
Some Thoughts on Distributed Recovery(preliminary version)Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112Phone: 409-845-0512Fax: 409-847-8578E-mail: vaidya@cs.tamu.eduTechnical Report 94-044June 1994AbstractThis report deals with some aspects of distributed recovery. The report is dividedinto multiple parts, each part introducing a problem and a solution. The intent of thisreport is to present a medley of preliminary ideas, more detailed treatment may bepresented elsewhere. The report deals with the following problems:� A single processor failure tolerance scheme based on the distributed recovery unitabstraction.� Staggered checkpointing and coordinated message logging to obtain a consistentlogical recovery line.� Relaxing the de�nition of orphan messages.� Exploiting network architecture to improve performance of message logging.1



1 IntroductionThis report deals with some aspects of distributed recovery. The report is divided intomultiple parts, each part introducing a problem and a solution. The intent of this reportis to present a medley of preliminary ideas, more detailed treatment may be presentedelsewhere. Accordingly, the presentation is informal and no correctness proofs are presented.The report deals with the following problems:� A single processor failure tolerance scheme based on the distributed recovery unit ab-straction. This scheme is derived from a single process failure tolerance scheme [7],but tolerates simultaneous failure of all processes on a single processor.� Staggered checkpointing and coordinated message logging to obtain a consistent logicalrecovery line. Checkpoint staggering is useful to reduce the overhead of a recoveryscheme [10]. We present a simple approach that allows staggered checkpoints butbounds the rollback distance by coordinated message logging.� Relaxing the de�nition of orphan messages. We claim that the commonly used de�ni-tion of orphan messages can be relaxed. An example is presented to illustrate this.� Exploiting network architecture to improve performance of message logging. Wepresent a recovery scheme to tolerate a small number of failures in a system basedon a wormhole routed network.The recovery schemes presented here can be viewed as variations of existing recovery schemes,however, we are unaware of any prior work on these variations. A comparison of proposedrecovery schemes with existing work is presented in the report.
2



Part I

3



2 Single Processor Fault Tolerance Using DRUs [12]The research on message logging schemes for achieving distributed recovery assumes that thesystem consists of a collection of recovery units [3, 11] that are deterministic. The executionof such a recovery unit consists of a sequence of piecewise deterministic state intervals, eachstarted by a non-deterministic event. Such an event can be (i) receipt of a message fromanother recovery unit, (ii) an internal non-deterministic event such as a kernel call, or (iii)creation of the recovery unit [3]. To this we would like to add one more non-deterministicevent, namely, delivery of a message sent by the recovery unit to itself. The reason will beclearer shortly.Consider the single fault tolerance schemes proposed by Johnson [7] and Alvisi etal. [1]. Each of these schemes can tolerate failure of a single recovery unit. When multipleprocesses are scheduled on a single processor, failure of the processor will cause failure ofall processes on that processor, not just one. This implies that, for the above schemes to beuseful, the collection of processes on a processor should together be considered a recoveryunit. To di�erentiate this from traditional recovery unit de�nition, we name the collectiona distributed recovery unit (DRU) [12]. This de�nition of a recovery unit has two relatedconsequences:� A collection of processes is not deterministic, even if each process in the collectionis deterministic. The state of the collection depends not only on the messages re-ceived from outside the collection, but also on the interleaving of messages betweenthe processes within the collection.� The DRU sends messages to itself. When a process sends a message to another processwithin the same DRU, it can be interpreted as a message from the DRU to itself. Theschemes by Johnson [7] and Alvisi et al. [1] are not designed to handle such messages.4



3 Suggested SolutionIn this section, we present a single processor failure tolerance scheme that treats the collectionof all processes on a processor as a single distributed recovery unit. This scheme is anextension of Johnson's sender based message logging scheme [7]. Similar modi�cations canalso be made to the scheme presented by Alvisi et al. [1].The recovery scheme presented here is also closely related to Elnozahy and Zwaenepoel[3, 4]. Essentially, each DRU uses Elnozahy' scheme for keeping track of intra-DRU events(using antecedence graph), the single processor fault assumption being used to allow volatilelogging of intra-DRU events as well as inter-DRU messages.In the following, we assume that the system consists of a collection of DRUs, allprocesses on any given processor forming one DRU.1 A message sent by a process to anotherprocess within the same DRU is said to be an intra-DRU message. All other messages areinter-DRU messages.3.1 Failure-Free OperationCheckpointing: The processes in each DRU periodically take a coordinated checkpoint.The checkpoint of a DRU is not coordinated with that of any other DRU. The coordinatedcheckpoint establishes a consistent recovery line consisting of one checkpoint of each processin the DRU. Along with the checkpoints, the intra-DRU messages that were sent before therecovery line but delivered after the recovery line are also logged on the stable storage.Sender based message logging: This is similar to Johnson [7] with one importantmodi�cation. Each DRU maintains an antecedence graph [3] containing only the eventsinternal to the DRU, including delivery of intra-DRUmessages. Speci�cally, the antecedencegraph does not contain events corresponding to inter-DRU messages. For each deliveredintra-DRU message a tuple (sender, receiver, ssn, rsn) is included in the antecedence graph,1The approach presented here can, in principle, be generalized to the case where the processes within aDRU reside on multiple processors, or di�erent processes on a single processor belong to di�erent DRUs.5



where, sender and receiver are the identi�ers of the sender and receiver processes, and ssnand rsn are the send sequence number and receive sequence number, respectively. The sendand receive sequence numbers are relative to each process and not a DRU. That is, eachprocess independently determines SSN and RSN of each message it sends and receives.This antecedence graph is shared by all processes in the DRU. The antecedence graphis purged each time a message is received by a process in the DRU, as described below.When an intra-DRU message is delivered, the antecedence graph is updated. Theintra-DRU messages need not be logged (except those logged during the checkpointing stepdescribed above).Johnson [7] logs a message and its receive sequence number (RSN) in the volatilestorage of the sender. We modify his protocol as follows: When an inter-DRU messageis delivered to a process, it sends the RSN of the message to the message sender. TheRSN is tagged by the antecedence graph. After the RSN is sent, the antecedence graph ispurged. (The retransmission protocol will retain a copy of the graph and the RSN until theyare acknowledged.) Any future internal events will create a new antecedence graph. Themessage sender logs the antecedence graph in its volatile storage along with the RSN andthe message. The steps for logging inter-DRU messages can be summarized as follows:� Sender S sends an inter-DRUmessage to receiver R. Sender keeps a copy of the messagein its volatile log.� Receiver determines the RSN of the message and sends the RSN as well as the an-tecedence graph to sender S.� Receiver R cannot send any messages until it receives an acknowledgement (of RSNand antecedence graph) from S.Output Commit Before an output can be committed, the antecedence graph must belogged either in the stable storage or at another processor. (The graph can also be purgedat this time, though this will require some modi�cation to the recovery protocol below.)6



3.2 RecoveryAssume that a single processor is faulty resulting in the failure of all the processes scheduledon that processor. To recover from the failure, all the processes on the faulty processorare restored to their most recent (coordinated) checkpoint. All the inter-DRU messagesreceived by the processes are sent to the processes in the RSN-order. Along with the inter-DRU messages, their tags (i.e., portions of the antecedence graph) are also sent. These tagsindicate which intra-DRUmessages must be delivered (and their order) before the inter-DRUmessage can be delivered. In e�ect, the antecedence graph indicates the order of executionof the processes within the DRU to be able to recover from the failure. The antecedencegraph logged when committing the most recent output may also be needed to recover fromthe failure, if no inter-DRU message was logged subsequently.The above recovery procedure is essentially identical to that presented in [3] if theinter-DRU messages are treated as input/output (during recovery only).4 Relation to Existing WorkThe approach presented above is a combination of the recovery schemes presented by Johnson[7] and Elnozahy and Zwaenepoel [4]. [4] presents a recovery scheme that uses coordinatedcheckpointing as well as logs the antecedence graph. Thus, the above system can be viewedas a collection of DRUs, each DRU using Elnozahy and Zwaenepoel [4] internally (to recoverintra-DRU messages) and Johnson and Zwaenepoel [7] externally (to recover inter-DRUmessages). Single DRU failure assumption allows the antecedence graph of each DRU to belogged at any other DRU.Our approach can be viewed as combining two recovery schemes to obtain a hybridrecovery scheme [12]. Lowry et al. [9] propose an approach for hierarchical implementations,wherein di�erent clusters of recovery units internally use di�erent recovery schemes. Themessages between di�erent clusters are sent through interface recovery units that facilitateoptimistic message passing between the clusters. Although our approach as well as [9]7



partition the processes into clusters (or DRUs), the two approaches are complementary toeach other (not identical).5 SummaryThe recovery scheme presented above tolerates the failure of a single processor (independentof how many processes are scheduled on the processor). It uses the techniques presentedpreviously in [3, 4, 7, 12] to obtain a useful recovery scheme. An advantage of this scheme isthat the antecedence graphs do not become bigger with the size of the system, as only intra-DRU events are included in the antecedence graphs. The hybrid approach can potentiallybe applied to other recovery schemes as well. It is also possible to extend this approach torelax the requirement that the processes on each processor form one DRU. Speci�cally, theDRU may contain processes on di�erent processors, also, processes on the same processormay belong to di�erent processors. The issue of dynamically changing the membership ofprocesses to DRUs also needs to be investigated [12].

8



Part II

9



6 Completely Staggered CheckpointingThe problem of reducing the overhead of checkpointing in multicomputers has receivedconsiderable attention (e.g., [10, 4]). Plank [10] presented di�erent techniques to reduce thisoverhead. One of the suggested techniques is staggering of checkpoints. When processes ina system coordinate their checkpoints, they tend to take the checkpoints at about the sametime. This can result in severe performance degradation in multicomputers where the I/Obandwidth is not adequate. Staggering techniques suggested by Plank alleviate this problemto some extent. However, his algorithm cannot stagger the checkpoints arbitrarily, that is,some checkpoints cannot be staggered without blocking some processes. Plank [10] showsthat staggering indeed reduces the overhead signi�cantly for many applications. Here, wepresent a simple alternative for coordinated checkpointing that allows arbitrary staggeringof checkpoints. The solution presented below is closely related to [2, 6, 10, 14], as discussedlater.7 Suggested SolutionThe solution suggested here can be summarized as follows:staggered checkpoints + coordinated message logging = consistent logical checkpointsThe basic idea is to coordinate logical checkpoints [14, 15] rather than physical check-points. A physical checkpoint of a process is taken by saving the process state on the stablestorage. A logical checkpoint is taken by logging all the message received by the processsince its most recent physical checkpoint on the stable storage. Thus, a physical checkpointis trivially a logical checkpoint, however, the converse is not true.Algorithm1. A checkpoint coordinator sends a take checkpoint message to each process. Each pro-cess, sometime after receiving this message, takes a physical checkpoint and sends anacknowledgement to the coordinator. The checkpoints taken by the processes can be10



staggered by allowing an appropriate number2 of processes to take checkpoints at anytime (this can be done using a l-mutual exclusion algorithm). The checkpoints takenby the processes need not be consistent. The processes take checkpoints as soon aspossible after receiving the take checkpoint message (under the staggering constraint).After a process takes the checkpoint, it can continue execution without blocking for anyother process. A process logs each message delivered to it after its physical checkpointinto a volatile storage bu�er. Over
ows to this bu�er are spilled into the stable storage.(Alternately, the process may asynchronously log these messages to the stable storageeven if the bu�er is not full.)2. When the coordinator receives acknowledgement messages from all the processes in-dicating that they have taken a checkpoint, the coordinator initiates the consistentmessage logging phase of the algorithm. In this phase, any coordinated checkpointingalgorithm can be used, for example, Chandy and Lamport [2]. The only di�erence isthat when the original algorithm requires a process to take a physical checkpoint, ourprocesses instead take a logical checkpoint by logging the relevant messages receivedsince the physical checkpoint taken in the previous step.When the coordinated checkpointing algorithm is complete, the processes can discon-tinue logging received messages.The above algorithm reduces the contention for the stable storage by completely staggeringthe physical checkpoints. However, contention is now introduced in the second step of thealgorithmwhen the processes coordinate message logging. This contention can be reduced byusing the limited staggering techniques proposed in [10]. The proposed scheme will performwell if message volume is relatively small compared to checkpoint sizes. A few variations tothe above algorithm are possible:� If a process received too many messages after the checkpoint in the �rst step, then itmay decide to take a physical checkpoint in step 2 (rather than a logical checkpoint).2For instance, the number of processes allowed to checkpoint simultaneously may be equal to the numberof I/O channels. 11



This makes the physical checkpoint taken by the process in step 1 redundant. However,the overhead may be reduced when checkpoint size is smaller than the message log.� A process may decide to not take the checkpoint in step 1, if it a priori knows that itsmessage log will be large. In this case, the process would take a physical checkpointin step 2. 3� The coordinator may initiate the consistent message logging phase (step 2) even beforeall processes have taken the physical checkpoint. In this case, consider a process Pthat receives a \take checkpoint" message (as a part of the coordinated checkpointingalgorithm used in step 2) before P has taken the physical checkpoint (required in step1). Then, process P can take a physical checkpoint in step 2 rather than a logicalcheckpoint (essentially, process P can pretend that it decided to not take a checkpointin step 1).This algorithm establishes a consistent recovery line consisting of one logical checkpoint perprocess.Recovery: After a failure, each process rolls back to its recent physical checkpoint andreexecutes (using the logged messages) to restore the process state to the logical checkpointthat is a part of the most recent consistent recovery line.8 Relation to Existing WorkThe algorithm presented above is closely related to [2, 6, 10, 14]. Our algorithm is designed tobound the rollback distance, similar to the traditional coordinated checkpointing algorithms.It may be noted that, after a failure, a process rolls back to a physical checkpoint and thenexecutes to restore a logical checkpoint. Thus, the overhead of recovery (or rollback distance)is determined by when physical checkpoints are taken.3Johnson [6] suggested a scheme where each process uses a similar heuristic to decide whether to logmessages or not. 12



Johnson [6] presents an algorithm that forces the processes to log message on thestable storage or to take a physical checkpoint. The goal of his algorithm is to make thestate of a single process committable (primarily, to allow it to commit an output). Also,his algorithm does not control the time at which each process takes the checkpoint. Ouralgorithm is designed to bound the rollback distance (and not for output commits) andit makes recent states of all processes committable. The same result can be achieved byexecuting Johnson's algorithm simultaneously for all processes. The implementation willnot bound the rollback distance, however, as the timing of the physical checkpoints is notcontrolled by his algorithm. Additionally, Johnson's algorithm can result in all messagesbeing logged (as processes may log messages asynchronously), our algorithm logs messagesonly until the consistent message logging phase is completed.Plank [10] presents two coordinated checkpointing algorithms (based on Chandy andLamport [2]) that attempt to stagger the checkpoints. However, it is possible that somecheckpoints taken by these algorithms cannot be staggered. In contrast, our algorithmallows arbitrary staggering of the checkpoints.Wang et al. [14, 15] introduce the notion of a logical checkpoint. [14, 15] determinesa recovery line consisting of consistent logical checkpoints, after a failure occurs. Thisrecovery line is used to recover from the failure. Their goal is to determine the \latest"consistent recovery line using the information saved on the stable storage. During failure-free operation each process is allowed to independently take checkpoints and log messages.On the other hand, our scheme coordinates logical checkpoints before a failure occurs. Theselogical checkpoints are used to recover from a future failure. One consequence of this is thatwe do not need to log all messages, only those message are logged which make the logicalcheckpoints consistent.
13



Part III

14



checkpoint

M3 M5

M2 to

process Q

P

time

M1 M4

failureFigure 1: Process P9 Relaxing the De�nition of Orphan MessagesTo our knowledge, all message logging protocols require that the receive sequence number[5] of a message must be logged before the message is considered to be fully logged. Ourintent here is to show that this is not a necessary condition to be able to achieve recovery,but a performance optimization.To illustrate this point, consider a single deterministic process P shown in Figure 1.The state of process P is completely de�ned by its initial state and the messages it receives.Process P takes a checkpoint and then receives messages M1 and M3. Process P sends amessage M2 to some process Q after receiving M1. Messages M4 and M5 have been sent toprocess P but have not yet been received by P. Process P fails after receiving M3. Assumethat the receive sequence numbers of messages M1 and M3 are unknown to anyone otherthan P. The traditional optimistic message logging protocols would declare that message M2is an orphan, as the state in which process P sent the message cannot be recovered. Thiswould cause rollback propagation to process Q.We claim that message M2 is not really an orphan massage. Let it be known that nomessages other than those shown in the �gure have been sent to process P since its recentcheckpoint. Assume that messages M1, M2, M3, M4 and M5 are available in spite of thefailure of process P. The RSNs of messages M1, M3, M4 and M5 are not known, however.The goal of our recovery protocol is to recreate the state in which message M2 wassent, as this would avoid rollback propagation. It is known that four messages were sent toprocess P since its last checkpoint, though the order of delivery (or for that matter, whichmessage were delivered before failure) is not known. It is possible to try all 16 (factorialof 4) permutations in which the four messages could have been delivered since the latest15



checkpoint. The �rst permutation that results in message M2 being resent can be assumedto be correct. It is clear that at least one permutation will result in M2 being sent, andthe state of process P can be restored to the state in which M2 was sent. Process P canreceive any remaining messages subsequently. This procedure ensures that the rollback is notpropagated to process Q (even though M2 is an orphan message by traditional de�nitions). Ifmultiple messages were sent by P before failure, then all these messages must be reproducedby one of the permutations. This approach can potentially be generalized to tolerate multiplefailures.Time complexity of the method presented above increases substantially with (i) thenumber n of processes that have sent a message to P whose RSN is not logged, and (ii)number f of faulty processes. This may make the above approach impractical, as recoverycould take an inordinately long time.The advantage of the above approach is that message M2 could be committed (if itwere an output) even before it is known that M1 is fully logged (i.e., message and RSNboth). The above approach may be useful with some constraints. For instance, one canbound the number of received messages that are not fully logged. For example, let usassume that the state of a process can be assumed to be recoverable only if at most onereceived messages is not fully logged. This would reduce the time complexity of recovery, asthe number of permutations to be tried is linear in n (rather than factorial).The objective here was to demonstrate that the commonly used de�nitions of orphanmessages impose more constraints than absolutely necessary. However, removing these con-straints can result in large overheads during failure recovery. Whether relaxation of theconstraints is useful in practice needs to be investigated further.
16



Part IV

17



10 Exploiting Hardware to Improve PerformanceThe following presents a simple recovery scheme that tolerates k faults (for some k � 1). Thisscheme is based on single fault tolerance schemes presented by Alvisi et al. [1] and Johnsonand Zwaenepoel [7]. Although the proposed scheme may seem very expensive, for k � 3,an e�cient implementation of this scheme on wormhole-routed networks is possible. Theimplementation of the recovery scheme is sketched subsequently. To simplify our discussionassume that only one process is scheduled on each processor. The terms process, processorand node are used interchangeably.The recovery scheme allows each process to checkpoint independently. To ensurethat recovery is possible in spite of k simultaneous failures, each message is logged on knodes, excluding the receiver. The message logging protocol is described below. Note thatthe implementation of this protocol will exploit the wormhole routing network, and willeliminate many messages required in the protocol below.� When a process S sends a message M to a process R, message <S,SSN,M> is also sentto k� 1 other processes, where SSN is the send sequence number of the message. Themessage is logged by the sender S and these k� 1 processes in their respective volatilestorages. This way, there will be k copies of <S,SSN,M>. Sender S should receivean acknowledgement from the k � 1 nodes on receiving the message, to ensure thatthe message is logged. When process S receives all the acknowledgments, it sends amessage to R informing that it has received these acknowledgements.� On receivingmessageM, the receiver process R sends a message containing<S,SSN,RSN,R>to k nodes, to be logged in their volatile storages. These nodes may or may not includethe nodes at which <S,SSN,M> is logged.� A process on receiving <S,SSN,RSN,R>, sends an acknowledgement to process R.Process R cannot send any message until (i) it has received acknowledgements from ksuch processes, and (ii) it knows that <S,SSN,M> has been logged at k nodes.Recovery: Consider a situation where receiver R fails and the total number of faulty18



processes is at most k. As there are k copies each of <S,SSN,M> and <S,SSN,RSN,R> (atk nodes other than the receiver), both will be available in spite of the failures.When a failure occurs, a process rolls back to its most recent checkpoint and requestsother nodes to send <S,SSN,M> and <S,SSN,RSN,R>, so that it can recover to its mostrecent state. It is easy to see that this scheme can tolerate k simultaneous failures. Afterthe faulty processes have recovered from the failure, all the processes take a coordinatedcheckpoint. Recovery is considered to be completed when this checkpoint has been taken.The reason for taking the coordinated checkpoint is that the faulty processes loose some ofthe log information that is not recovered during recovery. To protect the system from futurefailures, it is useful to take a coordinated checkpoint. Such a checkpoint is taken only whena failure occurs. (It is also possible design a protocol to reconstruct the logs after a failure.However, we believe that taking a coordinated checkpoint is a simpler alternative.)11 Implementation on a Wormhole-Routed NetworkThe wormhole routed networks are characterized by \pipelined" movement of messagesthrough the network. A message is typically routed through intermediate nodes before itreaches the destination. This provides an opportunity for the intermediate nodes to \snoop"on the message (or make a copy of the message) when the message is routed to the nextnode on the path to the destination. Also, the length of the path has a small e�ect on thecommunication latency. These properties of wormhole routed networks are exploited in theproposed implementation of the k-fault tolerance algorithm.It is possible to conceive implementation of the proposed algorithm using variouswormhole routing protocols. The discussion in this report, however, utilizes a variant of thethe fault-tolerant compressionless routing (FCR) recently proposed by Kim et al. [8]. Thenext section brie
y describes FCR. The subsequent sections describe the routing protocolused by our algorithm, and the proposed implementation of the k-fault tolerance algorithm.19



11.1 Fault-Tolerant Compressionless Routing [8]FCR tolerates failures in routing, i.e., a message is delivered to its destination in spite of fewlink (or router) failures. FCR is not designed to recover from processor failures, however.FCR is used to send messages between the nodes. The basic idea behind FCR is topad, if necessary, a message with \adequate" number of empty 
its. This padding is used toprovide the sender an implicit acknowledgement of message receipt by the receiver. Thus,an (implicit) acknowledgement is received for every message sent by the FCR protocol.Proposed implementation of the k-fault tolerance algorithm uses an L-snooping protocoldeveloped with FCR as the starting point.11.2 L-Snooping Protocol Based on FCRThe basic features of the L-snooping protocol are listed below:1. Each message sent by a sender S to receiver R is routed a path consisting of at leastL + 1 processors, including S and R. (This may require some modi�cations to therouting algorithm as discussed later.) The value of L is speci�ed by the sender.2. Similar to FCR, an adequate number of padding 
its are added to each message toensure that the sender S receives an implicit acknowledgement of the message.3. The �rst L processors on the path, including sender S, make a copy of the messagebeing transmitted, and store it in a local log on the node. This is achieved by includinga counter with the message. The counter is initialized to L by the sender. Eachsubsequent node makes a copy of the message if the counter is non-zero. If the counter4is non-zero, the node also decrements it by one before passing on to the next node onthe path to the destination. As long as the counter can be stored in a single 
it, thecounter should not cause signi�cant performance degradation.4An alternative is to use a \counter" that is initialized to a string of 1s followed by 0s (e.g., 11000). Eachnode makes a copy of the message if the counter is non-zero and resets the least signi�cant 1 in the counter.20



The implicit acknowledgement provided by FCR eliminates the need for sending explicitacknowledgements required in Steps 1 and 3 of the k-fault tolerant algorithm in Section 10.Implementation of the L-snooping protocol depends on the choice of L, as each mes-sage must travel on a path with at least L + 1 nodes. Additionally, the routing algorithmmust be deadlock-free.To tolerate k failures, a message needs to be logged at k � 1 nodes other than thesender. Thus, the L-snooping protocol with L = k will be useful. As we are interested insmall values of k, in this report, we consider protocols that guarantees that each messagewill travel to least k + 1 nodes, provided k � 3. L � 3 is adequate when k � 3.Deliberate MisroutingWhen the number of nodes on the shortest path between the sender and the receiver is k+1or more, no special treatment is required. When the number of nodes on the shortest pathis smaller than k+1, the message is deliberately misrouted to ensure that it will traverse atleast k+1 nodes. As we are assuming that k � 3, only messages between nodes at distance1 and 2 need to be misrouted.5For m-ary-n-cube, the rules for routing a message from source S to receiver R are asfollows, assuming that k � 3:� If the distance between S and R is less than k, then the source S misroutes the messageto a neighbor that is not on a shortest path to node R.� Each node, other than the source, tries to route the packet to the destination usingFCR with an additional constraint: if node A routed the packet to node B, then nodeB does not route the packet back to node A.The above rules imply that if the distance between a pair of nodes is D < k, then the packetwill travel a path containing at least D + 3 nodes (i.e., D + 1 nodes on the shortest path5Paths between nodes at distance 3 and more contain at least 4 nodes, including the sender and thereceiver. 21



+ two more nodes due to the misrouting at the source). As D � 1, this implies that eachpacket will travel to at least 4 nodes, which satis�es our requirements when k � 3.We now describe our protocol for k � 3 in detail. This protocol can potentially begeneralized to arbitrary k. Generalization needs design of deadlock-free routing protocolsthat guarantee paths of length at least k + 1. There is another alternative for loggingmessages at k nodes. The alternative requires that a message be sent on multiple paths (todi�erent destinations) such that at least k + 1 nodes are traversed by these paths.11.3 k-Fault ToleranceThis section describes how the k-fault tolerance algorithm in Section 10 be implementedon a wormhole routed network. As stated previously, the scheme allows each process tocheckpoint independently. To ensure that recovery is possible in spite of k simultaneousfailures, each message is logged on k nodes (excluding the receiver), using the messagelogging protocol described below:1. When a process S sends a message M to a process R, the SSN of the message andidenti�er of S are included with the message. The message <S,SSN,M> is sent using k-snooping. Therefore, the sender receives an implicit acknowledgement that the messageis received by R. When R receives the entire message, it can correctly assume that themessage is logged by k nodes.2. On receiving the message, R determines the receive sequence number of the message,and sends a message containing <S,SSN,RSN,R> to any node v using (k+1)-snooping.The choice of node v is arbitrary. (k + 1)-snooping guarantees that the message willbe logged at k nodes other than R. Some heuristic may be used to choose node v.An optimization to reduce the overhead of this step is possible, as described later.A mechanism is necessary to distinguish between the two types of messages, namely,<S,SSN,M> and <S,SSN,RSN,R>. A \type" �eld can be used to distinguish betweenthe two types. 22



3. No other message can be sent by R until it receives an acknowledgement for the messagesent in the above step.The recovery protocol is presented in Section 11.4.The above algorithm ensures that <S,SSN,RSN,R> is logged at k nodes (excludingR) before R sends any message. However, the correctness of the algorithm only requires that<S,SSN,RSN,R> be logged at k nodes (excluding R) before a subsequent message from Ris received by any process. To satisfy this condition, the <S,SSN,RSN,R> message neednot be sent as a separate message. It can be tagged to any other message that process Rwants to send after receiving message M from process S. However, process R should not sendanother message until an (implicit) acknowledgement is received for this message. Anotheralternative is to allow the process to send a message before the acknowledgement is received,but tag the RSN information to these messages as well. This is similar to the single faulttolerance scheme presented by Alvisi et al. [1].11.4 Recovery ProtocolEach faulty process can recover independently. When a failure occurs, a faulty process Prolls back to its most recently saved checkpoint. To recover the state prior to failure, processP should receive the same messages as it received before the failure (in addition, order ofmessage receipt should also be retained).The checkpoint of P contains RSN of the last message received before the checkpointwas taken. Therefore, P knows the RSN of the �rst message it received after the checkpoint,say rsn1. During recovery, P broadcasts a request requesting the SSN of the message corre-sponding to rsn1. A node that contains in its log an entry of the form <Q,rsn1, ssn1,P>,responds by sending the entry to P. (There are potentially k such nodes). When P receivesthe response, it knows that the message was sent by Q. Process P then sends a request tonode Q requesting message with RSN = rsn1. If the request could not be sent to Q becauseof some failure, then P broadcasts a request asking for the rsn1-th message of process Q. Atleast one fault free node is guaranteed to respond to this request, as k nodes (excluding P)23



must have a copy of the message, of which at most k� 1 can be faulty. Similarly, process Pcan obtain all the subsequent messages. Eventually, process P will receive all the messagesit had received before failure. The next request for the SSN of a message will not be repliedto by any node, indicating that process P has recovered from failure. After receiving fullylogged messages, P can receive the partially logged messages in any order. A message M ispartially logged if <sender id, SSN, M> is logged but the RSN of the message is not logged.After the faulty processes have restored their state, the system takes a coordinatedcheckpoint. The system is considered to have recovered from failures when this checkpointis completed.12 SummaryPart IV of the report presented a recovery scheme targeted for multicomputer systemsbased on wormhole-routed networks. This scheme exploits wormhole routing to minimizethe number of messages. It is designed to tolerate a small number of simultaneous failures.(Motivation for design of such schemes is presented in [13].) The work presented heredemonstrates that (i) there is potential for design of e�cient recovery schemes for smallnumber of failures, and (ii) it is possible to exploit hardware to improve performance of suchschemes.References[1] L. Alvisi, B. Hoppe, and K. Marzullo, \Nonblocking and orphan-free message loggingprotocols," in Digest of papers: The 23rd Int. Symp. Fault-Tolerant Comp., pp. 145{154,1993.[2] K. M. Chandy and L. Lamport, \Distributed snapshots: Determining global states indistributed systems," ACM Trans. Comp. Syst., vol. 3, pp. 63{75, February 1985.24



[3] E. N. Elnozahy and W. Zwaenepoel, \Manetho: Transparent rollback-recovery with lowoverhead, limited rollback, and fast output commit," IEEE Trans. Computers, vol. 41,May 1992.[4] E. N. Elnozahy and W. Zwaenepoel, \On the use and implementation of message log-ging," in Digest of papers: The 24th Int. Symp. Fault-Tolerant Comp., pp. 298{307,June 1994.[5] D. B. Johnson, Distributed System Fault Tolerance Using Message Logging and Check-pointing. PhD thesis, Computer Science, Rice University, December 1989.[6] D. B. Johnson, \E�cient transparent optimistic rollback recovery for distributed appli-cation programs," in Symposium on Reliable Distributed Systems, pp. 86{95, October1993.[7] D. B. Johnson and W. Zwaenepoel, \Sender-based message logging," inDigest of papers:The 17th Int. Symp. Fault-Tolerant Comp., pp. 14{19, June 1987.[8] J. H. Kim, Z. Liu, and A. A. Chien, \Compressionless routing: A framework for adaptiveand fault-tolerant routing," in Int. Symp. Comp. Arch., pp. 289{300, 1994.[9] A. Lowry, J. R. Russell, and A. P. Goldberg, \Optimistic failure recovery for very largenetworks," in Symposium on Reliable Distributed Systems, pp. 66{75, 1991.[10] J. S. Plank, E�cient Checkpointing on MIMD Architectures. PhD thesis, Dept. ofComputer Science, Princeton University, June 1993.[11] R. E. Strom and S. A. Yemini, \Optimistic recovery: An asynchronous approach tofault-tolerance in distributed systems," Digest of papers: The 14th Int. Symp. Fault-Tolerant Comp., pp. 374{379, 1984.[12] N. H. Vaidya, \Distributed recovery units: An approach for hybrid and adaptive dis-tributed recovery," Tech. Rep. 93-052, Computer Science Department, Texas A&MUniversity, College Station, November 1993.25



[13] N. H. Vaidya, \A case for multi-level distributed recovery schemes," Tech. Rep. 94-043,Computer Science Department, Texas A&M University, College Station, May 1994.[14] Y. Wang, Y. Huang, and W. K. Fuchs, \Progressive retry for software error recovery indistributed systems," in Digest of papers: The 23rd Int. Symp. Fault-Tolerant Comp.,pp. 138{144, 1993.[15] Y. M. Wang, A. Lowry, and W. K. Fuchs, \Consistent global checkpoints based ondirect dependency tracking." To appear in Inform. Process. Lett.

26


