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Abstract

This report deals with the design and evaluation of a “two-level” failure recov-
ery scheme for distributed systems. In our previous work [30, 32], we motivated a
“two-level” recovery approach that tolerates the more probable failures with a low
overhead, and less probable failures with possibly higher overhead. The two-level ap-
proach can achieve a smaller overhead as compared to traditional recovery schemes.
The contributions of this report are summarized below:

e We present and evaluate a “two-level” recovery scheme that is suitable for a net-
work of workstations, each workstation having a local disk. The recovery scheme
presented in the report can tolerate transient processor failures with a low over-
head, while other failures require a larger overhead. The report presents analysis
of the average (expected) task completion time using the proposed scheme. This
scheme has been implemented on a workstation cluster. Our analysis indicates
that the proposed two-level recovery scheme can achieve better performance as
compared to existing “one-level” recovery schemes.

e The report also evaluates the impact of checkpoint latency on the performance of
the recovery scheme. To our knowledge, no analysis of the performance impact
of checkpoint latency has been carried out previously.

e Experimental measurements of checkpoint latency and checkpoint overhead for
four applications are presented.

*References [32, 30] present material related to this report. The interested reader can obtain these

references via anonymous ftp from ftp.cs.tamu.edu:/pub/vaidya.
TThis report was revised several times in January 1995. The purpose of these revisions was to add

Sections 10 and 11, and to revise Section 1.



1 Introduction

Many applications require massive parallelism to solve the problem in a reasonable amount of
time. Despite the increase in hardware reliability, such applications encounter a high failure
rate due to large multiplicity of hardware components. In the absence of a failure recovery
scheme, the task must be restarted (from beginning) whenever a failure occurs. This leads
to unacceptable performance overhead for long-running applications. Some failure recovery
scheme must be used to minimize the performance overhead. During failure-free operation,
failure recovery schemes periodically save information such as process state and messages;
this information is used to recover from a failure. The performance overhead of a recovery
scheme consists of two components:

e Overhead during failure-free operation (failure-free overhead), e.g., checkpointing and
message logging.

e Overhead during recovery (recovery overhead), e.g., loss of computation due to rollback.

This report analyzes an approach to reduce the average performance overhead.

The design principle “make the common case fast” has been successfully used in
designing many components of a computer system (e.g., cache memory, RISC [18]) and
some aspects of checkpointing and rollback [21, 36]. However, the designers of distributed
rollback recovery schemes have largely ignored this guideline. In any system, some failure
scenarios have a greater probability of occurring as compared to other failure scenarios.
In the context of failure recovery, the “common case” consists of the more probable failure
scenarios. The above guideline suggests that a recovery scheme should provide low-overhead
protection against more probable failures, providing protection against other failures with,
possibly, a higher overhead. We refer to recovery schemes having this capability as two-level
recovery schemes. This approach can be generalized to multi-level recovery [30]. It was
recently brought to our attention [2] that, for transaction-oriented systems, Gelenbe [§]
previously proposed an approach similar to the multi-level recovery approach. Gelenbe’s
work is summarized in Section 11.

Most existing recovery schemes are “one-level” in the sense that their actions during
failure-free execution are designed to tolerate the worst case failure scenario. For example,
the traditional consistent checkpointing algorithms are designed to tolerate simultaneous
failure of all components in the system [11, 20]. The two-level recovery approach can achieve
lower overhead than one-level schemes by differentiating between the more probable failures
and the less probable failures.

Previously, we demonstrated that, it is often advantageous to use two-level recovery
schemes as compared to traditional one-level recovery schemes [30, 32]. In this report we
present design and analysis of a new two-level recovery scheme. Also, the report summarizes



the two-level recovery scheme analyzed in our previous work [30, 32]. This report achieves
three objectives:

e The report carries out a detailed analysis of the proposed two-level recovery scheme
and presents performance results. It demonstrates that two-level recovery can achieve
a better performance than a one-level recovery scheme. Although a large number of
researchers have analyzed checkpointing and recovery [3, 6, 7, 9, 10, 12, 13, 17, 22,
25, 26, 28, 33, 34], to our knowledge, except for Gelenbe [8], no analysis of two-level
recovery schemes has been attempted by other researchers.

e Another objective of this report is to analyze the impact of checkpoint latency on the

performance of the recovery schemes. Checkpoint latency is the duration of time it
takes to establish a checkpoint. For example, if a consistent checkpoint of a distributed
system 1is initiated at time ¢; and completed at time ¢35, then checkpoint latency is
(t2 — t1).
Checkpoint overhead is the increase in the execution time of an application due to a
checkpoint. In simple-minded implementations of checkpointing, checkpoint latency
equals the checkpoint overhead. However, in some (more efficient) implementations,
checkpoint latency is much larger than the checkpoint overhead (e.g., copy-on-write
[15]). In this report, we study the impact of checkpoint latency on the average perfor-
mance overhead. To our knowledge, there has not been any previous work on modeling
and analysis of checkpoint latency.

Terminology: Plank [20] uses the term checkpoint time to denote what we call
checkpoint latency. Plank uses the term checkpoint latency to mean something else.

Note: As will be elaborated in Section 10, it turns out that checkpoint latency can
sometimes be smaller than checkpoint overhead. This is somewhat counter-intuitive.
However, in any viable implementation of checkpointing, latency will be at least as
large as the overhead. Therefore, in the analysis, we do not consider the case where
checkpoint latency is smaller than checkpoint overhead.

e The report presents experimental measurements of checkpoint latency and checkpoint
overhead for four applications. (The proposed two-level scheme has been implemented
on a network of workstations.)

This report is organized as follows. Section 2 summarizes a two-level scheme that we
had proposed previously. Section 3 presents the system model used in designing the two-
level checkpointing scheme proposed in this report. The proposed checkpointing scheme is
discussed in Section 4. Section 5 discusses the recovery algorithm. Performance analysis of
the proposed scheme is discussed in Section 7. Section 8 presents some numerical results to
illustrate the benefit of the proposed approach. Impact of checkpoint latency is analyzed
in Section 9. Section 10 discusses an experimental implementation of the proposed scheme.
Related work is discussed in Section 11. The report concludes with Section 12.



2 Brief Description of a Two-Level Scheme [30, 32]

This section summarizes a two-level recovery scheme that was proposed and analyzed pre-
viously [30, 32]. This two-level recovery scheme is useful in an environment consisting of
disk-less workstations that can access a stable storage over the network. In the environment
under consideration, small number of failures are more probable than a large number of
failures. Specifically, single processor failures are more probable than all other failure sce-
narios. The two-level recovery scheme consists of two components, one component recovery
scheme designed for single failure tolerance, and the second component scheme designed for
tolerating all other failure scenarios. For this scheme, it is assumed that a single process is
scheduled on each processor.! (This assumption is not necessary for the scheme proposed
and analyzed later in this report.) The two component recovery schemes are summarized
here:

o The first component is the single process failure tolerance scheme presented in [1]. In
this scheme, the processes periodically take checkpoints (which need not be consistent
with each other). The checkpoint of a process can be saved in any volatile storage
except that of its own processor. The messages are saved by their senders in their
volatile storage.

This component scheme is capable of tolerating only a single failure. To tolerate a
single failure, the faulty process is rolled back to its previous checkpoint (which is
saved on a non-faulty processor). Subsequently, the messages that the faulty process
had received before failure are re-sent to recover its state. These messages are available
in the volatile memory of the message senders.

If a second failure occurs before the system has recovered from the first failure, it is
possible that the system may not be able to recover from the failure.

We refer to the checkpoints taken by this component scheme as 1-checkpoints, as they
are useful to recover from single failures only. A checkpoint interval is the duration
between two adjacent checkpoint. For this scheme, the failure-free overhead per check-
point interval is denoted by . (] is the increase in the execution time of a checkpoint
interval due to the use of this recovery scheme.

e The second component recovery scheme periodically saves consistent? checkpoints on
the stable storage. To establish the checkpoint, the processes coordinate with each
other and ensure that their states saved on the stable storage are consistent with each
other. Such a checkpoint is useful to recover from an arbitrary number of failures.

!This limitation can be eliminated using the single processor failure tolerance scheme presented in [31]
instead of a single process failure tolerance scheme, as described below.

2A consistent checkpoint consists of one checkpoint per process such that a message sent after the check-
point of one process is not received by another process before taking its checkpoint [4, 11].



Therefore, these checkpoints are called N-checkpoints. For this component scheme, the
failure-free overhead per checkpoint interval is denoted by Cly.

Volatile storage access is cheaper than accessing the shared stable storage. Therefore,
(1 is expected to be smaller than Cy.

The two-level recovery scheme consists of the above two components [30, 32]. The
two-level scheme takes 1-checkpoints more frequently and N-checkpoints less frequently. As
the 1-checkpoints are taken more frequently, recovery overhead for a single processor failure
is smaller. Also, overhead of taking 1-checkpoints is lower than that of N-checkpoints. As
demonstrated in [30, 32], the two-level scheme can achieve better performance as compared
to either component recovery scheme.

To further clarify the concept of two-level recovery, the tables below present an anal-
ogy of the two-level recovery scheme with cache memory organizations.

Cache and main memory (two-level) hierarchy Two-level recovery scheme
access type served by latency failure scenario | failure tolerated by overhead
address in cache cache small single failure 1st component scheme | small
address not in cache | main mem. | large other 2nd component scheme | large
average access latency = small average performance overhead = small

Ziv and Bruck [36] present a checkpointing and rollback scheme for duplex systems,
that also takes two types of checkpoints, similar to the above two-level scheme. Section 11
discusses their scheme.

The rest of this report presents another two-level recovery scheme and its perfor-
mance evaluation. The next section discusses the system model assumed while designing
the proposed two-level recovery scheme.

3 System Model

The system architecture is illustrated in Figure 1. The system is assumed to consist of N
processors. Each processor may execute one or more processes. Each processor has access
to a memory (such as a RAM) and a local storage (such as a disk), and it can also access
a stable storage over the network. (More than one stable storage may also be accessible.)
Accessing the local storage incurs less overhead as compared to the stable storage, as the
stable storage access is made over the network.

Memory and local storage are both accessible to the processor locally, i.e., without
going over the network. Thus, one can potentially consider the memory and the local storage
together as a single locally accessible storage. The reason for separating the locally accessible
storage into two types (i.e., memory and local storage) is that the failure of a processor always
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Figure 1: System Architecture

results in the loss of memory contents, but not necessarily in the loss of local storage contents.
We will address this issue again shortly.

The above architecture is suitable for workstation clusters, where each workstation
has a memory (RAM), a local storage (a local disk), and each workstation can also access a
stable storage by going over the network.

Alternate architectures: The discussion in this report often refers to a system
consisting of workstations with local disks. However, the above model and the analysis in
this report is also applicable to any system where a processor has a local access to two
types of memory storages, such that failure of one memory storage is weakly correlated (or
uncorrelated) with that of the processor. Thus, both the storages may be RAMs, but one
of them may be on the same card as the processor, and another on a different card. If the
probability of correlated failure of the two cards is small, then the scheme proposed in the
report is useful for this system.

Failure Model

In this report, we consider only fail-stop failures [24]. We first describe the failure model
assumed in this report, followed by another failure model that may be applicable to some
systems. The analysis presented in the report assumes the first model, however, the analysis
is applicable to the second model with a minor modification.

A processor is subject to transient as well as permanent failures. Failure of a processor
results in the loss of its memory contents, however, it does not cause a failure of its local
storage. Thus, the contents of the local storage can survive the failure of the associated
processor. The local storage, however, is not a stable storage.

A local storage is also subject to transient and permanent failures. Failure of the local
storage corrupts the information stored on the local storage. Subsequent to a transient fail-
ure, the local storage can still be written to, though the data stored before the failure is lost.



Subsequent to a permanent failure, the local storage cannot be accessed. This necessitates
that the processes on the corresponding processor be moved to another processor. It turns
out that, for the purpose of our analysis, there is no need to differentiate between transient
and permanent failure of a local storage. Note that to be able to access the local storage of a
processor, the processor itself must be operational. Permanent failure of a processor makes
its local storage inaccessible to other processors.

We assume that the failure (transient or permanent) of a local storage always crashes
the associated processor. This assumption is quite accurate in the case of workstations.
The local disk of a workstation often stores swapped out process memory, temporary files
accessed by an application as well as many files that are accessed by the operating system.
Failure of the local disk is, therefore, likely to crash the system. When the above assumption
does not hold, our analysis can be revised to reflect the accurate system model.

Failures of the N processors are independent of each other, similarly the local storage
failures are independent of each other. Let the inter-failure interval for a processor be
governed by an exponential distribution with mean 1/),. The probability that a processor
failure is permanent is denoted by p, (1 — p) being the probability that a processor failure
is transient. Let the time interval between detection of consecutive local storage failures be
governed by an exponential distribution with mean 1/X;. Let A denote A, + A;. It is expected
that, in practice, transient processor failures will be more probable than permanent processor
failures or local storage failures.

In the event of a permanent processor failure or any local storage failure, the process
scheduled on that processor must be rescheduled on another processor. This overhead is
included in the overhead of rollback. We discuss the various overheads in more detail, in the
following.

Alternate failure model: As noted above, a permanent processor failure makes its local
storage inaccessible to other processors. In some systems, it is possible that a transient
failure of the processor may also cause a correlated local storage failure. In such systems,
define r as the probability that a processor failure either makes the local storage inaccessible
or causes a correlated local storage failure. It is clear that r > p. The analysis presented
here becomes applicable to this model if p is replaced by r in all the expressions derived in
the report.

4 Checkpointing Scheme

The processes periodically take consistent checkpoints using some consistent checkpointing
algorithm, for example, Chandy-Lamport [4]. (For uni-process applications, trivially, any
checkpoint of the process is a “consistent” checkpoint.) The consistent checkpoints are
assumed to be equidistant. (In practice, the checkpoints will not be exactly equidistant,



but can be made approximately equidistant.) Every k-th consistent checkpoint is stored on
the stable storage, all other checkpoints being stored on local storages. No checkpoint is
taken at the beginning or at the completion of the task. We use the term local checkpoint to

refer to a checkpoint that is stored on a local storage. Similarly, the term stable checkpoint

refers to a checkpoint that is stored on the stable storage. Figure 2 illustrates local and
stable checkpoints for £ = 3. The horizontal line depicts task execution. Observe that
checkpoints CP3, CP6 and CP9 are stable checkpoints, while the other checkpoints are local
checkpoints. (In this figure, we assume that checkpoint overhead and latency are identical,
this assumption will soon be relaxed.)

Failure-free execution of an example task
with executiontime of 11T

T I stable checkpoint

k=3 ‘T
IS R RIS

CPL CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 CP10
Task begins Task ends

time

Figure 2: Local and stable checkpoints

The checkpointing operation incurs some overhead (e.g., messages required for es-
tablishing consistency, overhead in saving the state on the storage, etc.). Let the overhead
in taking a local checkpoint be C}. This implies that if the application takes one consistent
checkpoint, where each processor stores its state on the local storage, then the total execu-
tion time of the task will be increased by ;. Similar to (7, let the overhead in taking a
stable checkpoint be C;. In most systems, one would expect C; to be significantly smaller

than C.

It is clear that, in practice, C; is likely to be different for different checkpoints.
However, in this analysis we assume () to be the average overhead of a local consistent
checkpoint.? We use averages for some other parameters as well (including C).

Another parameter that may affect performance is the checkpoint latency. Checkpoint

latency is the duration, from the instant at which a checkpoint operation is initiated, till the
instant when the checkpoint operation is completed. Checkpoint overhead is the increase in

the execution time of the application due to a checkpoint operation. Checkpoint latency is
usually at least as large as the checkpoint overhead. (As stated in Section 1, our analysis
does not consider implementations where the latency is smaller than checkpoint overhead.)

30ur assumption is similar to [10]. Some researchers [7] assume that the checkpoint overhead is exponen-
tially distributed, though, to our knowledge there has been no experimental justification of this assumption.



For many implementations of checkpointing (e.g., copy-on-write), checkpoint latency is larger
than the checkpoint overhead.* Let the checkpoint latency for a local checkpoint be L; and
that for a stable checkpoint be L;. Note that a checkpoint is an image of the system state
at the beginning of the latency period.

For the purpose of the analysis, it will suffice to assume that all the overhead of a
checkpoint is incurred at the start of the checkpoint latency period. This is illustrated in
Figure 3. As shown in the figure, we will assume (without loss of correctness in the analysis)
that the first () time units, during latency L; of a local checkpoint, are spent in saving
the state on local storage, while the remaining L; — C; time units are spent doing useful
work. However, the checkpoint is not considered to have been established until the end of
the checkpoint latency period. (We will return to this issue when discussing recovery.)

checkpoint considered to be "established"
at this point in time

overhead C, of a overhead C¢ of a
local checkpoint stable checkpoint
=
latency L of a latency L 4 of a
local checkpoint stable checkpoint

Figure 3: Checkpoint latency and checkpoint overhead

Measurements: The proposed checkpointing scheme has been implemented on a network
of workstations. Results of its experimental evaluation are included in Section 10. As the
analysis is independent of the implementation details, we defer discussion of the experimental
measurements until Section 10.

5 Recovery Algorithm

When a failure occurs, the system recovers by rolling back to a previous checkpoint. The
choice of checkpoint to be used (to rollback) depends on what is faulty and the timing of the
failure. Failures can occur during normal operation, during checkpointing or during recovery.
(A failure can occur before the system has recovered from a previous failure.) Recovery is

4Example: In some implementations, when a process wants to take a checkpoint, it forks a child process
[19]. The child process saves the state (which is identical to the parent process’ state when it executed fork),
while the parent process continues to perform computation. With this approach, the child process requires
a longer duration of time to save the state, as compared to the overhead incurred by the parent process.



initiated immediately after a processor failure or a local storage failure is detected. The
following three cases of failures are possible.

Case 1: A processor has a transient failure: In this case, the failure is recovered by rolling
back to the most recent checkpoint (which may be a local or a stable checkpoint), as shown
in Figure 4. When a processor has a transient failure, its local storage contents are not
corrupted, therefore, the local checkpoint can be used for recovery. Note that a transient
processor failure any time during the checkpoint latency period requires a rollback to the
previous checkpoint. For example, in Figure 4(b), a processor fails during the latency period
for checkpoint C'P2. As checkpoint C' P2 is not established by the time of failure, to recover
from the failure, the processors must roll back to checkpoint C'P1.

rollback to checkpoint CP1 rollback to checkpoint CP1 .
/\ time _— time.
atransient T atransient
checkpoint processor checkpoint checkpoint processor
CP1 failure cpP1 CPo failure
@ (b)

Figure 4: Case 1: A processor has a transient failure

Case 2: A processor has a permanent failure: In this case, the local storage of the faulty
processor is inaccessible, as the processor failure is permanent. Thus, the system cannot roll
back to the previous local checkpoint, and recovery requires that the processors roll back to
the most recent stable checkpoint. This is illustrated in Figure 5. (If no stable checkpoint
is established before the failure, then the task must be restarted from the beginning.) As
noted earlier, if a failure occurs during the checkpoint latency period for a checkpoint, say
CP, then checkpoint CP cannot be used for recovery. Figure 5(b) illustrates this.

Case 3: A local storage has a failure (transient or permanent): In this case, failure of the
local storage will also crash the corresponding processor. To recover from this failure, the
processors must rollback to the most recent stable checkpoint (because a local checkpoint
cannot be recovered). The recovery in case 3 is identical to that in case 2 above.

In cases 2 and 3 both, the processors roll back to the most recent stable checkpoint.
Whenever a rollback to the stable checkpoint occurs, a fault-free processor loads its state
from the stable storage. The state of the faulty processor and the executable both must
be loaded to a new processor (if the failure is permanent) or to the same processor (if the
failure is transient). In both cases, the overhead is likely to be identical.

10
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Figure 5: Case 2: A processor has a permanent failure

6 Some Terminology

Computation performed between two consecutive consistent checkpoints is called a checkpoint
interval. Let the total number of checkpoint intervals during the execution of the task be .
Thus, a total of (1 — 1) consistent checkpoints will be taken (no checkpoint is taken at the
end of the last checkpoint interval). Every k-th consistent checkpoint is stored on the stable
storage. Thus, of the (g —1) checkpoints, [(p—1)/k| checkpoints will be stable checkpoints,
and the remaining checkpoints will be local checkpoints.

Two extreme cases occur when k =1 or k = . When k = 1, all the consistent check-
points are stable checkpoints — this corresponds to traditional implementations of consistent
checkpointing (e.g. [5]). When k = p, the recovery scheme takes only local checkpoints. In
this case, if a permanent processor failure or a local storage failure occurs, the application
must be restarted from the beginning.

As shown in Figure 6, some portion of a checkpoint interval is spent during the
checkpoint latency period for the checkpoint preceding the checkpoint interval. The only
exception to this is the first checkpoint interval, as there is no checkpoint taken at the
beginning of the task.

Length of a task (application) is the execution time of the task in a failure-free en-

vironment (without using any recovery scheme). Length of the task is denoted by Y. The
length of each checkpoint interval is identical, and is denoted by T'. Length of the task T is

11
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Figure 6: Failure-free execution of an example task

an integral multiple of T', specifically, T'= T/u (where p is an integer). However, length of
the task is not necessarily an integral multiple of kT

The time required to perform a rollback to a stable checkpoint is denoted by R;.
(This does not include the time required for re-execution.) Similarly, the time required to
perform a rollback to a local checkpoint is denoted by R;. R will be typically larger than
Ry, for two reasons: (i) rolling back to a stable checkpoint requires checkpoint transfers over
the network, (ii) rolling back to a stable checkpoint requires loading of the executable code
of any faulty processes.

Similar to the checkpoint overhead, the rollback overhead is likely to be different for
different checkpoints. However, in this analysis we assume them to be constant (essentially,
R; and R, denote the average rollback overheads).

The number of checkpoint intervals p may not be an integral multiple of k. This
implies that the number of checkpoint intervals after the last stable checkpoint may be less
than k. The number of checkpoint intervals between two consecutive stable checkpoints is
always k. For example, in Figure 6, length of the task is 87" and k& = 3. Therefore, the
computation time between adjacent stable checkpoints is 37. However, the computation
time from the last stable checkpoint to the completion of the task is 27"

The execution of the task is divided into certain number of segments. A segment
terminates either with a stable checkpoint or with the completion of the task. For example,
in Figure 6, the task is divided into three segments. Segments 1 and 2 terminate with
stable checkpoints, whereas segment 3 terminates with task completion. The segments are
divided into three types. The first segment of the task is of type 1, the last segment of the

task is of type 3, and all other segments in the middle are of type 2. A type 1 segment
begins at the start of the task, and ends when the first stable checkpoint is established.

12



Recall that a checkpoint is said to be established only at the end of the checkpoint latency
period. Thus, for a checkpoint to be established, the task must execute the latency period
once. (Part of the computation in the latency period may be repeated if a failure occurs
after establishing the checkpoint.) A type 2 segments begins immediately after a stable
checkpoint is established and ends when the next stable checkpoint is established. A type
3 segment begins after the last stable checkpoint is established and ends when the task is
completed. The example task in Figure 6 has 3 segments. In general, a task contains [p/k]
segments.

Note: A degenerate case occurs when the task contains only one segment. In this case, no
stable checkpoints are taken during the execution of the task. This segment neither begins
nor ends with a stable checkpoint. Such a segment is said to be a type 4 segment.

Re-execution time: Consider a failure that can be tolerated by rolling back to a certain
checkpoint CP. If the failure is detected when ¢ time units of computation was performed
after checkpoint CP, then it is assumed that ¢ units of execution is required to re-do the lost
computation (in absence of further failures), excluding checkpoint overhead. In the past,
many researchers have assumed (e.g., [3]) that the time required to re-do the computation
is 3t for some constant 3. Thus, we assume 3 = 1 here. This assumption is reasonable for
parallel applications of interest. Our analysis can be easily revised when 7 # 1.

7 Performance Analysis

The performance metric of interest here is the average overhead of the recovery scheme. Let
I' denote the time required to complete the task using the given recovery scheme. Then,
E(I') is the expected (or average) task completion time. The average overhead is evaluated
as a fraction of T (task length). Specifically, average overhead is defined as

Average percentage overhead is obtained by multiplying the average overhead by 100. (We

will denote the expected or average value of any random variable x as E(x).)

This section presents an analysis of the average overhead. The results of the analysis
have been verified using simulations. The simulation results are within less than 1% of the
analytical results, therefore, the simulation results are not presented separately.

The average overhead can be obtained once we know the average execution time
E(I'). To evaluate E(I'), we first evaluate average execution time for each segment and then
add them to obtain F(I'). Recall that the task contains [u/k] segments. Let S; denote the

13



execution time for the 2-th segment. Then,

[1/k]

By =Y E(S).

=1

The analysis of the average execution time of a segment is somewhat different for the seg-
ments of the four types. In this report, we present detailed analysis for type 2 segments, the
other segments can be analyzed similarly (as elaborated later).

7.1 Average Execution Time of a Type 2 Segment

Recall that a type 2 segment begins after a stable checkpoint is established, and ends when
the next stable checkpoint is established. During the execution of the segment, (k— 1) local
checkpoints are also established. Figure 7 illustrates the execution of a type 2 segment,
assuming k = 3. Figure 7(a) illustrates a failure-free execution. Observe that, in the absence
of a failure, the computation performed before the first checkpoint in the segment requires
(T — Ly + C5) time units (as shown in the figure). (Note: L; — C; units of computation in
the first checkpoint interval of the segment is performed during the latency period of the
previous stable checkpoint.) The meaning of the various states in the figure will be explained
later.

Figure 7(b) illustrates an execution of the segment where three failures occur. The
first failure is a transient processor failure, and it occurs soon after the segment begins
execution. The transient processor failure requires a rollback to the recent checkpoint, which
happens to be a stable checkpoint. The rollback incurs an overhead of R;. After the rollback,
T units of computation is required before the next checkpoint can be initiated. (Note: After
the rollback, the Ly — C units of computation performed during the latency period of the
previous checkpoint must also be repeated.) The second failure is also a transient processor
failure. This failure is tolerated by rolling back to the most recent checkpoint, which happens
to be a local checkpoint. This rollback incurs an overhead of R; time units. The third failure
is a local storage tailure. This failure necessitates a rollback to the stable checkpoint at the
start of the segment. No failure occurs after this rollback. (The next section explains the
meaning of various states in Figure 7.)

7.1.1 Markov Chain for the Execution of a Type 2 Segment

To evaluate the expected execution time of the task, we construct a finite-state Markov
chain [27]. Markov chains have been used for evaluating expected execution time by Ziv
and Bruck also [35]. The procedure for constructing the Markov chain is presented later, we
first present some preliminaries. The Markov chain has an unique start state and an unique
absorbing state. For a given k, the Markov chain contains 2k + 1 states. A state transition

14
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Figure 7: Execution of a type 2 segment: k =3
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probability is associated with each state transition in the Markov chain. In addition, we
also associate a weight with each transition. Weight of a transition from state X to state ¥

equals the expected (average) time spent in state X before making the transition to state
Y. The probability of a transition from state X to state Y is denoted as Pxy and the
corresponding weight is denoted as Wxy.

The analysis for £ = 1 and k£ > 1 has a few minor differences. In the following, we
focus on £ > 1. Figure 8 illustrates the Markov chain for £ > 1. The Markov chain contains
(2k + 1) states named 0, 0°, 1, 1", ..., ¢, ¢, ..., (k—1), (k — 1), k. (There is no state k’.)
State k is the absorbing state. The transitions out of the other states are as follows: From
state ¢ (0 <7 < k), transitions can occur to states ¢’, ¢ + 1 and 0’. Similarly, from state ¢’
(0 <@ < k) transitions can occur to states ¢’, ¢ + 1 and 0.

A state ¢ is reached when the i-th checkpoint after the start of the segment is es-
tablished. State i’ is reached when a rollback to the i-th checkpoint occurs. (As the k-th
checkpoint is the last checkpoint of the segment, we do not account for rollback to the k-th
checkpoint when evaluating the execution time of this segment. These rollbacks will be
taken into account when evaluating the execution time of the next segment of the task.
Therefore, there is no need for a state named k’.) If a transient processor failure occurs
while in state 7, then a transition is made to state ¢’ (because the system rolls back to the
i-th checkpoint taken since the start of the segment). If a permanent processor failure or a
local storage failure occurs while in state ¢, then a transition is made to state 0’ (because
the system rolls back to the stable checkpoint at the start of the segment). Figure 7 shows
the states entered during two executions of an example task.

absorbing
State

Figure 8: Markov chain for £ > 0
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Note that there are no transitions out of state k. States 0 and 0’ differ from the
other states because the most recent checkpoint accessible while in states 0 and 0’ is a stable
checkpoint (refer Figure 7). For all other states, the most recent checkpoint accessible while
in those states is a local checkpoint. Similarly, states (k—1) and (k—1)’ differ from the other
states because, in the absence of a failure, the checkpoint established after entering states
(k—1) and (k — 1) is a stable checkpoint. For all other states, the checkpoint established
after entering the states is a local checkpoint. Therefore, the states are divided into four
sets: (a) states ¢ and ", 0 < ¢ < k— 1, (b) states 0 and 0°, (c) states (k — 1) and (k — 1),
and (d) absorbing state k. We first consider states ¢ and i’, where 0 < ¢ < k£ — 1, and obtain
the transition probabilities and weights for the transitions out of these states.

Transition from state ¢ to state (¢:+1): State ¢ is entered when the ¢-th local checkpoint
(0 <@ < k—1) after the start of the segment is established. The system makes a transition
from state ¢ to state (¢ + 1) when the next checkpoint is established without any failure
occurring after entering state i. In the absence of failures, T'+ () units of time® is spent in
state 7 before entering state i+1 (e.g., refer state 1 in Figure 7(a)). Therefore, the probability
of the transition from state ¢ to (¢ + 1) is equal to the probability that no failure occurs

during T' 4 C) units of execution. Thus, P41y = e NMTHE) - (Recall that A = A, + Ap.)

The weight (VVi(i—I—l)) of this transition is equal to T' + (', as T' 4 C} units of time is
required to reach state (¢ + 1) after entering state ¢, if no failure occurs.

Transition from state i to state ¢’ : This transition takes place when a transient
processor failure occurs after entering state ¢, but before the next checkpoint is established.
The probability of this transition is equal to the probability that a failure occurs during
T + C; units of execution and that the failure is a transient processor failure. Thus,

B 1 —p)A (1—=pA
Py = (1 — e NI+ (7?7 — (1 — Py Al i )
( € ) )\p + )\l ( (H‘l)) A

The weight of this transition is equal to the expected time spent in state ¢, until a
transition to state ¢’ is made. The probability density function (pdf) for the time to failure,
given that a transient processor failure has occurred within T4 €} units and given that the
transient processor failure occurred before a permanent processor failure or a local storage
failure could have occurred, is given by

NXe NM
1 — c—NNT+0y)

50Of the T+ C) time units, T'— L; + C; is spent in executing the (¢ 4 1)-th checkpoint interval and L; in
latency period of the (¢ 4+ 1)-th checkpoint. Of the latency period L;, L; — C} is spent executing a part of
the (i + 2)-th checkpoint interval.
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This pdf turns out to be identical to the pdf for the time to failure, given that a failure has
occurred within 7'+ C; units (the type of failure is unspecified). Now that we know the pdyf,
it follows that

T4+ C

_ -1
= (V)7 - eNMT+Cy) _ |

T+C N e NA (T +Ce NI+
Wi = /0 1 — e~ NANT+Oy) dt = (N)\) - 1 — eNMT+CY)

At a first glance, it may seem counter-intuitive that the above expression contains A (=
Ay, + A) and not just A\,. However, note that a transition is made to state i’ only if a
transient processor failure occurs before a local storage or permanent processor failure can
occur. Therefore, weight W;; is a function of A, as well as A;.

Transition from state : to state 0’ : This transition takes place when a permanent
processor failure or a local storage failure occurs after entering state ¢, but before the next
checkpoint is established. The probability of this transition is equal to the probability that a
failure occurs during 7'+ C; units of execution and that the failure is a permanent processor
failure or a local storage failure. Thus,

PA, + A

pAp + N
~——— = (1 = Piiqn)) = 1 = Piiy1) — P

Pa = (1 =00y B T
P {

The weight (W) of this transition is identical to W obtained above.

The transitions out of state " are similar to those out of state :. Recall that presently
we assume 0 < ¢ < k—1and k > 1.

Transition from state ¢’ to state (¢ 4+ 1) : The probability of this transition is equal to
the probability that no failure occurs during R; + T + L; units of execution (e.g., refer state

1’ in Figure 7(b)). Thus, Py41) = e~ NAFAT+1L1)
The weight (VVZ'/(Z'H)) of this transition is equal to Ry + T + L;, as R + 1 + L; units

of time is required (in state ¢) before the next local checkpoint is established, provided no
failure occurs.

Transition from state ¢/ to state > : Probability of this transition is equal to the
probability that a failure occurs during R; + T 4 L; units of execution and that the failure
is a transient processor failure. Thus,

B 1 —p)A (1—=p)A
Puy = (1 — ¢~ NAEATHL) (7?7 — (1 — Py RS il
( € ) )\p + )\l ( % (H‘l)) A

18



The weight of this transition is equal to the expected time spent in state ¢/, until a transition
back to state ¢’ is made. It can be seen that

R+T+IL; N e_N/\t _1 R[ + T+ Ll
Wow = /0 St = (T - e

Transition from state i’ to state 0’ : This transition takes place when a permanent
processor failure or a local storage failure occurs after entering state ¢', but before the next
local checkpoint is established. The probability of this transition is equal to the probability
that a failure occurs during R;+ T + L; units of execution and that the failure is a permanent
processor failure or a local storage failure. Thus,

B A, + N A, + A
Pug=(1—e NARAT+L)) B2 T AL 1 — Py —f—— =1— Pigip1) — Poi
0 ( ) )‘p + )\l ( (‘H)) A (i+1)

The weight (W) of this transition is identical to Wy obtained above.

Transition probabilities and weights for the transitions out of states 0, 07, (k—1) and
(k — 1)’ can be obtained similarly, as summarized below. (Recall that, at present, we are
analyzing a type 2 segment with & > 1.)

Py = e NMT =Lt Cat L) Wo=T-L,+Cs+ L

Poor =1— Py Woor = (N7 — eNA{;—%SSt%Zi%ZZ)_l

Pyy = e”NAMBATHLY) Wor =R, +T + L

Pyo =1 — Py Woor = (NA) 7! — st —

Ppooyp = e VM =Lt Gt L) Wi—tye =T — Li + Ci + L,

Py_1yhory = (1 = Pp_qyy,) L7222 Wimtye—1y = (NA) ™ — i —
Pr—nyor =1 — Pk — Pr—1ye-1y Wie—yo = Wi—1ye-1y

Ploeiyy, = e NMEATHL:) We—tyr = R+ T + L

Pleaygeoty = (1= Ppay) 1 Wi—ty-y = (N — cotkbrrs—
Pir—1yor =1 — Pk — Py -1y Wik—1yor = Wi_1yr—1y

7.1.2 Evaluating the expected segment completion time

To evaluate the expected time required to execute a segment of type 2, we first reduce the
number of states in the above Markov chain. Then, we evaluate the expected number of
entries into each state in the Markov chain. The expected segment completion time can be
evaluated using the expected number of entries, as elaborated below.

The first step is is to reduce the number of states by merging states ¢ and ¢’ for
1 < ¢ < k—1. The new Markov chain is shown in Figure 9 (recall that & > 1). State
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Figure 9: Reducing the number of states

i, 1 <i < (k—1)in the new Markov chain is obtained by merging states 7 and ¢’ in the
original Markov chain. (States 0 and 0’ are not merged.)

Let ()4, denote the state transition probability for the transition from state a to state
b in the new Markov chain. Also, let V,; denote the weight of the transition from state a to
state b in the new Markov chain in Figure 9. Then, it can be seen that,

QOI = POl ‘/01 = WOI
QOO’ = POO’ ‘/00’ = WOO’
QO’I = PO’l ‘/0’1 = WO’I
QO’O’ = PO’O’ ‘/0’0’ = WO’O’

To obtain 41y and Viiqqy (1 < ¢ < (k — 1)) observe that, in Figure 8, state (¢ + 1) can
be reached from state ¢ by two paths which do not go through state 0’. The first path is
simply the direct transition from state ¢ to ¢ + 1. The other path includes a transition from
state 7 to ¢” and then a transition from state 2" to 2 + 1. Note, however, that once state ¢’ is
reached, on average, Py /(1 — Pyyr) transitions are made back to i’ before a transition out of
state 17 occurs. Based on these observations the following expressions for Q;41) and Viiq)
are obtained. Similar observations also lead to the following expressions for (), and Vjor.

Also, for 1 < < (k—1)

Prir Pi(igr)

i = P+ ———"""—"+
© (+1) (+1) Pi’(i-l—l) + Py

Pii/Pi/ i
Wity Pigig1y + Wi + Wi P [(1 = Prir) + Wirigy) (ﬁﬁ)
Vigeny = b P Poiian)

(RN e

Piir Py

o = Po+ 5——p—
Qo ’ Pigiyry + Poor

Wior Pior + (Wi + Wi Py [(1 — Pirgr) + Wor) (M)

Pi/(i+1)+Pi/0/

PP
P. ’ 2077 270
0 T Pi/(i+1)+Pi/0/
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The next step is to calculate the expected (average) number of entries into each state
of the Markov chain in Figure 9. Let N, denote the expected number of entries into state
s. Clearly, Ng = Ny = 1. The other N,’s can be obtained using standard techniques [27], as
follows.

Ny — Qoo + Q1o+ + Qo2 Qu-2yk-1)Qr-1)00 Qoo + 204 (H?:_(}Qj(ﬁl)) Qnor
0/ p— _=

Qo1 G12Q23 - - Q(k—l)k Qon Hf; Qj(j+1)

For 1 <i:<(k—1)

1 1
N; = = Tyk—1
Qi(i+1)Q(i+2)(i+3) "  Qr=1)k 52 Qi+1)

The expected number of times a transition (a,b), from state a to state b, is taken
can be obtained as Q. N,. Then, the expected (average) segment completion time can be
obtained as

Z ‘/ab Qab Na
(a,b)

where, the summation is over all transitions in the Markov chain in Figure 9.

As elaborated below, analysis of the segments of type 1, 3 and 4 is similar to the
above analysis of a type 2 segment. Once we know the expected execution time for each
segment of the task, the expected task completion time can be obtained by summing the
expected completion time for all the segments of the task.

7.2 Average Execution Time of a Type 1 Segment

Analysis of a type 1 segment is similar to that of a type 2 segment. The Markov chain for a
type 1 segment is essentially identical to that for type 2. The only difference is in the state
transition probabilities and the weights for the transitions out of state 0 in Figure 8. The
reason for this difference is that a segment of type 1 does not begin after a stable checkpoint,
instead, this segment begins with the beginning of the task. The segment terminates with
a stable checkpoint, similar to a segment of type 2.

For a type 1 segment, The state transition probabilities and the weights for the
transitions out of state 0 are as follows:

Py = ¢ NMTHL)
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Poor = 1—="Pn
Wn = T+ 1L

T+ L

_ -1
Wor = (NN = iy —7

The rest of the analysis for a type 1 segment is identical to that for a type 2 segment.

7.3 Average Execution Time of a Type 3 Segment

Analysis of a type 3 segment is also similar to that of a type 2 segment. The Markov chain
for a type 3 is essentially identical to that for type 2. The only difference is in the state
transition probabilities and the weights for the transitions out of states (k —1) and (k —1)’
in Figure 8. The reason for this difference is that a segment of type 3 does not terminate
with a stable checkpoint, instead this segment terminates with the completion of the task.
The type 3 segment begins after a stable checkpoint, similar to the segment of type 2.

For a type 3 segment, The state transition probabilities and the weights for the
transitions out of states (k — 1) and (k — 1)” in Figure 8 are as follows (k > 1):

Prrye = e MNT-Li30)
(1 — p))‘p
FPo_ vy = (1 — Po_ R
(k=1)(h—1) ( (k—1)k) N n
Pr_nyo = 1= Py — Plre—1ye-1y
Py = o~ NA(RAT)
(1 — p))‘p
P — I — I = 1 - P — I —_—
(k=1)/(k-1) ( (k=1)) NN
Wi—te = T—Li+C
T—-Li+C
_ -1
Wik-1)(k-1y (NN™ ~ @t — 1
Wik—1yor Wik—1)(k-1y
Wik—1yk R+ T
_ R +T
Wiyt = (N7 = S =7
Wik—1yor Wik—1y(r-1y
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The rest of the analysis for a type 1 segment is identical to that for a type 2 segment.
When g is not an integral multiple of k, the number of checkpoint intervals in a type 3
segment is less than k, say c¢. In that case, the expected execution time can be obtained by
replacing k by ¢ in the above analysis.

7.4 Average Execution Time of a Type 4 Segment

Analysis of a type 4 segment is also similar to that of a type 2 segment. In this case, the
transition probabilities and weights for states 0, (k—1) and (k— 1) are different from those
for type 2. The new probabilities and the weights are identical to those listed above for type
1 and 3 segments. The remaining analysis is identical to a type 2 segment.

In the above, we assume k& > 1. The analysis for £ = 1 is much simpler, and is
omitted here for brevity.

8 Numerical Results

In this section, we present numerical results to determine optimal values of k& and p for a
given set of parameter values. Significant effort has been devoted in the past for analytically
determining optimal checkpoint intervals for checkpointing and rollback recovery schemes
[3, 7, 12, 25, 33, 34]. Due to the complexity of the expressions for the two-level recovery
scheme under consideration, an analytical approach for determining optimal &£ and g is not
very attractive. Instead, we choose to determine the optimal values numerically.

Two goals of the analysis:

e To demonstrates that sometime a two-level recovery scheme can perform better than
one-level schemes. We show this by evaluating the average task completion time for
an example task.

e To analyze the impact of checkpoint latency on the performance overhead.

In this report, we present analytical results for a hypothetical task. The chosen
parameter values are motivated by the experimental results presented in Section 10, and
reference [16]. Conclusions drawn from the numerical results presented in this section are
applicable to a wide range of parameters. Assuming the parameters shown in Table 1,
Figure 10 plots the average task completion time for various values of k and p. Presently we
assume Ly, = C, and L; = ;. We will consider the situations where L, > C, and L; > (|
later in Section 9.

Due to the limitations of our graph-plotting software, p is denoted as mu in
the graphs. Similar convention is followed for other greek letters also.
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A, = 0.0001 | A; = 0.00001 ‘ p = 0.05

N = 256 T =280
Cs=L;,=R;=2.0
Ci=Li=R =06

Table 1: Example parameters
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Figure 10: The curves are not always convex

The first interesting feature of the two-level recovery scheme is that the curves for
average overhead may have multiple minimas — this is illustrated by the curve for k£ = 2
in Figure 10. These curves are not always convex, unlike the traditional checkpointing and

rollback schemes (e.g., [3]).

The curve for k£ =1 is also shown in Figure 10. When £ = 1, all the checkpoints are
stable checkpoints, and the two-level recovery scheme reduces to traditional checkpointing
schemes. Therefore, as shown previously [3], the curve for £ = 1 is convex and has exactly
one minimum.

As seen in Figure 10, k = 4 can achieve a lower overhead as compared to k = 1,2, 3.
Figure 11 shows the curves for £ = 4,5,6, 7. Observe that £ = 4 can achieve a lower overhead
than k£ = 5,6,7 also. In fact, our numerical search indicates that the average overhead is
minimized when k£ =4 and p = 12.

The fact that the average overhead is minimized when k& = 4 implies that £ = 1 does
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Figure 11: Minimum achieved when k£ =4 and p = 12

not yield optimal performance. As k = 1 corresponds to taking only stable checkpoints, the
graphs imply that a “one-level” recovery scheme that takes only stable checkpoints is not
always optimal. Also, in this example, note that the optimal overhead is achieved when
k # p. As the recovery scheme that takes only local checkpoints is obtained when & = g,
the above results imply that taking only local checkpoints is also not optimal. In summary,
the two-level scheme can achieve a better performance than the one-level recovery schemes
that take only stable checkpoints or only local checkpoints.

To be fair, we should note that whether the two-level recovery scheme can achieve
better performance or not depends completely on the parameter values. The above example
illustrates that the two-level approach can sometimes perform better. Now, we present
examples of parameters where the one-level schemes perform better.

For example, if T = 20 (other parameters being the same as in Table 1), then the
average overhead is minimized when k£ = g = 3. This means that, in this case, taking only
local checkpoints minimizes the average overhead. The reason for this result is that the task
length is sufficiently small compared to the mean time to a failure that affects a local storage
(i.e., a local storage failure or a permanent processor failure). Therefore, the probability of
such a failure is small. Thus, it is acceptable to restart the task on such a failure. Local
checkpoints are taken, however, to minimize re-execution overhead in presence of transient
processor failures, as they occur with a relatively higher probability. Figure 12 shows the
curves for a few selected values of &k, and also for k£ = p.
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Figure 12: Example: Taking only local checkpoints (k = ) is optimal

If C; = Ly = R, = 1.6 (other parameters being the same as in Table 1), then the
average overhead is minimized when £ = 1 and g = 7. This means that, in this case, taking
only stable checkpoints minimizes the average overhead. The reason for this result, in this
case, 1s that the overhead of taking a local checkpoint is not sufficiently small compared to
a stable checkpoint. Therefore, it is preferable to take a stable checkpoint, as it provides
protection against all failures. Figure 13 shows the curves for a few selected values of k.

In general, it seems that, for most applications, either the two-level scheme will
achieve lowest overhead, or the scheme that takes only local checkpoints will achieve lowest
overhead (as, in practice, C; is much smaller than C). Taking only stable checkpoints is not
likely to be optimal in most cases. This is interesting, as most past implementations take
only stable checkpoints (e.g., [5]), and therefore are often sub-optimal.

9 Impact of Checkpoint Latency on Performance

Increasing the checkpoint latency does not increase the failure-free execution time of the
application. However, it does increase the “window of vulnerability” of a given checkpoint.
To be more specific, larger checkpoint latency can increase the rollback distance upon a
failure, i.e., the amount of computation lost due to a failure is likely to increase due to a
larger checkpoint latency. We illustrate this with a comparison of two scenarios:
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Figure 13: Example: Taking only stable checkpoints (k = 1) is optimal

Scenario 1: Consider the case when the checkpoint latency is identical to the check-
point overhead. Figure 14(a) illustrates a scenario where a failure has occurred and the
system has rolled back to the recent local checkpoint CP1. To avoid another rollback, no
failure should occur until the next checkpoint is established, i.e., no failure should occur
within R; + T + C; time units after the first failure (we assume that the next checkpoint is
a local checkpoint).

Scenario 2: Now consider the case when the checkpoint latency is greater than the
checkpoint overhead (all other parameters being identical to scenario 1). Figure 14(b) illus-
trates a scenario where a failure has occurred and the system has rolled back to the recent
local checkpoint CP1. To avoid another rollback, no failure should occur until the next
checkpoint is established, i.e., no failure should occur within R; + T 4 [L; time units after
the first failure.

L in scenario 2 is larger than C7in scenario 1. The window of vulnerability in scenario
2is (Ri+ T+ L;), which is larger than the window of vulnerability in scenario 1 (R;+T 4 C).
This implies that there is a greater chance of another rollback in scenario 2, as compared to
scenario 1.

The above discussion suggests that larger checkpoint latency may result in worse
performance. To evaluate the impact of checkpoint latency on system performance, we
evaluate the performance overhead as a function of checkpoint latency. We limit the values
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Figure 14: Performance impact of checkpoint latency

of k and g such that two checkpoint latency periods do not overlap.

Assume that é— = é—i = «. (Thus, for the parameters values used in Section 8,
a = 1.) In practice, é— and é—i may not be identical. We limit the number of graphs by
. . L. L
considering only the case of & = o

Consider a task for which all parameters, except L and L;, are as in Table 1. Figure 15
is plotted assuming that Ly = aC and L; = a(}, for various values of «, k and p. Observe
that, with all other parameters being fixed, the average overhead increases almost linearly
with increasing «. Also, the increase is significant for the chosen parameter values. The
increase in the average overhead with increasing o becomes less significant for smaller failure
rates. Figure 16 is plotted for A, = 0.00005, A\; = 0.000005, L, = aCs and L; = aC). (All
other parameters are as in Table 1). Observe that the average overhead again increases
almost linearly with «, however, the rate of increase is smaller as compared to Figure 15.

The above results suggest that when the failure rate (N ) is large, a large checkpoint
latency can have a detrimental effect on performance. Note, however, that the above graphs
hold the checkpoint overhead constant while increasing the latency. In practice, an increase
in the latency is typically associated with a decrease in the overhead. Therefore, a higher
latency can in fact result in an improvement in performance, if the checkpoint overhead is
reduced adequately. A study of the relationship between checkpoint overhead and checkpoint
latency is a subject of further research.

Similar to our observation in Section 8, when checkpoint latency is larger than check-
point overhead also, the two-level scheme can perform better than the schemes that take
only stable checkpoints or only local checkpoints (numerical results are omitted for brevity).
Also, taking only stable checkpoints seems to be sub-optimal for many parameter values.

10 Experimental Evaluation

To get an estimate of the relative values of checkpoint latency and checkpoint overhead for
local and stable checkpoints, we implemented the proposed two-level recovery scheme on a
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Figure 15: Dependence of average overhead on checkpoint latency
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Figure 16: Dependence of average overhead on checkpoint latency — with smaller failure
rates than Figure 15
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network of workstations, each workstation having a local disk. The checkpointing scheme
is implemented on top of Unix (at user level). The local checkpoints are stored on the local
disks, whereas the stable checkpoints are stored on a disk that is accessed over the network.
The application processes can communicate with each other using a message-passing library
that we have developed. (The application does not directly access sockets.) A software layer
has been implemented that provides additional support to transparently establish logical
communication channels between any pair of application processes.

In this report, we present measurements for four uni-process applications. Results for
multi-process applications will be included in a future revision of this report.® Specifically,
the uni-process applications were executed on a Sun SPARCstation-10 workstation (with
SunOS 4.1.3) using a Sun Sparcl1000 server (over 10 Mbps Ethernet) as the stable storage.

The SPARCstation-10 workstation has about 17 Mbyte RAM memory free to be used by
an application. The page size on this machine is 4096 bytes (or 1024 words).

Two methods for taking individual process checkpoints are presently evaluated. (Both
the methods have been previously used by other researchers also [5, 14, 19].)

e “Sequential-checkpoint” : In this method, when a process wants to take a checkpoint,
it saves its state on the storage, and then proceeds with the computation. The com-
putation is not overlapped with the checkpointing operation. With this method, for
uni-process applications, checkpoint overhead and checkpoint latency may be expected
to be identical.

For multi-process applications, the latency can be larger than the overhead, as the
consistent checkpointing algorithm may require the processes to take checkpoints at
somewhat different times, i.e., the processes may not start (or complete) checkpoints
at exactly the same physical time. For a consistent checkpoint, the latency is defined
as the time from the instant when the first process initiated its checkpoint, till the
instant when the last process established its checkpoint. Even if each process uses
sequential-checkpointing, the latency of the consistent checkpoint is likely to be larger
than the overhead.

e “Forked-checkpoint” : In this method, when a process wants to take a checkpoint, it
forks a child process. The child process then saves its state on the storage to establish
a checkpoint. The original process (i.e., parent) continues computation while the child
process is saving the checkpoint. In this method, computation is overlapped with
checkpointing, therefore, checkpoint overhead may be expected to be smaller than the
checkpoint latency. Also, the checkpoint overhead with this method may be expected
to be smaller than sequential-checkpointing.

SPlank [20] presents measurements of checkpoint latency and overhead for applications executed on
an iPSC/860 multicomputer. These measurements, however, do not provide information regarding the
relationship between local and stable checkpoint overheads and latencies.
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In either method, the executable code is not saved as a part of the checkpoint.

We present experimental results for four applications. The first application (MAT)
performs matrix multiplication on square matrices. We measured performance of each appli-
cation with different checkpoint sizes. The checkpoint size for MAT was varied by changing
the matrix size. The second application (FFT-3) performs the Cooley-Tukey fast Fourier
transform (FFT) algorithm on three sets of data points. The checkpoint size was varied
by changing the size of each set of data points. The remaining two applications were syn-
thetic. In the present-day Unix implementations (and its variants), the fork command is
implemented using the copy-on-write technique [23]. Hence, the checkpoint overhead of
forked-checkpoint may be expected to depend on the program’s locality of reference. There-
fore, we implemented two types of locality:

e “Low-locality” (LL) : The pseudo-code for this application is presented in Figure 17(a).
In this case, the program accesses memory locations from different memory pages in
a rapid succession. The program consists of a for loop that updates one memory
location in each iteration. To get “low-locality”, each iteration accesses a location in
a different page.

The page size on our machine is 1024 words (4096 bytes), while the lower dimension
of the state matrix in program LL is 16384 (= 16 x 1024). Therefore, the for
loop in program LL accesses the memory pages in sixteen parts — each part accesses
one-sixteenth of the pages. Thus, at any time, memory accesses in the for loop are
localized to one-sixteenth of the memory pages containing state matrix.

To further minimize the locality of reference, the lower dimension of the state matrix
can be made equal to 1024. (Such a program may be said to have “zero-locality”,
as it accesses all pages in a rapid succession.) We plan to perform experiments with
“zero-locality” as well, however, the results for LL program suffice to illustrate the
effect of variations in the locality of access.

e “Full-locality” (FL) : The pseudo-code for this application is presented in Figure 17(b).
In this case, the program accesses only one location within the state array, al-
though the program state is much bigger. To avoid defeating the purpose behind
“full-locality”, we do not perform incremental checkpointing. (In fact, incremental
checkpointing is not used in any of our experiments.)

In the above two cases, the size of the checkpoint was varied by changing parameter XLEN
in Figure 17.

Figure 18 illustrates how the checkpoint overhead and checkpoint latency were mea-
sured for the two checkpointing methods. Figure 18(a) shows an execution of a program
without any checkpoints. The execution time for this program is obtained as the difference
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Low-locatity (LL) Full-locality (FL)

float state[XLEN][16384]; float state[XLEN][16384] ;
repeat N times { repeat N time {
for (k=0; k<16384; k++) for (k=0; k<16384; k++)
for (j=0; j<XLEN; j++ for (j=0; j<XLEN; j++)
state[j][k] = state[jl[k] + 1.2; state[0] [0] = state[0][0] + 1.2;
by by

Figure 17: C-like pseudo-code for programs LI and FL

between the start time and the end time. To estimate the correct execution time, we ex-
ecuted each program at least 10 times and calculated the average execution time. Let the
estimated (average) execution time for a program without checkpoints be denoted as FE.

Figure 18(b) shows an execution of a program that takes sequential-checkpoints.
Again, the total execution time is obtained as the difference between the start time and the
end time. The total execution time is estimated by averaging over at least 10 executions of
the program. Let the estimated execution time for the program with sequential checkpoints
be E;. Then, the overhead of a sequential checkpoint is calculated as (Es — E)/n, where
n is the number of checkpoints taken during each execution of the program. For sequential
checkpointing, we expect the checkpoint overhead to be identical to the checkpoint latency.
To validate this, we also measured the checkpoint latency, as shown in Figure 18(b). The
checkpoint latency of a sequential checkpoint is calculated as the difference between the time
when the checkpoint is initiated and the time when the checkpoint is completed. Average
checkpoint latency is calculated by taking an average over all checkpoints taken during all
executions of the application. (In our measurements, the average was calculated over at
least 60 samples.)

Figure 18(c) shows an execution of a program that takes forked-checkpoints. The
total execution time is estimated by averaging over at least 10 executions of the program.
Let the estimated execution time for the program with forked-checkpoints be Ey. Then,
the overhead of a forked-checkpoint is calculated as (E; — E)/n, where n is the number
of checkpoints taken during each execution of the program. To determine the checkpoint
latency, we noted the time when a child is forked, and the time when the child exits after
saving the checkpoint. The checkpoint latency was calculated as a difference between the
two time observations. (The time at which the child exits is determined by a signal handler
for SIGCHLD signal.) Similar to sequential-checkpoints, the average checkpoint latency is
calculated as an average over at least 60 samples.
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Figure 18: Measurement scheme

We now present the experimental results, followed by a discussion of the results.
Tables 2 through 5 present checkpoint overhead and checkpoint latency measurements. In
these tables, a no in the chkpt column implies that no checkpoints are taken. Also, a yes in
the fork column implies that forked-checkpoints are taken, a no in the fork column implies
that sequential-checkpoints are taken. The local/stable column in the tables indicates
whether the checkpoints are stored on local storage or stable storage. Figures 19 through 22
plot checkpoint overheads as a function of checkpoint size. As noted earlier, checkpoint sizes
were varied by changing the data sizes for the various applications. Observe that, in most
cases, the checkpoint overheads increase almost linearly with checkpoint size — the rate of
increase depends on where the checkpoint is stored and whether the checkpoint is sequential

or forked.

For most measurements of average execution time presented in the following, the
standard deviation [27] of the execution time is less than 0.4% of the average execution time.
For some measurements the standard deviation is larger than 0.4%, but never exceeds 1%
of the average execution time.

In the remainder of this section, we present some observations based on the above
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MAT

chkpt number of | chkpt | fork | local/ | execution chkpt chkpt | latency/
size chkpts stable time | overhead | latency | overhead
(bytes) (milisec) | (milisec) | (milisec) | (ratio)
759748 8 no — — 37642 — — —
8 yes no | local 42156 564 561 0.994
8 yes yes | local 38823 147 595 4.04
8 yes no | stable 57205 2445 2444 1
8 yes yes | stable 40279 329 2536 7.71
2045892 13 no — — 173067 — — —
13 yes no | local 188866 1215 1219 1
13 yes yes | local 177944 375 1271 3.39
13 yes no | stable 257432 6489 6473 0.997
13 yes yes | stable 184604 887 6695 7.54
3962820 18 no — — 473901 — — —
18 yes no | local 513055 2175 2162 0.994
18 yes yes | local 487342 746 2225 2.98
18 yes no | stable 705039 12841 12797 0.996
18 yes yes | stable 506092 1788 13129 7.34
5822404 22 no — — 847251 — — —
22 yes no | local 917342 3185 3147 0.988
22 yes yes | local 873037 1172 3265 2.79
22 yes no | stable | 1279125 19630 19552 0.996
22 yes yes | stable 903099 2538 19913 7.84

Table 2: Measurements for application MAT

experimental data.

Sequential-Checkpointing: As seen from the tables, the ratio of checkpoint latency and
checkpoint overhead for (local or stable) sequential checkpoints is very close to 1 for most
cases (only exception is of local checkpoints for program LL with checkpoint size 8.4 Mbyte).
Observe that the measured value of latency is often slightly smaller than the overhead.
However, in most cases, the difference is too small to be statistically significant — in such
cases, latency and overhead should be considered to be, essentially, identical. Therefore, our
analysis in Section 7 is applicable to sequential-checkpointing.

The case of program LL with checkpoint size 8.4 Mbyte is an exception. In this case,
for local checkpoints, the L;/C) ratio is 0.816 (much smaller than 1). We do not completely
understand the reason for this phenomenon, and we are investigating it at the present. We
can envisage one reason that may cause this behavior:
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Figure 19: Measurements for application MAT

e When the process takes a checkpoint, it uses the write system call. The write system
call usually copies the data into a buffer, and returns. (The write call can return before
the data is actually written to the disk — we use the fsync system call to ensure the
data is actually written to disk.) When checkpoint size is larger than half the available
memory, the process state and the buffer require all the available memory. This may
cause some virtual memory pages to be written to secondary storage (i.e., local disk).
After the checkpoint is completed, these pages must be read back to the main memory
(as program LL eventually needs to modify these pages). These page-ins will result in
an overhead after the checkpoint is completed.

The above reasoning also explains why high overhead is not observed for program FL
with checkpoint size 8.4 M. Program FL accesses only two pages of memory, one page
containing state[0] [0] and another containing j and k. (Even if other pages are
paged-out to the local disk, they do not have to be paged-in, unlike program LIL.)

Unfortunately, the information presently available to us does not support the above expla-
nation. We plan to perform further experiments to resolve this issue.

Forked-Checkpointing: As should be expected, the latency of a forked-checkpoint is (in
most cases) much larger than the overhead of a forked-checkpoint. (Thus, the analysis in
Section 7 is applicable.) Also, observe (in the tables) that the latency of forked-checkpoints
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FFT-3

chkpt number of | chkpt | fork | local/ | execution chkpt chkpt | latency/
size chkpts stable time | overhead | latency | overhead
(bytes) (milisec) | (milisec) | (milisec) | (ratio)
1096428 6 no — — 42186 — — —

6 yes no | local 46740 759 57 0.997

6 yes yes | local 43944 293 811 2.76

6 yes no | stable 63230 3507 3496 0.997

6 yes yes | stable 45558 562 3580 6.37
2145004 6 no — — 91005 — — —

6 yes no | local 98764 1293 1278 0.988

6 yes yes | local 94125 520 1352 2.6

6 yes no | stable 132615 6935 6935 1

6 yes yes | stable 97377 1062 7107 6.7
4242156 6 no — — 194368 — — —

6 yes no | local 208547 2363 2310 0.978

6 yes yes | local 200922 1092 2422 2.2

6 yes no | stable 279943 14262 14227 0.997

6 yes yes | stable 207468 2183 14492 6.6
8436460 6 no — — 417782 — — —

6 yes no | local 445697 4652 4637 0.997

6 yes yes | local 429606 1970 4962 2.5

6 yes no | stable 598410 30104 30127 | 1.0007

6 yes yes | stable 443729 4324 31233 7.2

Table 3: Measurements for application FFT-3

is a little larger than the latency (and overhead) of corresponding sequential-checkpoints.
This is reasonable, because the child process cannot possibly save the checkpoint any faster
than the parent process can (when it takes sequential-checkpoints). The overhead of forked-
checkpoints is significantly smaller than that for the corresponding sequential-checkpoints.
(Program LL with checkpoint size 8.4 M is an exception, as before.)

Let overhead ratio be the ratio of the overhead of a sequential-checkpoint and that
of the corresponding forked-checkpoint. The overhead ratio can be seen to be between 2
and 4 for local checkpoints, and between 6 and 9 for stable checkpoints (in most cases). For
example, for FFT-3 with checkpoint size 4.2 Mbyte, the overhead ratio for local checkpoints
is (2363/1092) = 2.16 and that for stable checkpoints is (14262/2183) = 6.53. Different
ratios for local checkpoints and stable checkpoints are obtained due to the differences in
access rates for the local and stable storages.

The overhead ratio for stable checkpoints of program LI with checkpoint size 8.4
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Figure 20: Measurements for application FFT-3

M is (30619/7004)=4.37, significantly smaller than other programs (or smaller checkpoint
sizes). This behavior seems to be caused because the checkpoint size is large. Note that
the checkpoint size is about half the size of available memory (17 M). As the program has
no locality of reference, when forked-checkpointing is used, the parent and child together
require all the available memory. This implies that when the child process tries to write
the state, adequate buffer space is not available to make a copy of the state. We believe
that this causes an increase in the overhead of the forked-checkpoint, resulting in a lower
overhead ratio.

Low-locality and Full-locality: As should be expected, the FL. program has a smaller
execution time than the LL program, as FL can cache all necessary data at all times. Our
interest, however, is in the checkpoint overheads and latency. The overhead or latency of
sequential-checkpointing is largely a function of checkpoint size (locality should not affect
sequential checkpointing). This is reflected in the experimental measurements for sequential-
checkpoints of the two programs. The exception to this is, again, LL with checkpoint size

8.4 M.

As expected, the overhead of forked-checkpoints is smaller for full-locality (FL) than
low-locality (LL). For program LL, whenever the parent modifies a page, a copy of the
original page must be made for the child process. As LI, modifies different pages in a quick
succession, a large number of pages must be copied — the parent must wait each time a page
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low-locality (LL)

chkpt number of | chkpt | fork | local/ | execution chkpt chkpt | latency/
size chkpts stable time | overhead | latency | overhead
(bytes) (milisec) | (milisec) | (milisec) | (ratio)
1087404 6 no — — 32992 — — —

6 yes no | local 37423 739 731 0.989

6 yes yes | local 34838 308 776 2.5

6 yes no | stable 53849 3476 3435 0.988

6 yes yes | stable 36455 57T 3529 6.1
2135980 6 no — — 67567 — — —

6 yes no | local 74934 1227 1246 1.015

6 yes yes | local 70376 468 1310 2.8

6 yes no | stable 108574 6835 6879 1.006

6 yes yes | stable 73680 1019 7056 6.9
4233132 6 no — — 170850 — — —

6 yes no | local 184575 2287 2278 0.996

6 yes yes | local 177131 1046 2397 2.3

6 yes no | stable 256466 14269 14162 0.993

6 yes yes | stable 185172 2387 14383 6
8427436 6 no — — 358335 — — —

6 yes no | local 392112 5629 4596 | 0.816

6 yes yes | local 394739 6067 4971 | 0.819

6 yes no | stable 542054 30619 30097 0.983

6 yes yes | stable 400361 7004 31171 4.45

Table 4: Measurements for application LL (low locality)

is being copied, adding to the overhead. For FL, only two pages are modified by the parent,
therefore, all other pages can be shared by the parent and child (and at most two pages need
to be copied). Therefore, the overhead of forked-checkpoints is smaller for FL as compared

to LL.

Interestingly, the latencies of forked-checkpoints for LL. and FL are comparable. We
had expected the latency of forked-checkpoints for FL to be larger than LL.

11 Related Work

We define two-level recovery schemes as those that tolerate the more probable failures with
a low overhead, while the less probable failures may incur a higher overhead. This definition
can also be extended to multi-level recovery schemes.

38



Low |l ocality
35 T T T T

| ocal chkpts (sequential) ——

30 | | ocal chkpts (fork) —+--.

stabl e chkpts (sequential) -2--
stabl e chkpts (fork) -

10

checkpoi nt overhead (seconds)

checkpoi nt size (Mytes)

Figure 21: Measurements for application LL (low locality)

It was recently brought to our attention [2] that Gelenbe [8] previously proposed a
“multiple checkpointing” approach that is very similar to the “multi-level” approach that
we advocate in this report. Gelenbe divides system failures into multiple (n) categories
according to their severity. The system takes n types of checkpoints, each type of checkpoint
designed for one type of failures. Each type of failure is assumed to be governed by a
Poisson process. Although Gelenbe’s analysis focuses on transaction-oriented systems, the
fundamental idea behind multiple checkpoints and multi-level recoveryis the same — minimize
the overhead by designing different approaches for tolerating different types of failures. We
characterize a “type” of failure according to the probability of its occurrence, while Gelenbe
characterizes a “type” of failure according to how “difficult” it is to recover from the failure.
(A failure of type 1 is less “difficult” than a failure of type 2 if a checkpoint for failure type
2 can be used to recover from a type 1 failure [8].) To our knowledge, Gelenbe did not
present specific multi-level schemes for distributed systems. His analysis as such may not
be applicable to the multi-level schemes of our interest, for two reasons:

o Gelenbe assumes the failures of different types to be governed by Poisson process.
This may not be true, in general, even if the failure of each processor is governed by a
Poisson process. For instance, this assumption will not apply for the two-level scheme
presented in Section 2, while it will apply to the scheme presented in Section 4.

e Gelenbe considers transaction-oriented systems. The analysis for a distributed system
executing a long-running parallel application may differ (depending on the multi-level
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full-locality (FL)

chkpt number of | chkpt | fork | local/ | execution chkpt chkpt | latency/
size chkpts stable time | overhead | latency | overhead
(bytes) (milisec) | (milisec) | (milisec) | (ratio)
1087404 6 no — — 17151 — — —

6 yes no | local 21625 746 736 0.987

6 yes yes | local 18445 216 778 3.6

6 yes no | stable 38418 3545 3540 0.999

3 yes yes | stable 18581 ATT7 3854 8
2135980 6 no — — 33745 — — —

6 yes no | local 41250 1251 1246 0.996

6 yes yes | local 36194 408 1297 3.2

6 yes no | stable 76286 7090 7084 0.999

3 yes yes | stable 36449 901 7708 8.6
4233132 6 no — — 66996 — — —

6 yes no | local 80712 2286 2283 0.999

6 yes yes | local 71814 803 2363 2.9

6 yes no | stable 154029 14506 14498 0.999

3 yes yes | stable 72336 1780 15659 8.79
8427436 6 no — — 133364 — — —

6 yes no | local 161330 4661 4606 0.988

6 yes yes | local 142820 1576 4701 3

6 yes no | stable 317538 30696 30689 | 0.9997

3 yes yes | stable 144167 3601 32760 9.1

Table 5: Measurements for application FL (full locality)

scheme under consideration).

Ziv and Bruck [36] present a checkpointing and rollback scheme for duplex systems.
Although it does not satisfy the above definition of two-level schemes, their scheme also takes
two types of checkpoints (similar to the schemes we have proposed). They assume that the
duplex system is formed by a pair of workstations connected by a local area network. It is
assumed that the state of the two processors in a duplex system must be compared to detect
failures (i.e., fail-stop assumption is not made). To compare the checkpoints, the processors
must send the checkpoints over a local area network. The overhead of checkpoint comparison,
therefore, is high as compared to saving the checkpoints (the checkpoints are saved on
the local disk of each workstation). Ziv and Bruck propose a scheme where checkpoint
comparison is carried out only at a subset of the checkpoints, thus giving rise to two types
of checkpoints. Checkpoint comparison may be performed at every k-th checkpoint (for some
k). If a failure is detected, then the previous k checkpoints are compared (sequentially) until
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Figure 22: Measurements for application FL (full locality)

an error-free checkpoint is found. The duplex system then rolls back to this checkpoint. By
restricting checkpoint comparison (during failure-free operation) to every k-th checkpoint,
[36] reduces overhead of the recovery scheme, as compared to a scheme that compares the
states at each checkpoint.

Our approach differs from [36] in that we attempt to minimize the average overhead by
distinguishing between more probable and less probable failures. [36] improves the overhead
(for duplex systems) by decoupling checkpoint saving and checkpoint comparison. The two
approaches are similar, however, in that they both take two types of checkpoints.

We previously proposed a roll-forward recovery scheme [21, 29] for duplex systems
that tolerates single processor failures with a low overhead, and multiple failures with a high
overhead. This is achieved by taking different actions during recovery, depending on the
number of failures — the actions taken during the failure-free operation are independent of
the number of expected failures. Although this scheme satisfies our definition of two-level
recovery schemes, in our present research, we are interested in recovery schemes that take
explicit actions during failure-free operation that are designed to minimize the overhead for
the more probable failures.
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12 Conclusions

A “two-level” recovery scheme can tolerate more probable failure scenarios with low over-
head and the less probable failure scenarios with a higher overhead. Most existing recovery
schemes are “one-level” in the sense that their actions during failure-free execution are de-
signed to tolerate the worst case failure scenario. This report presented a two-level scheme
that can tolerate a transient processor failure with low overhead, while permanent processor
failures and local storage failures incur a higher overhead. This is achieved using two types
of checkpoints — local checkpoints and stable checkpoints. Local checkpoints are stored on
the local storage (e.g., local disk of a workstation), while stable checkpoints are stored on
stable storage.

The report presents an analysis to determine the expected completion time of a task
using the two-level recovery scheme. The analysis takes into account the fact that, for
most implementations, the checkpoint latency is larger than the checkpoint overhead. (No
previous work has taken checkpoint latency into account.) The analytical results indicate
that the two-level recovery scheme can achieve a better performance than the traditional
one-level schemes.

The report also evaluates the impact of checkpoint latency on the performance of a
recovery scheme. The analysis shows that large checkpoint latency can have a detrimental
effect on the performance, particularly with high failure rates. When failure rates are small,
increase in the checkpoint latency has a relatively small impact on the performance.

The report presents experimental data on checkpoint overhead and latency of four
uni-process applications. Measurement of checkpoint latency for multi-process applications
is a subject of ongoing work. Also, study of the relationship between checkpoint latency and
the checkpoint overhead, and its impact on performance, is a subject of further research.
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