that the two-level approach can sometimes perform better. Now, we presentexamples of parameters where the one-level schemes perform better.For example, if � = 20 (other parameters being the same as in Table 1), then theaverage overhead is minimized when k = � = 3. This means that, in this case, taking onlylocal checkpoints minimizes the average overhead. The reason for this result is that the tasklength is su�ciently small compared to the mean time to a failure that a�ects a local storage(i.e., a local storage failure or a permanent processor failure). Therefore, the probability ofsuch a failure is small. Thus, it is acceptable to restart the task on such a failure. Localcheckpoints are taken, however, to minimize re-execution overhead in presence of transientprocessor failures, as they occur with a relatively higher probability. Figure 12 shows thecurves for a few selected values of k, and also for k = �.25

20

30

40

50

60

70

80

90

100

110

120

1 2 3 4 5 6 7 8 9 10

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

mu

k = 1
k = 2
k = 3
k = 4
k = 5
k = mu

Figure 12: Example: Taking only local checkpoints (k = �) is optimalIf Cl = Ll = Rl = 1:6 (other parameters being the same as in Table 1), then theaverage overhead is minimized when k = 1 and � = 7. This means that, in this case, takingonly stable checkpoints minimizes the average overhead. The reason for this result, in thiscase, is that the overhead of taking a local checkpoint is not su�ciently small compared toa stable checkpoint. Therefore, it is preferable to take a stable checkpoint, as it providesprotection against all failures. Figure 13 shows the curves for a few selected values of k.In general, it seems that, for most applications, either the two-level scheme willachieve lowest overhead, or the scheme that takes only local checkpoints will achieve lowestoverhead (as, in practice, Cl is much smaller than Cs). Taking only stable checkpoints is notlikely to be optimal in most cases. This is interesting, as most past implementations takeonly stable checkpoints (e.g., [5]), and therefore are often sub-optimal.9 Impact of Checkpoint Latency on PerformanceIncreasing the checkpoint latency does not increase the failure-free execution time of theapplication. However, it does increase the \window of vulnerability" of a given checkpoint.To be more speci�c, larger checkpoint latency can increase the rollback distance upon afailure, i.e., the amount of computation lost due to a failure is likely to increase due to alarger checkpoint latency. We illustrate this with a comparison of two scenarios:26

45

50

55

60

65

70

75

80

85

90

95

100

4 6 8 10 12 14 16 18 20

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

mu

k = 1
k = 2
k = 3
k = 4
k = 5

Figure 13: Example: Taking only stable checkpoints (k = 1) is optimalScenario 1: Consider the case when the checkpoint latency is identical to the check-point overhead. Figure 14(a) illustrates a scenario where a failure has occurred and thesystem has rolled back to the recent local checkpoint CP1. To avoid another rollback, nofailure should occur until the next checkpoint is established, i.e., no failure should occurwithin Rl + T + Cl time units after the �rst failure (we assume that the next checkpoint isa local checkpoint).Scenario 2: Now consider the case when the checkpoint latency is greater than thecheckpoint overhead (all other parameters being identical to scenario 1). Figure 14(b) illus-trates a scenario where a failure has occurred and the system has rolled back to the recentlocal checkpoint CP1. To avoid another rollback, no failure should occur until the nextcheckpoint is established, i.e., no failure should occur within Rl + T + Ll time units afterthe �rst failure.Ll in scenario 2 is larger than Cl in scenario 1. The window of vulnerability in scenario2 is (Rl+T +Ll), which is larger than the window of vulnerability in scenario 1 (Rl+T+Cl).This implies that there is a greater chance of another rollback in scenario 2, as compared toscenario 1.The above discussion suggests that larger checkpoint latency may result in worseperformance. To evaluate the impact of checkpoint latency on system performance, weevaluate the performance overhead as a function of checkpoint latency. We limit the values27

l l

to CP1

checkpoint
 CP1

rollback

R +T+LR +T+Cl l

to CP1

checkpoint
 CP1

rollback checkpoint checkpoint
CP2 CP2

(b)(a)Figure 14: Performance impact of checkpoint latencyof k and � such that two checkpoint latency periods do not overlap.Assume that LsCs = LlCl = �. (Thus, for the parameters values used in Section 8,� = 1.) In practice, LsCs and LlCl may not be identical. We limit the number of graphs byconsidering only the case of LsCs = LlCl .Consider a task for which all parameters, except Ls and Ll, are as in Table 1. Figure 15is plotted assuming that Ls = �Cs and Ll = �Cl, for various values of �, k and �. Observethat, with all other parameters being �xed, the average overhead increases almost linearlywith increasing �. Also, the increase is signi�cant for the chosen parameter values. Theincrease in the average overhead with increasing � becomes less signi�cant for smaller failurerates. Figure 16 is plotted for �p = 0:00005, �l = 0:000005, Ls = �Cs and Ll = �Cl. (Allother parameters are as in Table 1). Observe that the average overhead again increasesalmost linearly with �, however, the rate of increase is smaller as compared to Figure 15.The above results suggest that when the failure rate (N�) is large, a large checkpointlatency can have a detrimental e�ect on performance. Note, however, that the above graphshold the checkpoint overhead constant while increasing the latency. In practice, an increasein the latency is typically associated with a decrease in the overhead. Therefore, a higherlatency can in fact result in an improvement in performance, if the checkpoint overhead isreduced adequately. A study of the relationship between checkpoint overhead and checkpointlatency is a subject of further research.Similar to our observation in Section 8, when checkpoint latency is larger than check-point overhead also, the two-level scheme can perform better than the schemes that takeonly stable checkpoints or only local checkpoints (numerical results are omitted for brevity).Also, taking only stable checkpoints seems to be sub-optimal for many parameter values.10 Experimental EvaluationTo get an estimate of the relative values of checkpoint latency and checkpoint overhead forlocal and stable checkpoints, we implemented the proposed two-level recovery scheme on a28

34

35

36

37

38

39

40

41

42

43

44

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

alpha

k=3, mu=12
k=4, mu=12
k=6, mu=12
k=3, mu=9

Figure 15: Dependence of average overhead on checkpoint latency
11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

a
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
v
e
r
h
e
a
d

alpha

k=3, mu=12
k=4, mu=12
k=6, mu=12
k=3, mu=9

Figure 16: Dependence of average overhead on checkpoint latency { with smaller failurerates than Figure 15 29

network of workstations, each workstation having a local disk. The checkpointing schemeis implemented on top of Unix (at user level). The local checkpoints are stored on the localdisks, whereas the stable checkpoints are stored on a disk that is accessed over the network.The application processes can communicate with each other using a message-passing librarythat we have developed. (The application does not directly access sockets.) A software layerhas been implemented that provides additional support to transparently establish logicalcommunication channels between any pair of application processes.In this report, we present measurements for four uni-process applications. Results formulti-process applications will be included in a future revision of this report.6 Speci�cally,the uni-process applications were executed on a Sun SPARCstation-10 workstation (withSunOS 4.1.3) using a Sun Sparc1000 server (over 10 Mbps Ethernet) as the stable storage.The SPARCstation-10 workstation has about 17 Mbyte RAM memory free to be used byan application. The page size on this machine is 4096 bytes (or 1024 words).Two methods for taking individual process checkpoints are presently evaluated. (Boththe methods have been previously used by other researchers also [5, 14, 19].)� \Sequential-checkpoint" : In this method, when a process wants to take a checkpoint,it saves its state on the storage, and then proceeds with the computation. The com-putation is not overlapped with the checkpointing operation. With this method, foruni-process applications, checkpoint overhead and checkpoint latency may be expectedto be identical.For multi-process applications, the latency can be larger than the overhead, as theconsistent checkpointing algorithm may require the processes to take checkpoints atsomewhat di�erent times, i.e., the processes may not start (or complete) checkpointsat exactly the same physical time. For a consistent checkpoint, the latency is de�nedas the time from the instant when the �rst process initiated its checkpoint, till theinstant when the last process established its checkpoint. Even if each process usessequential-checkpointing, the latency of the consistent checkpoint is likely to be largerthan the overhead.� \Forked-checkpoint" : In this method, when a process wants to take a checkpoint, itforks a child process. The child process then saves its state on the storage to establisha checkpoint. The original process (i.e., parent) continues computation while the childprocess is saving the checkpoint. In this method, computation is overlapped withcheckpointing, therefore, checkpoint overhead may be expected to be smaller than thecheckpoint latency. Also, the checkpoint overhead with this method may be expectedto be smaller than sequential-checkpointing.6Plank [20] presents measurements of checkpoint latency and overhead for applications executed onan iPSC/860 multicomputer. These measurements, however, do not provide information regarding therelationship between local and stable checkpoint overheads and latencies.30

In either method, the executable code is not saved as a part of the checkpoint.We present experimental results for four applications. The �rst application (MAT)performs matrix multiplication on square matrices. We measured performance of each appli-cation with di�erent checkpoint sizes. The checkpoint size for MAT was varied by changingthe matrix size. The second application (FFT-3) performs the Cooley-Tukey fast Fouriertransform (FFT) algorithm on three sets of data points. The checkpoint size was variedby changing the size of each set of data points. The remaining two applications were syn-thetic. In the present-day Unix implementations (and its variants), the fork command isimplemented using the copy-on-write technique [23]. Hence, the checkpoint overhead offorked-checkpoint may be expected to depend on the program's locality of reference. There-fore, we implemented two types of locality:� \Low-locality" (LL) : The pseudo-code for this application is presented in Figure 17(a).In this case, the program accesses memory locations from di�erent memory pages ina rapid succession. The program consists of a for loop that updates one memorylocation in each iteration. To get \low-locality", each iteration accesses a location ina di�erent page.The page size on our machine is 1024 words (4096 bytes), while the lower dimensionof the state matrix in program LL is 16384 (= 16 � 1024). Therefore, the forloop in program LL accesses the memory pages in sixteen parts � each part accessesone-sixteenth of the pages. Thus, at any time, memory accesses in the for loop arelocalized to one-sixteenth of the memory pages containing state matrix.To further minimize the locality of reference, the lower dimension of the statematrixcan be made equal to 1024. (Such a program may be said to have \zero-locality",as it accesses all pages in a rapid succession.) We plan to perform experiments with\zero-locality" as well, however, the results for LL program su�ce to illustrate thee�ect of variations in the locality of access.� \Full-locality" (FL) : The pseudo-code for this application is presented in Figure 17(b).In this case, the program accesses only one location within the state array, al-though the program state is much bigger. To avoid defeating the purpose behind\full-locality", we do not perform incremental checkpointing. (In fact, incrementalcheckpointing is not used in any of our experiments.)In the above two cases, the size of the checkpoint was varied by changing parameter XLENin Figure 17.Figure 18 illustrates how the checkpoint overhead and checkpoint latency were mea-sured for the two checkpointing methods. Figure 18(a) shows an execution of a programwithout any checkpoints. The execution time for this program is obtained as the di�erence31

Low-locatity (LL) Full-locality (FL)----------------- ------------------float state[XLEN][16384]; float state[XLEN][16384] ;repeat N times { repeat N time {for (k=0; k<16384; k++) for (k=0; k<16384; k++)for (j=0; j<XLEN; j++ for (j=0; j<XLEN; j++)state[j][k] = state[j][k] + 1.2; state[0][0] = state[0][0] + 1.2;} }Figure 17: C-like pseudo-code for programs LL and FLbetween the start time and the end time. To estimate the correct execution time, we ex-ecuted each program at least 10 times and calculated the average execution time. Let theestimated (average) execution time for a program without checkpoints be denoted as E.Figure 18(b) shows an execution of a program that takes sequential-checkpoints.Again, the total execution time is obtained as the di�erence between the start time and theend time. The total execution time is estimated by averaging over at least 10 executions ofthe program. Let the estimated execution time for the program with sequential checkpointsbe Es. Then, the overhead of a sequential checkpoint is calculated as (Es � E)=n, wheren is the number of checkpoints taken during each execution of the program. For sequentialcheckpointing, we expect the checkpoint overhead to be identical to the checkpoint latency.To validate this, we also measured the checkpoint latency, as shown in Figure 18(b). Thecheckpoint latency of a sequential checkpoint is calculated as the di�erence between the timewhen the checkpoint is initiated and the time when the checkpoint is completed. Averagecheckpoint latency is calculated by taking an average over all checkpoints taken during allexecutions of the application. (In our measurements, the average was calculated over atleast 60 samples.)Figure 18(c) shows an execution of a program that takes forked-checkpoints. Thetotal execution time is estimated by averaging over at least 10 executions of the program.Let the estimated execution time for the program with forked-checkpoints be Ef . Then,the overhead of a forked-checkpoint is calculated as (Ef � E)=n, where n is the numberof checkpoints taken during each execution of the program. To determine the checkpointlatency, we noted the time when a child is forked, and the time when the child exits aftersaving the checkpoint. The checkpoint latency was calculated as a di�erence between thetwo time observations. (The time at which the child exits is determined by a signal handlerfor SIGCHLD signal.) Similar to sequential-checkpoints, the average checkpoint latency iscalculated as an average over at least 60 samples.32

checkpoint
latency

checkpoint
latency

start

end

sequential

sequential
checkpoint

checkpoint

(b) sequential-checkpointing

start

end

(a)

fork

fork

child process saves checkpoint

child exits

child exits

checkpoint
latency

latency
checkpoint

start

end

(c) forked-checkpointing
time Figure 18: Measurement schemeWe now present the experimental results, followed by a discussion of the results.Tables 2 through 5 present checkpoint overhead and checkpoint latency measurements. Inthese tables, a no in the chkpt column implies that no checkpoints are taken. Also, a yes inthe fork column implies that forked-checkpoints are taken, a no in the fork column impliesthat sequential-checkpoints are taken. The local/stable column in the tables indicateswhether the checkpoints are stored on local storage or stable storage. Figures 19 through 22plot checkpoint overheads as a function of checkpoint size. As noted earlier, checkpoint sizeswere varied by changing the data sizes for the various applications. Observe that, in mostcases, the checkpoint overheads increase almost linearly with checkpoint size { the rate ofincrease depends on where the checkpoint is stored and whether the checkpoint is sequentialor forked.For most measurements of average execution time presented in the following, thestandard deviation [27] of the execution time is less than 0.4% of the average execution time.For some measurements the standard deviation is larger than 0.4%, but never exceeds 1%of the average execution time.In the remainder of this section, we present some observations based on the above33

MATchkpt number of chkpt fork local/ execution chkpt chkpt latency/size chkpts stable time overhead latency overhead(bytes) (milisec) (milisec) (milisec) (ratio)759748 8 no � � 37642 � � �8 yes no local 42156 564 561 0.9948 yes yes local 38823 147 595 4.048 yes no stable 57205 2445 2444 18 yes yes stable 40279 329 2536 7.712045892 13 no � � 173067 � � �13 yes no local 188866 1215 1219 113 yes yes local 177944 375 1271 3.3913 yes no stable 257432 6489 6473 0.99713 yes yes stable 184604 887 6695 7.543962820 18 no � � 473901 � � �18 yes no local 513055 2175 2162 0.99418 yes yes local 487342 746 2225 2.9818 yes no stable 705039 12841 12797 0.99618 yes yes stable 506092 1788 13129 7.345822404 22 no � � 847251 � � �22 yes no local 917342 3185 3147 0.98822 yes yes local 873037 1172 3265 2.7922 yes no stable 1279125 19630 19552 0.99622 yes yes stable 903099 2538 19913 7.84Table 2: Measurements for application MATexperimental data.Sequential-Checkpointing: As seen from the tables, the ratio of checkpoint latency andcheckpoint overhead for (local or stable) sequential checkpoints is very close to 1 for mostcases (only exception is of local checkpoints for program LL with checkpoint size 8.4 Mbyte).Observe that the measured value of latency is often slightly smaller than the overhead.However, in most cases, the di�erence is too small to be statistically signi�cant { in suchcases, latency and overhead should be considered to be, essentially, identical. Therefore, ouranalysis in Section 7 is applicable to sequential-checkpointing.The case of program LL with checkpoint size 8.4 Mbyte is an exception. In this case,for local checkpoints, the Ll=Cl ratio is 0.816 (much smaller than 1). We do not completelyunderstand the reason for this phenomenon, and we are investigating it at the present. Wecan envisage one reason that may cause this behavior:34

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
s
)

checkpoint size (Mbytes)

MAT

local chkpts (sequential)
local chkpts (fork)

stable chkpts (sequential)
stable chkpts (fork)

Figure 19: Measurements for application MAT� When the process takes a checkpoint, it uses the write system call. The write systemcall usually copies the data into a bu�er, and returns. (The write call can return beforethe data is actually written to the disk { we use the fsync system call to ensure thedata is actually written to disk.) When checkpoint size is larger than half the availablememory, the process state and the bu�er require all the available memory. This maycause some virtual memory pages to be written to secondary storage (i.e., local disk).After the checkpoint is completed, these pages must be read back to the main memory(as program LL eventually needs to modify these pages). These page-ins will result inan overhead after the checkpoint is completed.The above reasoning also explains why high overhead is not observed for program FLwith checkpoint size 8.4 M. Program FL accesses only two pages of memory, one pagecontaining state[0][0] and another containing j and k. (Even if other pages arepaged-out to the local disk, they do not have to be paged-in, unlike program LL.)Unfortunately, the information presently available to us does not support the above expla-nation. We plan to perform further experiments to resolve this issue.Forked-Checkpointing: As should be expected, the latency of a forked-checkpoint is (inmost cases) much larger than the overhead of a forked-checkpoint. (Thus, the analysis inSection 7 is applicable.) Also, observe (in the tables) that the latency of forked-checkpoints35

FFT-3chkpt number of chkpt fork local/ execution chkpt chkpt latency/size chkpts stable time overhead latency overhead(bytes) (milisec) (milisec) (milisec) (ratio)1096428 6 no � � 42186 � � �6 yes no local 46740 759 757 0.9976 yes yes local 43944 293 811 2.766 yes no stable 63230 3507 3496 0.9976 yes yes stable 45558 562 3580 6.372145004 6 no � � 91005 � � �6 yes no local 98764 1293 1278 0.9886 yes yes local 94125 520 1352 2.66 yes no stable 132615 6935 6935 16 yes yes stable 97377 1062 7107 6.74242156 6 no � � 194368 � � �6 yes no local 208547 2363 2310 0.9786 yes yes local 200922 1092 2422 2.26 yes no stable 279943 14262 14227 0.9976 yes yes stable 207468 2183 14492 6.68436460 6 no � � 417782 � � �6 yes no local 445697 4652 4637 0.9976 yes yes local 429606 1970 4962 2.56 yes no stable 598410 30104 30127 1.00076 yes yes stable 443729 4324 31233 7.2Table 3: Measurements for application FFT-3is a little larger than the latency (and overhead) of corresponding sequential-checkpoints.This is reasonable, because the child process cannot possibly save the checkpoint any fasterthan the parent process can (when it takes sequential-checkpoints). The overhead of forked-checkpoints is signi�cantly smaller than that for the corresponding sequential-checkpoints.(Program LL with checkpoint size 8.4 M is an exception, as before.)Let overhead ratio be the ratio of the overhead of a sequential-checkpoint and thatof the corresponding forked-checkpoint. The overhead ratio can be seen to be between 2and 4 for local checkpoints, and between 6 and 9 for stable checkpoints (in most cases). Forexample, for FFT-3 with checkpoint size 4.2 Mbyte, the overhead ratio for local checkpointsis (2363/1092) = 2.16 and that for stable checkpoints is (14262/2183) = 6.53. Di�erentratios for local checkpoints and stable checkpoints are obtained due to the di�erences inaccess rates for the local and stable storages.The overhead ratio for stable checkpoints of program LL with checkpoint size 8.436

0

5

10

15

20

25

30

35

2 4 6 8

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
s
)

checkpoint size (Mbytes)

FFT-3

local chkpts (sequential)
local chkpts (fork)

stable chkpts (sequential)
stable chkpts (fork)

Figure 20: Measurements for application FFT-3M is (30619/7004)=4.37, signi�cantly smaller than other programs (or smaller checkpointsizes). This behavior seems to be caused because the checkpoint size is large. Note thatthe checkpoint size is about half the size of available memory (17 M). As the program hasno locality of reference, when forked-checkpointing is used, the parent and child togetherrequire all the available memory. This implies that when the child process tries to writethe state, adequate bu�er space is not available to make a copy of the state. We believethat this causes an increase in the overhead of the forked-checkpoint, resulting in a loweroverhead ratio.Low-locality and Full-locality: As should be expected, the FL program has a smallerexecution time than the LL program, as FL can cache all necessary data at all times. Ourinterest, however, is in the checkpoint overheads and latency. The overhead or latency ofsequential-checkpointing is largely a function of checkpoint size (locality should not a�ectsequential checkpointing). This is reected in the experimentalmeasurements for sequential-checkpoints of the two programs. The exception to this is, again, LL with checkpoint size8.4 M.As expected, the overhead of forked-checkpoints is smaller for full-locality (FL) thanlow-locality (LL). For program LL, whenever the parent modi�es a page, a copy of theoriginal page must be made for the child process. As LL modi�es di�erent pages in a quicksuccession, a large number of pages must be copied { the parent must wait each time a page37

low-locality (LL)chkpt number of chkpt fork local/ execution chkpt chkpt latency/size chkpts stable time overhead latency overhead(bytes) (milisec) (milisec) (milisec) (ratio)1087404 6 no � � 32992 � � �6 yes no local 37423 739 731 0.9896 yes yes local 34838 308 776 2.56 yes no stable 53849 3476 3435 0.9886 yes yes stable 36455 577 3529 6.12135980 6 no � � 67567 � � �6 yes no local 74934 1227 1246 1.0156 yes yes local 70376 468 1310 2.86 yes no stable 108574 6835 6879 1.0066 yes yes stable 73680 1019 7056 6.94233132 6 no � � 170850 � � �6 yes no local 184575 2287 2278 0.9966 yes yes local 177131 1046 2397 2.36 yes no stable 256466 14269 14162 0.9936 yes yes stable 185172 2387 14383 68427436 6 no � � 358335 � � �6 yes no local 392112 5629 4596 0.8166 yes yes local 394739 6067 4971 0.8196 yes no stable 542054 30619 30097 0.9836 yes yes stable 400361 7004 31171 4.45Table 4: Measurements for application LL (low locality)is being copied, adding to the overhead. For FL, only two pages are modi�ed by the parent,therefore, all other pages can be shared by the parent and child (and at most two pages needto be copied). Therefore, the overhead of forked-checkpoints is smaller for FL as comparedto LL. Interestingly, the latencies of forked-checkpoints for LL and FL are comparable. Wehad expected the latency of forked-checkpoints for FL to be larger than LL.11 Related WorkWe de�ne two-level recovery schemes as those that tolerate the more probable failures witha low overhead, while the less probable failures may incur a higher overhead. This de�nitioncan also be extended to multi-level recovery schemes.38

0

5

10

15

20

25

30

35

2 4 6 8

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
s
)

checkpoint size (Mbytes)

Low-locality

local chkpts (sequential)
local chkpts (fork)

stable chkpts (sequential)
stable chkpts (fork)

Figure 21: Measurements for application LL (low locality)It was recently brought to our attention [2] that Gelenbe [8] previously proposed a\multiple checkpointing" approach that is very similar to the \multi-level" approach thatwe advocate in this report. Gelenbe divides system failures into multiple (n) categoriesaccording to their severity. The system takes n types of checkpoints, each type of checkpointdesigned for one type of failures. Each type of failure is assumed to be governed by aPoisson process. Although Gelenbe's analysis focuses on transaction-oriented systems, thefundamental idea behindmultiple checkpoints and multi-level recovery is the same { minimizethe overhead by designing di�erent approaches for tolerating di�erent types of failures. Wecharacterize a \type" of failure according to the probability of its occurrence, while Gelenbecharacterizes a \type" of failure according to how \di�cult" it is to recover from the failure.(A failure of type 1 is less \di�cult" than a failure of type 2 if a checkpoint for failure type2 can be used to recover from a type 1 failure [8].) To our knowledge, Gelenbe did notpresent speci�c multi-level schemes for distributed systems. His analysis as such may notbe applicable to the multi-level schemes of our interest, for two reasons:� Gelenbe assumes the failures of di�erent types to be governed by Poisson process.This may not be true, in general, even if the failure of each processor is governed by aPoisson process. For instance, this assumption will not apply for the two-level schemepresented in Section 2, while it will apply to the scheme presented in Section 4.� Gelenbe considers transaction-oriented systems. The analysis for a distributed systemexecuting a long-running parallel application may di�er (depending on the multi-level39

full-locality (FL)chkpt number of chkpt fork local/ execution chkpt chkpt latency/size chkpts stable time overhead latency overhead(bytes) (milisec) (milisec) (milisec) (ratio)1087404 6 no � � 17151 � � �6 yes no local 21625 746 736 0.9876 yes yes local 18445 216 778 3.66 yes no stable 38418 3545 3540 0.9993 yes yes stable 18581 477 3854 82135980 6 no � � 33745 � � �6 yes no local 41250 1251 1246 0.9966 yes yes local 36194 408 1297 3.26 yes no stable 76286 7090 7084 0.9993 yes yes stable 36449 901 7708 8.64233132 6 no � � 66996 � � �6 yes no local 80712 2286 2283 0.9996 yes yes local 71814 803 2363 2.96 yes no stable 154029 14506 14498 0.9993 yes yes stable 72336 1780 15659 8.798427436 6 no � � 133364 � � �6 yes no local 161330 4661 4606 0.9886 yes yes local 142820 1576 4701 36 yes no stable 317538 30696 30689 0.99973 yes yes stable 144167 3601 32760 9.1Table 5: Measurements for application FL (full locality)scheme under consideration).Ziv and Bruck [36] present a checkpointing and rollback scheme for duplex systems.Although it does not satisfy the above de�nition of two-level schemes, their scheme also takestwo types of checkpoints (similar to the schemes we have proposed). They assume that theduplex system is formed by a pair of workstations connected by a local area network. It isassumed that the state of the two processors in a duplex system must be compared to detectfailures (i.e., fail-stop assumption is not made). To compare the checkpoints, the processorsmust send the checkpoints over a local area network. The overhead of checkpoint comparison,therefore, is high as compared to saving the checkpoints (the checkpoints are saved onthe local disk of each workstation). Ziv and Bruck propose a scheme where checkpointcomparison is carried out only at a subset of the checkpoints, thus giving rise to two typesof checkpoints. Checkpoint comparison may be performed at every k-th checkpoint (for somek). If a failure is detected, then the previous k checkpoints are compared (sequentially) until40

0

5

10

15

20

25

30

35

2 4 6 8

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
s
)

checkpoint size (Mbytes)

Full-locality

local chkpts (sequential)
local chkpts (fork)

stable chkpts (sequential)
stable chkpts (fork)

Figure 22: Measurements for application FL (full locality)an error-free checkpoint is found. The duplex system then rolls back to this checkpoint. Byrestricting checkpoint comparison (during failure-free operation) to every k-th checkpoint,[36] reduces overhead of the recovery scheme, as compared to a scheme that compares thestates at each checkpoint.Our approach di�ers from [36] in that we attempt to minimize the average overhead bydistinguishing between more probable and less probable failures. [36] improves the overhead(for duplex systems) by decoupling checkpoint saving and checkpoint comparison. The twoapproaches are similar, however, in that they both take two types of checkpoints.We previously proposed a roll-forward recovery scheme [21, 29] for duplex systemsthat tolerates single processor failures with a low overhead, and multiple failures with a highoverhead. This is achieved by taking di�erent actions during recovery, depending on thenumber of failures { the actions taken during the failure-free operation are independent ofthe number of expected failures. Although this scheme satis�es our de�nition of two-levelrecovery schemes, in our present research, we are interested in recovery schemes that takeexplicit actions during failure-free operation that are designed to minimize the overhead forthe more probable failures. 41

12 ConclusionsA \two-level" recovery scheme can tolerate more probable failure scenarios with low over-head and the less probable failure scenarios with a higher overhead. Most existing recoveryschemes are \one-level" in the sense that their actions during failure-free execution are de-signed to tolerate the worst case failure scenario. This report presented a two-level schemethat can tolerate a transient processor failure with low overhead, while permanent processorfailures and local storage failures incur a higher overhead. This is achieved using two typesof checkpoints � local checkpoints and stable checkpoints. Local checkpoints are stored onthe local storage (e.g., local disk of a workstation), while stable checkpoints are stored onstable storage.The report presents an analysis to determine the expected completion time of a taskusing the two-level recovery scheme. The analysis takes into account the fact that, formost implementations, the checkpoint latency is larger than the checkpoint overhead. (Noprevious work has taken checkpoint latency into account.) The analytical results indicatethat the two-level recovery scheme can achieve a better performance than the traditionalone-level schemes.The report also evaluates the impact of checkpoint latency on the performance of arecovery scheme. The analysis shows that large checkpoint latency can have a detrimentale�ect on the performance, particularly with high failure rates. When failure rates are small,increase in the checkpoint latency has a relatively small impact on the performance.The report presents experimental data on checkpoint overhead and latency of fouruni-process applications. Measurement of checkpoint latency for multi-process applicationsis a subject of ongoing work. Also, study of the relationship between checkpoint latency andthe checkpoint overhead, and its impact on performance, is a subject of further research.AcknowledgementsThe checkpointer used in our experimental evaluation is based on a checkpointer written byBennet Yee and David Applegate of Carnegie Mellon University during 1986-88. The MATmultiplication program is similar to that presented by Plank et al. [19]. The FFT programwas provided by Akhilesh Kumar of Texas A&M University. We thank the anonymousreferee of one of our papers [2] who pointed us to the related work by Gelenbe [8].References[1] L. Alvisi, B. Hoppe, and K. Marzullo, \Nonblocking and orphan-free message loggingprotocols," in Digest of papers: The 23rd Int. Symp. Fault-Tolerant Comp., pp. 145{154,42

1993.[2] Anonymous referee's comments on a 1995 SIGMETRICS paper [32], January 1995.[3] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig, \Analytic models forrollback and recovery strategies in data base systems," IEEE Trans. Softw. Eng., vol. 1,pp. 100{110, March 1975.[4] K. M. Chandy and L. Lamport, \Distributed snapshots: Determining global states indistributed systems," ACM Trans. Comp. Syst., vol. 3, pp. 63{75, February 1985.[5] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, \The performance of consistentcheckpointing," in Symposium on Reliable Distributed Systems, 1992.[6] S. Garg and K. F. Wong, \Analysis of an improved distributed checkpointing algo-rithm," Tech. Rep. WUCS-93-37, Dept. of Comp. Sc., Washington University, June1993.[7] E. Gelenbe and D. Derochette, \Performance of rollback recovery systems under inter-mittent failures," Comm. ACM, vol. 21, pp. 493{499, June 1978.[8] E. Gelenbe, \A model for roll-back recovery with multiple checkpoints," in 2nd Int.Conf. on Software Engineering, pp. 251{255, October 1976.[9] E. Gelenbe, \On the optimum checkpointing interval," J. ACM, vol. 2, pp. 259{270,April 1979.[10] V. Grassi, L. Donatiello, and S. Tucci, \On the optimal checkpointing of critical tasksand transaction-oriented systems," IEEE Trans. Softw. Eng., vol. 18, pp. 72{77, Jan-uary 1992.[11] R. Koo and S. Toueg, \Checkpointing and rollback-recovery for distributed systems,"IEEE Trans. Softw. Eng., vol. 13, pp. 23{31, January 1987.[12] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi, \E�ects of checkpointing and queueingon program performance," Commun. Statist.-Stochastic Models, vol. 4, no. 6, pp. 615{648, 1990.[13] P. L'Ecuyer and J. Malenfant, \Computing optimal checkpointing strategies for rollbackand recovery systems," IEEE Trans. Computers, vol. 37, pp. 491{496, April 1988.[14] J. Le�on, A. L. Fisher, and P. Steenkiste, \Fail-safe PVM: A portable package for dis-tributed programming with transparent recovery," Tech. Rep. CMU-CS-93-124, Schoolof Computer Science, Carnegie Mellon University, Pittsburgh, February 1993.43

[15] K. Li, J. F. Naughton, and J. S. Plank, \Low-latency, concurrent checkpointing forparallel programs," IEEE Trans. Par. Distr. Syst., vol. 5, pp. 874{879, August 1994.[16] D. Long, J. Carroll, and C. Park, \A study of the reliability of internet sites," in Proc.Symp. Rel. Distr. Systems, pp. 177{186, 1991.[17] V. F. Nicola and J. M. van Spanje, \Comparative analysis of di�erent models of check-pointing and recovery," IEEE Trans. Softw. Eng., vol. 16, pp. 807{821, August 1990.[18] D. A. Patterson and J. L. Hennessy, Computer Organization & Design: The Hard-ware/Software Interface. Morgan Kaufmann Publishers, 1994.[19] J. S. Plank, M. Beck, G. Kingsley, and K. Li, \Libckpt: Transparent checkpointingunder Unix," in Usenix Winter 1995 Technical Conference, New Orleans, January 1995.[20] J. S. Plank, E�cient Checkpointing on MIMD Architectures. PhD thesis, Dept. ofComputer Science, Princeton University, June 1993.[21] D. K. Pradhan and N. H. Vaidya, \Roll-forward checkpointing scheme: A novel fault-tolerant architecture," IEEE Trans. Computers, vol. 43, pp. 1163{1174, October 1994.[22] A. Reuter, \Performance analysis of recovery techniques," ACM Trans. Database Sys-tems, vol. 9, pp. 526{559, December 1984.[23] C. Schimmel, UNIX Systems for Modern Architectures. Addison-Wesley, 1994.[24] R. D. Schlichting and F. B. Schneider, \Fail-stop processors: An approach to design-ing fault-tolerant computing systems," ACM Trans. Comp. Syst., vol. 1, pp. 222{238,August 1983.[25] K. Shin, T.-H. Lin, and Y.-H. Lee, \Optimal checkpointing of real-time tasks," IEEETrans. Computers, vol. 36, pp. 1328{1341, November 1987.[26] A. N. Tantawi and M. Ruschitzka, \Performance analysis of checkpointing strategies,"ACM Trans. Comp. Syst., vol. 2, pp. 123{144, May 1984.[27] K. S. Trivedi, Probability and Statistics with Reliability, Queueing and Computer Sci-ence Applications. Prentice-Hall, 1988.[28] S. J. Upadhyaya and K. K. Saluja, \An experimental study to determine task size forrollback recovery schemes," IEEE Trans. Computers, vol. 37, pp. 872{877, July 1988.[29] N. H. Vaidya, Low-Cost Schemes for Fault Tolerance. PhD thesis, University ofMassachusetts-Amherst, February 1993. Available from UMI Dissertation Services,Ann Arbor, Michigan. Order number 9316722.44

[30] N. H. Vaidya, \A case for multi-level distributed recovery schemes," Tech. Rep. 94-043,Computer Science Department, Texas A&M University, College Station, May 1994.Available via anonymous ftp from ftp.cs.tamu.edu in directory /pub/vaidya.[31] N. H. Vaidya, \Some thoughts on distributed recovery," Tech. Rep. 94-044, ComputerScience Department, Texas A&M University, College Station, June 1994. Available viaanonymous ftp from ftp.cs.tamu.edu in directory /pub/vaidya.[32] N. H. Vaidya, \A case for two-level distributed recovery schemes," in SIGMET-RICS/Performance, May 1995.[33] K. Wong and M. Franklin, \Distributed computing systems and checkpointing," inProc. 2nd Int. Symp. High Perf. Distr. Comp., Spokane, Washington, pp. 224{233,July 1993.[34] J. W. Young, \A �rst order approximation to the optimum checkpoint interval," Comm.ACM, vol. 17, pp. 530{531, September 1974.[35] A. Ziv and J. Bruck, \Analysis of checkpointing schemes for multiprocessor systems,"Tech. Rep. RJ 9593, IBM Almaden Research Center, November 1993.[36] A. Ziv and J. Bruck, \E�cient checkpointing over local area network," in IEEE Work-shop on Fault-Tolerant Parallel and Distributed Systems, College Station, June 1994.

45

