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Abstract

Most of the distributed recovery schemes proposed in the literature are designed
to tolerate arbitrary number of failures, with a few notable exceptions of schemes
designed to tolerate single failures. In this report, we demonstrate that, it is often
advantageous to use “multi-level” recovery schemes. A “multi-level” recovery scheme
is one that can tolerate different number of faults at different costs, tolerance of larger
number of failures requiring larger costs. The costs are incurred during failure-free
operation as well as during recovery.

To demonstrate the advantages of multi-level recovery, we analyze a hypotheti-
cal 2-level recovery scheme that takes two different types of checkpoints, namely, 1-
checkpoints and N-checkpoints. A single failure can be tolerated by rolling the system
back to a 1-checkpoint, while multiple failure recovery is possible by rolling back to
an V-checkpoint. The cost of a 1-checkpoint may be expected to be smaller than that
of an N-checkpoint. For such a system, we demonstrate that to minimize the average
overhead, it is often necessary to take both 1-checkpoints and N-checkpoints.

While the conclusions of this report are intuitive, the work on appropriate recovery
schemes is lacking. The objective of this report is to motivate research into recovery
schemes that can provide multiple levels of fault tolerance.



1 Introduction

A number of recovery schemes have been proposed in the past for tolerating failures in
distributed systems. These schemes are also applicable to parallel applications executed in
distributed environments or on multiprocessors such as nCube. The applications of interest

here are of two types:

1. Long-running applications which do not need to commit an output to the environment
until the completion of the task. This condition does not per se preclude the application
from doing file (or disk) I/O. When the file system is not a part of the environment,
the file output can be rolled back if necessary.

2. Long-running applications which may commit output during their execution, but the

delay in output commit is not required to be small.

Many of the so called “grand-challenge” problems are of the above types.

Most of the recovery schemes proposed in the literature are designed to tolerate
arbitrary number of failures (e.g., [2, 3, 8, 12, 16, 17, 18, 22]), with a few notable exceptions

of schemes designed to tolerate single failures (e.g., [9]).

In this report, we demonstrate that, it is often advantageous to use “multi-level”
recovery schemes. A “multi-level” recovery scheme is one that can tolerate different number
of faults at different costs, tolerance of larger number of failures requiring larger overhead.
The overhead is incurred during failure-free operation as well as during recovery. Although
a large number of researchers have analyzed checkpointing and recovery [1, 4, 5, 6, 7, 10,
11, 13, 14, 15, 19, 20, 23, 24], to our knowledge, no analysis of multi-level recovery schemes
has been attempted so far. Also much of this analysis treats the entire system as faulty
or fault-free, and does not model failure of each individual processor separately. Recently,
Wong and Franklin [23] presented analysis of distributed checkpointing schemes that allows
each processor to fail independently, however, they do not address the issue of multi-level

recovery.

To demonstrate the advantages of multi-level recovery, we analyze a hypothetical 2-
level recovery scheme that takes two different types of checkpoints, namely, 1-checkpoints
and N-checkpoints. A single failure can be tolerated by rolling the system back to a 1-

checkpoint, while multiple failure recovery is possible by rolling back to an N-checkpoint.



The cost of a 1-checkpoint may be expected to be smaller than that of an N-checkpoint.!
We show that for such a system, to minimize the average overhead, it is often necessary to
take both 1-checkpoints and N-checkpoints.

While conclusions of this report are intuitive, the work on appropriate recovery
schemes is lacking. The objective of this report is to motivate research into recovery schemes
that can provide multiple (at least two) levels of fault tolerance. An obvious approach is to
use two different schemes simultaneously, for example, one to tolerate a single failure, and
another to tolerate arbitrary number of failures. While this approach may in fact be useful,
it would be interesting to consider designs of a single recovery scheme that can provide both

the levels of fault tolerance, at a smaller aggregate cost.

This report considers a simple system model that may be applicable to some recovery
schemes. The goal here is to demonstrate the need for design of multiple levels of fault

tolerance, and not a comprehensive analysis of all recovery schemes.

2 System Model

For a multi-level recovery scheme, the system model consists of two components:

o Cost model: Overhead is incurred during normal operation due to checkpointing, mes-
sage logging, etc. Additionally, when a failure occurs, overhead is incurred due to
the computation lost by failure, the time required to initiate recovery, etc. Actual

overhead depends on the chosen recovery scheme.
The cost model must model the overhead incurred by the recovery scheme during

failure-free operation and during recovery.

o Failure effect model: The effect of failures on the system is a function of the recovery

scheme used.

!This model approximates a coordinated checkpointing scheme that stores 1-checkpoints on volatile
storage and N-checkpoints on stable storage. For example, the N processors executing an application may
form a chain, i-th processor storing its checkpoint in the volatile storage of (¢ + 1)-th processor, and the
N-th processor storing its checkpoint on the volatile storage of an (N +1)-th processor that does not execute
the application. This would constitute a 1-checkpoint, as failure of any one processor can be tolerated by
using the checkpoints stored in volatile storage. An N-checkpoint would be taken by all processes storing
their checkpoints on the stable storage. Presumably, the cost of storing in volatile storage would be smaller
than that of storing in a stable storage.



For example, traditional coordinated checkpointing schemes roll the processes back
to the previous checkpoint whenever a failure occurs. The same action is taken in-
dependent of how many failures occur. On the other hand, the hypothetical 2-level
recovery scheme (briefly summarized earlier) rolls the system back to the most recent
checkpoint (1- or N-checkpoint) when a single failure occurs, and to the most recent
N-checkpoint when multiple failures occur. The 2-level recovery scheme is described

below in more detail.

The effect failures have on the behavior of the recovery scheme affects the total over-
head incurred by the recovery scheme. An appropriate failure effect model must be

chosen for a given recovery scheme.

As noted earlier, in this report, we analyze a hypothetical 2-level recovery scheme.
The system model used here is a simple generalization of a model used previously [1] for

analysis of single processor systems.

The system is assumed to consist of N processors. (At this point, we do not differ-
entiate between a process and a processor. We address this issue later.) Each processor
is subject to transient failures, the inter-failure interval being governed by an exponential
distribution with mean 1/A. Failures of the N processors are independent of each other.

(This assumption may not always be true, as discussed later.)
Cost Model

It is assumed that the recovery scheme is capable of providing tolerance against
single as well as multiple failures, possibly using different approaches. The processes take
two types of checkpoints: 1-checkpoints and N-checkpoints. The processes take checkpoints
every T time units, every k-th checkpoint being an N-checkpoint (k > 1) and all others 1-
checkpoints. Thus, the interval between two consecutive 1-checkpoints is T and the interval
between every two consecutive N-checkpoints is kT (excluding the time required to take
I-checkpoints). Figure 1 illustrates this for & = 3. It is assumed that the execution time
(length) of the task (application) is an integral multiple of 7. However, length of the task
is not necessarily an integral multiple of k7. Length of the task is denoted by T. Thus,
T = pT for some integer p.

We assume that no checkpoint needs to be taken at the beginning of the task, and an
N-checkpoint is taken at the completion of the task. This implies that the first N-checkpoint

may be taken after less than k7' time units of computation, when the length of the task
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Figure 1: 1-checkpoints and N-checkpoints

is not an integral multiple of £7T". For example, in Figure 1, length of the task is 117" and
k = 3. Therefore, the computation time between adjacent N-checkpoints is 37". However,
the computation time from the start of the task to the first N-checkpoint is 27"

The interval between any two consecutive checkpoints is called a 1l-interval. The
execution of the task is divided into certain number of segments, each segment terminating

with an N-checkpoint. For example, in Figure 1, the task is divided into four segments.

Let the time required to take an N-checkpoint be C'y and the time required to take
a 1-checkpoint be . In a distributed system, various processors may take checkpoints at
different times. However, our analysis assumes that all processors take checkpoints simulta-

neously. (Essentially, the cost of taking a checkpoint is bulked at the end of the interval.)

The time required to perform a rollback is assumed to be R. (This does not include
the time required for re-execution). Here, the rollback time is assumed to be identical
irrespective of whether the system rolls back to a 1-checkpoint or to an N-checkpoint or to

the beginning of the task.

Consider a failure that can be detected by rolling back to a certain checkpoint CP.
If the failure is detected when ¢ time units of computation was performed after checkpoint
CP, then it is assumed that ¢ units of execution is required to re-do the lost computation (in
absence of further failures). In the past, many researchers have assumed (e.g., [1]) that the
time required to re-do the computation is at for some constant «. Thus, we assume o = 1

here. However, our analysis can be easily revised when « # 1.



Failure Effect Model

The effect of failures is dependent on the failure recovery scheme used. We consider a
failure effect model (named model B) that is pessimistic in the sense that the benefit of
taking 1-checkpoints is likely to be more pronounced than indicated by our model. In
spite of the pessimistic model, the need for taking 1-checkpoints as well as N-checkpoints
is demonstrated by our results. (Accurate modeling needs exact knowledge of the recovery

scheme used. More accurate models are expected to emphasize our conclusions further.)

Model B assumes that if at most one failure occurs during the execution of a I-
interval, the failure can be tolerated by rolling back to the most recent checkpoint. (The
most recent checkpoint may be a 1-checkpoint or an N-checkpoint.) If, however, a failure
also occurs during the re-execution of the same 1-interval, system must be rolled back to
the most recent N-checkpoint (or to the start of the task, if no N-checkpoint is taken before
the failure). The second failure may or may not affect the same processor as the first failure
— both cases require a rollback to the most recent N-checkpoint. The failure effect model is

illustrated below with examples.

Figure 2(a) illustrates a scenario where a failure occurs during 1-interval [, and the
system is rolled back to the most recent checkpoint (C'P1). No failure occurs during the

re-execution of [s.

Figure 2(b) illustrates a scenario where a failure occurs during 1-interval I, and the
system is rolled back to the previous checkpoint (C'P1). Another failure occurs during the
re-execution of [5. Therefore, the system is rolled back to the most recent N-checkpoint

(CPO).

Figure 2(c) illustrates a scenario similar to 2(a). In this case also a failure occurs
during interval I, and no failure occurs during the re-execution of ;. A failure occurring
during interval I3 is treated identical to the first failure during ;. That is, the system rolls
back to the most recent checkpoint C'P2. Essentially, failures occurring during two different

l-intervals are treated independently.

This model is pessimistic in two ways:

e It requires a rollback to the most recent N-checkpoint even when the second failure
affects the same processor as the first failure. It is conceivable that such a failure
could be tolerated by rolling back to the most recent checkpoint (not necessarily N-
checkpoint).
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e It is conceivable that a recovery scheme may take an N-checkpoint as soon as a failure
is detected. In this case, only multiple failures occurring before this N-checkpoint is

taken will require a rollback to the previous N-checkpoint.

2.1 Other models

Many recovery schemes may not satisfy the model presented above. The analysis in this
report can be repeated for other models, as well. As stated earlier, the primary goal here is
to demonstrate the need for design of multi-level recovery schemes, and not a comprehensive

analysis of all recovery schemes.

3 Performance Analysis

As noted in Section 1, the applications of interest here either do not need to commit any
output until task completion or do not need to minimize output commit delays. Therefore,
the figure of merit for such applications is the average time required to complete the task,
or equivalently, the average overhead caused by the rollback recovery scheme. Let FE(I')
be the expected time required to complete the task using the given recovery scheme. The
average overhead is evaluated as a fraction of the execution time (T) required by the task.

Specifically, average overhead is defined as

This section presents an analysis of the average overhead. The results of the analysis

have been verified using simulations.

3.1 Notation

Two superscripts are used in our notation, namely, * and @. While the exact implications
of the superscripts will be clearer as various notation is introduced, the two superscripts are
intended to be used as defined below:

e A superscript * denotes that the quantity is related to an interval that terminates with
an N-checkpoint. Absence of the superscript * generally implies (not always) that the

quantity is related to an interval that terminates with a 1-checkpoint.



o A superscript @ denotes that the quantity is related to execution of a segment or an
interval that is not initiated immediately following a failure. Absence of the superscript
@ generally implies (not always) that the quantity is related to execution of a segment

or an interval that is initiated immediately following a failure.

A quantity may have both, one or none of the two superscripts.

3.2 Analysis

Recall that each N-checkpoint terminates a segment of the task’s execution. From the
discussion above it is clear that multiple failures cause a rollback to the beginning of the
segment during which the failures occur. Additionally, failures while executing one segment
do not affect the time required to execute other segments. Therefore, the expected time
required to complete the task can be obtained as the sum of expected time required to

complete each segment of the task.

For a given k, the task is divided into [£] segments. All segments, possibly except
the first segment, includes a total of k checkpoint (of which k& — 1 are 1-checkpoints). The
first segment may contain less than (k — 1) 1-checkpoints, as the task length T may not be

an integral multiple of kT

We first evaluate the expected time required to complete a single segment that in-
cludes ¢ 1-checkpoints (¢ > 0) and one N-checkpoint, as shown in Figure 3. The ¢ 1-
checkpoints are labeled C' Py through CP., and the N-checkpoint at the end of the segment
is labeled C'P.y1. Observe that the segment consists of (¢ + 1) I-intervals. Failures may
occur while executing any of these intervals. If multiple failures occur while executing any
one l-interval, then the system must be rolled back to the start of the segment. The analysis

below assumes that ¢ > 0. The results for the case of ¢ = 0 can be obtained similarly. Let:
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Figure 3: A segment

total time required to execute the above segment containing (¢ + 1)

l-intervals. . o
probability that a rollback will occur to the beginning of the segment,

given that no previous rollback to the beginning of the segment has

occurred. . o
probability that a rollback will occur to the beginning of the segment,

given that a rollback to the beginning of the segment has already oc-

curred.
number of times a rollback occurs to the beginning of the segment, after

the first rollback to the beginning of the segment.
time lost due to a rollback to the beginning of the segment, given that

this is the first rollback to the beginning of the segment.
time lost due to a rollback to the beginning of the segment, given that

this is not the first rollback to the beginning of the segment.
time spent in executing a single l-interval that terminates with a 1-

checkpoint, given that at most a single failure occurs while executing
the interval, and that a failure did not occur immediately before this

interval started execution. . . .
time spent in executing a single l-interval that terminates with a 1-

checkpoint, given that at most a single failure occurs while executing
the interval, and that a failure occurred immediately before this interval

started execution. . . . .
time spent in executing a single 1-interval that terminates with an V-

checkpoint, given that at most a single failure occurs while executing
the interval, and that a failure did not occur immediately before this

interval started execution.
expected value of .

For accurate analysis, it is necessary to distinguish between the first rollback to the

beginning of a segment and the subsequent rollbacks. Figure 4 illustrates this. As shown

in the figure, length of the first 1-interval of the segment before failure is T'+ ;. However,

after a rollback to the start of the segment occurs, due to the additional time required to

10
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Figure 4: Rollback increases length of the first 1-interval

initiate recovery, the length of the first 1-interval in the segment is increased to T'4 C + R.
After each subsequent rollback, the length of the first 1-interval remains T' 4 '} + R. The
length of the 1-interval that terminates with an N-checkpoint is always T+ C. (Recall that
we are assuming ¢ > 0). The length of all 1-intervals, except the first and last 1-intervals in

the segment, is always T + C}.

The execution of a segment consists of:

e Certain number of executions during which multiple failures occur that cause a rollback

to the start of the segment. On the average, this requires P*E(F'®) + PCE(p)E(F)
units of time.
Justification: P® is the probability that a rollback to the start of the segment will
occur and E(F'®) is the average cost of a first rollback to the start of the segment.
Therefore, the first rollback contributes P® E(F®) to the average task completion time.
E(p) is the expected number of rollbacks to the start of the segment after the first
such rollback. Therefore, the rollbacks to the start of the segment (excluding the first
rollback) contribute P®E(p)E(F) to the expected task completion time.

e An execution during which rollback to the start of the segment does not occur. On
the average, this requires (1 — P@)E(I@) + P@E(]) + (e— 1)E(I@) + E(I*@) units of
time.

Justification: The expected time required to execute the first 1-interval after a roll-
back to the start of the segment is F(I) and before such a rollback is E(I). There-
fore, the expected time required to complete the first 1-interval of the segment is
(1—P®YE(I®)+ PYE(I). The expected time required to complete the last 1-interval

11



of the segment is £(1*®) and the expected time required to complete the middle (¢—1)
l-intervals is (¢ — 1) E(19).

Therefore,

E(S.) = PUE(F®)+ PYE(p)E(F)+ (1 — PYE(IY) + PYE() + (c — DWEI) + BE(I™)
= PUB(F) 4+ PYE(p)E(F)+ (c — PYYE(I®) + PCE(I) + E(I") (1)

We first evaluate each quantity on the right hand side of the above equation. The reader
may skip sections 3.3, 3.4 and 3.5 without loss of continuity.

3.3 Evaluation of P, P and F(p)

Define

p" = probability that a rollback to the start of the segment occurs during
a given l-interval that terminates with a 1-checkpoint, given that a

failure did not occur immediately before this interval started.
p = probability that a rollback to the start of the segment occurs during

a given l-interval that terminates with a 1-checkpoint, given that a

failure occurred immediately before this interval started.
p*® = probability that a rollback to the start of the segment occurs during

a given l-interval that terminates with an N-checkpoint, given that a
failure did not occur immediately before this interval started.

Then,

Evaluation of p® and p*®

A rollback will occur during a 1-interval if a processor fails before completion of the
interval, and a processor also fails while re-executing the interval (or while initiating the

re-execution). Therefore,

@ (1 _ e—NA(T-i—CH))(l _ e—NA(T+Ol+R))

p? =
Similarly,
p*@ _ (1 . e—N/\(T-I—ON))(l . e—N/\(T—l—ON+R))
p = (1— e—N/\(T—l—Ol-I-R))(l _ e—N/\(T-|—01-|—R))

12



Knowing p® and p*®, P can be evaluated.
Evaluation of P and FE(p)

When it is known that at least one rollback occurred to the beginning of the segment,
the length of the first 1-interval in the segment becomes R 4+ T'+ ;. The length of other

1-intervals is unchanged. Therefore,
P=1—(1-p)(1=p") " (1=p), >0

It follows that

3.4 Evaluation of E(F)

To be able to evaluate F(F'), we first need to evaluate E(I®) and FE(I).

The definition of I® implies that a failure may occur while the 1-interval is executed,
but no failure occurs when (and if) the I-interval is re-executed. A rollback to the start
of the 1-interval is required if a failure occurs any time during the T' units of execution or
while taking the 1-checkpoint at the end of the 1-interval. Thus, a failure during 7'+ C}
time units can cause a rollback to the start of the 1-interval. When a rollback occurs, R

time units are spent in performing the rollback (i.e., initiating the re-execution). Therefore,

E(I%) = T+C+
(1 _ e—NA(T+01))e—NA(T+01+R) /T_|_01 R) N\ e—NAt "
e~ NMT+C1) (1 _ e—NA(T+01))e—NA(T+01+R) 0 1

_ e—NXT+Cy)

= T+Ci+
(1- e—N/\(T-|—01))e—N/\(T-|—Ol-|—R)

(T _I_ Cl)e—NA(T-I—Ol)

-1
e—NAT'+Ch) + (1 _ e—N/\(T+C1))e—N/\(T+Cl+R) ((R + (N)\) ) - 1 — e—NMT+Ch)

If a failure occurs immediately before the start of a l-interval that terminates with a 1-
checkpoint, then the length of that interval is T'+ C; + R. Therefore,

E(I) = T+Ci+R+
(1 . e_N/\(T_|.01+R))e—NA(T-I—C1+R) T+C, N e NA
e~ NANTHOAR) 4 (1 — e~ NATHCHR) ) o~ NATHC11F) /0  — emNATHCHR)

dt
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= T'+Ci+ R+
(1 — e~ NMIHCIHR) ) = NAT+C1+)

N (T G Ry
e~ NAT+C1+R) 4 (] — ¢~ NANT+C1+R)) o= NA(T+C1+R) (NA)™ = 1 — ¢c-NNT+C1+R)

Note that the integral term above contains (#) unlike the integral term for E(I) which
contains (¢ + R). This is because, for £(I), R is already included in the term outside the
integral. F(I1*®) is obtained by replacing C; by Cy in the equation for E(I). Therefore,

E(I") = T+Cy+

(1 — e~ NAT+Cw) ) =NNT+Cy+R) _1 (T + Cn)e=NAT+Cx)
e~ NMT+Cy) 1 (1 _ e—N/\(T-|—ON))e—NA(T+ON+R) (R + (N)\) ) - 1 — e—NAT+Cy)

Evaluation of F(F)

Recall that F' is defined as the time lost due to a rollback to the beginning of the
segment, given that this is not the first rollback to the beginning of the segment. Evaluation
of E(F') is conditional on the fact that such a rollback indeed occurred. The rollback can

occur during any one of the l-intervals. Therefore,

c+1

E(F) = Y QuE(F) e

where, (); is the probability that a rollback to start of the segment occurred during interval ¢
given that such a rollback occurred during the segment. F; is the execution time lost because

of such a rollback during interval ;. Therefore, for ¢ > 0,

%, =1
C— ) 0=yt
QZ (l_p)(l_];@)c—lp*@7 . ! - ¢
2 , t=c+1

(p, p®, etc. were defined previously. It is easy to verify that 55] Q; = 1.) Given that a

rollback to the start of the interval occurred during interval ¢, for 1 <2 < ¢ and ¢ > 0,

| 40, NAe N
E(F) = E(D+G=2)B0"+ [ () ey dt

T+C1+R N\ e— Nt
+ /0 ( 1 — ¢~ NAT+C1+R)

dt

14



. (T T Cl)e—N/\(T+Cl)
- 1 — e—NMT+C1)

| — c—NA(T+C1+R)

. (T _I_ Cl)e—NA(T-I—Cl)
- 1 — e—NXT+Ch)

= B(I)+ (i —2)BE(I%) + (N))

+ (VAT -

= E(I)+ (i —2)E(I*) +2(N))

N 1 — ¢~ NA(T+C1+R) (3)

Length of the first 1-interval in this case is T'+ C; 4+ R. Therefore, E(F}) is obtained, similar
to E(F}), as:

E(F) = dt

T+C1+R N\ e— Nt
2/0 ( 1 — ¢~ NAT+C1+R)

1 — c—-NMNT+Ci+R) (4)

= 2(NA)P - 2

When ¢ > 0, E(F.41) can be obtained by replacing Cy by Cn and ¢ by ¢+ 1 in Equation 3.
E(F) can now be evaluated using Equation 2 and the expressions for F(F;) and Q;.

3.5 Evaluation of E(F®)

Recall that F'® is defined as the time lost due to a rollback to the beginning of the segment,
given that this is the first rollback to the beginning of the segment. Evaluation of E(F®) is

very similar to the evaluation of E(F).

c+1

E(FY) = 3 QFE() (5

where, Qf is the probability that a rollback to start of the segment occurred during interval
¢ given that such a rollback occurred during the segment and that the rollback is the first
rollback in this segment. F® is the execution time lost because of such a rollback during

K3

interval ¢. Therefore, for ¢ > 0,



(p® and p® were obtained previously. It is easy to verify that 31 Q® = 1.) Given that a

rollback to the start of the interval occurred during interval ¢, for 1 <7 < cand ¢ > 0,

N e—NAt

T+4+Cq
: @
(i — 1) E( )+/0 () syt

5
S

2
I

dt

T+C1+R N\ e— Nt
+ /0 ( 1 — e~ NXT+C1+R)

. (T T Cl)e_N/\(T+Cl)
- 1 — e=NXT+C1)

= (1= 1)EI%) +2(N))

N 1 — e~ NA(T+C1+R) (6)

E(FY,) can be obtained by replacing €y by C'y and ¢ by ¢4 1 in Equation 6. E(F')

can now be evaluated using Equation 5 and the expressions for E(F®) and Q¥.

3.6 Evaluation of expected task completion time

Using the expressions derived above, the value of F(S.) (¢ > 0) can be obtained using
Equation 1 repeated here:

E(S.) = PYE(F®) + PCE(p)E(F) + (¢ — PYYE(I®) + PYE(I) + B(I*)

E(S.) for ¢ = 0 can also be obtained similarly. Recall that length of the task (T) is a multiple
of T. Let T = uT. Then, the task consists of [x/k] segments, of which [u/k] — 1 segments

contain k l-intervals each and one segment contains k#* = p — k([u/k] — 1) l-intervals.

Therefore, the expected task completion time E(I') is obtained as
EX) = ([p/k] =1) E(Sk-1) + E(Si# 1) (7)

As we know how to evaluate F(S,) for arbitrary ¢, the expected task completion time can

now be evaluated.

3.7 Average Overhead
Two cases are possible:

16



1. The task is of finite size. In this case, the average overhead can be obtained as,

average overhead = —= —1

_ Un/k] = 1) E(Sk-1) + E(Sk#—1)
- o —1 (8)

2. The task is of infinite size. In this case, the average overhead is obtained by taking a
limit of Equation 8 as p approaches co. To obtain the limit, observe that Equation 8

can be re-written as

(Tp/k] = 1) E(Sk—1) + E(Ske—1)

(/b - Dk + kBT

average overhead =

Thus, when g — oo, we obtain the average overhead as

E(Sk-1)

— 1.
kT

Essentially, for large tasks, the average overhead is the same as the average overhead

in executing a single segment.

Average percentage overhead is obtained by multiplying the average overhead by 100.

4 Numerical Results

In this section, we present numerical results to determine optimal values of k& and p for a
given (finite) task size and a given A. Significant effort has been devoted in the past for
analytically determining optimal checkpoint intervals for checkpointing and rollback recovery
schemes [1, 5, 15, 23, 24]. Due to the complexity of the expressions for the 2-level recovery
scheme under consideration, an analytical approach for determining optimal &£ and g is not

very attractive. Instead, we choose to determine the optimal values numerically.

There are a number of parameters that affect system performance including Cy, Cl,
A, N and task length T. In this report, we are primarily interested in the effect of relative
values of C7 and Cy on the optimal operating point. (For a given task, an operating point

is characterized by the chosen values of k and p.)
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We evaluate the average overhead for two hypothetical tasks for different values of
C'y. For the first task NAT is large and for the other task NAT is small. Therefore, the

probability that many failures occur is larger for the first task.
Task 1

Task 1 is characterized by the following parameters: A = 0.00001, ¥ = 200, N =
500, Cy = 1.0, R = 1.0. Different values of C'; are used in the following for different graphs.
Note that for Task 1, NAT = 1.0 which is quite large.

The first interesting feature of the two-level recovery scheme is that the curves for
average overhead do not always have a unique minimum. This is illustrated in Figures 5
and 6 which plot the average percentage overhead versus p for €4 = 0.2 and k£ = 3 and 10,
respectively. Observe that the curve for £ = 3 has many minimas while the curve for £ = 10
has only two minimas. These curves are not convex, unlike the traditional checkpointing

and rollback schemes (e.g., [1]).

The curve for £ = 1 is shown in Figure 7. When k£ = 1, all the checkpoints are
N-checkpoints, and the two-level recovery scheme reduces to traditional checkpointing and
rollback schemes. Therefore, as shown previously [1], the curve for £ = 1 is convex and has

exactly one minimum.

Figures 8 through 11 plot the percentage overhead versus p for various values of k
and ;. Table 1 lists the optimal values of £, p and average percentage overhead for various

values of (1.

Note that when C; = 1.0, we have ('} = Cy, i.e., taking 1-checkpoints is as expensive
as NN-checkpoints. As N-checkpoints provide more protection against failures, it is obvious

that, to minimize the average overhead, all the checkpoints must be N-checkpoints (i.e.,

k=1).

4 k| p | average % overhead
0.2 || 14 | 27 7.1
04 6|18 9.0
06| 3|14 10.3
1.0 1110 11.2

Table 1: Task 1: Minimum average percentage overhead
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Figure 5: Task 1: 'y = 0.2 and k£ = 3 — the curve is not convex
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Figure 6: Task 1: 'y = 0.2 and k = 10 — the curve is not convex
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Figure 7: Task 1: ¢y = 0.2 and k£ =1 — the curve is convex

Figure 8: Task 1 - Cy = 0.2
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Figure 10: Task 1 — Cy = 0.6
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Figure 11: Task 1 - Cy = 1.0

Observe that the values of ;1 and k at which the overhead is minimized are significantly
affected by the changes in ;. Additionally, the changes in ' also affect the minimum
achievable overhead significantly. An overhead reduction of as small as 2% in a 500 processor
system results in significant cost savings. Therefore, it is desirable to minimize C'; as much

as possible.
Task 2

Task 2 is characterized by the following parameters: A = 0.00001, ¥ = 200, N =
50, Cny = 1.0, R = 1.0. Note that for Task 2, NAT = 0.1 which is an order of magnitude

smaller that Task 1. Task 1 and 2 essentially differ in the number of processors they use.

For Task 2, Figures 12 through 15 plot the percentage overhead versus p for various
values of k£ and (. Table 2 lists the optimal values of k, p and average percentage overhead

for various values of (.

Observe that for Task 2, to optimize the overhead for values of C; not very close
to Cy, ¢ needs to be equal to k, i.e. no N-checkpoints are taken during the task. This
implies that when NATY is small and C is small compared to Cy, it is adequate to only take

1-checkpoints; N-checkpoints are not necessary at all to minimize the overhead. The actual
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Cy | k| | average % overhead
02717 1.94
06144 2.84
0923 3.27
1.of1]3 3.28

Table 2: Task 2: Minimum average percentage overhead

value of p at which the overhead is minimized decreases with an increase in (.

5 Accurate Modeling

The model used in this report at best approximates real systems. However, the conclusions
drawn from the analysis presented above are expected to hold for most systems. An accurate

system model must take into account the following:

e Recovery scheme: The actual recovery scheme affects both the cost model and the

failure effect model described in Section 2.

e Application: The behavior of the application affects the overhead. For example, the
variation in size of the checkpoint, number and size of messages sent by the processes
can affect the cost model. For example, models similar to those presented in [4, 23]

may be used to more accurately model an application’s behavior.

e Failure model: In the analysis above, we assumed that the failures of different proces-
sors are independent. Additionally, we did not differentiate between a processor and

a Process.

In practice, multiple processes may be scheduled on a single processor. This implies

that a single processor failure could result in the failure of multiple processes.

The failure independence assumption may not hold in practice. Often, multiple pro-
cessors are packed onto a single printed circuit board. This may mean that the failure

of one processor can cause the failure of other processors on the same board.

The implication of the above observations is that it may often be necessary to design

recovery schemes that logically partition the system into multiple clusters, each clus-
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ter containing some number of processes. The partitioning should be such that the
failure of one process in the cluster is likely to cause (or be correlated with) failure of
other processes in the cluster. In this context, the 2-level recovery scheme presented
earlier can be redesigned to tolerate a single cluster failure at a low cost and multiple
cluster failures at a higher cost. We previously proposed the distributed recovery unit

abstraction [21], which can potentially be used to design such recovery schemes.

6 Discussion

The numerical results presented in Section 4 imply that sometimes neither 1-checkpoints
nor N-checkpoints can be used exclusively to achieve optimal performance. For example,
for Task 1 with C; = 0.4, the overhead is minimized when k£ = 6 and ¢ = 18. A system
that only takes N-checkpoints is equivalent to having k£ = 1. As the overhead is minimized
when k = 6, it follows that taking only N-checkpoints is not optimal. Figure 16 shows
the curve for £ = 1,6 and also for a system that takes only 1-checkpoints, i.e., all the u
checkpoints are 1-checkpoints. Such a system rolls back to the start of the task if multiple
failures occur during any single 1-interval. This system does not achieve a smaller average
overhead compared to & = 6 and g = 18. This implies that taking only 1-checkpoints is
also not adequate. Essentially, this example illustrates that often it will be necessary to
take both 1-checkpoints and N-checkpoints to minimize the average overhead. Also, our
results indicate that, keeping everything else constant, the overhead is reduced significantly

by reducing (.

The above observation is a motivating factor to design 2-level recovery schemes.
Specifically, it seems necessary to investigate software techniques as well as hardware support

to minimize the cost of taking 1-checkpoints (as compared to N-checkpoints).

7 Future Work

The following problems are a subject of ongoing and future research.

o Design of multi-level recovery schemes for message passing as well as shared memory

systems.

e Accurate analysis of multi-level recovery schemes.
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Figure 16: Task 1 — Cy = 0.4

e Experimental evaluation of multi-level recovery schemes.

e Design of hardware support to aid the implementation of efficient multi-level recovery

schemes.

e Correlated (or dependent) failures should be taken into account, where applicable,

when performing the analysis.

As a starting point, we are looking at two-level recovery schemes.
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