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1 IntroductionA number of recovery schemes have been proposed in the past for tolerating failures indistributed systems. These schemes are also applicable to parallel applications executed indistributed environments or on multiprocessors such as nCube. The applications of interesthere are of two types:1. Long-running applications which do not need to commit an output to the environmentuntil the completion of the task. This condition does not per se preclude the applicationfrom doing �le (or disk) I/O. When the �le system is not a part of the environment,the �le output can be rolled back if necessary.2. Long-running applications which may commit output during their execution, but thedelay in output commit is not required to be small.Many of the so called \grand-challenge" problems are of the above types.Most of the recovery schemes proposed in the literature are designed to toleratearbitrary number of failures (e.g., [2, 3, 8, 12, 16, 17, 18, 22]), with a few notable exceptionsof schemes designed to tolerate single failures (e.g., [9]).In this report, we demonstrate that, it is often advantageous to use \multi-level"recovery schemes. A \multi-level" recovery scheme is one that can tolerate di�erent numberof faults at di�erent costs, tolerance of larger number of failures requiring larger overhead.The overhead is incurred during failure-free operation as well as during recovery. Althougha large number of researchers have analyzed checkpointing and recovery [1, 4, 5, 6, 7, 10,11, 13, 14, 15, 19, 20, 23, 24], to our knowledge, no analysis of multi-level recovery schemeshas been attempted so far. Also much of this analysis treats the entire system as faultyor fault-free, and does not model failure of each individual processor separately. Recently,Wong and Franklin [23] presented analysis of distributed checkpointing schemes that allowseach processor to fail independently, however, they do not address the issue of multi-levelrecovery.To demonstrate the advantages of multi-level recovery, we analyze a hypothetical 2-level recovery scheme that takes two di�erent types of checkpoints, namely, 1-checkpointsand N -checkpoints. A single failure can be tolerated by rolling the system back to a 1-checkpoint, while multiple failure recovery is possible by rolling back to an N -checkpoint.2



The cost of a 1-checkpoint may be expected to be smaller than that of an N -checkpoint.1We show that for such a system, to minimize the average overhead, it is often necessary totake both 1-checkpoints and N -checkpoints.While conclusions of this report are intuitive, the work on appropriate recoveryschemes is lacking. The objective of this report is to motivate research into recovery schemesthat can provide multiple (at least two) levels of fault tolerance. An obvious approach is touse two di�erent schemes simultaneously, for example, one to tolerate a single failure, andanother to tolerate arbitrary number of failures. While this approach may in fact be useful,it would be interesting to consider designs of a single recovery scheme that can provide boththe levels of fault tolerance, at a smaller aggregate cost.This report considers a simple system model that may be applicable to some recoveryschemes. The goal here is to demonstrate the need for design of multiple levels of faulttolerance, and not a comprehensive analysis of all recovery schemes.2 System ModelFor a multi-level recovery scheme, the system model consists of two components:� Cost model: Overhead is incurred during normal operation due to checkpointing, mes-sage logging, etc. Additionally, when a failure occurs, overhead is incurred due tothe computation lost by failure, the time required to initiate recovery, etc. Actualoverhead depends on the chosen recovery scheme.The cost model must model the overhead incurred by the recovery scheme duringfailure-free operation and during recovery.� Failure e�ect model: The e�ect of failures on the system is a function of the recoveryscheme used.1This model approximates a coordinated checkpointing scheme that stores 1-checkpoints on volatilestorage and N -checkpoints on stable storage. For example, the N processors executing an application mayform a chain, i-th processor storing its checkpoint in the volatile storage of (i + 1)-th processor, and theN -th processor storing its checkpoint on the volatile storage of an (N+1)-th processor that does not executethe application. This would constitute a 1-checkpoint, as failure of any one processor can be tolerated byusing the checkpoints stored in volatile storage. An N -checkpoint would be taken by all processes storingtheir checkpoints on the stable storage. Presumably, the cost of storing in volatile storage would be smallerthan that of storing in a stable storage. 3



For example, traditional coordinated checkpointing schemes roll the processes backto the previous checkpoint whenever a failure occurs. The same action is taken in-dependent of how many failures occur. On the other hand, the hypothetical 2-levelrecovery scheme (briey summarized earlier) rolls the system back to the most recentcheckpoint (1- or N -checkpoint) when a single failure occurs, and to the most recentN -checkpoint when multiple failures occur. The 2-level recovery scheme is describedbelow in more detail.The e�ect failures have on the behavior of the recovery scheme a�ects the total over-head incurred by the recovery scheme. An appropriate failure e�ect model must bechosen for a given recovery scheme.As noted earlier, in this report, we analyze a hypothetical 2-level recovery scheme.The system model used here is a simple generalization of a model used previously [1] foranalysis of single processor systems.The system is assumed to consist of N processors. (At this point, we do not di�er-entiate between a process and a processor. We address this issue later.) Each processoris subject to transient failures, the inter-failure interval being governed by an exponentialdistribution with mean 1=�. Failures of the N processors are independent of each other.(This assumption may not always be true, as discussed later.)Cost ModelIt is assumed that the recovery scheme is capable of providing tolerance againstsingle as well as multiple failures, possibly using di�erent approaches. The processes taketwo types of checkpoints: 1-checkpoints and N-checkpoints. The processes take checkpointsevery T time units, every k-th checkpoint being an N -checkpoint (k � 1) and all others 1-checkpoints. Thus, the interval between two consecutive 1-checkpoints is T and the intervalbetween every two consecutive N -checkpoints is kT (excluding the time required to take1-checkpoints). Figure 1 illustrates this for k = 3. It is assumed that the execution time(length) of the task (application) is an integral multiple of T . However, length of the taskis not necessarily an integral multiple of kT . Length of the task is denoted by �. Thus,� = �T for some integer �.We assume that no checkpoint needs to be taken at the beginning of the task, and anN -checkpoint is taken at the completion of the task. This implies that the �rst N -checkpointmay be taken after less than kT time units of computation, when the length of the task4
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Figure 1: 1-checkpoints and N -checkpointsis not an integral multiple of kT . For example, in Figure 1, length of the task is 11T andk = 3. Therefore, the computation time between adjacent N -checkpoints is 3T . However,the computation time from the start of the task to the �rst N -checkpoint is 2T .The interval between any two consecutive checkpoints is called a 1-interval. Theexecution of the task is divided into certain number of segments, each segment terminatingwith an N -checkpoint. For example, in Figure 1, the task is divided into four segments.Let the time required to take an N -checkpoint be CN and the time required to takea 1-checkpoint be C1. In a distributed system, various processors may take checkpoints atdi�erent times. However, our analysis assumes that all processors take checkpoints simulta-neously. (Essentially, the cost of taking a checkpoint is bulked at the end of the interval.)The time required to perform a rollback is assumed to be R. (This does not includethe time required for re-execution). Here, the rollback time is assumed to be identicalirrespective of whether the system rolls back to a 1-checkpoint or to an N -checkpoint or tothe beginning of the task.Consider a failure that can be detected by rolling back to a certain checkpoint CP.If the failure is detected when t time units of computation was performed after checkpointCP, then it is assumed that t units of execution is required to re-do the lost computation (inabsence of further failures). In the past, many researchers have assumed (e.g., [1]) that thetime required to re-do the computation is �t for some constant �. Thus, we assume � = 1here. However, our analysis can be easily revised when � 6= 1.5



Failure E�ect ModelThe e�ect of failures is dependent on the failure recovery scheme used. We consider afailure e�ect model (named model B) that is pessimistic in the sense that the bene�t oftaking 1-checkpoints is likely to be more pronounced than indicated by our model. Inspite of the pessimistic model, the need for taking 1-checkpoints as well as N -checkpointsis demonstrated by our results. (Accurate modeling needs exact knowledge of the recoveryscheme used. More accurate models are expected to emphasize our conclusions further.)Model B assumes that if at most one failure occurs during the execution of a 1-interval, the failure can be tolerated by rolling back to the most recent checkpoint. (Themost recent checkpoint may be a 1-checkpoint or an N -checkpoint.) If, however, a failurealso occurs during the re-execution of the same 1-interval, system must be rolled back tothe most recent N -checkpoint (or to the start of the task, if no N -checkpoint is taken beforethe failure). The second failure may or may not a�ect the same processor as the �rst failure{ both cases require a rollback to the most recent N -checkpoint. The failure e�ect model isillustrated below with examples.Figure 2(a) illustrates a scenario where a failure occurs during 1-interval I2, and thesystem is rolled back to the most recent checkpoint (CP1). No failure occurs during there-execution of I2.Figure 2(b) illustrates a scenario where a failure occurs during 1-interval I2, and thesystem is rolled back to the previous checkpoint (CP1). Another failure occurs during there-execution of I2. Therefore, the system is rolled back to the most recent N -checkpoint(CP0).Figure 2(c) illustrates a scenario similar to 2(a). In this case also a failure occursduring interval I2 and no failure occurs during the re-execution of I2. A failure occurringduring interval I3 is treated identical to the �rst failure during I2. That is, the system rollsback to the most recent checkpoint CP2. Essentially, failures occurring during two di�erent1-intervals are treated independently.This model is pessimistic in two ways:� It requires a rollback to the most recent N -checkpoint even when the second failurea�ects the same processor as the �rst failure. It is conceivable that such a failurecould be tolerated by rolling back to the most recent checkpoint (not necessarily N -checkpoint). 6
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Figure 2: Illustration of fault e�ects7



� It is conceivable that a recovery scheme may take an N -checkpoint as soon as a failureis detected. In this case, only multiple failures occurring before this N -checkpoint istaken will require a rollback to the previous N -checkpoint.2.1 Other modelsMany recovery schemes may not satisfy the model presented above. The analysis in thisreport can be repeated for other models, as well. As stated earlier, the primary goal here isto demonstrate the need for design of multi-level recovery schemes, and not a comprehensiveanalysis of all recovery schemes.3 Performance AnalysisAs noted in Section 1, the applications of interest here either do not need to commit anyoutput until task completion or do not need to minimize output commit delays. Therefore,the �gure of merit for such applications is the average time required to complete the task,or equivalently, the average overhead caused by the rollback recovery scheme. Let E(�)be the expected time required to complete the task using the given recovery scheme. Theaverage overhead is evaluated as a fraction of the execution time (�) required by the task.Speci�cally, average overhead is de�ned asE(�)� � 1This section presents an analysis of the average overhead. The results of the analysishave been veri�ed using simulations.3.1 NotationTwo superscripts are used in our notation, namely, � and @. While the exact implicationsof the superscripts will be clearer as various notation is introduced, the two superscripts areintended to be used as de�ned below:� A superscript � denotes that the quantity is related to an interval that terminates withan N -checkpoint. Absence of the superscript � generally implies (not always) that thequantity is related to an interval that terminates with a 1-checkpoint.8



� A superscript @ denotes that the quantity is related to execution of a segment or aninterval that is not initiated immediately following a failure. Absence of the superscript@ generally implies (not always) that the quantity is related to execution of a segmentor an interval that is initiated immediately following a failure.A quantity may have both, one or none of the two superscripts.3.2 AnalysisRecall that each N -checkpoint terminates a segment of the task's execution. From thediscussion above it is clear that multiple failures cause a rollback to the beginning of thesegment during which the failures occur. Additionally, failures while executing one segmentdo not a�ect the time required to execute other segments. Therefore, the expected timerequired to complete the task can be obtained as the sum of expected time required tocomplete each segment of the task.For a given k, the task is divided into d�k e segments. All segments, possibly exceptthe �rst segment, includes a total of k checkpoint (of which k � 1 are 1-checkpoints). The�rst segment may contain less than (k � 1) 1-checkpoints, as the task length � may not bean integral multiple of kT .We �rst evaluate the expected time required to complete a single segment that in-cludes c 1-checkpoints (c � 0) and one N -checkpoint, as shown in Figure 3. The c 1-checkpoints are labeled CP1 through CPc, and the N -checkpoint at the end of the segmentis labeled CPc+1. Observe that the segment consists of (c + 1) 1-intervals. Failures mayoccur while executing any of these intervals. If multiple failures occur while executing anyone 1-interval, then the system must be rolled back to the start of the segment. The analysisbelow assumes that c > 0. The results for the case of c = 0 can be obtained similarly. Let:
9
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segment begins segment endsFigure 3: A segmentSc = total time required to execute the above segment containing (c + 1)1-intervals.P@ = probability that a rollback will occur to the beginning of the segment,given that no previous rollback to the beginning of the segment hasoccurred.P = probability that a rollback will occur to the beginning of the segment,given that a rollback to the beginning of the segment has already oc-curred.� = number of times a rollback occurs to the beginning of the segment, afterthe �rst rollback to the beginning of the segment.F@ = time lost due to a rollback to the beginning of the segment, given thatthis is the �rst rollback to the beginning of the segment.F = time lost due to a rollback to the beginning of the segment, given thatthis is not the �rst rollback to the beginning of the segment.I@ = time spent in executing a single 1-interval that terminates with a 1-checkpoint, given that at most a single failure occurs while executingthe interval, and that a failure did not occur immediately before thisinterval started execution.I = time spent in executing a single 1-interval that terminates with a 1-checkpoint, given that at most a single failure occurs while executingthe interval, and that a failure occurred immediately before this intervalstarted execution.I�@ = time spent in executing a single 1-interval that terminates with an N -checkpoint, given that at most a single failure occurs while executingthe interval, and that a failure did not occur immediately before thisinterval started execution.E(x) = expected value of x.For accurate analysis, it is necessary to distinguish between the �rst rollback to thebeginning of a segment and the subsequent rollbacks. Figure 4 illustrates this. As shownin the �gure, length of the �rst 1-interval of the segment before failure is T +C1. However,after a rollback to the start of the segment occurs, due to the additional time required to10
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of the segment is E(I�@) and the expected time required to complete the middle (c�1)1-intervals is (c� 1)E(I@).Therefore,E(Sc) = P@E(F@) + P@E(�)E(F ) + (1 � P@)E(I@) + P@E(I) + (c� 1)E(I@) + E(I�@)= P@E(F@) + P@E(�)E(F ) + (c� P@)E(I@) + P@E(I) + E(I�@) (1)We �rst evaluate each quantity on the right hand side of the above equation. The readermay skip sections 3.3, 3.4 and 3.5 without loss of continuity.3.3 Evaluation of P@, P and E(�)De�ne p@ = probability that a rollback to the start of the segment occurs duringa given 1-interval that terminates with a 1-checkpoint, given that afailure did not occur immediately before this interval started.p = probability that a rollback to the start of the segment occurs duringa given 1-interval that terminates with a 1-checkpoint, given that afailure occurred immediately before this interval started.p�@ = probability that a rollback to the start of the segment occurs duringa given 1-interval that terminates with an N -checkpoint, given that afailure did not occur immediately before this interval started.Then, P@ = 1 � (1 � p@)c (1 � p�@)Evaluation of p@ and p�@A rollback will occur during a 1-interval if a processor fails before completion of theinterval, and a processor also fails while re-executing the interval (or while initiating there-execution). Therefore,p@ = (1� e�N�(T+C1))(1� e�N�(T+C1+R))Similarly, p�@ = (1 � e�N�(T+CN))(1� e�N�(T+CN+R))p = (1 � e�N�(T+C1+R))(1� e�N�(T+C1+R))12



Knowing p@ and p�@, P@ can be evaluated.Evaluation of P and E(�)When it is known that at least one rollback occurred to the beginning of the segment,the length of the �rst 1-interval in the segment becomes R + T + C1. The length of other1-intervals is unchanged. Therefore,P = 1� (1� p)(1 � p@)c�1(1 � p�@); c > 0It follows thatE(�) = P1� P = (1� p)�1(1� p@)1�c(1 � p�@)�1 � 1; c > 03.4 Evaluation of E(F )To be able to evaluate E(F ), we �rst need to evaluate E(I@) and E(I).The de�nition of I@ implies that a failure may occur while the 1-interval is executed,but no failure occurs when (and if) the 1-interval is re-executed. A rollback to the startof the 1-interval is required if a failure occurs any time during the T units of execution orwhile taking the 1-checkpoint at the end of the 1-interval. Thus, a failure during T + C1time units can cause a rollback to the start of the 1-interval. When a rollback occurs, Rtime units are spent in performing the rollback (i.e., initiating the re-execution). Therefore,E(I@) = T + C1 +(1 � e�N�(T+C1))e�N�(T+C1+R)e�N�(T+C1) + (1� e�N�(T+C1))e�N�(T+C1+R) Z T+C10 (t+R) N�e�N�t1 � e�N�(T+C1)dt= T + C1 +(1 � e�N�(T+C1))e�N�(T+C1+R)e�N�(T+C1) + (1� e�N�(T+C1))e�N�(T+C1+R)  (R+ (N�)�1)� (T + C1)e�N�(T+C1)1 � e�N�(T+C1) !If a failure occurs immediately before the start of a 1-interval that terminates with a 1-checkpoint, then the length of that interval is T + C1 +R. Therefore,E(I) = T + C1 +R +(1� e�N�(T+C1+R))e�N�(T+C1+R)e�N�(T+C1+R) + (1� e�N�(T+C1+R))e�N�(T+C1+R) Z T+C10 (t) N�e�N�t1 � e�N�(T+C1+R)dt13



= T + C1 +R +(1� e�N�(T+C1+R))e�N�(T+C1+R)e�N�(T+C1+R) + (1� e�N�(T+C1+R))e�N�(T+C1+R)  (N�)�1 � (T + C1 +R)e�N�(T+C1+R)1 � e�N�(T+C1+R) !Note that the integral term above contains (t) unlike the integral term for E(I@) whichcontains (t + R). This is because, for E(I), R is already included in the term outside theintegral. E(I�@) is obtained by replacing C1 by CN in the equation for E(I@). Therefore,E(I�@) = T + CN +(1� e�N�(T+CN))e�N�(T+CN+R)e�N�(T+CN) + (1 � e�N�(T+CN))e�N�(T+CN+R)  (R+ (N�)�1)� (T + CN)e�N�(T+CN)1 � e�N�(T+CN) !Evaluation of E(F )Recall that F is de�ned as the time lost due to a rollback to the beginning of thesegment, given that this is not the �rst rollback to the beginning of the segment. Evaluationof E(F ) is conditional on the fact that such a rollback indeed occurred. The rollback canoccur during any one of the 1-intervals. Therefore,E(F ) = c+1Xi=1QiE(Fi) (2)where, Qi is the probability that a rollback to start of the segment occurred during interval igiven that such a rollback occurred during the segment. Fi is the execution time lost becauseof such a rollback during interval i. Therefore, for c > 0,Qi = 8>><>>: pP ; i = 1(1�p)(1�p@)i�2p@P ; 1 < i � c(1�p)(1�p@)c�1p�@P ; i = c+ 1(p, p@, etc. were de�ned previously. It is easy to verify that Pc+1i=1 Qi = 1.) Given that arollback to the start of the interval occurred during interval i, for 1 < i � c and c > 0,E(Fi) = E(I) + (i� 2)E(I@) + Z T+C10 (t) N�e�N�t1� e�N�(T+C1)dt+ Z T+C1+R0 (t) N�e�N�t1 � e�N�(T+C1+R)dt14



= E(I) + (i� 2)E(I@) + (N�)�1 � (T + C1)e�N�(T+C1)1 � e�N�(T+C1)+ (N�)�1 � (T + C1 +R)e�N�(T+C1+R)1 � e�N�(T+C1+R)= E(I) + (i� 2)E(I@) + 2(N�)�1 � (T + C1)e�N�(T+C1)1� e�N�(T+C1)� (T + C1 +R)e�N�(T+C1+R)1� e�N�(T+C1+R) (3)Length of the �rst 1-interval in this case is T +C1+R. Therefore, E(F1) is obtained, similarto E(Fi), as: E(F1) = 2 Z T+C1+R0 (t) N�e�N�t1 � e�N�(T+C1+R)dt= 2(N�)�1 � 2(T + C1 +R)e�N�(T+C1+R)1� e�N�(T+C1+R) (4)When c > 0, E(Fc+1) can be obtained by replacing C1 by CN and i by c+ 1 in Equation 3.E(F ) can now be evaluated using Equation 2 and the expressions for E(Fi) and Qi.3.5 Evaluation of E(F@)Recall that F@ is de�ned as the time lost due to a rollback to the beginning of the segment,given that this is the �rst rollback to the beginning of the segment. Evaluation of E(F@) isvery similar to the evaluation of E(F ).E(F@) = c+1Xi=1Q@i E(F@i ) (5)where, Q@i is the probability that a rollback to start of the segment occurred during intervali given that such a rollback occurred during the segment and that the rollback is the �rstrollback in this segment. F@i is the execution time lost because of such a rollback duringinterval i. Therefore, for c > 0,Q@i = 8<: (1�p@)i�1p@P@ ; 1 � i � c(1�p@)cp�@P@ ; i = c+ 115



(p�@ and p@ were obtained previously. It is easy to verify that Pc+1i=1 Q@i = 1.) Given that arollback to the start of the interval occurred during interval i, for 1 � i � c and c > 0,E(F@i ) = (i� 1)E(I@) + Z T+C10 (t) N�e�N�t1� e�N�(T+C1)dt+ Z T+C1+R0 (t) N�e�N�t1� e�N�(T+C1+R)dt= (i� 1)E(I@) + 2(N�)�1 � (T + C1)e�N�(T+C1)1� e�N�(T+C1)� (T + C1 +R)e�N�(T+C1+R)1 � e�N�(T+C1+R) (6)E(F@c+1) can be obtained by replacing C1 by CN and i by c+1 in Equation 6. E(F@)can now be evaluated using Equation 5 and the expressions for E(F@i ) and Q@i .3.6 Evaluation of expected task completion timeUsing the expressions derived above, the value of E(Sc) (c > 0) can be obtained usingEquation 1 repeated here:E(Sc) = P@E(F@) + P@E(�)E(F ) + (c� P@)E(I@) + P@E(I) + E(I�@)E(Sc) for c = 0 can also be obtained similarly. Recall that length of the task (�) is a multipleof T . Let � = �T . Then, the task consists of d�=ke segments, of which d�=ke � 1 segmentscontain k 1-intervals each and one segment contains k# = � � k (d�=ke � 1) 1-intervals.Therefore, the expected task completion time E(�) is obtained asE(�) = (d�=ke � 1)E(Sk�1) + E(Sk#�1) (7)As we know how to evaluate E(Sc) for arbitrary c, the expected task completion time cannow be evaluated.3.7 Average OverheadTwo cases are possible: 16



1. The task is of �nite size. In this case, the average overhead can be obtained as,average overhead = E(�)� � 1= (d�=ke � 1)E(Sk�1) + E(Sk#�1)�T � 1 (8)2. The task is of in�nite size. In this case, the average overhead is obtained by taking alimit of Equation 8 as � approaches 1. To obtain the limit, observe that Equation 8can be re-written asaverage overhead = (d�=ke � 1)E(Sk�1) + E(Sk#�1)((d�=ke � 1)k + k#)T � 1Thus, when � !1, we obtain the average overhead asE(Sk�1)kT � 1:Essentially, for large tasks, the average overhead is the same as the average overheadin executing a single segment.Average percentage overhead is obtained by multiplying the average overhead by 100.4 Numerical ResultsIn this section, we present numerical results to determine optimal values of k and � for agiven (�nite) task size and a given �. Signi�cant e�ort has been devoted in the past foranalytically determining optimal checkpoint intervals for checkpointing and rollback recoveryschemes [1, 5, 15, 23, 24]. Due to the complexity of the expressions for the 2-level recoveryscheme under consideration, an analytical approach for determining optimal k and � is notvery attractive. Instead, we choose to determine the optimal values numerically.There are a number of parameters that a�ect system performance including C1, CN ,�, N and task length �. In this report, we are primarily interested in the e�ect of relativevalues of C1 and CN on the optimal operating point. (For a given task, an operating pointis characterized by the chosen values of k and �.)17



We evaluate the average overhead for two hypothetical tasks for di�erent values ofC1. For the �rst task N�� is large and for the other task N�� is small. Therefore, theprobability that many failures occur is larger for the �rst task.Task 1Task 1 is characterized by the following parameters: � = 0.00001, � = 200, N =500, CN = 1.0, R = 1.0. Di�erent values of C1 are used in the following for di�erent graphs.Note that for Task 1, N�� = 1:0 which is quite large.The �rst interesting feature of the two-level recovery scheme is that the curves foraverage overhead do not always have a unique minimum. This is illustrated in Figures 5and 6 which plot the average percentage overhead versus � for C1 = 0:2 and k = 3 and 10,respectively. Observe that the curve for k = 3 has many minimas while the curve for k = 10has only two minimas. These curves are not convex, unlike the traditional checkpointingand rollback schemes (e.g., [1]).The curve for k = 1 is shown in Figure 7. When k = 1, all the checkpoints areN -checkpoints, and the two-level recovery scheme reduces to traditional checkpointing androllback schemes. Therefore, as shown previously [1], the curve for k = 1 is convex and hasexactly one minimum.Figures 8 through 11 plot the percentage overhead versus � for various values of kand C1. Table 1 lists the optimal values of k, � and average percentage overhead for variousvalues of C1.Note that when C1 = 1:0, we have C1 = CN , i.e., taking 1-checkpoints is as expensiveas N -checkpoints. As N -checkpoints provide more protection against failures, it is obviousthat, to minimize the average overhead, all the checkpoints must be N -checkpoints (i.e.,k = 1). C1 k � average % overhead0.2 14 27 7.10.4 6 18 9.00.6 3 14 10.31.0 1 10 11.2Table 1: Task 1: Minimum average percentage overhead18
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Figure 5: Task 1: C1 = 0:2 and k = 3 { the curve is not convex
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Figure 6: Task 1: C1 = 0:2 and k = 10 { the curve is not convex19
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Figure 7: Task 1: C1 = 0:2 and k = 1 { the curve is convex
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Figure 9: Task 1 { C1 = 0:4
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Figure 11: Task 1 { C1 = 1:0Observe that the values of � and k at which the overhead is minimized are signi�cantlya�ected by the changes in C1. Additionally, the changes in C1 also a�ect the minimumachievable overhead signi�cantly. An overhead reduction of as small as 2% in a 500 processorsystem results in signi�cant cost savings. Therefore, it is desirable to minimize C1 as muchas possible.Task 2Task 2 is characterized by the following parameters: � = 0.00001, � = 200, N =50, CN = 1.0, R = 1.0. Note that for Task 2, N�� = 0.1 which is an order of magnitudesmaller that Task 1. Task 1 and 2 essentially di�er in the number of processors they use.For Task 2, Figures 12 through 15 plot the percentage overhead versus � for variousvalues of k and C1. Table 2 lists the optimal values of k, � and average percentage overheadfor various values of C1.Observe that for Task 2, to optimize the overhead for values of C1 not very closeto CN , � needs to be equal to k, i.e. no N -checkpoints are taken during the task. Thisimplies that when N�� is small and C1 is small compared to CN , it is adequate to only take1-checkpoints; N -checkpoints are not necessary at all to minimize the overhead. The actual22



1.5

2

2.5

3

3.5

4

4.5

5

5 10 15 20 25

a
v
e
r
a
g
e
 
p
e
r
c
e
n
t
a
g
e
 
o
v
e
r
h
e
a
d

mu

k = 5
k = 7
k = 9

Figure 12: Task 2 { C1 = 0:2
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Figure 13: Task 2 { C1 = 0:623
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Figure 14: Task 2 { C1 = 0:9
3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7 8

a
v
e
r
a
g
e
 
p
e
r
c
e
n
t
a
g
e
 
o
v
e
r
h
e
a
d

mu

k = 1
k = 2
k = 3

Figure 15: Task 2 { C1 = 1:024



C1 k � average % overhead0.2 7 7 1.940.6 4 4 2.840.9 2 3 3.271.0 1 3 3.28Table 2: Task 2: Minimum average percentage overheadvalue of � at which the overhead is minimized decreases with an increase in C1.5 Accurate ModelingThe model used in this report at best approximates real systems. However, the conclusionsdrawn from the analysis presented above are expected to hold for most systems. An accuratesystem model must take into account the following:� Recovery scheme: The actual recovery scheme a�ects both the cost model and thefailure e�ect model described in Section 2.� Application: The behavior of the application a�ects the overhead. For example, thevariation in size of the checkpoint, number and size of messages sent by the processescan a�ect the cost model. For example, models similar to those presented in [4, 23]may be used to more accurately model an application's behavior.� Failure model: In the analysis above, we assumed that the failures of di�erent proces-sors are independent. Additionally, we did not di�erentiate between a processor anda process.In practice, multiple processes may be scheduled on a single processor. This impliesthat a single processor failure could result in the failure of multiple processes.The failure independence assumption may not hold in practice. Often, multiple pro-cessors are packed onto a single printed circuit board. This may mean that the failureof one processor can cause the failure of other processors on the same board.The implication of the above observations is that it may often be necessary to designrecovery schemes that logically partition the system into multiple clusters, each clus-25



ter containing some number of processes. The partitioning should be such that thefailure of one process in the cluster is likely to cause (or be correlated with) failure ofother processes in the cluster. In this context, the 2-level recovery scheme presentedearlier can be redesigned to tolerate a single cluster failure at a low cost and multiplecluster failures at a higher cost. We previously proposed the distributed recovery unitabstraction [21], which can potentially be used to design such recovery schemes.6 DiscussionThe numerical results presented in Section 4 imply that sometimes neither 1-checkpointsnor N -checkpoints can be used exclusively to achieve optimal performance. For example,for Task 1 with C1 = 0:4, the overhead is minimized when k = 6 and � = 18. A systemthat only takes N -checkpoints is equivalent to having k = 1. As the overhead is minimizedwhen k = 6, it follows that taking only N -checkpoints is not optimal. Figure 16 showsthe curve for k = 1; 6 and also for a system that takes only 1-checkpoints, i.e., all the �checkpoints are 1-checkpoints. Such a system rolls back to the start of the task if multiplefailures occur during any single 1-interval. This system does not achieve a smaller averageoverhead compared to k = 6 and � = 18. This implies that taking only 1-checkpoints isalso not adequate. Essentially, this example illustrates that often it will be necessary totake both 1-checkpoints and N -checkpoints to minimize the average overhead. Also, ourresults indicate that, keeping everything else constant, the overhead is reduced signi�cantlyby reducing C1.The above observation is a motivating factor to design 2-level recovery schemes.Speci�cally, it seems necessary to investigate software techniques as well as hardware supportto minimize the cost of taking 1-checkpoints (as compared to N -checkpoints).7 Future WorkThe following problems are a subject of ongoing and future research.� Design of multi-level recovery schemes for message passing as well as shared memorysystems.� Accurate analysis of multi-level recovery schemes.26
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