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1 IntroductionApplications executed on a large number of processors, either in a distributed environment,or on multicomputers such as nCube, are subject to processor failures. Unless some recoverytechniques are utilized, a processor failure will require a restart of the application, resultingin signi�cant loss of performance.Consistent checkpointing is a commonly used technique to prevent complete loss ofcomputation upon a failure [1, 3, 7, 9, 12]. A \consistent checkpointing" algorithm saves aconsistent view of the distributed system state on a stable storage. The loss of computationupon a failure is bounded by taking consistent checkpoints with adequate frequency.The traditional consistent checkpointing algorithms require the di�erent processes tosave their state at about the same time. This causes contention for the stable storage, poten-tially resulting in signi�cant performance degradation [9]. Staggering the checkpoints takenby various processes can reduce the overhead of consistent checkpointing. Some techniquesfor staggering the checkpoints have been previously proposed [9], however, these techniquesresult in \limited staggering" in that not all processes' checkpoints can be staggered. Ideally,one would like to stagger the checkpoints arbitrarily. We assume that a processor does nothave enough memory to make an \in-memory" copy of entire process state.This report presents a simple approach to \completely stagger" the checkpoints. Ourapproach requires that the processes take consistent logical checkpoints, as compared toconsistent physical checkpoints enforced by existing algorithms. This report discusses theproposed approach and the implementation issues. (These were discussed briey in [11].)The report is organized as follows. Section 2 discusses the notion of a logical check-point. Section 3 presents a consistent checkpointing algorithm proposed by Chandy andLamport [1]. Section 4 presents the basic principle behind the proposed approach; imple-mentation issues are discussed in Section 6. Our approach is closely related to [1, 5, 9, 13],as discussed in Section 5. Section 7 concludes the report.2



2 A Logical CheckpointA process is said to be deterministic if its state depends only on its initial state and themessages delivered to it [10]. A deterministic process can take two types of checkpoints:a physical checkpoint or a logical checkpoint. A process is said to have taken a physicalcheckpoint at some time t1, if the process state at time t1 is saved on the stable storage. Aprocess is said to have taken a logical checkpoint at time t1, if enough information is savedon the stable storage to allow the process state at time t1 to be recovered.To the best of our knowledge, the term logical checkpoint was �rst introduced byWang et al. [13, 14], who also presented one approach for taking a logical checkpoint. Nowwe present three approaches for taking a logical checkpoint at time t1. Although the threeapproaches are equivalent, each approach may be more attractive for some applications thanthe other approaches. Not all approaches will be feasible on all systems.� One approach for establishing a logical checkpoint at time t1 is to take a physicalcheckpoint at some time t0 � t1 and log (on stable storage) all messages delivered tothe process between time t0 and t1. (For each message, the message log contains thereceive sequence number for the message as well as the entire message.) This approachis essentially identical to that presented by Wang et al. [13].Figure 1 presents an example wherein process P takes a physical checkpoint at time t0.Messages M1, M2 and M3 are delivered to process P by time t1. To establish a logicalcheckpoint of process P at time t1, messages M1, M2 and M3 are logged on the stablestorage. As process P is deterministic, the state of process P can be recovered usingthe information on the stable storage (i.e., physical checkpoint at t0 and messages M1,M2 and M3).We summarize this approach as:physical checkpoint + message log = logical checkpoint� The essential purpose behind saving the messages above is to be able to recreate thethe state at time t1, or to be able to \re-perform" the incremental changes made in3
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t0 t1Figure 1: Physical checkpoint + message log = logical checkpointprocess state by each of these messages. This may be achieved simply by taking aphysical checkpoint at time t0 and taking an incremental checkpoint at time t1. Theincremental checkpoint is taken by logging1 the changes made to process state betweentime t0 and t1. 2 We summarize this approach as:physical checkpoint + incremental checkpoint = logical checkpoint� The above two approaches take a physical checkpoint prior to the desired logical check-point, followed by logging of additional information (either messages or incrementalstate change).The third approach is the converse of the above two approaches. Here, the physicalcheckpoint is taken at a time t2, where t2 > t1. In addition, enough information issaved to un-do the e�ect of messages received between time t1 and t2. For each relevantmessage (whose e�ect must be undone), an anti-message is saved on the stable storage.The notion of an anti-message here is similar to that used in time warp mechanism [4](although the implementations could be very di�erent) or that of UNDO records [2]in database systems. Anti-message M� corresponding to a message M can be used toundo the state change caused by message M.Figure 2 illustrate this approach. A logical checkpoint of process P is to be establishedat time t1. Process P delivers messages M4 and M5 between time t1 and t2. A physicalcheckpoint is taken at time t2, and anti-messages corresponding to messages M4 andM5 are logged on the stable storage. The anti-messages are named M4� and M5�,1The term logging is used to mean \saving on the stable storage".2It is possible to take the so-called physical checkpoint also as the incremental change in the processstate since the last physical checkpoint of the process was taken. As the interval between two consecutivephysical checkpoints is likely to be large, this incremental change is likely to be large. On the other hand,the interval t0 � t1 will be relatively small, potentially reducing the state a�ected during that interval.4



application message

anti-message

time

process

   P

M4*

M5*

M5

M4

to stable storage

t1 t2

state S1

Figure 2: Anti-message log + physical checkpoint = logical checkpoint
M4*M5*

process

   P

M5

M4

state S1 state S1Figure 3: Recovering a logical checkpoint using anti-messagesrespectively.To recover the state, say S1, of process P at time t1, the process is initialized to thephysical checkpoint taken at time t2 and then anti-messages M5� and M4� are sent tothe process. The order in which the anti-messages are delivered is reverse the order inwhich the messages were delivered. As shown in Figure 3, the �nal state of process Pis identical to the state (or logical checkpoint) at time t1.We summarize this approach as:anti-message log + physical checkpoint = logical checkpointAn important issue is that of forming the \anti-messages". The anti-messages canpossibly be formed by the application itself, or they may consist of a copy of the(old) process state modi�ed by the message. We have, as yet, not experimented withanti-messages. Therefore, practicality of this idea is open to debate.Note that a physical checkpoint is trivially a logical checkpoint, however, the converse5



is not true.3 Chandy-Lamport Algorithm [1]Chandy and Lamport [1] presented an algorithm for taking a consistent checkpoint of adistributed system. Although the proposed approach can potentially be used with anyconsistent checkpointing algorithm, for brevity, we limit our discussion to the Chandy-Lamport algorithm.Assume that the processes communicate with each other using unidirectional com-munication channels; a bidirectional channel can be modeled as two unidirectional channels.The communication graph is assumed to be strongly connected. The algorithm presentednext is essentially identical to Chandy-Lamport [1] and assumes that a certain process isdesignated as the coordinator. This algorithm is also presented in [9].Algorithm: The coordinator process, say P, initiates the consistent checkpointing algo-rithm by sending marker messages on each channel, incident on, and directed away from Pand immediately takes a checkpoint.A process, say Q, on receiving a marker message along a channel c takes the followingsteps:if Q has not taken a checkpoint thenbeginQ sends a marker on each channel, incident on, and directed away from QQ takes a checkpointQ records the state of channel c as being emptyendelse Q records the state of channel c as the sequence of messages received along cafter Q had taken a checkpoint and before Q received the marker along c.6



4 Consistent Logical CheckpointingThe proposed algorithm can be summarized as follows:staggered physical checkpoints + consistent message logging = consistent logical checkpointsThe basic idea is to coordinate logical checkpoints rather than physical checkpoints.In this section, we assume that the �rst approach, described in Section 2, for taking logicalcheckpoints is being used. Thus, a logical checkpoint is taken by logging all the messagesdelivered to a process since its most recent physical checkpoint.Algorithm1. Physical checkpointing phase: A checkpoint coordinator sends a take checkpoint mes-sage to each process. Each process, sometime after receiving this message, takes aphysical checkpoint and sends an acknowledgement to the coordinator. The check-points taken by the processes are staggered by allowing an appropriate number3 ofprocesses to take checkpoints at any time (this can be done using any l-mutual ex-clusion algorithm). The checkpoints taken by the processes need not be consistent.The processes take checkpoints as soon as possible after receiving the take checkpointmessage (subject to the staggering constraint).After a process takes the checkpoint, it can continue execution. A process stores eachmessage delivered to it, after its physical checkpoint, into a volatile bu�er. Over-ows in this bu�er are spilled into the stable storage. (Alternatively, the process mayasynchronously log these messages to the stable storage even if the bu�er is not full.)Number of messages required in this phase can be reduced, as discussed in Section 6.2. Consistent message logging phase: When the coordinator receives acknowledgementmessages from all the processes indicating that they have taken a physical checkpoint,the coordinator initiates the consistent message logging phase, essentially, by initiatingthe Chandy-Lamport algorithm [1]. The only di�erence is that when the original algo-rithm requires a process to take a \checkpoint", the process takes a logical checkpoint3For instance, the number of processes allowed to checkpoint simultaneously may be equal to the numberof disks. 7



by logging the messages delivered since the physical checkpoint taken in the previ-ous phase. As required by the Chandy-Lamport algorithm, messages representing thechannel states at the time the consistent checkpoint is taken are also logged.When the Chandy-Lamport algorithm is complete, the processes can discontinue log-ging received messages (speci�cally, when a process has logged the state of a channelc, it need not log further messages received on channel c).This algorithm establishes a consistent recovery line consisting of one logical checkpoint perprocess.The above algorithm reduces the contention for the stable storage by completelystaggering the physical checkpoints. However, contention is now introduced in the secondphase of the algorithm when the processes coordinate message logging. This contentioncan be reduced by using the limited staggering techniques proposed in [9]. Our schemewill perform well if message volume is relatively small compared to checkpoint sizes. A fewvariations to the above algorithm are possible, as discussed in Section 6Figure 4 illustrates the algorithm assuming that the system consists of three processes,and that at most one process can write to the stable storage at any time. Process P actsas the coordinator and initiates the checkpointing phase by sending the take checkpointmessages. Processes P, Q and R take staggered checkpoints. When process P receivesacknowledgements from processes Q and R, it initiates the consistent message logging phaseconsisting essentially of an execution of the Chandy-Lamport algorithm. Process P sendsmarker messages to Q and R and then takes a logical checkpoint by logging messages M0and M2 to the stable storage. When process Q receives the marker message from process P,it sends markers to P and R and then takes a logical checkpoint by logging message M1 tothe stable storage. Similarly, process R takes a logical checkpoint by logging message M3 tothe stable storage. Messages M4 and M5 are logged by the Chandy-Lamport algorithm asthe state of the channels at the time the consistent (logical) checkpoints were taken.Recovery: After a failure, each process rolls back to its recent physical checkpoint andre-executes (using the logged messages) to restore the process state to the logical checkpointthat is a part of the most recent consistent recovery line.8
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Figure 4: An example5 Relation to Existing WorkThe algorithm presented above is closely related to [1, 5, 8, 9, 13]. Our algorithm is designedto bound the rollback distance, similar to the traditional coordinated checkpointing algo-rithms. It may be noted that, after a failure, a process rolls back to a physical checkpointand then executes to restore a logical checkpoint. Thus, the overhead of recovery (or rollbackdistance) is determined by when physical checkpoints are taken.Wang et al. [13, 14] introduced the notion of a logical checkpoint. They determinea recovery line consisting of consistent logical checkpoints, after a failure occurs. Thisrecovery line is used to recover from the failure. Their goal is to determine the \latest"consistent recovery line using the information saved on the stable storage. During failure-free operation each process is allowed to independently take checkpoints and log messages.On the other hand, our scheme coordinates logical checkpoints before a failure occurs. Theselogical checkpoints are used to recover from a future failure. One consequence of this is thatwe do not need to log all messages, only those message are logged which make the logical9



checkpoints consistent.Plank [9] presents two coordinated checkpointing algorithms (one similar to Chandy-Lamport [1]) that attempt to stagger the checkpoints. However, it is possible that somecheckpoints taken by these algorithms cannot be staggered. The degree of staggering isa�ected by the timing of application message delivery. In contrast, our algorithm allowsarbitrary staggering of the physical checkpoints.Long et al. [8] discuss an evolutionary checkpointing approach that is similar toconsistent logical checkpointing. The fundamental di�erence between the two approaches isthat our approach staggers the physical checkpoints, while the scheme in [8] does not allowstaggering. By enforcing staggering, our approach is expected to perform much better than[8]. Long et al. also assume synchronized communication, no such assumption is made inthe proposed approach.Johnson [5] presents an algorithm that forces the processes to log message on thestable storage or to take a physical checkpoint. The goal of his algorithm is to make thestate of a single process committable (primarily, to allow it to commit an output). Also,his algorithm does not control the time at which each process takes the checkpoint. Ouralgorithm is designed to bound the rollback distance (and not for output commits) andit makes recent states of all processes committable. The same result can be achieved byexecuting Johnson's algorithm simultaneously for all processes. The implementation willnot bound the rollback distance, however, as the timing of the physical checkpoints is notcontrolled by his algorithm. Additionally, Johnson's algorithm can result in all messagesbeing logged (as processes may choose to log messages asynchronously), our algorithm logsmessages only until the consistent message logging phase is completed.6 Implementation IssuesMany variations of the algorithm presented earlier are possible. Utility of these variationsdepends on the nature of the application and the execution environment. In the following,we discuss some of the implementation issues.10



Checkpointing versus message logging:� If a process receives too many messages after taking the physical checkpoint in the �rstphase of the algorithm, then it may decide to take a physical checkpoint in the secondphase (rather than logging messages). This makes the physical checkpoint taken bythe process in the �rst phase redundant. However, this modi�cation may reduce theoverhead when checkpoint size is smaller than what the message log would be.� A process may decide to not take the physical checkpoint in the �rst phase, if it apriori knows that its message log will be large. In this case, the process would take aphysical checkpoint in the second phase.4� The coordinator may initiate the consistent message logging phase even before allprocesses have taken the physical checkpoint. In this case, consider a process Q thatreceives a marker message before Q has taken the physical checkpoint (in the �rstphase). Then, process Q can take a physical checkpoint in the second phase ratherthan logging messages to establish a logical checkpoint (essentially, process P canpretend that it decided to not take a physical checkpoint in the �rst phase).5If the coordinator initiates consistent message logging phase early, then it can causeincrease in stable storage contention as some checkpoints may not be staggered any-more.Staggering in the consistent message logging phase: During the consistent messagelogging phase, the processes will save their message logs to the stable storage at about thesame time. To minimize stable storage contention during this phase, the technique presentedby Plank [9] can be used. Essentially, Plank's method (as applied to our algorithm) wouldsuggest that the processes should delay the sending of a marker message until after theprocess has itself established a logical checkpoint. (As pointed out earlier, this results in alimited amount of staggering.) We suggest another approach for limited staggering. This4Johnson [5] suggested a scheme where each process uses a similar heuristic to decide whether to logmessages or not.5Recollect that a physical checkpoint is also trivially a logical checkpoint. So the process here is actuallytaking a logical checkpoint, but not by logging messages.11
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Figure 5: Delaying the delivery of the marker messagesapproach delays the receipt of a marker message, unlike the delayed sending of the markermessages suggested by Plank.The Chandy-Lamport algorithm requires that a process take a checkpoint (if it hasnot already done so) when it receives a marker message on any channel. It is possible tointroduce some staggering by delaying the delivery of the marker message. Delivery of amarker message can be delayed until a message subsequent to the marker message (on thesame channel) needs to be delivered. Figure 5 illustrates this. As shown in this �gure,process R can delay taking logical checkpoint even though it has received markers fromboth P and Q. The logical checkpoint of process P can be delayed until message M6 fromprocess P needs to be delivered to process R. As the marker precedes message M6, deliveryof the marker cannot be delayed any further.Another related point is that, in our algorithm, messages are logged either becausethey are needed to establish a logical checkpoint or because they represent the channel stateat the time the consistent logical checkpoints are taken. It is possible to log these two types12



of messages together (rather than separately, as implied by the algorithm description inSection 4).Number of messages required in the physical checkpointing phase: The de-scription of the algorithm in Section 4 implies that, for N processes, 2(N � 1) messages(take checkpoint and acknowledgement) are required in this phase, possibly in addition tothe messages required to ensure staggered checkpointing (mutual exclusion). However, thenumber of messages can be reduced signi�cantly as illustrated with an example in Figure 6.Assume that there are three processes and at most one can write to the stable storage at anytime. The processes can form a \cycle", position in the cycle determining when a processtakes the physical checkpoint. As shown in the �gure, process P takes a physical checkpoint,and sends a take checkpoint message to process Q (but to no other process). On receivingthis message, process Q takes a physical checkpoint, and then sends a take checkpoint mes-sage to R. On receiving the take checkpoint message, process R takes a physical checkpoint,and then sends an acknowledgement message to process P. Receipt of this acknowledgmentsu�ces to guarantee that all processes have taken a physical checkpoint. Also, the cyclicarrangement ensures that only one process takes a physical checkpoint at any time. Thisapproach can be easily modi�ed when multiple processes can write to the stable storagesimultaneously (e.g., form multiple cycles).Approach for taking a logical checkpoint: The discussion so far assumed that alogical checkpoint is taken by taking a physical checkpoint and logging subsequently receivedmessages. It is easy to see that the proposed algorithm can be modi�ed to allow a processto use any of the three approaches presented earlier (in Section 2) for establishing a logicalcheckpoint. In fact, di�erent processes may simultaneously use di�erent approaches forestablishing a logical checkpoint. Details of the modi�ed algorithm will be presented in afuture revision of this report.Synchronizing pair of processes: Plank [9] suggests that staggered checkpoints canincrease the overhead, if the application does a lot of synchronization. While we agree13
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